JP4772486B2 - High strength steel pipe for low temperature - Google Patents
High strength steel pipe for low temperature Download PDFInfo
- Publication number
- JP4772486B2 JP4772486B2 JP2005353209A JP2005353209A JP4772486B2 JP 4772486 B2 JP4772486 B2 JP 4772486B2 JP 2005353209 A JP2005353209 A JP 2005353209A JP 2005353209 A JP2005353209 A JP 2005353209A JP 4772486 B2 JP4772486 B2 JP 4772486B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel pipe
- haz
- oxide
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Arc Welding In General (AREA)
Description
本発明は、米国石油協会(API)規格でX80以上(降伏強度551MPa以上、引張強度620MPa以上)かつX120未満(降伏強度で840MPa未満、引張強度で900MP未満)の、高強度と優れた溶接金属および溶接熱影響部(HAZ)靭性を有する、溶接入熱が70kJ/cm未満で内外面から1層ずつ溶接した鋼管に関するものである。 The present invention has high strength and excellent weld metal with an American Petroleum Institute (API) standard of X80 or more (yield strength 551 MPa or more, tensile strength 620 MPa or more) and less than X120 (yield strength less than 840 MPa, tensile strength less than 900 MP). Further, the present invention relates to a steel pipe having a weld heat affected zone (HAZ) toughness and welded layer by layer from the inner and outer surfaces with a welding heat input of less than 70 kJ / cm.
天然ガスの輸送手段として、従来は市場から比較的近いガス田はパイプラインで、市場から遠いガス田はLNGで輸送することが一般的であった。いずれの場合も巨額な設備投資を必要とするため、いわゆる大ガス田を前提として天然ガスの輸送手段の改善が行われてきた。最近、CNG(圧縮天然ガス)、GTL(化学的石油製品化)、DME(ジメチルエーテル)化などの新技術が発展し、従来の中小ガス田を開発し、有効利用する動きが活発化してきた。 Conventionally, as a means of transporting natural gas, a gas field relatively close to the market is generally transported by pipeline, and a gas field far from the market is generally transported by LNG. In any case, since large capital investment is required, improvement of natural gas transportation has been performed on the premise of so-called large gas fields. Recently, new technologies such as CNG (compressed natural gas), GTL (chemical petroleum product), and DME (dimethyl ether) have been developed, and the movement to develop and effectively use conventional small and medium gas fields has become active.
天然ガスを圧縮して貯蔵運搬する方式のアイデアは昔からあり、自動車などの燃料タンクとして既に実用化されている。海上大規模輸送については、約40年前から輸送方法そのもののアイデアはあったが、近年、環境問題から世界的に天然ガスの需要が増加していることが背景となって技術革新が進み、実用化段階に近づきつつある。
例えば、CNGをシリンダータンクに−29℃の低温、13MPaの高圧で格納することによりタンクの重量を大幅に削減して効率的な輸送を可能とするアイデアが出されている。このシリンダータンクに使用される鋼管として、大径(42インチ以上)、厚肉(19mm以上)でAPI規格X80以上の高強度が要求されるとともに、−30℃という低温での優れた溶接部の靭性が要求されている。特に鋼管をシリンダータンク、いわゆる圧力容器として使用することからCTOD(Crack Tip Opening Displacement)試験によって評価される、優れた脆性破壊発生特性が要求される。
The idea of compressing and transporting natural gas has been around for a long time and has already been put into practical use as a fuel tank for automobiles. For large-scale sea transport, there was an idea of the transport method itself for about 40 years ago, but in recent years, technological innovation has progressed against the background of increasing demand for natural gas worldwide due to environmental problems. It is approaching the stage of practical use.
For example, it has been proposed that CNG is stored in a cylinder tank at a low temperature of −29 ° C. and a high pressure of 13 MPa, thereby greatly reducing the weight of the tank and enabling efficient transportation. Steel pipes used in this cylinder tank are required to have a large diameter (42 inches or more), thick wall (19 mm or more), high strength of API standard X80 or more, and excellent welds at a low temperature of -30 ° C. Toughness is required. In particular, since steel pipes are used as cylinder tanks, so-called pressure vessels, excellent brittle fracture occurrence characteristics evaluated by a CTOD (Crack Tip Opening Displacement) test are required.
これまでにAPI規格でX80までのラインパイプが実用化され、X80級ラインパイプの製造法(非特許文献1及び非特許文献2)を基本に検討されているが、これらのラインパイプは低温靭性、特にHAZ靭性の点で問題を抱えており、これらを克服した画期的な低温用高強度鋼管が望まれている。 So far, line pipes up to X80 in the API standard have been put into practical use, and studies have been made on the basis of X80 class line pipe manufacturing methods (Non-Patent Document 1 and Non-Patent Document 2). In particular, there is a problem in terms of HAZ toughness, and an epoch-making high-strength steel pipe for low temperature that overcomes these problems is desired.
低合金鋼のHAZ靭性は、(1)結晶粒のサイズ、(2)高炭素島状マルテンサイト (M−A)、上部ベイナイト(Bu)などの硬化相の分散状態、(3)粒界脆化の有無、(4)元素のミクロ偏析など種々の冶金学的要因に支配される。中でもHAZの結晶粒のサイズは低温靭性に大きな影響を与えることが知られており、HAZ組織を微細化する数多くの技術が開発実用化されている。 The HAZ toughness of low alloy steel is (1) grain size, (2) high carbon island martensite (MA), dispersed state of hardened phase such as upper bainite (Bu), (3) grain boundary brittleness. (4) It is controlled by various metallurgical factors such as elemental microsegregation. Among them, the size of the HAZ crystal grains is known to have a large effect on the low-temperature toughness, and many techniques for refining the HAZ structure have been developed and put into practical use.
例えば、TiNを微細に分散させ、490MPa級高張力鋼の大入熱溶接時のHAZ靭性を改善する手段が開示されている(非特許文献3)。しかし、これらの析出物は溶融線近傍においては1400℃以上の高温にさらされるため大部分が粗大化或いは溶解し、HAZ組織が粗大化してHAZ靭性が劣化するという欠点を有する。 For example, means for finely dispersing TiN to improve HAZ toughness during high heat input welding of 490 MPa class high strength steel is disclosed (Non-patent Document 3). However, since these precipitates are exposed to a high temperature of 1400 ° C. or higher in the vicinity of the melting line, most of them are coarsened or dissolved, and the HAZ structure is coarsened to deteriorate the HAZ toughness.
この問題に対して、鋼中にTi酸化物を微細分散させて、溶接時のHAZにおいて粒内アシキュラーフェライト(以下IGFと呼ぶ)を生成させることにより溶融線近傍のHAZ組織は微細化され、HAZ靭性が改善されることが特許文献1、特許文献2などに開示されている。しかしながら、Ti酸化物からIGFの生成だけでは組織が十分に微細化されずHAZ靭性が劣化するため、X80以上の高強度鋼管のHAZ靭性の改善が強く望まれている。 In response to this problem, the HAZ structure near the melting line is refined by finely dispersing Ti oxide in steel and generating intragranular acicular ferrite (hereinafter referred to as IGF) in the HAZ during welding. It is disclosed in Patent Document 1, Patent Document 2, and the like that HAZ toughness is improved. However, since the structure is not sufficiently refined only by the generation of IGF from Ti oxide and the HAZ toughness deteriorates, improvement of the HAZ toughness of a high-strength steel pipe of X80 or higher is strongly desired.
そこで、さらにHAZ靭性を改善する手段として、1400℃を超えて加熱される溶融線近傍のHAZのオーステナイト(γ)粒成長を抑制するために、MgとAlからなる微細な酸化物を鋼中に数多く分散させて、これを核に0.01〜0.5μmのTiNを複合析出させる技術と、溶融線近傍HAZのγ粒内をIGFの生成によって微細化する技術を複合させた新しい技術が特許文献3に開示されている。しかしながら、これらの複合技術においても溶融線近傍の粒界フェライト(GBF)の生成を完全に抑制することができず、HAZ靭性が劣化するため、さらに新しい技術が必要であった。 Therefore, as a means to further improve HAZ toughness, in order to suppress the austenite (γ) grain growth of HAZ near the melting line heated above 1400 ° C., a fine oxide composed of Mg and Al is incorporated into the steel. A new technology that combines a technology in which a large number of particles are dispersed and 0.01 to 0.5 μm of TiN is deposited on the core and a technology to refine the inside of γ grains in the HAZ near the melting line by IGF generation is patented. It is disclosed in Document 3. However, even in these composite technologies, generation of grain boundary ferrite (GBF) in the vicinity of the melting line cannot be completely suppressed, and HAZ toughness is deteriorated. Therefore, a new technology is required.
