JP3898814B2 - Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness - Google Patents

Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness Download PDF

Info

Publication number
JP3898814B2
JP3898814B2 JP30178397A JP30178397A JP3898814B2 JP 3898814 B2 JP3898814 B2 JP 3898814B2 JP 30178397 A JP30178397 A JP 30178397A JP 30178397 A JP30178397 A JP 30178397A JP 3898814 B2 JP3898814 B2 JP 3898814B2
Authority
JP
Japan
Prior art keywords
temperature toughness
low temperature
steel
strength steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30178397A
Other languages
Japanese (ja)
Other versions
JPH11140580A (en
Inventor
均 朝日
博 為広
卓也 原
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30178397A priority Critical patent/JP3898814B2/en
Publication of JPH11140580A publication Critical patent/JPH11140580A/en
Application granted granted Critical
Publication of JP3898814B2 publication Critical patent/JP3898814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、引張り強度が770MPa 以上の引張り強さ(TS)を有する低温靱性に優れた熱間圧延鋼材の製造に使用される連続鋳造鋳片およびその製造法に関するものであり、このような連続鋳造鋳片から製造された鋼は、天然ガス・原油輸送用のラインパイプをはじめ、各種圧力容器、鋼構造物などの溶接性鋼材として広く使用できる。
【0002】
【従来の技術】
高強度鋼は一般に合金元素を多く含有し、焼入れ性が良いために、その製造に使用される連続鋳造鋼片の組織はフェライトの生成が抑制され、鋳造組織に対応した粗大なマルテンサイト、ベイナイト組織である。このような組織の鋳片を熱間加工のためにオーステナイト域に再加熱した場合、加熱速度が速いと通常のフェライトからオーステナイトへの変態のように多数の核生成が有り、細かいオーステナイト粒が得られる。一方、加熱速度が遅いと元の粗大な鋳造時のオーステナイト粒に相当するオーステナイト粒にマッシブ的に変態し、再加熱時の結晶粒が鋳造組織と同様な粗大粒になることが知られている(Transactions ISIJ, Vol.25, 1985, p311-317)。
【0003】
一般に、鋼片再加熱時の加熱速度は遅く、10℃/分以下である。このような加熱速度では、再加熱時の組織には鋳造組織の粗大粒を引き継いだ数百μmから数千μmの粗大粒が存在する。このような粗大粒は熱間加工工程で再結晶することが困難であり、再結晶することなく偏平した粗大な結晶粒が圧延後に残存する。高強度鋼において粗大粒が存在すると低温靱性が著しく劣化することは周知のことである。従って、低温靱性を向上させるためには、結晶粒の微細化が必須である。
【0004】
粗大粒を熱間加工で再結晶させて細粒化するためには圧下率が数10%以上の1パス大圧下が必要である。しかし、このような大圧下を大型の連続鋳造鋳片で行うことは困難であり、非常に強力な圧延機等が必要である。一方、鋼片の加熱速度を早くすることも通常の雰囲気加熱炉では困難である。
【0005】
【発明が解決しようとする課題】
本発明は、前記のような設備対応をせずに、再加熱時に細粒オーステナイトが得られ、その結果熱間加工中に再結晶が容易に起こり、結果として細粒組織の優れた低温靱性を有する高強度鋼が得られる連続鋳造鋳片およびその製造方法、および低温靱性に優れた高強度鋼を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、連続鋳造鋳片の組織と熱間加工のための再加熱温度での結晶粒径の関係について鋭意検討した結果、連続鋳造鋳片の組織がマルテンサイト、ベイナイト中に粒内変態フェライトが面積率にして10%以上存在していれば、再加熱途上に多数の核発生が起こり、再加熱温度での結晶粒が微細化することを見いだした。
【0007】
本発明はこの新知見を具現化したものであり、本発明の要旨とするところは、下記の(1)〜(6)のとおりである。
(1)質量%で、
C:0.03−0.10%, Si:<0.6%,
Mn:1.2−2.5%, P:<0.015%,
S:<0.003%, Ni:0.1−1.0%,
Mo:0.15−0.60%, Nb:0.005−0.10%,
N:0.001−0.006%, Ti:0.005−0.050%,
Al:<0.06%,
を含有し、残部が鉄及び不可避的不純物からなり、厚さが200mm以上で、マルテンサイト、ベイナイトの面積率が70%以上であり、粒内変態フェライトの面積率が10%以上であり、残部が面積率0〜20%のポリゴナルフェライトであることを特徴とする低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片。
(2)量%で、
Cr:<1.0%, Cu:<1.0%,
V:<0.10%, B:0.0005−0.0020%,
Ca:<0.006%, REM:<0.02%,
Mg:<0.006%, Zr:<0.10%,
の1種または2種以上、を含有することを特徴とする(1)記載の低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片。
l:<0.004%であることを特徴とする(1)または(2)記載の低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片
(1)〜(3)のいずれか1項に記載の連続鋳造鋳片の製造方法であって、質量%で、
C:0.03−0.10%, Si:<0.6%,
Mn:1.2−2.5%,P:<0.015%,
S:<0.003%,Ni:0.1−1.0%,
Mo:0.15−0.60%,Nb:0.005−0.10%,
N:0.001−0.006%,Ti:0.005−0.050%,
を含有し、残部が鉄及び不可避的不純物からなる溶鋼において、Al:<0.004%として連続鋳造した後、得られた連続鋳造鋳片を、表面温度800〜500℃の間を100分以下で、冷却することを特徴とする低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片の製造法。
量%で、
Cr:<1.0%, Cu:<1.0%,
V:<0.10%, B:0.0005−0.0020%,
Ca:<0.006%, REM:<0.02%,
Mg:<0.006%, Zr:<0.10%,
の1種または2種以上、を含有することを特徴とする(4)記載の低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片の製造法。
【0008】
)(1)〜(3)のいずれか1項に記載連続鋳造鋳片をオーステナイト域に再加熱し、制御圧延を行い、その後空冷以上の冷却速度で冷却して製造されたことを特徴とする低温靱性に優れた高強度鋼
【0009】
なお、ここでマルテンサイト、ベイナイトとはこれらが焼戻しされた状態のものも含めて言う。
【0010】
【発明の実施の形態】
以下、本発明の内容について詳細に説明する。本発明の対象とするようなTSが770MPa を越えるような高強度鋼用の連続鋳造鋼片では、合金含有量が多く焼入れ性が高いために、冷却速度が遅いにもかかわらずマルテンサイトまたはベイナト組織になり、通常はフェライトは生成しない。変態後も徐冷却されるために、マルテンサイトやベイナイトは焼戻しされた状態になっている。これらを、例えば200mm以上の厚さの鋼片での雰囲気加熱中の加熱に相当する10℃/分以下の加熱速度で1100℃まで加熱すると、鋳造組織に相当する連続鋳造鋳片での組織を引き継いだ極めて粗大な組織になる。しかし、連続鋳造鋳片の組織にフェライトが分散して少量生成すると細粒化することがわかった。フェライト生成量と再加熱結晶粒径の関係を検討するために、以下のような検討を行った。
【0011】
まず、鋳造後の冷却パターンを変化させて粒内変態フェライト生成量を変化させた。これを6℃/分で1100℃まで加熱し、急冷してその結晶粒径を測定した。図1の結果から明らかなように粒内変態フェライトが生成すると、再加熱時の結晶粒径は最大粒径が250μm以下と細かくなり、面積率にして粒内フェライトが10%以上生成すると安定して細粒が得られるようになる。これは、フェライトとマルテンサイト、ベイナイトの界面からオーステナイトが核生成し、かつ粒内変態フェライトは結晶粒内に均一に分散して生成する特徴があるためである。従って、マルテンサイト、ベイナイト組織中の粒内変態フェライトは面積率にして10%以上必要である。粒内変態フェライトの生成比率の上限は特に規定しないが、これは10%以上では細粒化の効果がほぼ一定であることと、粒内変態フェライトが生成できる割合は自ずから上限が存在するからである。
【0012】
この発明の目的とするような高強度鋼用の化学成分組成ではポリゴナルフェライトは生成しにくいが、化学成分量が比較的低い時や、鋳造後の冷却速度が比較的遅い場合にはポリゴナルフェライトも生成することがある。ポリゴナルフェライトは粒内変態フェライトと併存して若干の細粒化効果を有する。この効果は付加的であるので特に下限値を規定しない。また上限値についても自ずから限界があるので特に規定しないが、50%程度である。このような粒内変態フェライトが面積率で10%以上存在し、また場合によりポリゴナルフェライトが存在すると、低い加熱速度で再加熱した場合でも細粒のオーステナイト粒になる。
【0013】
低温靱性に優れた高強度鋼は特定の化学成分で得られるので以下に、この化学成分の限定理由について述べる。
C量は0.03〜0.10%に限定する。炭素は鋼の強度向上に極めて有効であり、マルテンサイト組織において目標とする強度を得るためには、最低0.03%は必要である。しかし、C量が多すぎると母材、HAZの低温靱性や現地溶接性の著しい劣化を招くので、その上限を0.10%とした。
【0014】
Siは脱酸や強度向上のために添加する元素であるが、多く添加するとHAZ靱性、現地溶接性を著しく劣化させるので、上限を0.6%とした。ただし、鋼の脱酸はAlでもTiでも十分可能であり、Siは必ずしも添加する必要はない。
Mnは本発明鋼のミクロ組織を下部ベイナイト主体の組織とし、優れた強度・低温靱性のバランスを確保する上で不可欠な元素であり、その下限は1.2%である。しかし、Mnが多すぎると鋼の焼入れ性が増してHAZ靱性、現地溶接性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、母材の低温靱性をも劣化させるので上限を2.5%とした。
【0015】
Niを添加する目的は低炭素の本発明鋼の低温靱性を、現地溶接性を劣化させることなく向上させるためである。Ni添加はMnやCr,Mo添加に比較して圧延組織(とくに連続鋳造鋼片の中心偏析帯)中に低温靱性に有害な硬化組織を形成することが少ないばかりか、0.1%以上の微量Ni添加がHAZ靱性の改善にも有効であることが判明した。しかし、添加量が多すぎると、経済性だけでなく、HAZ靱性や現地溶接性を劣化させるので、その上限を1.0%とした。また、Ni添加は連続鋳造時、熱間圧延時におけるCu割れの防止にも有効である。この場合、NiはCu量の1/3以上添加する必要がある。
【0016】
Moを添加する理由は鋼の焼入れ性を向上させ、目的とする下部ベイナイト主体の組織を得るためである。B添加鋼においてはMoの焼入れ性向上効果が高まり、B添加鋼ではMo添加が特に有効である。また、MoはNbと共存して制御圧延時にオーステナイトの再結晶を抑制し、オーステナイト組織の微細化にも効果がある。このような効果を得るために、Moは最低でも0.15%必要である。しかし、過剰なMo添加はHAZ靱性、現地溶接性を劣化させるので上限は、0.60%とした。
【0017】
また、本発明鋼では、必須の元素としてNb:0.005〜0.10%、Ti:0.005〜0.050%を含有する。NbはMoと共存して制御圧延時にオーステナイトの再結晶を抑制して組織を微細化するだけでなく、析出硬化や焼入れ性増大にも寄与し、鋼を強靱化する。特にNbとBが共存すると焼入れ性向上効果が相乗的に高まる。しかし、Nb添加量が多すぎると、HAZ靱性や現地溶接性に悪影響をもたらすので、その上限を0.10%とした。一方、Ti添加は微細なTiNを形成し、スラブ再加熱時およびHAZのオーステナイト粒の粗大化を抑制してミクロ組織を微細化し、母材およびHAZの低温靱性を改善する。また、Bの焼入れ性向上効果に有害な固溶NをTiNとして固定する役割も有する。この目的のために、Ti量は3.4N(各々重量%)以上添加することが望ましい。また、Al量が少ない時(たとえば0.004%以下)、Tiは酸化物を形成し、粒内変態フェライト生成核として作用し、本発明の目的の細粒化に特に有効である。このようなTiNの効果を発現させるためには、最低0.005%のTi添加が必要である。しかし、Ti量が多すぎると、TiNの粗大化やTiCによる析出硬化が生じ、低温靱性を劣化させるので、その上限を0.050%に限定した。
【0018】
Alは通常脱酸材として鋼に含まれる元素で、組織の微細化にも効果を有する。しかし、Al量が0.06%を越えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.06%とした。しかし、脱酸はTiあるいはSiでも可能であり、Alは必ずしも添加する必要はない。
NはTiNを形成しスラブ再加熱時およびHAZのオーステナイト粒の粗大化を抑制して母材、HAZの低温靱性を向上させる。このために必要な最小量は0.001%である。しかし、N量が多すぎるとスラブ表面疵や固溶NによるHAZ靱性の劣化、Bの焼入れ性向上効果の低下の原因となるので、その上限は0.006%に抑える必要がある。
【0019】
さらに、本発明では、不純物元素であるP,S量をそれぞれ0.015%、0.003%未満とする。この主たる理由は低温靱性をより一層向上させるためである。P量の低減は連続鋳造スラブの中心偏析を軽減するとともに、粒界破壊を防止して低温靱性を向上させる。また、S量の低減は熱間圧延で延伸化するMnSを低減して延靱性を向上させる効果がある。
【0020】
つぎに、V,Cu,Cr,B,Ca,REM,Mg,Zrを添加する目的について説明する。
基本となる成分に、更にこれらの元素を添加する主たる目的は、特徴を損なうことなく、強度・靱性の一層の向上や製造可能な鋼材サイズの拡大をはかるためである。したがって、その添加量は自ずから制限されるべき性質のものである。
【0021】
VはNbとほぼ同様の効果を有するが、その効果はNbに比較して弱い。しかし、超高強度鋼におけるV添加の効果は大きく、NbとVの複合添加は本発明鋼の優れた特徴をさらに顕著なものとする。上限はHAZ靱性、現地溶接性の点から0.10%まで許容できる。
Cuは母材、溶接部の強度を増加させるが、多すぎるとHAZ靱性や現地溶接性を著しく劣化させる。このためCu量の上限は1.0%である。
【0022】
Crは母材、溶接部の強度を増加させるが、多すぎるとHAZ靱性や現地溶接性を著しく劣化させる。このためCr量の上限は1.0%である。
Bは極微量で鋼の焼入れ性を飛躍的に高め、上部ベイナイトの生成を抑制し下部ベイナイト主体の組織を得るために、極めて有効な元素である。1%Mnに相当する効果がある。さらに、BはMoの焼入れ性向上効果を高めると共に、Nbと共存して相乗的に焼入れ性を増す。このような効果を得るためには、Bは最低でも0.0005%必要である。一方、過剰に添加すると、低温靱性を劣化させるだけでなく、かえってBの焼入れ性向上効果を消失せしめることもあるので、その上限を0.0020%とした。
【0023】
CaおよびREMは硫化物(MnS)の形態を制御し、低温靱性を向上(シャルピー試験の吸収エネルギーの増加など)させる。Ca量が0.006%、REMが0.02%を越えて添加するとCaO−CaSまたはREM−CaSが大量に生成して大型クラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響をおよぼす。このためCa添加量の上限を0.006%またはREM添加量の条件を0.02%に制限した。
【0024】
Mgは微細分散した酸化物を形成し、溶接熱影響部の粒粗大化を抑制して低温靱性を向上させる。0.006%以上では粗大酸化物を生成し逆に靱性を劣化させるので上限を0.006%とした。
ZrはP化合物を形成して実質的に低P化を実現し、低温靱性を向上させる効果がある。しかし、0.10%を越えて含有すると粗大な酸化物を形成し、却って低温靱性を劣化させるので添加量の0.10%以下とした。
【0025】
上記のような化学成分組成を有する鋼は基本的に低温靱性が優れた高強度鋼になる。
このような鋼において、さらにAl含有量を0.004%未満にすることで通常の連続鋳造において微細に分散したTi酸化物が形成され、これから粒内変態フェライトが生成する。表面温度にして800〜500℃を100分以下で冷却すると、特に粒内変態フェライトは生成しやすい。
【0026】
このように、粒内変態フェライトが面積率にして10%以上存在する本発明の鋳片をオーステナイト域に再加熱すると細粒のオーステナイトになり、これから制御圧延をおこなうと低温靱性の優れた高強度鋼が得られる。
【0027】
【実施例】
表1に示す化学成分の鋼を転炉で溶成し、連続鋳造により250mm厚の鋳片を製造した。これらを1050℃に再加熱し(600℃から900℃の平均加熱速度は約6℃/分)、950℃以下の温度で100mmから20mmまで制御圧延し、740℃で圧延を終了して、板厚中央の平均冷却速度が約20℃/秒となるように400℃まで冷却し鋼板を製造した。
【0028】
これらについて、鋳片でのフェライト割合、再加熱後そのまま冷却して観察した結晶粒径、圧延後の鋼板の引張り試験結果(TS)、シャルピー試験結果(vTrs)、板厚方向に測定した結晶粒径を表2に示す。
【0029】
【表1】

Figure 0003898814
【0030】
【表2】
Figure 0003898814
【0031】
【発明の効果】
本発明によれば、従来と同じ熱間加工工程で容易に低温靱性に優れた細粒組織の高強度鋼が製造可能になった。
【図面の簡単な説明】
【図1】図1は、鋳片の粒内変態フェライト生成量と、1100℃加熱後の結晶粒径との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous cast slab used for producing a hot rolled steel material having a tensile strength (TS) of 770 MPa or more and excellent in low temperature toughness, and a method for producing such a continuous cast slab. Steel produced from cast slabs can be widely used as weldable steel materials such as line pipes for transporting natural gas and crude oil, various pressure vessels, and steel structures.
[0002]
[Prior art]
High-strength steel generally contains a lot of alloying elements and has good hardenability. Therefore, the structure of continuous cast steel pieces used in its production is suppressed in the formation of ferrite, and coarse martensite and bainite corresponding to the cast structure are used. It is an organization. When a slab having such a structure is reheated to the austenite region for hot working, if the heating rate is high, there are many nucleations such as transformation from normal ferrite to austenite, and fine austenite grains are obtained. It is done. On the other hand, it is known that if the heating rate is slow, it transforms like austenite grains corresponding to the original coarse austenite grains, and the crystal grains during reheating become coarse grains similar to the cast structure. (Transactions ISIJ, Vol.25, 1985, p311-317).
[0003]
Generally, the heating rate at the time of reheating the steel slab is slow and is 10 ° C./min or less. At such a heating rate, there are coarse grains of several hundred μm to several thousand μm inheriting the coarse grains of the cast structure in the structure during reheating. Such coarse grains are difficult to recrystallize in a hot working step, and flat coarse crystal grains remain after rolling without being recrystallized. It is well known that low-temperature toughness deteriorates significantly when coarse grains are present in high-strength steel. Therefore, in order to improve the low temperature toughness, it is essential to refine the crystal grains.
[0004]
In order to recrystallize coarse grains by hot processing, a one-pass large reduction with a reduction ratio of several tens of percent or more is required. However, it is difficult to perform such a large reduction with a large continuous cast slab, and a very powerful rolling mill or the like is required. On the other hand, it is difficult to increase the heating rate of the steel slab in a normal atmosphere heating furnace.
[0005]
[Problems to be solved by the invention]
In the present invention, fine austenite can be obtained during reheating without adapting to the equipment as described above, and as a result, recrystallization easily occurs during hot working, resulting in excellent low temperature toughness of the fine grain structure. The present invention provides a continuous cast slab from which a high strength steel can be obtained, a method for producing the same, and a high strength steel excellent in low temperature toughness.
[0006]
[Means for Solving the Problems]
As a result of intensive investigations on the relationship between the structure of the continuous cast slab and the crystal grain size at the reheating temperature for hot working, the present inventors found that the structure of the continuous cast slab is intragranular in martensite and bainite. It has been found that if the transformed ferrite is present in an area ratio of 10% or more, a large number of nuclei are generated during reheating, and the crystal grains at the reheating temperature become finer.
[0007]
The present invention embodies this new knowledge, and the gist of the present invention is as follows (1) to (6) .
(1) In mass%,
C: 0.03-0.10%, Si: <0.6%,
Mn: 1.2-2.5%, P: <0.015%,
S: <0.003%, Ni: 0.1-1.0%,
Mo: 0.15-0.60%, Nb: 0.005-0.10%,
N: 0.001-0.006%, Ti: 0.005-0.050%,
Al: <0.06%,
Containing, the balance iron and unavoidable impurities, a thickness of more than 200 mm, and a martensite, bainite area ratio of 70% or more state, and are the area ratio of the intragranular transformation ferrite 10% or more, balance continuous casting slab for which the area ratio 0-20% of polygonal high strength steels above excellent tensile strength 770MPa in low temperature toughness characterized by ferrite der Rukoto.
(2) mass%,
Cr: <1.0%, Cu: <1.0%,
V: <0.10%, B: 0.0005-0.0020%,
Ca: <0.006%, REM: <0.02%,
Mg: <0.006%, Zr: <0.10%,
The continuous cast slab for high-strength steel having a tensile strength of 770 MPa or more and excellent in low-temperature toughness as described in (1) .
(3) A l: <, characterized in that 0.004% (1) or (2) continuous casting slab of a high-strength steel of more excellent tensile strength 770MPa to low-temperature toughness described.
( 4 ) It is a manufacturing method of the continuous cast slab of any one of (1)-(3), Comprising: In mass%,
C: 0.03-0.10%, Si: <0.6%,
Mn: 1.2-2.5%, P: <0.015%,
S: <0.003%, Ni: 0.1-1.0%,
Mo: 0.15-0.60%, Nb: 0.005-0.10%,
N: 0.001-0.006%, Ti: 0.005-0.050%,
In molten steel containing, balance of iron and unavoidable impurities, Al: after continuous casting with a <0.004% or, the resulting continuous casting slab, between the surface temperature of 800 to 500 ° C. 100 A method for producing a continuous cast slab for high-strength steel having a tensile strength of 770 MPa or more and excellent in low-temperature toughness, characterized by cooling in minutes or less .
(5) in mass%,
Cr: <1.0%, Cu: <1.0%,
V: <0.10%, B: 0.0005-0.0020%,
Ca: <0.006%, REM: <0.02%,
Mg: <0.006%, Zr: <0.10%,
The method for producing a continuous cast slab for high-strength steel having a tensile strength of 770 MPa or more and excellent in low-temperature toughness as described in (4) , characterized by containing one or more of the following.
[0008]
(6) (1) is reheated to the austenite region of the continuous casting slab according to any one of - (3), the controlled rolling, in that it is manufactured and thereafter cooled in air over a cooling rate High strength steel with excellent low temperature toughness .
[0009]
Here, martensite and bainite include those in the state where these are tempered.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the contents of the present invention will be described in detail. In the continuous cast steel slab for high-strength steel having a TS exceeding 770 MPa, which is the object of the present invention, the alloy content is high and the hardenability is high. become wells organization, usually ferrite does not generate. Since it is gradually cooled after transformation, martensite and bainite are in a tempered state. When these are heated to 1100 ° C. at a heating rate of 10 ° C./min or less, which corresponds to heating during atmosphere heating with a steel piece having a thickness of 200 mm or more, for example, the structure in the continuous cast slab corresponding to the cast structure is obtained. It becomes a very coarse organization that has been taken over. However, it has been found that when a small amount of ferrite is dispersed in the structure of a continuous cast slab, it becomes finer. In order to examine the relationship between the amount of ferrite produced and the reheated crystal grain size, the following studies were conducted.
[0011]
First, the amount of intragranular transformed ferrite produced was changed by changing the cooling pattern after casting. This was heated to 1100 ° C. at 6 ° C./min, quenched, and the crystal grain size was measured. As is apparent from the results of FIG. 1, when intragranular transformed ferrite is generated, the crystal grain size at the time of reheating becomes finer with a maximum grain size of 250 μm or less. As a result, fine grains can be obtained. This is because austenite is nucleated from the interface between ferrite, martensite, and bainite, and intragranularly transformed ferrite is characterized by being uniformly dispersed in crystal grains. Therefore, the intragranular ferrite in the martensite and bainite structure needs to be 10% or more in terms of area ratio. The upper limit of the production ratio of intragranular transformed ferrite is not particularly specified, but this is because the effect of grain refinement is almost constant at 10% or more, and the rate at which intragranular transformed ferrite can be produced naturally has an upper limit. is there.
[0012]
Polygonal ferrite is difficult to form with the chemical composition for high-strength steel as intended by the present invention, but polygonal ferrite is used when the amount of chemical composition is relatively low or when the cooling rate after casting is relatively slow. Ferrite may also form. Polygonal ferrite coexists with intragranular transformed ferrite and has a slight grain refinement effect. Since this effect is additive, a lower limit value is not particularly defined. Also, the upper limit value is naturally not limited because it is naturally limited, but it is about 50%. When such intragranular ferrite is present in an area ratio of 10% or more, and polygonal ferrite is present in some cases, fine austenite grains are obtained even when reheated at a low heating rate.
[0013]
Since a high-strength steel excellent in low-temperature toughness can be obtained with a specific chemical component, the reason for limiting this chemical component will be described below.
The amount of C is limited to 0.03 to 0.10%. Carbon is extremely effective in improving the strength of steel, and at least 0.03% is necessary to obtain the target strength in the martensite structure. However, if the amount of C is too large, the base material, HAZ low temperature toughness and on-site weldability are significantly deteriorated, so the upper limit was made 0.10%.
[0014]
Si is an element added for deoxidation and strength improvement, but if added in a large amount, the HAZ toughness and on-site weldability are remarkably deteriorated, so the upper limit was made 0.6%. However, deoxidation of steel can be performed with either Al or Ti, and Si does not necessarily have to be added.
Mn makes the microstructure of the steel of the present invention a structure mainly composed of lower bainite and is an indispensable element for ensuring an excellent balance between strength and low temperature toughness, and its lower limit is 1.2%. However, if Mn is too much, not only the hardenability of the steel will increase and the HAZ toughness and on-site weldability will deteriorate, but also the center segregation of the continuously cast steel slab will be promoted and the low temperature toughness of the base metal will also deteriorate, so the upper limit is set. 2.5%.
[0015]
The purpose of adding Ni is to improve the low temperature toughness of the low carbon steel of the present invention without deteriorating the on-site weldability. Compared with the addition of Mn, Cr and Mo, the addition of Ni is less likely to form a hardened structure that is harmful to low temperature toughness in the rolled structure (especially the central segregation zone of the continuously cast steel slab). It has been found that the addition of a trace amount of Ni is also effective in improving the HAZ toughness. However, if the addition amount is too large, not only the economy but also the HAZ toughness and on-site weldability are deteriorated, so the upper limit was made 1.0%. Ni addition is also effective for preventing Cu cracking during continuous casting and hot rolling. In this case, Ni needs to be added by 1/3 or more of the amount of Cu.
[0016]
The reason for adding Mo is to improve the hardenability of the steel and to obtain the target lower bainite-based structure. In the B-added steel, the effect of improving the hardenability of Mo is enhanced, and in the B-added steel, the addition of Mo is particularly effective. In addition, Mo coexists with Nb, suppresses recrystallization of austenite during controlled rolling, and is effective in refining the austenite structure. In order to obtain such an effect, Mo needs to be at least 0.15%. However, excessive Mo addition deteriorates the HAZ toughness and field weldability, so the upper limit was made 0.60%.
[0017]
Moreover, in this invention steel, Nb: 0.005-0.10% and Ti: 0.005-0.050% are contained as an essential element. Nb coexists with Mo to suppress recrystallization of austenite during controlled rolling and refine the structure, and also contributes to precipitation hardening and hardenability, thereby strengthening the steel. In particular, when Nb and B coexist, the effect of improving hardenability increases synergistically. However, if the amount of Nb added is too large, the HAZ toughness and on-site weldability are adversely affected, so the upper limit was made 0.10%. On the other hand, addition of Ti forms fine TiN, suppresses the coarsening of the austenite grains of the HAZ during reheating of the slab, refines the microstructure, and improves the low temperature toughness of the base material and the HAZ. Moreover, it has a role which fixes solid solution N harmful to the hardenability improvement effect of B as TiN. For this purpose, it is desirable to add Ti in an amount of 3.4 N (each by weight%) or more. Further, when the amount of Al is small (for example, 0.004% or less), Ti forms an oxide and acts as an intragranular ferrite transformation nucleus, which is particularly effective for the purpose of fine graining for the purpose of the present invention. In order to exhibit such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the amount of Ti is too large, TiN coarsening and precipitation hardening due to TiC occur and the low temperature toughness is deteriorated, so the upper limit was limited to 0.050%.
[0018]
Al is an element usually contained in steel as a deoxidizing material, and has an effect on refinement of the structure. However, if the amount of Al exceeds 0.06%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.06%. However, deoxidation can be performed with Ti or Si, and Al need not necessarily be added.
N forms TiN and suppresses coarsening of the austenite grains of HAZ during reheating of the slab and improves the low temperature toughness of the base material and HAZ. The minimum amount required for this is 0.001%. However, if the amount of N is too large, it will cause deterioration of the HAZ toughness due to slab surface defects and solute N, and decrease in the effect of improving the hardenability of B, so the upper limit must be limited to 0.006%.
[0019]
Furthermore, in the present invention, the amounts of impurity elements P and S are made 0.015% and less than 0.003%, respectively. The main reason is to further improve the low temperature toughness. The reduction of the amount of P reduces the center segregation of the continuously cast slab and prevents the grain boundary fracture, thereby improving the low temperature toughness. Further, the reduction of the amount of S has the effect of reducing the MnS stretched by hot rolling and improving the ductility.
[0020]
Next, the purpose of adding V, Cu, Cr, B, Ca, REM, Mg, and Zr will be described.
The main purpose of adding these elements to the basic components is to further improve the strength and toughness and expand the steel size that can be produced without impairing the characteristics. Therefore, the amount of addition is naturally limited.
[0021]
V has almost the same effect as Nb, but the effect is weaker than Nb. However, the effect of V addition in the ultra high strength steel is great, and the combined addition of Nb and V makes the excellent characteristics of the steel of the present invention even more remarkable. The upper limit is allowable up to 0.10% in terms of HAZ toughness and field weldability.
Cu increases the strength of the base metal and the welded portion, but if too much, the HAZ toughness and on-site weldability are remarkably deteriorated. For this reason, the upper limit of the amount of Cu is 1.0%.
[0022]
Cr increases the strength of the base metal and the welded portion, but if too much, the HAZ toughness and on-site weldability are significantly deteriorated. For this reason, the upper limit of the Cr content is 1.0%.
B is an extremely effective element for dramatically increasing the hardenability of steel with a very small amount, suppressing the formation of upper bainite, and obtaining a structure mainly composed of lower bainite. There is an effect corresponding to 1% Mn. Further, B enhances the hardenability improvement effect of Mo, and synergistically increases the hardenability by coexisting with Nb. In order to obtain such an effect, B needs to be at least 0.0005%. On the other hand, if added excessively, not only the low-temperature toughness is deteriorated, but also the effect of improving the hardenability of B may be lost, so the upper limit was made 0.0020%.
[0023]
Ca and REM control the form of sulfide (MnS) and improve low-temperature toughness (such as an increase in absorbed energy in the Charpy test). When Ca content is 0.006% and REM exceeds 0.02%, a large amount of CaO-CaS or REM-CaS is formed, resulting in large clusters and large inclusions, not only harming the cleanliness of the steel, It also adversely affects on-site weldability. For this reason, the upper limit of the Ca addition amount is limited to 0.006% or the REM addition amount condition is limited to 0.02%.
[0024]
Mg forms finely dispersed oxides and suppresses the coarsening of the weld heat affected zone to improve the low temperature toughness. If it is 0.006% or more, a coarse oxide is produced and the toughness is deteriorated conversely, so the upper limit was made 0.006%.
Zr has the effect of forming a P compound to substantially reduce P and improve low temperature toughness. However, if the content exceeds 0.10%, a coarse oxide is formed and the low-temperature toughness is deteriorated.
[0025]
The steel having the chemical composition as described above basically becomes a high strength steel excellent in low temperature toughness.
In such steel, when the Al content is further less than 0.004%, finely dispersed Ti oxide is formed in normal continuous casting, and intragranular transformed ferrite is generated therefrom. When the surface temperature is lowered to 800 to 500 ° C. for 100 minutes or less, intragranular ferrite is particularly likely to be generated.
[0026]
As described above, when the slab of the present invention in which the intragranular ferrite is present in an area ratio of 10% or more is reheated to the austenite region, it becomes fine-grained austenite, and high strength with excellent low-temperature toughness when controlled rolling is performed from now on. Steel is obtained.
[0027]
【Example】
Steels having chemical components shown in Table 1 were melted in a converter, and 250 mm thick slabs were produced by continuous casting. These were reheated to 1050 ° C. (average heating rate from 600 ° C. to 900 ° C. was about 6 ° C./min), controlled rolling from 100 mm to 20 mm at a temperature of 950 ° C. or less, finished rolling at 740 ° C., The steel sheet was manufactured by cooling to 400 ° C. so that the average cooling rate at the thickness center was about 20 ° C./second.
[0028]
About these, the ferrite ratio in a slab, the crystal grain diameter observed by cooling as it is after reheating, the tensile test result (TS) of the steel sheet after rolling, the Charpy test result (vTrs), the crystal grain measured in the thickness direction The diameter is shown in Table 2.
[0029]
[Table 1]
Figure 0003898814
[0030]
[Table 2]
Figure 0003898814
[0031]
【The invention's effect】
According to the present invention, a high-strength steel having a fine-grained structure excellent in low-temperature toughness can be easily manufactured in the same hot working process as before.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of intragranular transformed ferrite produced in a slab and the crystal grain size after heating at 1100 ° C. FIG.

Claims (6)

質量%で、
C:0.03−0.10%, Si:<0.6%,
Mn:1.2−2.5%, P:<0.015%,
S:<0.003%, Ni:0.1−1.0%,
Mo:0.15−0.60%, Nb:0.005−0.10%,
N:0.001−0.006%, Ti:0.005−0.050%,
Al:<0.06%,を含有し、残部が鉄及び不可避的不純物からなり、厚さが200mm以上で、マルテンサイト、ベイナイトの面積率が70%以上であり、粒内変態フェライトの面積率が10%以上であり、残部が面積率0〜20%のポリゴナルフェライトであることを特徴とする低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片。
% By mass
C: 0.03-0.10%, Si: <0.6%,
Mn: 1.2-2.5%, P: <0.015%,
S: <0.003%, Ni: 0.1-1.0%,
Mo: 0.15-0.60%, Nb: 0.005-0.10%,
N: 0.001-0.006%, Ti: 0.005-0.050%,
Al: <0.06%, the balance is made of iron and inevitable impurities, the thickness is 200 mm or more, the area ratio of martensite and bainite is 70% or more, and the area ratio of intragranular transformed ferrite There Ri der least 10%, continuous casting slab for the balance area ratio 0-20% of polygonal high strength steels above excellent tensile strength 770MPa in low temperature toughness characterized by ferrite der Rukoto.
質量%で、
Cr:<1.0%, Cu:<1.0%,
V:<0.10%, B:0.0005−0.0020%,
Ca:<0.006%, REM:<0.02%,
Mg:<0.006%, Zr:<0.10%,
の1種または2種以上、を更に含有することを特徴とする請求項1記載の低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片。
% By mass
Cr: <1.0%, Cu: <1.0%,
V: <0.10%, B: 0.0005-0.0020%,
Ca: <0.006%, REM: <0.02%,
Mg: <0.006%, Zr: <0.10%,
The continuous cast slab for high-strength steel having a tensile strength of 770 MPa or more excellent in low-temperature toughness according to claim 1 , further comprising one or more of the following.
l:<0.004%であることを特徴とする請求項1または2記載の低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片。 A l: <continuous casting slab for that claim 1 or 2 excellent tensile strength 770MPa or more high-strength steel low temperature toughness described is characterized in that 0.004%. 請求項1〜3いずれか1項に記載の連続鋳造片の製造方法であって、質量%で、
C:0.03−0.10%, Si:<0.6%,
Mn:1.2−2.5%, P:<0.015%,
S:<0.003%, Ni:0.1−1.0%,
Mo:0.15−0.60%, Nb:0.005−0.10%,
N:0.001−0.006%, Ti:0.005−0.050%,
を含有し、残部が鉄及び不可避的不純物からなる溶鋼において、Al:<0.004%として連続鋳造した後、得られた連続鋳造鋳片を、表面温度800〜500℃の間を100分以下で、冷却することを特徴とする低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片の製造法。
It is a manufacturing method of the continuous cast piece according to any one of claims 1 to 3, Comprising :
C: 0.03-0.10%, Si: <0.6%,
Mn: 1.2-2.5%, P: <0.015%,
S: <0.003%, Ni: 0.1-1.0%,
Mo: 0.15-0.60%, Nb: 0.005-0.10%,
N: 0.001-0.006%, Ti: 0.005-0.050%,
In molten steel containing, balance of iron and unavoidable impurities, Al: after continuous casting with a <0.004% or, the resulting continuous casting slab, between the surface temperature of 800 to 500 ° C. 100 A method for producing a continuous cast slab for high-strength steel having a tensile strength of 770 MPa or more and excellent in low-temperature toughness, characterized by cooling in minutes or less .
量%で、
Cr:<1.0%, Cu:<1.0%,
V:<0.10%, B:0.0005−0.0020%,
Ca:<0.006%, REM:<0.02%,
Mg:<0.006%, Zr:<0.10%,
の1種または2種以上、を更に含有することを特徴とする請求項4記載の低温靱性に優れた引張り強度770MPa以上の高強度鋼用の連続鋳造鋳片の製造法。
In mass%,
Cr: <1.0%, Cu: <1.0%,
V: <0.10%, B: 0.0005-0.0020%,
Ca: <0.006%, REM: <0.02%,
Mg: <0.006%, Zr: <0.10%,
1 or 2 types or more of these are further contained, The manufacturing method of the continuous cast slab for high strength steel excellent in the low temperature toughness of 770 Mpa or more excellent in low-temperature toughness of Claim 4 characterized by the above-mentioned .
請求項1〜3のいずれか1項記載の連続鋳造鋳片をオーステナイト域に再加熱し、制御圧延を行い、その後空冷以上の冷却速度で冷却して製造されたことを特徴とする低温靱性に優れた引張り強度770MPa以上の高強度鋼。The low temperature toughness produced by reheating the continuous cast slab according to any one of claims 1 to 3 to an austenite region, performing controlled rolling, and then cooling at a cooling rate higher than air cooling. High strength steel with excellent tensile strength of 770 MPa or more.
JP30178397A 1997-11-04 1997-11-04 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness Expired - Fee Related JP3898814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30178397A JP3898814B2 (en) 1997-11-04 1997-11-04 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30178397A JP3898814B2 (en) 1997-11-04 1997-11-04 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH11140580A JPH11140580A (en) 1999-05-25
JP3898814B2 true JP3898814B2 (en) 2007-03-28

Family

ID=17901126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30178397A Expired - Fee Related JP3898814B2 (en) 1997-11-04 1997-11-04 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP3898814B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635074B1 (en) * 1999-12-28 2006-10-16 주식회사 포스코 A method for production of the high strength and toughness steel by coarse precipitate
JP3793478B2 (en) * 2002-04-01 2006-07-05 新日本製鐵株式会社 Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness
JP2004176172A (en) * 2002-10-01 2004-06-24 Sumitomo Metal Ind Ltd High strength seamless steel pipe with excellent hic (hydrogen-induced cracking) resistance, and its manufacturing method
US7416617B2 (en) 2002-10-01 2008-08-26 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
DK1627931T3 (en) 2003-04-25 2018-11-05 Tubos De Acero De Mexico S A Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8715430B2 (en) 2005-04-04 2014-05-06 Nippon Steel & Sumitomo Metal Corporation High strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of same
MXPA05008339A (en) * 2005-08-04 2007-02-05 Tenaris Connections Ag High-strength steel for seamless, weldable steel pipes.
AR054935A1 (en) * 2005-08-22 2007-07-25 Sumitomo Metal Ind STEEL TUBE WITHOUT SEWING FOR PIPES AND PROCEDURE FOR MANUFACTURING
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
CA2686301C (en) 2008-11-25 2017-02-28 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
BR112015016765A2 (en) 2013-01-11 2017-07-11 Tenaris Connections Ltd drill pipe connection, corresponding drill pipe and method for assembling drill pipes
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
WO2014207656A1 (en) 2013-06-25 2014-12-31 Tenaris Connections Ltd. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN114959511A (en) * 2022-05-13 2022-08-30 河北普阳钢铁有限公司 Manufacturing method of 700MPa grade high-toughness explosion-proof steel plate
CN115717220B (en) * 2022-11-29 2024-03-08 钢铁研究总院有限公司 590 MPa-grade polar region ship body structural steel with low-temperature toughness and preparation method thereof

Also Published As

Publication number Publication date
JPH11140580A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP6308151B2 (en) Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP4123597B2 (en) Manufacturing method of steel with excellent strength and toughness
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP2688312B2 (en) High strength and high toughness steel plate
JP3745722B2 (en) Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness
JPH11172374A (en) Bent pipe with high strength and high toughness, and its production
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP2002129288A (en) High strength pipe bend and its manufacturing method
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP3764593B2 (en) High strength steel pipe with excellent toughness of weld heat affected zone
JP4369555B2 (en) High strength steel pipes and pipelines with excellent weld toughness
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees