JPH05171341A - Production of thick steel plate excellent in toughness in welding heat-affected zone - Google Patents

Production of thick steel plate excellent in toughness in welding heat-affected zone

Info

Publication number
JPH05171341A
JPH05171341A JP3335314A JP33531491A JPH05171341A JP H05171341 A JPH05171341 A JP H05171341A JP 3335314 A JP3335314 A JP 3335314A JP 33531491 A JP33531491 A JP 33531491A JP H05171341 A JPH05171341 A JP H05171341A
Authority
JP
Japan
Prior art keywords
toughness
steel
steel plate
haz
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3335314A
Other languages
Japanese (ja)
Other versions
JP2653594B2 (en
Inventor
Toshinaga Hasegawa
俊永 長谷川
Shuji Aihara
周二 粟飯原
Kentaro Okamoto
健太郎 岡本
Yoshio Terada
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3335314A priority Critical patent/JP2653594B2/en
Publication of JPH05171341A publication Critical patent/JPH05171341A/en
Application granted granted Critical
Publication of JP2653594B2 publication Critical patent/JP2653594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high tensile strength steel plate excellent in toughness at low temp. in a welding heat-affected zone by adding Ti, Mg, and Ca to a molten steel containing specific amounts of dissolved oxygen under specific conditions, subjecting a cast slab having the resulting specific composition to reheating at specific temp., and preparing a thick steel plate. CONSTITUTION:Ti and Mg are added by 0.010-0.040% and 0.001-0.010% by weight, respectively, to a molten steel containing 0.003-0.020% dissolved oxygen and then, within 15min, 0.005-0.050% Ca is added, and the resulting molten steel is solidified, by that, a cast slab which has a composition consisting of 0.02-0.18% C, <=0.5% Si, 0.8-2.0% Mn, <=0.015% P, 0.0001-0.01% S, <=0.004% Al, 0.003-0.060% Nb, 0.002-0.060% N, 0.005-0.020% Ti, 0.0001-0.0010% Mg, 0.0005-0.0050% Ca, 0.001-0.006% O, and the balance iron with inevitable impurities and practically free from Al is prepared. This cast slab is reheated at <=1250 deg.C, and the objective thick steel plate is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶接熱影響部(以下HA
Zと称する)の低温靭性が優れた高張力鋼板の製造方法
に関する。
The present invention relates to a welding heat affected zone (hereinafter referred to as HA
(Hereinafter referred to as Z), which is excellent in low temperature toughness, and a method for producing a high-strength steel sheet.

【0002】[0002]

【従来の技術】低合金鋼のHAZ靭性は、(1)結晶粒
のサイズ、(2)高炭素島状マルテンサイト(M* )、
炭化物などの硬化相の分散状態、(3)粒界脆化の有
無、(4)元素のミクロ偏析など、種々の冶金学的要因
に支配される。なかでもHAZの結晶粒サイズは低温靭
性に大きな影響を与えることがよく知られており、HA
Z組織を微細化する数多くの技術が開発実用化されてい
る。
2. Description of the Related Art HAZ toughness of low alloy steel is (1) grain size, (2) high carbon island martensite (M * ),
It is governed by various metallurgical factors such as the dispersed state of the hardened phase such as carbide, (3) presence or absence of grain boundary embrittlement, and (4) microsegregation of elements. Among them, it is well known that the grain size of HAZ has a great influence on the low temperature toughness.
Many techniques for making the Z structure finer have been developed and put to practical use.

【0003】例えば、50kgf/mm2 級高張力鋼におい
て、TiNを微細分散させHAZ靭性を改善する手段が
開示されている(昭和54年6月発行「鉄と鋼」第65
巻第8号1232頁)。しかし、これらの析出物は溶接
時には高温に加熱される溶融線(Fusion Lin
e:以下FLと呼ぶ)近傍では大部分が溶解し、HAZ
組織の粗粒化を生じ、FLのごく近傍のHAZでは靭性
が劣化するという欠点を有する。
For example, in 50 kgf / mm 2 class high-strength steel, means for finely dispersing TiN to improve HAZ toughness has been disclosed (“Iron and Steel”, No. 65, June 1979).
Vol. 8, page 1232.) However, these precipitates are melt lines (Fusion Lin) that are heated to high temperatures during welding.
e: hereinafter referred to as FL).
There is a drawback that coarsening of the structure occurs, and toughness deteriorates in the HAZ in the immediate vicinity of FL.

【0004】この問題に対して、鋼中にTi酸化物を微
細分散させ、これを変態核として溶接時のHAZにおい
て粒内フェライト(以下IFPと称する)を生成させる
ことにより、HAZ組織を実質的に微細化してHAZ靭
性を向上させ得ることが特開昭63−21235号、特
開平1−15321号各公報等に示されている。
To solve this problem, a Ti oxide is finely dispersed in the steel, and an intragranular ferrite (hereinafter referred to as IFP) is generated in the HAZ at the time of welding by using the Ti oxide as a transformation nucleus. It has been shown in JP-A-63-21235 and JP-A-1-15321 that the particle size can be further reduced to improve the HAZ toughness.

【0005】[0005]

【発明が解決しようとする課題】本発明者らはこのTi
酸化物を微細分散させてHAZ靭性を改善する技術を基
本として、HAZ組織と靭性の関係を鋭意検討した結
果、鋼中にTi酸化物を微細分散させた鋼においても、
北海域やLPGタンクなどの低温環境で使用される鋼板
のHAZ靭性は十分とは言えないことが判明した。しか
しながら、現在のところFL近傍までHAZ組織を安定
して微細化してHAZ靭性を改善できる技術は存在しな
い。本発明は溶接HAZ靭性の優れた高張力鋼板の製造
方法を提案するものである。本発明の高張力鋼はFL近
傍を含めたHAZ全域で組織が微細化して優れた低温靭
性を有する。
DISCLOSURE OF THE INVENTION The present inventors
Based on the technique of improving the HAZ toughness by finely dispersing the oxide, as a result of diligent examination of the relationship between the HAZ structure and the toughness, even in the steel in which the Ti oxide is finely dispersed in the steel,
It was found that the HAZ toughness of steel sheets used in low temperature environments such as the North Sea and LPG tanks is not sufficient. However, at present, there is no technique capable of stably refining the HAZ structure to near the FL to improve the HAZ toughness. The present invention proposes a method for producing a high-strength steel sheet having excellent weld HAZ toughness. The high-strength steel of the present invention has an excellent low-temperature toughness because the structure is refined in the entire HAZ including the vicinity of FL.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は溶存酸素
量が0.003〜0.020%の溶鋼中にTiとMgを
それぞれTi:0.010〜0.040%、Mg:0.
001〜0.010%の範囲で添加し、その後15分以
内にCaを0.005〜0.050%添加した後、凝固
させ、重量%でC:0.02〜0.18%、Si:0.
5%以下、Mn:0.8〜2.0%、P:0.015%
以下、S:0.001〜0.01%、Al:0.004
%以下、Nb:0.003〜0.060%、N:0.0
02〜0.0060%、Ti:0.005〜0.020
%、Mg:0.0001〜0.001%、Ca:0.0
005〜0.0050%、O:0.001〜0.006
%を含有し、また、必要に応じてCr:0.05〜1.
00%、Ni:0.05〜4.00%、Mo:0.05
〜0.4%、V:0.005〜0.080%、Cu:
0.05〜1.50%、B:0.0003〜0.002
0%の一種または二種以上を含有し、残部が鉄及び不可
避不純物からなる実質的にAlを含有しない鋳片を、1
250℃以下の温度で再加熱後、鋼板を製造することで
ある。
Means for Solving the Problems The gist of the present invention is to provide Ti and Mg in molten steel having a dissolved oxygen content of 0.003 to 0.020% at Ti: 0.010 to 0.040% and Mg: 0.
001 to 0.010%, and within 15 minutes, 0.005 to 0.050% of Ca is added, followed by solidification, and C: 0.02 to 0.18% by weight, Si: 0.
5% or less, Mn: 0.8 to 2.0%, P: 0.015%
Hereinafter, S: 0.001 to 0.01%, Al: 0.004
% Or less, Nb: 0.003 to 0.060%, N: 0.0
02-0.0060%, Ti: 0.005-0.020
%, Mg: 0.0001 to 0.001%, Ca: 0.0
005 to 0.0050%, O: 0.001 to 0.006
%, And, if necessary, Cr: 0.05-1.
00%, Ni: 0.05 to 4.00%, Mo: 0.05
~ 0.4%, V: 0.005-0.080%, Cu:
0.05-1.50%, B: 0.0003-0.002
A slab containing 0% of one kind or two or more kinds, the balance of which is iron and unavoidable impurities and which does not substantially contain Al is 1
It is to manufacture a steel sheet after reheating at a temperature of 250 ° C. or lower.

【0007】[0007]

【作用】以下に本発明について詳細に説明する。発明者
らの研究によれば、HAZ靭性は(1)鋼の化学成分、
(2)組織(結晶粒の大きさと硬化相の分布状態)に大
きく依存し、鋼成分の適正化とこれによる結晶粒の微細
化が高靭性化に不可欠であると考えられる。特開昭63
−210235号、特開平1−15321号各公報に示
されるように、Ti酸化物を微細分散させた鋼は、溶接
時のHAZ(特にFL近傍)において、IFPを生成さ
せることによりHAZ組織が微細化され、HAZ靭性を
著しく改善できる。
The present invention will be described in detail below. According to the research conducted by the inventors, the HAZ toughness is (1) the chemical composition of steel,
(2) It depends on the structure (size of crystal grains and distribution state of hardened phase), and it is considered that optimization of steel components and refinement of crystal grains by this are essential for high toughness. JP 63
As disclosed in JP-A-210235 and JP-A-1-15321, the steel in which Ti oxide is finely dispersed has a fine HAZ structure by generating IFP in HAZ (particularly in the vicinity of FL) during welding. And the HAZ toughness can be remarkably improved.

【0008】一方、発明者らは特願平03−22865
4号明細書に示したように、TiとMgを複合添加する
と、Ti単独脱酸鋼に比べてTiを含有する酸化物を鋼
中により多量にかつ微細分散でき、該酸化物を核として
粒内フェライトが生成することから優れたHAZ靭性が
達成できることを見いだした。
On the other hand, the inventors of the present invention filed Japanese Patent Application No. 03-22865.
As shown in the specification No. 4, when Ti and Mg are added together, the oxide containing Ti can be dispersed in the steel in a larger amount and finer than in the case of Ti alone deoxidized steel, and the oxide is used as a core to form grains. It was found that excellent HAZ toughness can be achieved because the inner ferrite is generated.

【0009】しかし、その後の検討の結果、TiとMg
を複合添加した際に生成する酸化物は、溶鋼中でクラス
ター状に凝集し浮上しやすい傾向を有するため、鋳片全
体に均一微細分散させることが必ずしも容易でなく、そ
のためには凝固までの時間を短くすることが好ましいこ
とが判明した。しかし、実際の鋼材の製造では、例えば
連続鋳造法により凝固させる場合でも溶鋼にTi,Mg
を添加した後、すぐに凝固を開始させることは困難であ
る。
However, as a result of the subsequent examination, Ti and Mg
Since the oxides generated when the alloys are added together tend to agglomerate in molten steel in clusters and tend to float, it is not always easy to disperse them uniformly throughout the slab. It has been found preferable to shorten However, in the actual production of steel materials, for example, even when solidifying by a continuous casting method, Ti, Mg
It is difficult to start the solidification immediately after the addition of.

【0010】そこで、凝固までの時間依存性の少ない酸
化物について検討した結果、Ti,Mgを添加した後、
さらにCaを添加すると、酸化物の分布状態の時間依存
性が少なくなることを見いだし、均一微細分散に極めて
有効であることが判明した。すなわちTi,Mg,Ca
の添加方法を規定することにより、鋼中にTiを主体と
し、MgとCaを含有する複合酸化物を凝固までの時間
によらず、言い替えれば鋳片の位置によらず均一かつ微
細分散させることが可能であることを見いだし、本発明
に至った。
Then, as a result of studying oxides having little time dependency until solidification, after adding Ti and Mg,
Further, it was found that the addition of Ca reduces the time dependence of the oxide distribution state, and it has been found that it is extremely effective for uniform fine dispersion. That is, Ti, Mg, Ca
By prescribing the addition method of the above, it is possible to uniformly and finely disperse the complex oxide mainly composed of Ti and containing Mg and Ca in the steel, regardless of the time until solidification, in other words, regardless of the position of the slab. It was found that the above was possible, and the present invention was achieved.

【0011】本発明により鋼中に分散する酸化物は必ず
しも一定の組成を持たないが、主としてTiを含有し、
Mg,Caを若干含有する。他に微量のAl,Mn,S
iが測定される場合もあるが、いずれもフェライト変態
核となり得、本発明により鋼中に上記複合酸化物を多量
に微細分散させた鋼は、FL近傍の1400℃以上に加
熱された領域においても、γ−α変態時にγ粒内に存在
する酸化物を核として、IFPを生成し、HAZ組織を
著しく微細化する。
The oxide dispersed in the steel according to the present invention does not necessarily have a constant composition, but contains mainly Ti,
It contains a small amount of Mg and Ca. Other traces of Al, Mn, S
In some cases, i can be measured, but both can be ferrite transformation nuclei, and the steel in which a large amount of the above complex oxide is finely dispersed in the steel according to the present invention is used in a region near FL and heated to 1400 ° C. or higher. Also, the oxide existing in the γ grains during the γ-α transformation is used as a nucleus to generate IFP, and the HAZ structure is remarkably refined.

【0012】また、FLから離れた領域(FLから5mm
程度までの領域)においては、微細TiNを含有させる
ことによりHAZ靭性を改善できる。これは微細TiN
によりγ粒の粗大化が抑制され、組織が微細化されるた
めである。
In addition, the area away from FL (5 mm from FL)
The HAZ toughness can be improved by including fine TiN in a region up to a certain degree). This is fine TiN
This is because the coarsening of γ grains is suppressed and the structure is refined.

【0013】このような効果を有するTiを含有する酸
化物を鋼中に多量に微細分散させるためには、まず、T
iやMg,Caを添加する前の溶鋼中の溶存酸素量を
0.003〜0.020%にする必要がある。溶存酸素
量が0.003%未満であると、Ti,Mg,Caによ
る脱酸後の酸素量が少なくなり、最終的な微細酸化物の
個数が少なくなるためである。
In order to finely disperse a large amount of Ti-containing oxide having such an effect in steel, first, T
The amount of dissolved oxygen in the molten steel before adding i, Mg, and Ca needs to be 0.003 to 0.020%. This is because if the dissolved oxygen amount is less than 0.003%, the oxygen amount after deoxidation with Ti, Mg, and Ca will decrease, and the final number of fine oxides will decrease.

【0014】しかし、溶存酸素量が0.020%を超え
ると、Ti,Mg,Caを添加しても脱酸が十分に行わ
れず、清浄度が落ちて母材の靭性が劣化する。また、粗
大な酸化物が形成されやすくなり、これが脆性破壊の起
点となるため、HAZ靭性も劣化する。Tiの添加量は
脱酸により、添加量の約50%がスラグとして出るため
に最終的に必要とするTiの2倍程度を添加する必要が
ある。
However, if the amount of dissolved oxygen exceeds 0.020%, even if Ti, Mg, and Ca are added, deoxidation is not sufficiently performed, and the cleanliness decreases and the toughness of the base material deteriorates. Further, a coarse oxide is likely to be formed, and this becomes a starting point of brittle fracture, so that the HAZ toughness also deteriorates. It is necessary to add about twice the amount of Ti that is finally necessary because about 50% of the added amount of Ti is discharged as slag due to deoxidation.

【0015】また、Caは歩留まりが10%程度のた
め、最終的に必要とするCaの10倍程度を添加する必
要がある。Mgはさらに歩留まりが悪いため、必要量の
10〜20倍程度添加する必要がある。
Further, since the yield of Ca is about 10%, it is necessary to add about 10 times the Ca that is finally required. Since Mg has a further poor yield, it is necessary to add about 10 to 20 times the required amount.

【0016】Ti,Mg,Caの添加順序としては、T
iとMgについてはどちらが先でもかまわない。あるい
は同時に添加しても効果にほとんど差は認められない。
ただし、Caの添加は一番最後にする必要がある。これ
はCaの酸素との親和力が強いために、Caを先に添加
すると、鋼中に生成する酸化物はCa主体の酸化物とな
る。Caを主成分とする酸化物はIFP生成能が著しく
低くなるため、HAZ組織微細化効果は期待できなくな
る。
The order of addition of Ti, Mg and Ca is T
Either i or Mg may come first. Or even if added at the same time, there is almost no difference in effect.
However, it is necessary to add Ca last. Since Ca has a strong affinity with oxygen, when Ca is added first, the oxide formed in the steel becomes an oxide mainly composed of Ca. Since the oxide containing Ca as a main component has a significantly low IFP forming ability, the effect of refining the HAZ structure cannot be expected.

【0017】MgもTiに比べて酸素との親和力が強い
が、本発明ではその含有量自体が少ないため、添加順序
によらず、生成する酸化物はIFP生成能の強いTi主
体の酸化物となる。
Mg has a stronger affinity with oxygen than Ti, but since the content of Mg is small in the present invention, the oxide produced is a Ti-based oxide having a strong IFP producing ability regardless of the order of addition. Become.

【0018】Ti,Mgを添加し、さらにCaを添加す
る場合、Ti,Mgのどちらか後に添加した時点から、
あるいは両方を同時に添加した時点から15分以内にC
aを添加する必要がある。Ti,Mgを添加後15分以
上経過すると、Tiを含有する酸化物の凝集・合体及び
浮上が進むために、最終的に微細な酸化物を鋼中に均一
分散させることができないためである。
When Ti and Mg are added and Ca is further added, from the time when Ti or Mg is added later,
Or within 15 minutes from the time when both were added simultaneously, C
It is necessary to add a. This is because, if 15 minutes or more has passed since the addition of Ti and Mg, the aggregation and coalescence of the Ti-containing oxide and the floating progress, so that the final fine oxide cannot be uniformly dispersed in the steel.

【0019】TiとMgを別々に添加する場合、Tiと
Mgの添加間隔はこれらとCaの添加間隔のように厳密
に規定する必要はないが、添加間隔は30分以内か、同
時に添加する方が酸化物の均一分散のためには好まし
い。
When Ti and Mg are added separately, it is not necessary to strictly define the addition interval of Ti and Mg like the addition interval of these and Ca, but the addition interval is within 30 minutes or the method of adding them at the same time. Is preferred for uniform dispersion of the oxide.

【0020】鋼材中の含有量としてのTi,Mg,C
a,N,O量は以下の理由により限定される。Ti,M
g,Ca,N,O量の下限はTiとMgとCaの複合酸
化物、TiNを生成させるための必要最小量である。T
i量の上限はTiCの生成によるHAZ靭性の劣化を防
止するためである。Ca量の上限はCaOが多量に生成
して鋼の靭性、清浄度を害するのを防止するためであ
る。Mgの上限は、Tiを含有する酸化物のIFP生成
能が低下するのを防止するためである。N量の上限は固
溶NによるHAZ靭性の劣化を防止するためである。ま
た、O量の上限は非金属介在物の生成による鋼の清浄
度、靭性の劣化を防止するためである。
Ti, Mg, C as contents in the steel material
The amounts of a, N and O are limited for the following reasons. Ti, M
The lower limit of the amount of g, Ca, N, and O is the minimum amount necessary to form TiN, Mg, and Ca composite oxide, TiN. T
The upper limit of the i amount is to prevent the HAZ toughness from being deteriorated due to the formation of TiC. The upper limit of the amount of Ca is to prevent a large amount of CaO from being produced and impairing the toughness and cleanliness of steel. The upper limit of Mg is to prevent the IFP generation ability of the oxide containing Ti from decreasing. The upper limit of the amount of N is to prevent deterioration of HAZ toughness due to solid solution N. The upper limit of the amount of O is to prevent deterioration of cleanliness and toughness of steel due to the formation of non-metallic inclusions.

【0021】以上のようにTi,Mg,Ca,N,O量
を限定し、Ti,Mg,Caの添加条件を規定して鋼中
にTiを含有する酸化物を均一微細分散させ、さらに微
細なTiNを生成させても基本成分が適当でないと優れ
たHAZ靭性は得られない。以下にその他の基本成分の
限定理由について説明する。C量の下限0.02%は、
母材及び溶接部の強度の確保ならびにNb,Vなどの添
加時にこれらの効果を発揮するための最小量である。し
かし、C量が多すぎると、HAZ靭性に悪影響を及ぼす
だけでなく母材靭性、溶接性を劣化させるので、上限を
0.18%とした。
As described above, the amounts of Ti, Mg, Ca, N, and O are limited, and the addition conditions of Ti, Mg, and Ca are specified to uniformly finely disperse the oxide containing Ti in the steel, and further Even if TiN is produced, excellent HAZ toughness cannot be obtained unless the basic components are suitable. The reasons for limiting the other basic components will be described below. The lower limit of C2 is 0.02%,
This is the minimum amount for ensuring the strength of the base material and the welded portion and exerting these effects when Nb, V, etc. are added. However, if the C content is too large, not only the HAZ toughness is adversely affected but also the base metal toughness and weldability are deteriorated, so the upper limit was made 0.18%.

【0022】Siは含有量の増加につれて溶接性、HA
Z靭性が劣化するので、上限を0.5%とした。
As Si content increases, weldability and HA
The Z toughness deteriorates, so the upper limit was made 0.5%.

【0023】Mnは強度、靭性を確保する上で不可欠の
元素であるため、その下限を0.8%とした。しかしM
n量が多すぎると、焼入性が過剰となって溶接性、HA
Z靭性が劣化するため上限を2.0%とした。
Since Mn is an essential element for securing strength and toughness, its lower limit is set to 0.8%. But M
If the amount of n is too large, the hardenability becomes excessive and the weldability and HA
Since Z toughness deteriorates, the upper limit was made 2.0%.

【0024】Pは母材、溶接部とも靭性に悪影響を及ぼ
すので、極力低減すべきであり、上限を0.015%と
した。
Since P adversely affects the toughness of both the base material and the welded portion, it should be reduced as much as possible, and the upper limit was made 0.015%.

【0025】SはMnSを形成して粒内フェライト生成
を助長する元素であり、その効果を発揮させるために
0.001%以上必要であるが、0.01%を超える過
剰の添加は粗大なA系介在物を形成して母材の延性、靭
性の低下と機械的性質の異方性の増加を招くため、Sは
0.001〜0.01%の範囲とした。
S is an element that forms MnS and promotes the formation of intragranular ferrite, and is required to be 0.001% or more in order to exert its effect, but excessive addition exceeding 0.01% is coarse. S forms a range of 0.001 to 0.01% because it forms an A-based inclusion and causes a decrease in ductility and toughness of the base material and an increase in anisotropy of mechanical properties.

【0026】Alは脱酸の必要性から一般的に鋼に含ま
れる元素であるが、本発明では好ましくない元素であ
り、極力低減すべきで、0.004%以下に限定した。
これはAlが鋼中に含まれると酸素と結合して、Tiの
酸化物が生成しなくなるためである。脱酸はTi及びS
iだけでも可能である。
Al is an element generally contained in steel due to the necessity of deoxidation, but it is an element which is not preferable in the present invention and should be reduced as much as possible, so it is limited to 0.004% or less.
This is because if Al is contained in the steel, it will combine with oxygen and Ti oxide will not be generated. Deoxidation is Ti and S
It is possible with i alone.

【0027】Nbはγ粒界に生成するフェライトを抑制
してHAZ組織の微細化に有効な元素である。この効果
を得るためには最低0.003%必要である。しかしな
がらNb量が多すぎると、IFPの生成を妨げるのでそ
の上限を0.060%とした。
Nb is an element which suppresses ferrite generated at the γ grain boundaries and is effective for making the HAZ structure fine. To obtain this effect, at least 0.003% is necessary. However, if the amount of Nb is too large, the production of IFP is hindered, so the upper limit was made 0.060%.

【0028】つぎに、Cr,Ni,Mo,V,Cu,B
を添加する理由について説明する。基本成分にさらにこ
れらの元素を添加する主たる目的は、本発明鋼の特徴を
損なうことなく、強度・靭性などの特性の向上をはかる
ためである。従って、その添加量は自ら制限されるべき
性質のものである。
Next, Cr, Ni, Mo, V, Cu, B
The reason for adding is explained. The main purpose of further adding these elements to the basic composition is to improve the properties such as strength and toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be limited by itself.

【0029】Crは母材及び溶接部の強度を高める元素
であるが、0.05%未満では効果が薄く、1.0%を
超えると溶接性やHAZ靭性を劣化させるため、0.0
5〜1.0%の範囲とした。
Cr is an element that enhances the strength of the base material and the welded portion, but if it is less than 0.05%, the effect is weak, and if it exceeds 1.0%, the weldability and HAZ toughness are deteriorated.
The range was 5 to 1.0%.

【0030】Niは溶接性、HAZ靭性に悪影響を及ぼ
すことなく、母材の強度、靭性を向上させるが、0.0
5%未満では効果が明瞭でなく、4.0%以上の添加は
溶接性に好ましくないため、0.05〜4.0%の範囲
とした。
Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness.
If it is less than 5%, the effect is not clear, and addition of 4.0% or more is unfavorable for weldability, so the range was made 0.05 to 4.0%.

【0031】Moは母材及び溶接部の強度を高める元素
であるが、0.4%を超えるとCrと同様に溶接性やH
AZ靭性を劣化させるため、上限を0.4%とした。ま
た、0.05%未満では効果が薄いため、0.05%〜
0.4%とした。
Mo is an element that enhances the strength of the base material and the welded portion, but if it exceeds 0.4%, it has the same weldability and H as Cr.
The upper limit was made 0.4% in order to deteriorate the AZ toughness. If less than 0.05%, the effect is weak, so 0.05% to
It was 0.4%.

【0032】Vは析出強化により母材の強度上昇に有効
であるが、0.005%以下では効果が明瞭でなく、
0.08%を超えると靭性を劣化させるため、0.00
5〜0.08%の範囲とした。
V is effective for increasing the strength of the base material due to precipitation strengthening, but at 0.005% or less, the effect is not clear,
If it exceeds 0.08%, the toughness deteriorates, so 0.00
The range was 5 to 0.08%.

【0033】CuはNiとほぼ同様の効果とともに耐食
性、耐水素誘起割れ性などにも効果があるが、0.05
%未満では効果が認められないため、下限を0.05%
とした。しかしながら、1.5%を超えると熱間圧延時
に割れが発生し、製造困難となるため、上限を1.5%
とした。
Cu has an effect similar to that of Ni as well as an effect of corrosion resistance, resistance to hydrogen-induced cracking, etc.
%, The effect is not recognized, so the lower limit is 0.05%
And However, if it exceeds 1.5%, cracking occurs during hot rolling, which makes manufacturing difficult, so the upper limit is 1.5%.
And

【0034】Bは溶接後のFL近傍においてγ粒界に固
溶Bとして偏析し、粒界フェライトを抑制する。この効
果を得るためには最低0.0003%のB量が必要であ
る。しかし、過剰のB添加はFE23(CB)6 などの粗
大な析出物が粒界に析出して靭性を劣化させるため、上
限を0.0020%とした。
B segregates as a solid solution B in the γ grain boundary in the vicinity of FL after welding and suppresses grain boundary ferrite. To obtain this effect, a minimum B content of 0.0003% is required. However, excessive addition of B causes coarse precipitates such as FE 23 (CB) 6 to precipitate at grain boundaries and deteriorate toughness, so the upper limit was made 0.0020%.

【0035】鋼の成分を上記のように限定しても、製造
法が適切でなければ溶接前の鋼中にTiNを微細に分散
させることはできない。このため製造条件についても限
定する必要がある。
Even if the composition of the steel is limited as described above, TiN cannot be finely dispersed in the steel before welding unless the manufacturing method is appropriate. Therefore, it is necessary to limit the manufacturing conditions.

【0036】一度凝固させた鋳片を冷却後再加熱して製
造する場合、TiNの微細分散のためには鋳片の再加熱
温度が高くなりすぎないようにすべきであり、再加熱時
のTiNの粗大化を防止するために、再加熱温度を12
50℃以下とする必要がある。ただし、本発明において
は、鋳片の再加熱は必ずしも実施する必要はなく、ホッ
トチャージ圧延やダイレクト圧延を行っても全く問題な
い。
When a once solidified slab is manufactured by cooling and then reheating it, it is necessary to prevent the slab reheating temperature from becoming too high for fine dispersion of TiN. To prevent coarsening of TiN, the reheating temperature is set to 12
It needs to be 50 ° C or lower. However, in the present invention, it is not always necessary to reheat the slab, and there is no problem even if hot charge rolling or direct rolling is performed.

【0037】本発明では鋳片再加熱後の圧延方法などに
ついては、特に限定しないが、いわゆる加工熱処理や制
御圧延、圧延後の焼入れ、焼きならし処理が強度、靭性
を確保する上で適切である。これは、たとえ優れたHA
Z靭性が得られても母材の靭性が劣っていると、鋼材と
しては不十分なためである。なお、この鋼を製造後、脱
水素などの目的でAc1 変態点以下に再加熱しても本発
明の特徴を損なうものではない。
In the present invention, the rolling method after reheating the cast slab is not particularly limited, but so-called thermo-mechanical treatment, controlled rolling, quenching after rolling, and normalizing treatment are suitable for securing strength and toughness. is there. This is an excellent HA
This is because if the toughness of the base material is inferior even if Z toughness is obtained, it is insufficient as a steel material. Even if the steel is reheated below the Ac 1 transformation point for the purpose of dehydrogenation after production, the characteristics of the present invention will not be impaired.

【0038】この方法で製造した鋼は海洋構造物、圧力
容器、造船、橋梁、建築、ラインパイプなどの溶接鋼構
造物に用いることができる。
The steel produced by this method can be used for welded steel structures such as offshore structures, pressure vessels, shipbuilding, bridges, constructions and line pipes.

【0039】[0039]

【実施例】表1に実施例を示す。周知の転炉、連続鋳
造、厚板工程で種々の鋼成分の鋼板を製造し、サブマー
ジドアーク溶接(SAW)を実施し、HAZ靭性を−6
0℃での2mmVノッチシャルピー試験によって調査し
た。試験片は板厚の1/4の位置から採取し、ノッチ位
置はFLとFLからHAZ側へ1mmずらした位置(HA
Z1mm)とした。
EXAMPLES Examples are shown in Table 1. Steel plates of various steel components are manufactured by well-known converter, continuous casting, and thick plate process, submerged arc welding (SAW) is performed, and HAZ toughness is -6.
It was investigated by a 2 mm V notch Charpy test at 0 ° C. The test piece was taken from a position of 1/4 of the plate thickness, and the notch position was FL and the position shifted by 1 mm from FL to the HAZ side (HA
Z1 mm).

【0040】[0040]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 表1で明らかなように、鋼1〜15の本発明にかかる鋼
は全て良好なHAZ靭性を有する。これに対して鋼16
〜30の比較鋼は本発明の要件を満足していないため、
ことごとくHAZ靭性が本発明鋼に比較して劣ってい
る。
[Table 4] As is clear from Table 1, all the steels according to the invention of steels 1 to 15 have good HAZ toughness. On the other hand, steel 16
Since the comparative steels of ~ 30 do not satisfy the requirements of the present invention,
In all, the HAZ toughness is inferior to the steel of the present invention.

【0041】比較鋼において、鋼16はTi,Mg無添
加のため、IFP生成能を有する酸化物個数が極端に少
ないことと、TiNによるオーステナイト粒径抑制効果
がないためにHAZ靭性は劣る。鋼17はTi,Caは
含有するものの、Mgを含まないため、IFPの生成が
本発明鋼に比較して少ないため、HAZ靭性は不十分で
ある。
Among the comparative steels, since steel 16 does not contain Ti and Mg, the HAZ toughness is inferior because the number of oxides capable of forming IFP is extremely small and TiN has no effect of suppressing the austenite grain size. Steel 17 contains Ti and Ca but does not contain Mg, so that the amount of IFP produced is smaller than that of the steels of the present invention, and therefore HAZ toughness is insufficient.

【0042】鋼18はMg量が多すぎるため、酸化物個
数が少なく、かつ酸化物が粗大化するため、靭性は劣化
する。鋼19はCa無添加のため、鋳片中の酸化物分布
が不均一となり、HAZ靭性が安定して確保されない。
鋼20はTi,Mg添加前の溶存酸素量が少ないため、
結果として生成する酸化物の個数が確保できず、HAZ
靭性が劣る。
Since the amount of Mg in steel 18 is too large, the number of oxides is small and the oxides become coarse, so that the toughness deteriorates. Since Steel 19 does not contain Ca, the oxide distribution in the slab becomes non-uniform, and HAZ toughness cannot be stably ensured.
Steel 20 has a small amount of dissolved oxygen before addition of Ti and Mg,
As a result, the number of oxides generated cannot be secured, and HAZ
Inferior toughness.

【0043】鋼21は逆に酸素量が過剰なため、粗大な
酸化物が多く、酸化物自身が脆性破壊の起点となり、H
AZ靭性は改善されない。鋼22は酸素量だけでなく、
Mg,Caも過剰に含有しているため、さらにHAZ靭
性は劣る。鋼23,24はCaを先に添加したために、
Ca主体の酸化物が増加し、逆にIFP生成能を有する
Tiを主体とする酸化物個数が減少するため、HAZに
おけるIFP生成が十分でなく、HAZ靭性は劣化す
る。
On the contrary, since the steel 21 has an excessive amount of oxygen, it contains a large amount of coarse oxide, and the oxide itself becomes a starting point of brittle fracture.
AZ toughness is not improved. Steel 22 is not only the amount of oxygen,
Since it also contains Mg and Ca in excess, the HAZ toughness is further deteriorated. Steels 23 and 24 were added with Ca first, so
Oxides mainly composed of Ca increase, and conversely, the number of oxides mainly composed of Ti having an IFP forming ability decreases, so that the IFP formation in the HAZ is insufficient and the HAZ toughness deteriorates.

【0044】鋼25はTi,Mgを添加してからCaを
添加するまでの時間が長いため、Tiを含む酸化物の凝
集、合体が進行するため、微細な酸化物の均一分散が達
成できず、HAZ靭性は劣化する。鋼26はAl量が多
いため、IFPが形成されず、HAZ靭性は劣る。ま
た、鋼27はN量が過剰なため、TiNの微細分散が達
成されず、また、固溶Nも増加するため、HAZ靭性は
劣化する。鋼28〜30はそれぞれ、C,B,V量が適
切でないため、HAZ靭性が劣化する。以上の実施例か
ら、本発明によれば極めて優れたHAZ靭性が得られる
ことが明白である。
In Steel 25, since the time from the addition of Ti and Mg to the addition of Ca is long, the agglomeration and coalescence of the oxides containing Ti proceed, so that a uniform dispersion of fine oxides cannot be achieved. , HAZ toughness deteriorates. Since Steel 26 has a large amount of Al, IFP is not formed and HAZ toughness is poor. In addition, since the steel 27 has an excessive amount of N, fine dispersion of TiN is not achieved, and the amount of solute N also increases, so that the HAZ toughness deteriorates. Since the amounts of C, B, and V of steels 28 to 30 are not appropriate, the HAZ toughness deteriorates. From the above examples, it is clear that the present invention provides extremely excellent HAZ toughness.

【0045】[0045]

【発明の効果】Ti酸化物を利用してHAZ組織に粒内
フェライトを生成させて組織の微細化を図る技術はHA
Z靭性向上のための優れた技術である。本発明はTiに
加えてさらに溶鋼中にMg,Caを複合添加することに
よりTiを含有する酸化物の多量且つ均一微細分散を達
成できる技術であり、その結果として一層のHAZ靭性
向上が図れる。従って、より過酷な使用条件に対しても
安全性の高い溶接構造用鋼を提供することが可能となる
ものであり、その効果は極めて顕著である。
EFFECTS OF THE INVENTION The technique of using Ti oxide to generate intragranular ferrite in the HAZ structure to refine the structure is HA
This is an excellent technique for improving Z toughness. The present invention is a technique capable of achieving a large amount and uniform fine dispersion of an oxide containing Ti by additionally adding Mg and Ca to molten steel in addition to Ti, and as a result, the HAZ toughness can be further improved. Therefore, it is possible to provide a welded structural steel having high safety even under more severe use conditions, and the effect is extremely remarkable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺田 好男 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Terada 1 Kimitsu, Kimitsu City Nippon Steel Corporation Kimitsu Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で溶存酸素量が0.003〜0.
020%の溶鋼中にTiとMgをそれぞれTi:0.0
10〜0.040%、Mg:0.001〜0.010%
の範囲で添加し、その後15分以内にCaを0.005
〜0.050%添加した後、凝固させ、 C :0.02〜0.18% Si:0.5%以下 Mn:0.8〜2.0% P :0.015%以下 S :0.001〜0.01% Al:0.004%以下 Nb:0.003〜0.060% N :0.002〜0.0060% Ti:0.005〜0.020% Mg:0.0001〜0.0010% Ca:0.0005〜0.0050% O :0.001〜0.006% 残部が鉄及び不可避不純物からなる実質的にAlを含有
しない鋳片を、1250℃以下の温度で再加熱後、鋼板
を製造することを特徴とする溶接熱影響部靭性の優れた
厚鋼板の製造方法。
1. The amount of dissolved oxygen is 0.003 to 0.
Ti and Mg in 020% molten steel are respectively Ti: 0.0
10-0.040%, Mg: 0.001-0.010%
Within the range of 0.005% Ca within 15 minutes.
˜0.050% is added and then solidified, C: 0.02 to 0.18% Si: 0.5% or less Mn: 0.8 to 2.0% P: 0.015% or less S: 0. 001-0.01% Al: 0.004% or less Nb: 0.003-0.060% N: 0.002-0.0060% Ti: 0.005-0.020% Mg: 0.0001-0 .0010% Ca: 0.0005 to 0.0050% O: 0.001 to 0.006% Recast a slab containing Al and unavoidable impurities, the balance of which is substantially free of Al, at a temperature of 1250 ° C or lower. After that, a steel plate is manufactured, and a method for manufacturing a thick steel plate having excellent weld heat-affected zone toughness.
【請求項2】 重量%で、 Cr:0.05〜1.00% Ni:0.05〜4.00% Mo:0.05〜0.4% V :0.005〜0.080% Cu:0.05〜1.50% B :0.0003〜0.0020% の一種または二種以上を含有することを特徴とする請求
項1記載の溶接熱影響部靭性の優れた厚鋼板の製造方
法。
2. By weight%, Cr: 0.05 to 1.00% Ni: 0.05 to 4.00% Mo: 0.05 to 0.4% V: 0.005 to 0.080% Cu : 0.05 to 1.50% B: 0.0003 to 0.0020%, or a combination of two or more thereof, to produce a thick steel plate having excellent weld heat affected zone toughness according to claim 1. Method.
JP3335314A 1991-12-18 1991-12-18 Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone Expired - Lifetime JP2653594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3335314A JP2653594B2 (en) 1991-12-18 1991-12-18 Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335314A JP2653594B2 (en) 1991-12-18 1991-12-18 Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone

Publications (2)

Publication Number Publication Date
JPH05171341A true JPH05171341A (en) 1993-07-09
JP2653594B2 JP2653594B2 (en) 1997-09-17

Family

ID=18287142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335314A Expired - Lifetime JP2653594B2 (en) 1991-12-18 1991-12-18 Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP2653594B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039157A1 (en) * 1996-04-17 1997-10-23 Nippon Steel Corporation Steel having improved toughness in welding heat-affected zone
US6451087B2 (en) * 2000-05-11 2002-09-17 Hitachi Metals Ltd. Method for producing mother alloys for iron-based amorphous alloys
JP2009127104A (en) * 2007-11-27 2009-06-11 Nippon Steel Corp Steel having excellent weld heat-affected zone toughness, and method for producing the same
US7857917B2 (en) 2004-07-21 2010-12-28 Nippon Steel Corporation Method of production of steel for welded structures excellent in low temperature toughness of weld heat affected zone
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644730A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
JP2013256699A (en) * 2012-06-13 2013-12-26 Nippon Steel & Sumitomo Metal Corp Thick high strength steel plate having excellent weldability and toughness of weld heat-affected zone and method for producing the same
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
US8920713B2 (en) 2009-05-21 2014-12-30 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
CN112779470A (en) * 2020-12-21 2021-05-11 本钢板材股份有限公司 Production method of Gr60 hot-rolled coil for steel tube iron tower for electric power and communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190313A (en) * 1983-04-09 1984-10-29 Nippon Steel Corp Manufacture of steel material having superior weldability
JPH03177535A (en) * 1989-12-04 1991-08-01 Nippon Steel Corp Manufacture of low temperature high toughness steel for welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190313A (en) * 1983-04-09 1984-10-29 Nippon Steel Corp Manufacture of steel material having superior weldability
JPH03177535A (en) * 1989-12-04 1991-08-01 Nippon Steel Corp Manufacture of low temperature high toughness steel for welding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100259797B1 (en) * 1996-04-17 2000-06-15 아사무라 타카싯 Steel having improved toughness in welding heat affected zone
WO1997039157A1 (en) * 1996-04-17 1997-10-23 Nippon Steel Corporation Steel having improved toughness in welding heat-affected zone
US6451087B2 (en) * 2000-05-11 2002-09-17 Hitachi Metals Ltd. Method for producing mother alloys for iron-based amorphous alloys
US7857917B2 (en) 2004-07-21 2010-12-28 Nippon Steel Corporation Method of production of steel for welded structures excellent in low temperature toughness of weld heat affected zone
JP2009127104A (en) * 2007-11-27 2009-06-11 Nippon Steel Corp Steel having excellent weld heat-affected zone toughness, and method for producing the same
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
US8920713B2 (en) 2009-05-21 2014-12-30 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
EP2644730A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2594657A4 (en) * 2010-11-22 2014-04-23 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644730A4 (en) * 2010-11-22 2014-05-07 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
JP2013256699A (en) * 2012-06-13 2013-12-26 Nippon Steel & Sumitomo Metal Corp Thick high strength steel plate having excellent weldability and toughness of weld heat-affected zone and method for producing the same
CN112779470A (en) * 2020-12-21 2021-05-11 本钢板材股份有限公司 Production method of Gr60 hot-rolled coil for steel tube iron tower for electric power and communication

Also Published As

Publication number Publication date
JP2653594B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US4629504A (en) Steel materials for welded structures
JP5085364B2 (en) Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
WO2015088040A1 (en) Steel sheet and method for manufacturing same
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JPS601929B2 (en) Manufacturing method of strong steel
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH03202422A (en) Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH0527703B2 (en)
JPH0541683B2 (en)
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP3879607B2 (en) Welded structural steel with excellent low temperature toughness
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
KR102508128B1 (en) Steel plate having excellent low temperature impact toughness of heat affeected zone and manufacturing mehtod for the same
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JP2007224404A (en) High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate
JPH0853734A (en) Production of steel for welding excellent in big heat input weld heat-affected zone toughness
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 15