また特許文献4、特許文献5には、ボロン(B)を含有した620MPa未満の引張強度を有する鋼板を溶接入熱70kJ/cm以上の大入熱で溶接した鋼板において、HAZ靭性を向上させることを目的として、溶融線近傍のHAZに存在する固溶NをBNとして固定するために必要なB量を溶接金属からのBの拡散によってまかなうようにする技術が開示されている。しかしながら溶接入熱が70kJ/cm以上の大入熱で溶接した鋼板の場合、溶接後の冷却速度が遅くなるため溶接金属からのBの拡散によって固溶NをBNとして固定することが可能となるが、一般的に溶接入熱が70kJ/cm以下の溶接継ぎ手においては、溶接後の冷却速度が早いため固溶NをBNとして固定することはできない。
本発明は、良好なHAZ靭性(耐脆性破壊発生)を有するX80以上X120未満の高強度鋼管を提供するものである。 The present invention provides a high-strength steel pipe of X80 or more and less than X120 having good HAZ toughness (brittle fracture resistance occurrence).
本発明の要旨は、以下のとおりである。
(1)質量%で、
C :0.03〜0.10%、 Si:0.6%以下、
Mn:0.8〜2.5%、 P :0.015%以下、
S :0.001〜0.005%、 Nb:0.005〜0.05%、
Ti:0.005〜0.030%、 Al:0.001〜0.010%、
Mg:0.0001〜0.0050%、 N :0.001〜0.006%、
O :0.001〜0.005%
を含有し、残部が鉄および不可避的不純物からなり、MgとAlからなる酸化物を内包す
る0.01〜0.5μmのTiNが10000個/mm2 以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2 以上含有する母材と、
C :0.03〜0.10%、 Si:0.6%以下、
Mn:0.8〜2.5%、 P :0.015%以下、
S :0.005%以下、 Nb:0.005〜0.05%、
Ti:0.005〜0.03%、 B :0.0015〜0.0050%、
Al:0.05%以下、 N :0.001〜0.01%、
O :0.015〜0.045%
を含有し、残部が鉄及び不可避的不純物からなる溶接金属部を有する鋼管において、長手方向に内外面から1層ずつ溶接した鋼管における溶接熱影響部の旧オーステナイト粒径が150μm以下であり、溶融線から150μm以内の溶接熱影響部の旧オーステナイト粒界にボロンが存在すると共に、溶接部における脆性破壊特性である−30℃でのCTOD値が0.58mm以上、−40℃でのシャルピー吸収エネルギー値が114J以上であることを特徴とする620MPa以上900MPa未満の引張強度を有する低温用高強度鋼管。
The gist of the present invention is as follows.
( 1 ) In mass%,
C: 0.03-0.10%, Si: 0.6% or less,
Mn: 0.8 to 2.5%, P: 0.015% or less,
S: 0.001 to 0.005%, Nb: 0.005 to 0.05%,
Ti: 0.005-0.030%, Al: 0.001-0.010%,
Mg: 0.0001 to 0.0050%, N: 0.001 to 0.006%,
O: 0.001 to 0.005%
Containing the balance being iron and unavoidable impurities, containing TiN of 0.01~0.5μm enclosing the oxide of Mg and Al 10000 / mm 2 or more, and oxides and sulfides A base material containing 10 particles / mm 2 or more of 0.5 to 10 μm particles containing 0.3% by mass or more of Mn in a composite form;
C: 0.03-0.10%, Si: 0.6% or less,
Mn: 0.8 to 2.5%, P: 0.015% or less,
S: 0.005% or less, Nb: 0.005-0.05%,
Ti: 0.005 to 0.03%, B: 0.0015 to 0.0050%,
Al: 0.05% or less, N: 0.001 to 0.01%,
O: 0.015-0.045%
In the steel pipe having a weld metal part composed of iron and unavoidable impurities in the balance, the old austenite grain size of the weld heat-affected zone in the steel pipe welded layer by layer from the inner and outer surfaces in the longitudinal direction is 150 μm or less, and Boron is present in the prior austenite grain boundary of the weld heat affected zone within 150 μm from the wire, and the brittle fracture characteristics in the weld zone are CTOD values at −30 ° C. of 0.58 mm or more, Charpy absorbed energy at −40 ° C. A low-temperature high-strength steel pipe having a tensile strength of 620 MPa or more and less than 900 MPa, wherein the value is 114 J or more .
(2)質量%で、
C :0.03〜0.10%、 Si:0.6%以下、
Mn:0.8〜2.5%、 P :0.015%以下、
S :0.001〜0.005%、 Nb:0.005〜0.05%、
Ti:0.005〜0.030%、 Al:0.001〜0.010%、
Mg:0.0001〜0.0050%、N :0.001〜0.006%、
O :0.001〜0.005%
を含有し、さらに
Ni:0.1〜1.0%、 Cu:0.1〜1.2%、
Cr:0.1〜1.0%、 Mo:0.1〜1.0%、
V :0.01〜0.1%、 Ca:0.0005〜0.0050%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、MgとAlか
らなる酸化物を内包する0.01〜0.5μmのTiNが10000個/mm2 以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2 以上含有する母材と、
C :0.03〜0.10%、 Si:0.6%以下、
Mn:0.8〜2.5%、 P :0.015%以下、
S :0.005%以下、 Nb:0.005〜0.05%、
Ti:0.005〜0.03%、 B :0.0015〜0.0050%、
Al:0.05%以下、 N :0.001〜0.01%、
O :0.015〜0.045%
を含有し、さらに
Ni:0.1〜2.0%、 Cu:0.1〜2.0%、
Cr:0.1〜1.5%、 Mo:0.1〜1.5%、
V :0.01〜0.1%、 Mg:0.0001〜0.0050%、
Ca:0.0005〜0.0050%
の1種または2種以上を含有し、残部が鉄及び不可避的不純物からなる溶接金属部を有す
る鋼管において、長手方向に内外面から1層ずつ溶接した鋼管における溶接熱影響部の旧オーステナイト粒径が150μm以下であり、溶融線から150μm以内の溶接熱影響部の旧オーステナイト粒界にボロンが存在すると共に、溶接部における脆性破壊特性である−30℃でのCTOD値が0.58mm以上、−40℃でのシャルピー吸収エネルギー値が114J以上であることを特徴とする620MPa以上900MPa未満の引張強度を有する低温用高強度鋼管。
( 2 ) In mass%,
C: 0.03-0.10%, Si: 0.6% or less,
Mn: 0.8 to 2.5%, P: 0.015% or less,
S: 0.001 to 0.005%, Nb: 0.005 to 0.05%,
Ti: 0.005-0.030%, Al: 0.001-0.010%,
Mg: 0.0001 to 0.0050%, N: 0.001 to 0.006%,
O: 0.001 to 0.005%
Ni: 0.1 to 1.0%, Cu: 0.1 to 1.2%,
Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%, Ca: 0.0005 to 0.0050%
1 or 2 or more of the above, the balance is made of iron and inevitable impurities, and 0.01 to 0.5 μm of TiN containing an oxide of Mg and Al is contained at least 10,000 pieces / mm 2 , And the base material which 0.5-10 micrometer particle | grains containing 0.3 mass% or more Mn in the form which oxide and sulfide compounded contain 10 pieces / mm < 2 > or more,
C: 0.03-0.10%, Si: 0.6% or less,
Mn: 0.8 to 2.5%, P: 0.015% or less,
S: 0.005% or less, Nb: 0.005-0.05%,
Ti: 0.005 to 0.03%, B: 0.0015 to 0.0050%,
Al: 0.05% or less, N: 0.001 to 0.01%,
O: 0.015-0.045%
Ni: 0.1 to 2.0%, Cu: 0.1 to 2.0%,
Cr: 0.1 to 1.5%, Mo: 0.1 to 1.5%,
V: 0.01 to 0.1%, Mg: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.0050%
The former austenite grain size of the weld heat-affected zone in steel pipes welded one layer at a time in the longitudinal direction from the inner and outer surfaces in a steel pipe containing one or more of the above and the balance being a welded metal part consisting of iron and inevitable impurities Is not more than 150 μm, boron is present in the former austenite grain boundary of the weld heat affected zone within 150 μm from the melting line, and the brittle fracture characteristics at −30 ° C. is a CTOD value at −30 ° C. of 0.58 mm or more, − A low-temperature high-strength steel pipe having a tensile strength of 620 MPa or more and less than 900 MPa , wherein the Charpy absorbed energy value at 40 ° C. is 114 J or more .
本発明によるHAZ靭性に優れた高強度鋼管(API規格X80以上X120未満)をCNG輸送船に採用することにより、CNGの海上輸送の安全性が著しく向上すると共に、資源の有効利用が可能となった。 By adopting a high strength steel pipe (API standard X80 or more and less than X120) with excellent HAZ toughness according to the present invention to a CNG transport ship, the safety of sea transport of CNG is remarkably improved and resources can be used effectively. It was.
以下に、本発明の低温用高強度鋼管について詳細に説明する。
本発明の特徴は、低C―Nb−Ti系にMg、NおよびO量を厳格に制限し、かつMg
とAlからなる酸化物を内包する微細な炭窒化物、および酸化物と硫化物からなる複合物
とを含有させた母材部、低C−Mn−Ni−Cr−Mo−B系の溶接金属部、さらにはHAZの旧オーステナイト粒径が150μm以下であり、溶融線から150μm以内の旧オーステナイト粒界に固溶Bが存在するHAZから構成される溶接鋼管において良好なHAZ靭性を有する高強度鋼管にある。
Below, the high temperature steel pipe for low temperature of this invention is demonstrated in detail.
The feature of the present invention is that the amount of Mg, N and O is strictly limited to low C—Nb—Ti system, and Mg
And a base metal part containing a fine carbonitride containing an oxide composed of Al and a composite composed of an oxide and a sulfide, and a low C—Mn—Ni—Cr—Mo—B based weld metal High-strength steel pipe having good HAZ toughness in a welded steel pipe composed of HAZ in which the former austenite grain size of HAZ is 150 μm or less and solid solution B exists in the former austenite grain boundary within 150 μm from the melting line It is in.
低合金鋼の低温靭性は、(1) 結晶粒のサイズ、(2) M−Aや上部ベイナイト(Bu)などの分散状態など種々の冶金学的要因に支配される。中でもHAZの結晶粒のサイズおよびM−Aは低温靭性に大きな影響を与えることが知られている。 The low temperature toughness of low alloy steel is governed by various metallurgical factors such as (1) crystal grain size, (2) dispersion state such as MA and upper bainite (Bu). Among them, the size of HAZ crystal grains and M-A are known to have a large effect on low-temperature toughness.
高強度鋼管のHAZにおいては、靭性に有害なM−Aが多量に生成するためにHAZ靭
性が劣化する傾向にある。靭性に有害なM−Aの悪影響を排除するためにはHAZの結晶
粒を徹底的に微細化しなければならない。そこで、HAZにおけるオーステナイト(γ)粒を150μm以下まで抑制する技術とともに、γ粒内からIGFを生成させる技術の複合効果によりHAZの結晶粒を微細化することが可能となる。
In HAZ of a high-strength steel pipe, HAZ toughness tends to deteriorate because a large amount of MA harmful to toughness is generated. In order to eliminate the adverse effect of MA, which is harmful to toughness, HAZ crystal grains must be refined thoroughly. Thus, HAZ crystal grains can be refined by a combined effect of a technique for generating IGF from within the γ grains together with a technique for suppressing the austenite (γ) grains in the HAZ to 150 μm or less.
しかしながら、溶融線近傍でγ粒の粗大化抑制技術を導入した場合、溶融線近傍の焼入れ性が低下して、粒界から粗大なフェライトサイドプレート(FSP)やBuが生成しやすくなり、脆性破壊発生特性を評価するCTOD試験で安定したCTOD値が得られない。そこで、さらに溶融線から150μm以内のγ粒界に固溶Bを存在させて、γ粒界からの粗大なFSPやBu組織の生成を抑制する技術を複合させることによって、HAZ靭性や溶接金属の靭性を著しく改善できることを見出し、本発明に至った。 However, when γ grain coarsening suppression technology is introduced in the vicinity of the melting line, the hardenability in the vicinity of the melting line is lowered, and coarse ferrite side plates (FSP) and Bu are easily generated from the grain boundary, and brittle fracture occurs. A stable CTOD value cannot be obtained in the CTOD test for evaluating the generation characteristics. Therefore, by combining solid-state B in the γ grain boundary within 150 μm from the melting line and combining the technology to suppress the formation of coarse FSP and Bu structure from the γ grain boundary, the HAZ toughness and weld metal The inventors have found that the toughness can be remarkably improved and have reached the present invention.
Mgの添加によりMgとAlからなる酸化物を内包する微細なTiNなどの炭窒化物を鋼中に生成させることにより、HAZにおけるγ粒の粗大化を抑制すること、およびMg、Mn、Sを含む酸化物・析出物からIGFを生成することにより結晶粒を微細化でき、HAZ靭性を向上させることが可能である。MgとAlからなる酸化物を内包する微細なTiNなどの炭窒化物およびMg、Mn、Sを含む酸化物・析出物は高温でも化学的に安定で溶解しないため、γ粒の粗大化抑制効果およびIGFの生成効果が維持される。 By adding fine MgN in the steel to produce fine carbonitrides such as TiN containing Mg and Al oxides, the coarsening of γ grains in HAZ is suppressed, and Mg, Mn, and S are added. By generating IGF from the oxide / precipitate containing, crystal grains can be made finer and HAZ toughness can be improved. Fine carbonitrides such as TiN containing oxides composed of Mg and Al, and oxides / precipitates containing Mg, Mn, and S are chemically stable and do not dissolve even at high temperatures. And the production effect of IGF is maintained.
溶融線近傍の1400℃以上に加熱されるHAZにおいても化学的に安定な微細な酸化物をピンニング粒子として用いること、および0.5μm以上の酸化物・硫化物をIGFの生成核として用いることにより、HAZ組織を徹底的に微細化する方法を検討した。 In HAZ heated to 1400 ° C or higher near the melting line, chemically stable fine oxides are used as pinning particles, and oxides and sulfides of 0.5 µm or more are used as IGF production nuclei. A method for thoroughly refining the HAZ structure was studied.
まず、微量のMgとAlを含有させることにより、0.01〜0.05μmの微細な (Mg,Al)酸化物が多量に生成することを見出した。0.01〜0.5μmのTiNがこの微細な(Mg,Al)酸化物を核として複合析出するため、1400℃以上の高温においても優れたγ粒のピンニング効果を維持できることを明らかにした。この時、鋼中に含有する0.01〜0.5μmのTiNが10000個/mm2 未満の場合には、γ粒の粗大化抑制効果が不十分となり、良好なHAZ靱性を得ることができない。
そこで、MgとAlから成る酸化物を内包する0.01〜0.5μmのTiNを10000個/mm2 以上含有させる必要がある。さらに、このTiNを生成させるためには0.0001%以上のMgを添加する必要がある。Mg添加量が多すぎるとMg系酸化物が増加し、低温靱性を劣化させるので、その上限を0.0050%に限定した。
First, it has been found that a small amount of Mg (Al) oxide of 0.01 to 0.05 μm is produced in a large amount by containing a small amount of Mg and Al. It has been clarified that since 0.01 to 0.5 μm of TiN is complex-precipitated with this fine (Mg, Al) oxide as a nucleus, an excellent pinning effect of γ grains can be maintained even at a high temperature of 1400 ° C. or higher. At this time, when 0.01 to 0.5 μm of TiN contained in the steel is less than 10,000 pieces / mm 2 , the effect of suppressing the coarsening of γ grains becomes insufficient, and good HAZ toughness cannot be obtained. .
Therefore, it is necessary to contain 10000 pieces / mm 2 or more of 0.01 to 0.5 μm of TiN containing an oxide composed of Mg and Al. Furthermore, in order to produce this TiN, it is necessary to add 0.0001% or more of Mg. If the amount of Mg added is too large, Mg-based oxides increase and low temperature toughness deteriorates, so the upper limit was limited to 0.0050%.
さらに、TiNの核となる微細な(Mg,Al)酸化物を生成させるためには、微量のAlを含有させる必要がある。しかしながら、Alの添加により粗大なアルミナのクラスターが生成し、低温靱性に悪影響を与える。このため、Alの含有量を0.001〜0.010%に限定した。0.001%以上のAl量であれば、微細な(Mg,Al)酸化物を生成させることができる。 Further, in order to generate a fine (Mg, Al) oxide serving as a nucleus of TiN, it is necessary to contain a trace amount of Al. However, the addition of Al produces coarse alumina clusters, which adversely affects low temperature toughness. For this reason, the content of Al is limited to 0.001 to 0.010%. If the amount of Al is 0.001% or more, a fine (Mg, Al) oxide can be generated.
次に、IGF生成の核となる酸化物・硫化物の必要な要件として、酸化物・硫化物の複
合体の個数、サイズおよび組成を制御することにより、HAZにおいてもIGFが生成し、HAZ組織が微細化され、HAZ靭性が改善されることを見出した。
Next, as a necessary requirement for oxides and sulfides that form the core of IGF generation, IGF is also generated in HAZ by controlling the number, size, and composition of oxide / sulfide complexes, and the HAZ structure Has been found to be refined and to improve the HAZ toughness.
まず、IGFの生成核となる酸化物・硫化物の複合体の個数は少なくとも10個/mm2 上必要である。IGF変態核が10個/mm2 未満ではHAZ組織の微細化が不十分となり良好なHAZ靭性は得られない。 First, the number of oxide / sulfide complexes that form IGF production nuclei should be at least 10 / mm 2 . If the number of IGF transformation nuclei is less than 10 / mm 2 , the HAZ structure is not sufficiently refined and good HAZ toughness cannot be obtained.
また、IGFの変態核として機能するためには、0.5μm以上の大きさが必要である。0.5μm未満ではIGF変態核として十分に機能せず、HAZ組織の微細化効果が得られない。一方、10μmを超える酸化物・硫化物の複合体の場合、脆性破壊の発生点となるため、良好なHAZ靭性が得られない。 Moreover, in order to function as a transformation nucleus of IGF, a size of 0.5 μm or more is necessary. If it is less than 0.5 μm, it does not function sufficiently as an IGF transformation nucleus, and the HAZ microstructure refinement effect cannot be obtained. On the other hand, in the case of a composite of oxide and sulfide exceeding 10 μm, it becomes a point of occurrence of brittle fracture, so that good HAZ toughness cannot be obtained.
さらに、IGFの変態核として機能するためには、0.3質量%以上のMnを含有する必要がある。本発明では、1400℃以上の高温においてγ粒のピンニングに有効な微細な粒子を生成させるために、Mnよりも脱酸力の強いMg,Al,Tiを含有するので、酸化物の中にMnを含有させることは難しい。そこで、Mnを含む硫化物を酸化物上に複合析出させる必要がある。このような手段を講じれば、複合粒子中のMn含有量を安定的に0.3%以上にすることが可能であり、IGF変態核として有効に機能させることができる。
酸化物上にMn含有硫化物を複合析出させるための条件を探索した結果、酸化物中のMn含有量が重要である。Mn含有硫化物が複合するときの酸化物中には10%以上のMgが含有している。
一方、硫化物が複合せず単独として存在する酸化物中のMg含有量は10%未満である。すなわち、0.5〜10μmの酸化物中に10%以上のMgを含有させることで、Mn含有硫化物を安定的に複合析出させることが可能である。この結果として、酸化物と硫化物が複合した形態で0.3%以上のMnを含有する0.5〜10μmのIGF変態核を10個/mm2 以上確保することが可能となる。なお、酸化物中のMn量はEMPA(Electron Probe Micro Analyzer )によって測定される。
酸化物・硫化物の複合体におけるMn量が0.3%未満の場合、十分なIGF生成機能が得られず、HAZ組織は微細化しない。
Furthermore, in order to function as a transformation nucleus of IGF, it is necessary to contain 0.3% by mass or more of Mn. In the present invention, in order to generate fine particles effective for pinning γ grains at a high temperature of 1400 ° C. or higher, Mg, Al, Ti, which has a stronger deoxidizing power than Mn, is contained. It is difficult to contain. Therefore, it is necessary to complex precipitate sulfide containing Mn on the oxide. If such measures are taken, the Mn content in the composite particles can be stably increased to 0.3% or more, and can effectively function as an IGF transformation nucleus.
As a result of searching for conditions for complex precipitation of Mn-containing sulfide on the oxide, the Mn content in the oxide is important. The oxide when the Mn-containing sulfide is combined contains 10% or more of Mg.
On the other hand, the Mg content in the oxide which is not compounded with sulfide and exists alone is less than 10%. That is, by containing 10% or more of Mg in an oxide of 0.5 to 10 μm, it is possible to stably composite precipitate the Mn-containing sulfide. As a result, 10 / mm 2 or more of 0.5-10 μm IGF transformation nuclei containing 0.3% or more of Mn in the form of a composite of oxide and sulfide can be secured. The amount of Mn in the oxide is measured by EMPA (Electron Probe Micro Analyzer).
When the amount of Mn in the oxide / sulfide composite is less than 0.3%, a sufficient IGF generation function cannot be obtained, and the HAZ structure is not refined.
この鋼板を成形し鋼管の長手方向に内外面から1層ずつ溶接した鋼管のHAZの旧γ粒径は150μm以下に抑制することが可能となり、IGFも生成する。しかしながら、溶融線から150μm以内のHAZにおいて焼入れ性が低下して粒界から粗大なフェライトサイドプレート(FSP)やBuが生成しやすいため安定したCTOD値が得られない。そこで、溶融線から150μm以内のγ粒界に固溶Bを偏析させ、γ粒界からの粗大なFSPやBu組織の生成を抑制させることによって安定したCTOD特性、いわゆる優れたHAZ靭性が得られる。
なお、溶融線から150μm以内のγ粒界に偏析するBはα線トラックエッチング(A
TE)法により確認できる。母材には意図的にBを含有させていないので、溶融線から1
50μm以内のγ粒界に偏析するBは溶接金属からの拡散によるものと推定される。
以上述べたように、620MPa以上900MPa未満の引張強度を有する低温でのH
AZ靭性に優れた溶接鋼管を見出し、本発明に至った。
The old γ grain size of the HAZ of the steel pipe formed by welding this steel sheet and welding one layer at a time in the longitudinal direction of the steel pipe can be suppressed to 150 μm or less, and IGF is also generated. However, not CTOD value Oite hardenability is stable and is easily generated coarse ferrite side plate (FSP) and Bu grain boundary decreases the HAZ within 150μm can be obtained from the fusion line. Therefore, stable CTOD characteristics, so-called excellent HAZ toughness, can be obtained by segregating solid solution B at γ grain boundaries within 150 μm from the melt line and suppressing the formation of coarse FSP and Bu structures from the γ grain boundaries. .
B segregated at γ grain boundaries within 150 μm from the melt line is α-ray track etching (A
This can be confirmed by the (TE) method. Since the base material does not intentionally contain B, 1
It is estimated that B segregated at γ grain boundaries within 50 μm is due to diffusion from the weld metal.
As described above, H at a low temperature having a tensile strength of 620 MPa or more and less than 900 MPa.
The present inventors have found a welded steel pipe excellent in AZ toughness and have reached the present invention.
すなわち、本発明の特徴は、鋼管母材として、低C―Nb−Ti系にMg、NおよびO
量を厳格に制限し、かつMgとAlからなる酸化物を内包する微細な炭窒化物、および酸
化物と硫化物からなる複合物とを含有させた620MPa以上で900MPa未満の引張
強度を有する母材部と、低C−Mn−Ni−Cr−Mo−B系で620MPa以上で90
0MPa未満の引張強度を有する溶接金属部と、さらにはHAZの旧オーステナイト粒径が150μm以下であり溶融線から150ミクロン以内の旧オーステナイト粒界に固溶Bが存在するHAZから構成される溶接鋼管にある。
That is, the feature of the present invention is that, as a steel pipe base material, Mg, N and O are added to a low C—Nb—Ti system.
A mother having a tensile strength of 620 MPa or more and less than 900 MPa containing a fine carbonitride containing an oxide composed of Mg and Al, and a composite composed of an oxide and a sulfide. 90 parts at 620 MPa or more in the material part and low C—Mn—Ni—Cr—Mo—B system
A welded steel pipe composed of a weld metal part having a tensile strength of less than 0 MPa and HAZ in which the prior austenite grain size of HAZ is 150 μm or less and solid solution B exists in the prior austenite grain boundaries within 150 microns from the melting line It is in.
以下に、鋼管母材の成分限定理由について説明する。
Cは母材とHAZの強度を確保するために、0.03%以上の添加が必要である。しかし、0.10%を超えると母材およびHAZの靭性が低下するとともに溶接性が劣化するので、0.10%を上限とした。
The reason for limiting the components of the steel pipe base material will be described below.
C needs to be added in an amount of 0.03% or more in order to secure the strength of the base material and the HAZ. However, if it exceeds 0.10%, the toughness of the base metal and the HAZ is lowered and the weldability is deteriorated, so 0.10% was made the upper limit.
Siは脱酸や強度向上のため添加する元素であるが、多く添加すると現地溶接性、HAZ靭性を劣化させるので、上限を0.6%とした。鋼の脱酸はTiのみでも十分であり、Siは必ずしも添加する必要はない。 Si is an element added for deoxidation and strength improvement, but if added in large amounts, the field weldability and the HAZ toughness deteriorate, so the upper limit was made 0.6%. For the deoxidation of steel, Ti alone is sufficient, and Si does not necessarily have to be added.
Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は0.8%である。しかし、Mnが多すぎると鋼の焼入性が増加して現地溶接性、HAZ靭性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、低温靭性も劣化させるので上限を2.5%とした。 Mn is an indispensable element for securing strength and low temperature toughness, and its lower limit is 0.8%. However, if Mn is too much, not only the hardenability of the steel is increased and the on-site weldability and HAZ toughness are deteriorated, but also the center segregation of continuously cast steel pieces is promoted and the low temperature toughness is also deteriorated. 5%.
本発明において、不可避的不純物であるP量を0.015%以下とする。この主たる理由は母材及びHAZの低温靭性をより一層向上させるためである。P量の低減は連続鋳造スラブの中心偏析を低減させて、粒界破壊を防止し低温靭性を向上させる。 In the present invention, the amount of P which is an inevitable impurity is set to 0.015% or less. The main reason is to further improve the low temperature toughness of the base material and the HAZ. The reduction of the P content reduces the center segregation of the continuously cast slab, prevents the grain boundary fracture and improves the low temperature toughness.
Sは本発明において重要な元素である。IGF変態核として酸化物上に硫化物を複合析出させるためには0.001%以上含有することが望ましい。しかし、Sが0.005%を超えると母材およびHAZの靭性が劣化するので、0.005%を上限とする。 S is an important element in the present invention. In order to cause composite precipitation of sulfide on the oxide as the IGF transformation nucleus, it is desirable to contain 0.001% or more. However, if S exceeds 0.005%, the toughness of the base material and HAZ deteriorates, so 0.005% is made the upper limit.
Nbは制御圧延時にνの再結晶を抑制して結晶粒を微細化するだけでなく、析出硬化や焼入性の増大にも寄与し、鋼を強靭化する作用を有する。この効果を得るためには最低0.005%のNbが必要である。しかしながら、Nb量が多すぎるとHAZ靭性が劣化するので、上限を0.05%に限定した。 Nb not only suppresses recrystallization of ν during controlled rolling and refines the crystal grains, but also contributes to precipitation hardening and hardenability, and has the effect of strengthening the steel. To obtain this effect, a minimum of 0.005% Nb is required. However, if the amount of Nb is too large, the HAZ toughness deteriorates, so the upper limit was limited to 0.05%.
Tiは微細なTiNを形成し、スラブ再加熱時及びHAZのγ粒の粗大化を抑制して、
ミクロ組織を微細化して、母材及びHAZの低温靭性を改善し、本発明において必須の元
素である。この効果を発揮させるためには0.005%以上の添加が必要である。また、
多すぎるとTiNの粗大化やTiCによる析出硬化が生じ、低温靭性を劣化させるので、
上限を0.03%に限定した。
Ti forms fine TiN, suppresses coarsening of γ grains of HAZ during reheating of the slab,
It is an essential element in the present invention by refining the microstructure to improve the low temperature toughness of the base material and HAZ. In order to exert this effect, 0.005% or more must be added. Also,
If too much, TiN coarsening and precipitation hardening due to TiC occurs, and low temperature toughness deteriorates.
The upper limit was limited to 0.03%.
NはTiNを形成し、スラブ再加熱時及びHAZのγ粒の粗大化を抑制して母材、HA
Zの低温靭性を向上させる。このために必要な最小量は0.001%である。しかし、N
量が多すぎるとスラブ表面疵や固溶NによるHAZ靭性の劣化の原因となるので、上限は
0.006%に抑える必要がある。
N forms TiN, suppresses the coarsening of γ grains of HAZ during reheating of the slab and the base material, HA
Improve the low temperature toughness of Z. The minimum amount required for this is 0.001%. But N
If the amount is too large, the HAZ toughness is deteriorated due to slab surface defects or solute N, so the upper limit needs to be limited to 0.006%.
Oは、超微細な(Mg、Al)酸化物を形成して、HAZのγ粒の粗大化抑制効果を発揮すると同時に、0.5μm〜10μmのMg含有酸化物を形成してHAZにおいてIGF変態核として機能する。これらの機能を発揮させるためには0.001%以上のOが必要である。Oが0.001%未満の場合、10000個/mm2 以上の超微細酸化物や10個/mm2 以上の0.5〜10μm酸化物を確保することが困難である。しかし、Oが0.005%を超えると10μmを超える粗大な酸化物が生成し、母材やHAZにおいて脆性破壊の発生点となるため、0.005%を上限とした。 O forms an ultrafine (Mg, Al) oxide and exhibits the effect of suppressing the coarsening of γ grains of HAZ. At the same time, it forms an Mg-containing oxide of 0.5 μm to 10 μm to form an IGF transformation in HAZ. Functions as a nucleus. In order to exhibit these functions, 0.001% or more of O is necessary. When O is less than 0.001%, it is difficult to secure ultrafine oxide of 10,000 / mm 2 or more and 0.5-10 μm oxide of 10 / mm 2 or more. However, if O exceeds 0.005%, a coarse oxide exceeding 10 μm is generated, which becomes a point of occurrence of brittle fracture in the base material and HAZ, so 0.005% was made the upper limit.
次に、Ni、Cu、Cr、Mo、V、Caを添加する理由について説明する。
基本成分にさらにこれらの元素を添加する主たる目的は、本発明鋼の特徴を損なうことなく、強度・低温靭性などの特性の向上をはかるためである。したがってその添加量は自ら制限されるべき性質のものである。
Next, the reason for adding Ni, Cu, Cr, Mo, V, and Ca will be described.
The main purpose of adding these elements to the basic component is to improve the properties such as strength and low temperature toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be restricted by itself.
Niは溶接性、HAZ靭性に悪影響を及ぼすことなく母材の強度、低温靭性を向上させるが、0.1%未満では効果が薄く、1.0%超の添加は溶接性に好ましくないため、その上限を1.0%とした。 Ni improves the strength and low temperature toughness of the base metal without adversely affecting weldability and HAZ toughness, but the effect is low at less than 0.1%, and addition of more than 1.0% is not preferable for weldability. The upper limit was made 1.0%.
CuはNiとほぼ同様の効果を有すると共に耐食性、耐水素誘起割れ性などにも効果があり、0.1%以上の添加が必要である。しかし、過剰に添加すると析出硬化により母材、HAZ靭性劣化や熱間圧延時にCu−クラックが発生するため、上限を1.2%とした。 Cu has substantially the same effect as Ni, and is also effective in corrosion resistance, resistance to hydrogen-induced cracking, and the like, and it is necessary to add 0.1% or more. However, if added excessively, Cu-cracks are generated during precipitation hardening due to precipitation hardening and HAZ toughness, and the upper limit was made 1.2%.
Crは母材、溶接部の強度を増加させる効果があり、0.1%以上の添加が必要である。しかし、多すぎると現地溶接性やHAZ靭性を著しく劣化させる。このためCr量の上限は1.0%とした。 Cr has the effect of increasing the strength of the base metal and the welded portion, and it is necessary to add 0.1% or more. However, if too much, field weldability and HAZ toughness are significantly deteriorated. For this reason, the upper limit of the Cr amount is set to 1.0%.
Moは母材及び溶接部の強度を上昇させる元素であるが、1.0%を超えるとCrと同様に母材、HAZ靭性及び溶接性を劣化させる。また、0.1%未満の添加ではその効果が薄い。 Mo is an element that increases the strength of the base metal and the welded portion. However, if it exceeds 1.0%, the base metal, the HAZ toughness and the weldability are deteriorated similarly to Cr. Moreover, the effect is thin when added less than 0.1%.
Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して格段に弱い。その効果を発揮させるためには0.01%以上の添加が必要である。また、上限は現地溶接性、HAZ靭性の点から0.1%まで許容できる。 V has substantially the same effect as Nb, but the effect is much weaker than Nb. In order to exhibit the effect, addition of 0.01% or more is necessary. Further, the upper limit is allowable up to 0.1% from the viewpoint of on-site weldability and HAZ toughness.
Caは硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸
収エネルギーの増加など)させるほか、耐サワー性の向上にも著しい効果を発揮する。0
.0005%未満ではその効果が薄く、また0.005%を超えて添加するとCaO−C
aSが大量に生成してクラスター、大型介在物となり、鋼の清浄度を害するだけでなく、
現地溶接性にも悪影響を及ぼす。このためCa添加量を0.0005〜0.0050%に
制限した。
Ca controls the form of sulfide (MnS) and improves low-temperature toughness (such as an increase in absorbed energy in the Charpy test), and also exhibits a remarkable effect in improving sour resistance. 0
. If it is less than 0005%, the effect is weak, and if added over 0.005%, CaO—C
aS is generated in large quantities to become clusters and large inclusions, not only harming the cleanliness of steel,
It also adversely affects on-site weldability. For this reason, the amount of Ca added is limited to 0.0005 to 0.0050%.
次に、溶接金属の成分限定理由について説明する。
溶接金属の高温割れを防止するために、C量は0.03%以上必要である。0.03%未満では溶接後、凝固する過程でδ凝固が起こり、高温割れが発生するためである。しかしC量が0.10%を超えると、溶接金属の低温靭性が劣化するため、上限を0.10%とした。
Next, the reason for limiting the components of the weld metal will be described.
In order to prevent hot cracking of the weld metal, the C content needs to be 0.03% or more. If it is less than 0.03%, δ solidification occurs in the process of solidification after welding, and hot cracking occurs. However, if the C content exceeds 0.10%, the low temperature toughness of the weld metal deteriorates, so the upper limit was made 0.10%.
Siは脱酸や強度向上のため添加する元素であるが、多く添加すると低温靭性や現地溶接性を劣化させるので、上限を0.6%とした。 Si is an element added for deoxidation and strength improvement, but if added in a large amount, the low temperature toughness and on-site weldability deteriorate, so the upper limit was made 0.6%.
Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は0.8%である。しかし、Mnが多すぎると鋼の焼入性が増加して低温靭性や現地溶接性を劣化させるので、上限を2.5%とした。 Mn is an indispensable element for securing strength and low temperature toughness, and its lower limit is 0.8%. However, too much Mn increases the hardenability of the steel and degrades low temperature toughness and on-site weldability, so the upper limit was made 2.5%.
本発明において、不可避的不純物であるP量を0.015%以下とする。この主たる理由は溶接金属の低温靭性をより一層向上させるためである。P量の低減は粒界破壊を防止し低温靭性を向上させる。 In the present invention, the amount of P which is an inevitable impurity is set to 0.015% or less. The main reason for this is to further improve the low temperature toughness of the weld metal. Reduction of the P content prevents grain boundary fracture and improves low temperature toughness.
溶接金属において不可避的不純物であるS量は0.005%以下とする。この主たる理由は溶接金属の低温靭性をより一層向上させるためである。S量の低減はMnSを低減して、延靭性を向上させる効果がある。 The amount of S which is an inevitable impurity in the weld metal is set to 0.005% or less. The main reason for this is to further improve the low temperature toughness of the weld metal. Reduction of the amount of S has the effect of reducing MnS and improving ductility.
Nbは鋼を強靭化する作用を有し、0.005%以上必要である。しかし、Nbを0.05%超添加すると現地溶接性や低温靭性に悪影響をもたらすので、その上限を0.05%とした。 Nb has the effect | action which strengthens steel and needs 0.005% or more. However, if Nb exceeds 0.05%, on-site weldability and low temperature toughness are adversely affected, so the upper limit was made 0.05%.
Ti添加は微細なTiNを形成し、低温靭性を改善する。このようなTiNの効果を発現させるためには、最低0.005%のTi添加が必要である。しかし、Ti量が多すぎるとTiNの粗大化やTiCによる析出硬化が生じ、低温靭性が劣化するので、その上限は0.03%に限定しなければならない。 Ti addition forms fine TiN and improves low temperature toughness. In order to exhibit such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the amount of Ti is too large, TiN coarsening and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit must be limited to 0.03%.
Bは極微量で鋼の焼入性を飛躍的に高める元素である。溶接金属中においては溶接金属
内の旧γ粒界に固溶Bとして存在することにより、粒界の焼入れ性を増加させ微細な組織
を形成して良好な低温靭性が得られる。さらに溶接後の冷却中にHAZに拡散し、溶融線から150μm以内のγ粒界に固溶Bとして偏析し、HAZの組織微細化にも寄与する。このような効果を得るためには、Bは最低でも0.0015%必要である。一方、過剰に添加すると、低温靭性を劣化させるだけでなく、かえってBの焼入性向上効果を消失せしめることもあるので、その上限を0.0050%とした。
B is an element that greatly increases the hardenability of steel in a very small amount. In the weld metal, since it exists as a solid solution B at the prior γ grain boundary in the weld metal, the hardenability of the grain boundary is increased, and a fine structure is formed and good low temperature toughness is obtained. Furthermore , it diffuses into the HAZ during cooling after welding and segregates as solute B at the γ grain boundaries within 150 μm from the melt line, contributing to refinement of the HAZ structure. In order to obtain such an effect, B needs to be at least 0.0015 %. On the other hand, if added excessively, not only the low temperature toughness is deteriorated, but also the hardenability improving effect of B may be lost, so the upper limit was made 0.0050%.
Alは、通常脱酸元素として効果を有する。しかし、Al量が0.05%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.05%とした。 Al usually has an effect as a deoxidizing element. However, if the Al content exceeds 0.05%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.05%.
NはTiNを形成して低温靭性を向上させる。このために必要な最小量は0.001%である。しかし、多すぎると低温靭性を劣化させるので、その上限は0.01%に抑える必要がある。 N forms TiN and improves low temperature toughness. The minimum amount required for this is 0.001%. However, if the amount is too large, the low temperature toughness is deteriorated, so the upper limit must be suppressed to 0.01%.
Oは溶接金属中において酸化物を形成し、粒内変態フェライトの核として作用し、組織の微細化に効果がある。しかし、多すぎると溶接金属の低温靭性が劣化すると共に、スラグ巻きこみなどの溶接欠陥を起こす。このためO量の下限を0.015%、上限を0.045%とした。 O forms an oxide in the weld metal, acts as a nucleus of intragranular transformed ferrite, and is effective in refining the structure. However, if the amount is too large, the low temperature toughness of the weld metal deteriorates and welding defects such as slag entrainment occur. For this reason, the lower limit of the amount of O is set to 0.015%, and the upper limit is set to 0.045%.
次に、Ni、Cu、Cr、Mo、V、Caを添加する理由について説明する。
基本となる成分にさらに、必要に応じてこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、溶接金属の強度・低温靭性などの特性の向上を図るためである。したがって、その添加量は自ら制限されるべき性質のものである。
Next, the reason for adding Ni, Cu, Cr, Mo, V, and Ca will be described.
In addition to the basic components, the main purpose of adding these elements as necessary is to improve the properties such as strength and low-temperature toughness of the weld metal without impairing the excellent characteristics of the steel of the present invention. . Therefore, the amount of addition is a property that should be restricted by itself.
Niを添加する目的は、低温靭性や現地溶接性を劣化させることなく、強度を上昇させるためである。しかし、添加量が多すぎると経済性だけでなく、低温靭性などを劣化させるので、その上限を2.0%、下限を0.1%とした。 The purpose of adding Ni is to increase the strength without deteriorating the low temperature toughness and on-site weldability. However, if the addition amount is too large, not only the economy but also the low temperature toughness is deteriorated, so the upper limit was made 2.0% and the lower limit was made 0.1%.
CuはNiと同様に低温靭性や現地溶接性を劣化させることなく、強度を上昇させる。しかし、過剰に添加すると低温靭性が劣化するので、その上限を2.0%とした。Cuの下限0.1%は添加による材質上の効果が顕著になる最小値である。 Cu, like Ni, increases strength without deteriorating low-temperature toughness and on-site weldability. However, if added in excess, the low temperature toughness deteriorates, so the upper limit was made 2.0%. The lower limit of 0.1% of Cu is the minimum value at which the effect on the material due to addition becomes remarkable.
Crは強度を増加させるが、多すぎると低温靭性や現地溶接性を著しく劣化させる。このためCr量の上限を1.5%、下限を0.1%とした。 Cr increases the strength, but if it is too much, the low temperature toughness and on-site weldability deteriorate significantly. For this reason, the upper limit of the Cr content is set to 1.5% and the lower limit is set to 0.1%.
Moを添加する理由は、鋼の焼入性を向上させるためである。この効果を得るためには、Moは最低0.1%必要であるが、好ましくは0.5%である。しかし、過剰なMo添加は低温靭性、現地溶接性を劣化させるので、その上限を1.5%とした。 The reason for adding Mo is to improve the hardenability of the steel. In order to obtain this effect, Mo needs to be at least 0.1%, preferably 0.5%. However, excessive addition of Mo deteriorates low temperature toughness and on-site weldability, so the upper limit was made 1.5%.
Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して弱い。Vは歪誘起析出し、強度を上昇させる。下限は0.01%、その上限は現地溶接性、低温靭性の観点から0.1%まで許容できる。 V has almost the same effect as Nb, but the effect is weaker than that of Nb. V causes strain-induced precipitation and increases the strength. The lower limit is 0.01%, and the upper limit is acceptable up to 0.1% from the viewpoint of on-site weldability and low temperature toughness.
Mgは硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させる。しかし、Mg量が0.0001%未満では実用上効果がなく、また0.0050%を超えて添加すると溶接欠陥を発生させる。このためMg添加量を0.0001〜0.0050%に限定した。 Mg controls the form of sulfide (MnS) and improves low-temperature toughness (such as an increase in absorbed energy in the Charpy test). However, if the amount of Mg is less than 0.0001%, there is no practical effect, and if it exceeds 0.0050%, welding defects are generated. Therefore, the Mg addition amount is limited to 0.0001 to 0.0050%.
Caは硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させる。しかし、Ca量が0.0005%未満では実用上効果がなく、また0.0050%を超えて添加するとCaO−CaSが大量に発生して、溶接欠陥を発生させる。このためCa添加量を0.0005〜0.0050%に限定した。 Ca controls the form of sulfide (MnS) and improves low-temperature toughness (such as an increase in absorbed energy in the Charpy test). However, if the amount of Ca is less than 0.0005%, there is no practical effect, and if added over 0.0050%, a large amount of CaO—CaS is generated, and a weld defect is generated. For this reason, Ca addition amount was limited to 0.0005 to 0.0050%.
本発明の溶接鋼管は、鋼板を成形した後、長手方向に内外面から1層ずつ溶接して製造することができる。 The welded steel pipe of the present invention can be manufactured by forming a steel plate and then welding one layer at a time in the longitudinal direction from the inner and outer surfaces.
本発明の実施例について以下に述べる。
転炉−連続鋳造法で種々の鋼成分の鋼片から製造された鋼板を用いて鋼管を製造し、諸性質を調査した。鋼管溶接部の低温靭性は内外面の1層のサブマージドアーク溶接を実施した後、シャルピー試験片およびCTOD試験片を用いて評価した。ノッチ位置は溶接金属中央及びHAZ(溶接金属とHAZが50%ずつ含まれる)とした。
Examples of the present invention will be described below.
Steel pipes were produced using steel sheets produced from billets of various steel components by the converter-continuous casting method, and various properties were investigated. The low temperature toughness of the steel pipe weld was evaluated using a Charpy test piece and a CTOD test piece after one-layer submerged arc welding of the inner and outer surfaces. The notch positions were the weld metal center and HAZ (50% each of weld metal and HAZ were included).
鋼管溶接部のγ粒径は、鋼管厚みの1/4位置における溶融線に接する10個の旧γ粒径を測定し、その平均値を求めた。またHAZにおけるBの偏析は、α線トラックエッチング(ATE)法により旧γ粒界へのBの偏析を調査した。MgとAlからなる酸化物を内包するTiNの量とサイズは、10000倍で電子顕微鏡写真を10枚撮影し、その平均値を求めた。酸化物と硫化物が複合した酸化物の組成およびサイズと数量は4mm2 視野をEPMAおよび1000倍の光学顕微鏡で観察して求めた。 The γ particle size of the welded portion of the steel pipe was determined by measuring the 10 old γ particle sizes in contact with the melt line at the 1/4 position of the thickness of the steel tube and calculating the average value. As for the segregation of B in HAZ , the segregation of B to the old γ grain boundary was investigated by an α-ray track etching (ATE) method. The amount and size of TiN encapsulating an oxide composed of Mg and Al were 10,000 times, 10 electron micrographs were taken, and the average value was obtained. The composition, size, and quantity of the oxide / sulfide composite were determined by observing a 4 mm 2 field of view with EPMA and a 1000 × optical microscope.
試験の条件、結果を表1(表1-1、表1-2)、表2、表3に示す。表1は、鋼管母材と溶接金属の化学成分を示し、表2に酸化物の個数、鋼管溶接部のγ粒径、γ粒界へのBの偏析有無を示し、そして、表3に鋼管母材の機械的性質、鋼管溶接部の機械的性質を示した。表から明らかなように、本発明の鋼管は高い強度(YS、TS)、低温靭性、溶接部靭性を有する。これに対して比較鋼は化学成分や具備すべき条件が適切でなく、いずれかの特性が劣る。 The test conditions and results are shown in Table 1 (Table 1-1, Table 1-2), Table 2, and Table 3. Table 1 shows the chemical composition of the steel pipe base metal and the weld metal, Table 2 shows the number of oxides, the γ grain size of the welded part of the steel pipe, the presence or absence of B segregation to the γ grain boundary, and Table 3 the steel pipe. The mechanical properties of the base metal and the mechanical properties of the welded steel pipe are shown. As is apparent from the table, the steel pipe of the present invention has high strength (YS, TS), low temperature toughness, and weld zone toughness. On the other hand, the comparative steel has inadequate chemical components and conditions to be provided, and any of the characteristics is inferior.
鋼11はS量が少ないため、HAZ靭性が劣る。鋼12は母材のAl量が少ないため、HAZ靭性が劣る。鋼13は母材のAl量が多いため、HAZ靭性が劣る。鋼14は母材のMg量が少ないため、HAZ靭性が劣る。鋼15は母材のMg量が多いため、母材の靭性が劣る。鋼16は溶接金属のC量が少ないため、溶接金属の高温割れが発生する。
鋼17は溶接金属のC量が多すぎるため、溶接金属の低温靭性が劣る。鋼18はMgとAlからなる酸化物を内包する0.01〜0.5μmのTiN、すなわちピン止め粒子の個数が少ないため、HAZ靭性が劣る。鋼19は酸化物と硫化物が複合した形態で0.3%以上のMnを含有する0.5〜10μmの粒子、すなわちIGF変態核の個数が少ないため、HAZ靭性が劣る。
鋼20はMgとAlからなる酸化物を内包する0.01〜0.5μmのTiN、すなわちピン止め粒子の個数が少なく、鋼管溶接部のHAZにおけるγ粒径が150μmを超えるためにHAZ靭性が劣る。鋼21は溶接金属のB量が少なく、鋼管溶接部の溶融線から150μm以内のγ粒界にBが偏析していないためにHAZ靭性が劣る。
Since the steel 11 has a small amount of S, the HAZ toughness is inferior. Steel 12 is inferior in HAZ toughness because the amount of Al in the base material is small. Since the steel 13 has a large amount of Al in the base material, the HAZ toughness is inferior. Steel 14 is inferior in HAZ toughness because the amount of Mg in the base material is small. Since the steel 15 has a large amount of Mg in the base material, the toughness of the base material is inferior. Since the steel 16 has a small amount of C in the weld metal, hot cracking of the weld metal occurs.
Since the steel 17 has too much C amount of the weld metal, the low temperature toughness of the weld metal is inferior. Steel 18 is inferior in HAZ toughness because it contains 0.01 to 0.5 μm of TiN containing an oxide composed of Mg and Al, that is, the number of pinning particles is small. Steel 19 is in the form of a composite of oxide and sulfide, and has a particle size of 0.5 to 10 μm containing 0.3% or more of Mn, that is, the number of IGF transformation nuclei, and therefore HAZ toughness is inferior.
Steel 20 has 0.01 to 0.5 μm TiN containing an oxide composed of Mg and Al, that is, the number of pinning particles is small, and the γ particle size in the HAZ of the steel pipe welded part exceeds 150 μm. Inferior. Steel 21 has a small amount of B in the weld metal, and HA has poor HAZ toughness because B does not segregate at the γ grain boundaries within 150 μm from the melt line of the steel pipe weld.
本発明の溶接鋼管は低温靭性に優れているので、CNG輸送用シリンダータンクのほか寒冷地におけるパイプラインなどにも適用できる。 Since the welded steel pipe of the present invention is excellent in low temperature toughness, it can be applied not only to a cylinder tank for CNG transportation but also to a pipeline in a cold region.
Claims (2)
C :0.03〜0.10%、 Si:0.6%以下、
Mn:0.8〜2.5%、 P :0.015%以下、
S :0.001〜0.005%、 Nb:0.005〜0.05%、
Ti:0.005〜0.030%、 Al:0.001〜0.010%、
Mg:0.0001〜0.0050%、 N :0.001〜0.006%、
O :0.001〜0.005%
を含有し、残部が鉄および不可避的不純物からなり、MgとAlからなる酸化物を内包す
る0.01〜0.5μmのTiNが10000個/mm2 以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2 以上含有する母材と、
C :0.03〜0.10%、 Si:0.6%以下、
Mn:0.8〜2.5%、 P :0.015%以下、
S :0.005%以下、 Nb:0.005〜0.05%、
Ti:0.005〜0.03%、 B :0.0015〜0.0050%、
Al:0.05%以下、 N :0.001〜0.01%、
O :0.015〜0.045%
を含有し、残部が鉄及び不可避的不純物からなる溶接金属部を有する鋼管において、長手方向に内外面から1層ずつ溶接した鋼管における溶接熱影響部の旧オーステナイト粒径が150μm以下であり、溶融線から150μm以内の溶接熱影響部の旧オーステナイト粒界にボロンが存在すると共に、溶接部における脆性破壊特性である−30℃でのCTOD値が0.58mm以上、−40℃でのシャルピー吸収エネルギー値が114J以上であることを特徴とする620MPa以上900MPa未満の引張強度を有する低温用高強度鋼管。 % By mass
C: 0.03-0.10%, Si: 0.6% or less,
Mn: 0.8 to 2.5%, P: 0.015% or less,
S: 0.001 to 0.005%, Nb: 0.005 to 0.05%,
Ti: 0.005-0.030%, Al: 0.001-0.010%,
Mg: 0.0001 to 0.0050%, N: 0.001 to 0.006%,
O: 0.001 to 0.005%
Containing the balance being iron and unavoidable impurities, containing TiN of 0.01~0.5μm enclosing the oxide of Mg and Al 10000 / mm 2 or more, and oxides and sulfides A base material containing 10 particles / mm 2 or more of 0.5 to 10 μm particles containing 0.3% by mass or more of Mn in a composite form;
C: 0.03-0.10%, Si: 0.6% or less,
Mn: 0.8 to 2.5%, P: 0.015% or less,
S: 0.005% or less, Nb: 0.005-0.05%,
Ti: 0.005 to 0.03%, B: 0.0015 to 0.0050%,
Al: 0.05% or less, N: 0.001 to 0.01%,
O: 0.015-0.045%
In the steel pipe having a weld metal part composed of iron and unavoidable impurities in the balance, the old austenite grain size of the weld heat-affected zone in the steel pipe welded layer by layer from the inner and outer surfaces in the longitudinal direction is 150 μm or less, and Boron is present in the prior austenite grain boundary of the weld heat affected zone within 150 μm from the wire, and the brittle fracture characteristics in the weld zone are CTOD values at −30 ° C. of 0.58 mm or more, Charpy absorbed energy at −40 ° C. A low-temperature high-strength steel pipe having a tensile strength of 620 MPa or more and less than 900 MPa, wherein the value is 114 J or more .
C :0.03〜0.10%、 Si:0.6%以下、
Mn:0.8〜2.5%、 P :0.015%以下、
S :0.001〜0.005%、 Nb:0.005〜0.05%、
Ti:0.005〜0.030%、 Al:0.001〜0.010%、
Mg:0.0001〜0.0050%、 N :0.001〜0.006%、
O :0.001〜0.005%
を含有し、さらに
Ni:0.1〜1.0%、 Cu:0.1〜1.2%、
Cr:0.1〜1.0%、 Mo:0.1〜1.0%、
V :0.01〜0.1%、 Ca:0.0005〜0.0050%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、MgとAlか
らなる酸化物を内包する0.01〜0.5μmのTiNが10000個/mm2 以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2 以上含有する母材と、
C :0.03〜0.10%、 Si:0.6%以下、
Mn:0.8〜2.5%、 P :0.015%以下、
S :0.005%以下、 Nb:0.005〜0.05%、
Ti:0.005〜0.03%、 B :0.0015〜0.0050%、
Al:0.05%以下、 N :0.001〜0.01%、
O :0.015〜0.045%
を含有し、さらに
Ni:0.1〜2.0%、 Cu:0.1〜2.0%、
Cr:0.1〜1.5%、 Mo:0.1〜1.5%、
V :0.01〜0.1%、 Mg:0.0001〜0.0050%、
Ca:0.0005〜0.0050%
の1種または2種以上を含有し、残部が鉄及び不可避的不純物からなる溶接金属部を有す
る鋼管において、長手方向に内外面から1層ずつ溶接した鋼管における溶接熱影響部の旧オーステナイト粒径が150μm以下であり、溶融線から150μm以内の溶接熱影響部の旧オーステナイト粒界にボロンが存在すると共に、溶接部における脆性破壊特性である−30℃でのCTOD値が0.58mm以上、−40℃でのシャルピー吸収エネルギー値が114J以上であることを特徴とする620MPa以上900MPa未満の引張強度を有する低温高強度用鋼管。 % By mass
C: 0.03-0.10%, Si: 0.6% or less,
Mn: 0.8 to 2.5%, P: 0.015% or less,
S: 0.001 to 0.005%, Nb: 0.005 to 0.05%,
Ti: 0.005-0.030%, Al: 0.001-0.010%,
Mg: 0.0001 to 0.0050%, N: 0.001 to 0.006%,
O: 0.001 to 0.005%
Ni: 0.1 to 1.0%, Cu: 0.1 to 1.2%,
Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%, Ca: 0.0005 to 0.0050%
1 or 2 or more of the above, the balance is made of iron and inevitable impurities, and 0.01 to 0.5 μm of TiN containing an oxide of Mg and Al is contained at least 10,000 pieces / mm 2 , And the base material which 0.5-10 micrometer particle | grains containing 0.3 mass% or more Mn in the form which oxide and sulfide compounded contain 10 pieces / mm < 2 > or more,
C: 0.03-0.10%, Si: 0.6% or less,
Mn: 0.8 to 2.5%, P: 0.015% or less,
S: 0.005% or less, Nb: 0.005-0.05%,
Ti: 0.005 to 0.03%, B: 0.0015 to 0.0050%,
Al: 0.05% or less, N: 0.001 to 0.01%,
O: 0.015-0.045%
Ni: 0.1 to 2.0%, Cu: 0.1 to 2.0%,
Cr: 0.1 to 1.5%, Mo: 0.1 to 1.5%,
V: 0.01 to 0.1%, Mg: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.0050%
The former austenite grain size of the weld heat-affected zone in steel pipes welded one layer at a time in the longitudinal direction from the inner and outer surfaces in a steel pipe containing one or more of the above and the balance being a welded metal part consisting of iron and inevitable impurities Is not more than 150 μm, boron is present in the former austenite grain boundary of the weld heat affected zone within 150 μm from the melting line, and the brittle fracture characteristics at −30 ° C. is a CTOD value at −30 ° C. of 0.58 mm or more, − A steel pipe for low temperature and high strength having a tensile strength of 620 MPa or more and less than 900 MPa , wherein the Charpy absorbed energy value at 40 ° C. is 114 J or more .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005353209A JP4772486B2 (en) | 2005-04-26 | 2005-12-07 | High strength steel pipe for low temperature |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005128421 | 2005-04-26 | ||
JP2005128421 | 2005-04-26 | ||
JP2005353209A JP4772486B2 (en) | 2005-04-26 | 2005-12-07 | High strength steel pipe for low temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006328523A JP2006328523A (en) | 2006-12-07 |
JP4772486B2 true JP4772486B2 (en) | 2011-09-14 |
Family
ID=37550516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005353209A Expired - Fee Related JP4772486B2 (en) | 2005-04-26 | 2005-12-07 | High strength steel pipe for low temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4772486B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4853575B2 (en) | 2009-02-06 | 2012-01-11 | Jfeスチール株式会社 | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same |
JP2013078775A (en) * | 2011-10-03 | 2013-05-02 | Jfe Steel Corp | Welded steel pipe excelling in toughness of welding heat affected part, and method for manufacturing the same |
CN103521549B (en) * | 2013-10-07 | 2015-09-16 | 宝鸡石油钢管有限责任公司 | A kind of manufacture method of X100 Hi-grade steel heavy caliber thick wall straight-line joint submerged arc welding tube |
KR101696025B1 (en) | 2014-08-21 | 2017-01-13 | 주식회사 포스코 | Welded joint having excellent impact toughness and method for manufacturing thereof |
CN105014208A (en) * | 2015-08-06 | 2015-11-04 | 山东能源重型装备制造集团有限责任公司 | Welding method of high-strength steel of 900 MPa level |
CN106694609A (en) * | 2015-11-16 | 2017-05-24 | 宝鸡石油钢管有限责任公司 | Method for manufacturing X80-stage phi1422 mm longitudinal submerged arc welding pipe |
CN108350540A (en) | 2015-12-04 | 2018-07-31 | 株式会社神户制钢所 | The low-temperature flexibility of welding heat affected zone is inhibited to deteriorate the non-quenched and tempered steel plate with high-yield strength with the hardness of welding heat affected zone |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001303191A (en) * | 2000-04-19 | 2001-10-31 | Nippon Steel Corp | Ultrahigh strength steel pipe for line pipe, excellent in haz toughness in weld zone, and its manufacturing method |
JP4116817B2 (en) * | 2002-05-16 | 2008-07-09 | 新日本製鐵株式会社 | Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability |
JP4116857B2 (en) * | 2002-10-02 | 2008-07-09 | 新日本製鐵株式会社 | High strength steel pipe with excellent weld toughness and deformability |
-
2005
- 2005-12-07 JP JP2005353209A patent/JP4772486B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006328523A (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2427663C2 (en) | High strength thick wall welded steel pipe for pipeline possessing excellent low temperature ductility and procedure for its fabrication | |
US10023946B2 (en) | Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet | |
JP5146198B2 (en) | High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method | |
JP4772486B2 (en) | High strength steel pipe for low temperature | |
JP5900312B2 (en) | High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method | |
WO2017183719A1 (en) | High tensile steel and marine structure | |
JP4585483B2 (en) | High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate | |
JPWO2011148754A1 (en) | Thick steel plate manufacturing method | |
WO2007105752A1 (en) | Steel sheet for submerged arc welding | |
JP2011074403A (en) | Steel for high heat input welding | |
TWI589708B (en) | Steel material for high heat input welding | |
JP2003213366A (en) | Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone | |
JP2011074447A (en) | High strength steel excellent in toughness in high heat input weld heat-affected zone | |
JP5076939B2 (en) | High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method | |
JP4116857B2 (en) | High strength steel pipe with excellent weld toughness and deformability | |
JP4116817B2 (en) | Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability | |
JP5920542B2 (en) | Welded joint | |
JP4276576B2 (en) | Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness | |
JP5146043B2 (en) | High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method | |
JP2003306749A (en) | Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube | |
JP3785376B2 (en) | Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability | |
JP4964480B2 (en) | High strength steel pipe excellent in toughness of welded portion and method for producing the same | |
JP3745722B2 (en) | Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness | |
JP2002371338A (en) | Steel superior in toughness at laser weld | |
JPH11264048A (en) | High-strength steel plate excellent in toughness of welded zone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110614 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110622 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4772486 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |