JPH11172374A - Bent pipe with high strength and high toughness, and its production - Google Patents

Bent pipe with high strength and high toughness, and its production

Info

Publication number
JPH11172374A
JPH11172374A JP34346897A JP34346897A JPH11172374A JP H11172374 A JPH11172374 A JP H11172374A JP 34346897 A JP34346897 A JP 34346897A JP 34346897 A JP34346897 A JP 34346897A JP H11172374 A JPH11172374 A JP H11172374A
Authority
JP
Japan
Prior art keywords
low
less
toughness
strength
temperature toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34346897A
Other languages
Japanese (ja)
Other versions
JP3466450B2 (en
Inventor
Yoshio Terada
好男 寺田
Hiroshi Tamehiro
博 為広
Takuya Hara
卓也 原
Naoki Maruyama
直紀 丸山
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34346897A priority Critical patent/JP3466450B2/en
Publication of JPH11172374A publication Critical patent/JPH11172374A/en
Application granted granted Critical
Publication of JP3466450B2 publication Critical patent/JP3466450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve toughness at low temperatures by a specific composition which consists of C, Si, Mn, P, S, Ni, Mo, Nb, Ti, Al, N, O, and the balance Fe with inevitable impurities and in which respective component values satisfy a specific relation and further providing a microstructure containing specific amounts of bainite. SOLUTION: This bent pipe has a composition consisting of, by weight, 0.03-0.10% C, <=0.6% Si, 1.8-2.5% Mn, <=0.015% P, <=0.003% S, 0.20-1.0% Ni, 0.25 0.60% Mo, 0.01-0.10% Nb, 0.005-0.030% Ti, <=0.06% Al, 0.001-0.006% N, <=0.005% O, and the balance Fe with inevitable impurities. Moreover, the value of P1 defined by equation is regulated to 2.5-3.8. Further, this bent pipe has a microstructure containing bainite of <=10 μm average grain size, transformed from austenite, by >=70% by volume fraction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、米国石油協会(A
PI)規格でX100以上(降伏強さで約690N/mm
2 以上)の高強度と高靭性を有するベンド管(曲がり
管)およびその製造法に関するものである。
The present invention relates to the American Petroleum Institute (A)
PI) standard X100 or more (yield strength about 690 N / mm
Bend pipe (bent pipe) having high strength and high toughness ( 2 or more) and a method for producing the same.

【0002】[0002]

【従来の技術】原油や天然ガスを長距離輸送するための
パイプラインに使用されるラインパイプ(直管)や異形
管(ベンド管、エルボー管、T字管など)は、(1) 高圧
化による輸送効率の向上や、(2) 薄肉化による現地での
溶接能率向上のため、ますます高張力化する傾向にあ
る。これまでにAPI規格でX80までのラインパイプ
の実用化が進行中であるが、さらに高強度のラインパイ
プや異形管に対するニーズがでてきた。
2. Description of the Related Art Line pipes (straight pipes) and deformed pipes (bend pipes, elbow pipes, T-shaped pipes, etc.) used in pipelines for transporting crude oil and natural gas over long distances are: (1) High pressure In order to improve the transport efficiency due to heat treatment and (2) to improve the welding efficiency in the field by reducing the thickness, the tension tends to be higher and higher. Up to now, practical application of line pipes up to X80 according to the API standard is in progress, but there is a need for higher strength line pipes and deformed pipes.

【0003】従来、ベンド管などは直管に比較して、鋼
管の機械的性質(強度、低温靭性など)が劣化するた
め、特開昭62−10212号公報、特開平4−154
913号公報、特開平7−3330号公報、特開平5−
279743号公報、特開昭59−232225号公報
など、ベンド管の機械的性質を改善する方法が種々開示
されている。
Conventionally, the mechanical properties (strength, low-temperature toughness, etc.) of a steel pipe are deteriorated in a bent pipe or the like as compared with a straight pipe.
913, JP-A-7-3330, JP-A5-
Various methods for improving the mechanical properties of a bend tube, such as 279743 and JP-A-59-232225, are disclosed.

【0004】例えば、特開昭62−10212号公報、
特開平4−154913号公報、特開平7−3330号
公報、特開平5−279743号公報には、鋼管を加熱
後、曲げ加工しながら焼入れした後、冷却後特定の範囲
内で焼戻し処理する方法が開示されている。しかしなが
らこれらの方法は、焼戻し処理が必須であるため、生産
性や製造コストの観点から問題があった。
[0004] For example, Japanese Patent Application Laid-Open No. Sho 62-10212,
JP-A-4-154913, JP-A-7-3330 and JP-A-5-279743 disclose a method in which a steel pipe is heated, quenched while being bent, and then tempered within a specific range after cooling. Is disclosed. However, these methods have a problem from the viewpoint of productivity and manufacturing cost because a tempering treatment is essential.

【0005】一方、特開昭59−232225号公報に
は、生産性の向上や製造コストの低減を図るために、焼
戻し処理を省略して高強度と良好な低温靭性を確保する
ためのベンド管の製造法が記載されている。しかしなが
らこれらの方法では、せいぜいX70(降伏強さ490
N/mm2 )ベンド管の製造が限界と考えられる。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 59-232225 discloses a bend pipe for securing high strength and good low-temperature toughness by omitting a tempering treatment in order to improve productivity and reduce manufacturing costs. Are described. However, in these methods, at most X70 (yield strength 490)
N / mm 2 ) Bend tube production is considered to be the limit.

【0006】X100以上の強度を満足させるために
は、さらなる合金元素の添加が必要となり、上述した方
法では、加熱〜曲げ加工〜水冷後の組織中に粗大な上部
ベイナイトや、MA(Martensite-Austenite Constituen
t)いわゆるマルテンサイトとオーステナイトが共存した
組織が生成するため、低温靭性を安定的に確保すること
は不可能であると考えられる。このような背景のもと、
低温での優れた靭性を有する超高強度ベンド管(X10
0以上)の開発が強く要望されていた。
[0006] In order to satisfy the strength of X100 or more, it is necessary to further add an alloy element. In the above-mentioned method, coarse upper bainite or MA (Martensite-Austenite) is contained in the structure after heating, bending, and water cooling. Constituen
t) Since a structure in which so-called martensite and austenite coexist is generated, it is considered impossible to ensure stable low-temperature toughness. Against this background,
Ultra-high strength bend pipe (X10) with excellent toughness at low temperature
(0 or more) was strongly demanded.

【0007】[0007]

【発明が解決しようとする課題】本発明は低温靭性に優
れた降伏強さ690N/mm2 以上(API規格X100
以上)の高強度高靭性ベンド管およびその製造法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a low-temperature toughness with a yield strength of 690 N / mm 2 or more (API standard X100).
It is an object of the present invention to provide a high-strength, high-toughness bend pipe and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の第1発明ベンド管は、重量%にて、C:0.03〜
0.10%、Si:0.6%以下、Mn:1.8〜2.
5%、P:0.015%以下、S:0.003%以下、
Ni:0.20〜1.0%、Mo:0.25〜0.60
%、Nb:0.01〜0.10%、Ti:0.005〜
0.030%、Al:0.06%以下、N:0.001
〜0.006%、O:0.005%以下を含有し残部が
Feおよび不可避的不純物からなり、かつ下記(1)式
で定義されるP1 値が2.5〜3.8の範囲の成分組成
であり、さらに平均粒径で10μm以下のオーステナイ
トから変態したベイナイトを体積分率で70%以上含有
するミクロ組織を有していることを特徴とする高強度高
靭性ベンド管である。 P1 =2.7C+0.4Si+Mn+0.8Cr +0.45(Ni+Cu)+Mo+V ・・・・・(1)
Means for Solving the Problems The first invention bend pipe of the present invention which achieves the above object, has a C content of 0.03 to 0.03% by weight.
0.10%, Si: 0.6% or less, Mn: 1.8 to 2.
5%, P: 0.015% or less, S: 0.003% or less,
Ni: 0.20 to 1.0%, Mo: 0.25 to 0.60
%, Nb: 0.01 to 0.10%, Ti: 0.005 to
0.030%, Al: 0.06% or less, N: 0.001
0.006%, O: 0.005% or less, the balance being Fe and unavoidable impurities, and the P 1 value defined by the following formula (1) is in the range of 2.5 to 3.8. A high-strength and high-toughness bend pipe having a component composition and a microstructure containing 70% or more by volume fraction of bainite transformed from austenite having an average particle size of 10 μm or less. P 1 = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V (1)

【0009】第2発明ベンド管は、重量%にて、C:
0.03〜0.10%、Si:0.6%以下、Mn:
1.7〜2.2%、P:0.015%以下、S:0.0
03%以下、Ni:0.10〜1.0%、Mo:0.1
5〜0.50%、Nb:0.01〜0.10%、Ti:
0.005〜0.030%、B:0.0003〜0.0
020%、Al:0.06%以下、N:0.001〜
0.006%、O:0.005%以下を含有し残部がF
eおよび不可避的不純物からなり、かつ下記(2)式で
定義されるP2 値が2.5〜4.0の範囲の成分組成で
あり、さらに平均粒径で10μm以下のオーステナイト
から変態したベイナイトを体積分率で70%以上含有す
るミクロ組織を有していることを特徴とする高強度高靭
性ベンド管である。 P2 =2.7C+0.4Si+Mn+0.8Cr +0.45(Ni+Cu)+2Mo ・・・・・(2)
The bend tube according to the second aspect of the present invention has a C:
0.03 to 0.10%, Si: 0.6% or less, Mn:
1.7 to 2.2%, P: 0.015% or less, S: 0.0
03% or less, Ni: 0.10 to 1.0%, Mo: 0.1
5 to 0.50%, Nb: 0.01 to 0.10%, Ti:
0.005 to 0.030%, B: 0.0003 to 0.0
020%, Al: 0.06% or less, N: 0.001 to
0.006%, O: 0.005% or less, with the balance being F
e and unavoidable impurities, and has a P 2 value defined by the following formula (2) in the range of 2.5 to 4.0, and is further transformed from austenite having an average particle size of 10 μm or less. Is a high-strength and high-toughness bend pipe characterized by having a microstructure containing 70% or more by volume fraction. P 2 = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo (2)

【0010】そして第1発明ベンド管および第2発明ベ
ンド管において、重量%にてさらに、Cu:0.1〜
1.0%、Cr:0.1〜1.0%、V:0.01〜
0.10%、Ca:0.001〜0.005%のうち1
種または2種以上を含有することが好ましい。
In the first invention bend tube and the second invention bend tube, Cu: 0.1 to
1.0%, Cr: 0.1 to 1.0%, V: 0.01 to
0.10%, Ca: 0.001 to 0.005% 1
It is preferable to contain one or more species.

【0011】また本発明法は、上記第1発明ベンド管お
よび第2発明ベンド管において記載された成分組成から
なる鋼管を、780〜950℃に加熱後、曲げ加工し直
ちに10℃/秒以上の冷却速度で水冷することを特徴と
する高強度高靭性ベンド管の製造法である。
Further, according to the method of the present invention, a steel pipe having the component composition described in the first invention bend pipe and the second invention bend pipe is heated to 780 to 950 ° C., and then bent and immediately heated to 10 ° C./sec or more. This is a method for producing a high-strength, high-toughness bend pipe characterized by cooling with water at a cooling rate.

【0012】[0012]

【発明の実施の形態】前述のとおり、極低炭素−高Mn
−Nb−(Mo,Cr)−微量Ti鋼管を、Ac3 温度
以上に加熱後、曲げ加工しながら焼入れ処理することに
より、X70程度の高強度と良好な低温靭性を確保でき
ることが、特開昭59−232225号公報に開示され
ている。しかしながらX100以上の高強度を得るため
には、さらに合金元素を添加することが必要となる。そ
して合金元素の添加により、母材の低温靭性が不十分と
なる。そこで、曲げ加工した超高強度ベンド管の低温靭
性を改善するために鋭意研究した結果、本発明に至っ
た。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, extremely low carbon-high Mn
-Nb- (Mo, Cr) - trace Ti steel, after heating above Ac 3 temperature, by quenching with bending, to be able to ensure a high strength and good low temperature toughness of about X70, JP No. 59-232225. However, in order to obtain a high strength of X100 or more, it is necessary to further add an alloy element. And the low temperature toughness of the base material becomes insufficient due to the addition of the alloy element. Accordingly, as a result of intensive studies to improve the low-temperature toughness of the bent ultrahigh-strength bend pipe, the present invention has been achieved.

【0013】本発明ベンド管は、後述の本発明法のよう
に、微細なオーステナイトの状態で曲げ加工し直ちに水
冷することにより、変態後のベイナイトの有効結晶粒を
著しく細粒化することができ、低温靭性を改善できる。
平均粒径で10μm以下のオーステナイトから変態した
ベイナイトであれば、有効結晶粒径が小さいために良好
な低温靭性が得られる。このとき、ベイナイト組織を7
0%以上含有しないと必要とするX100以上の強度が
得られない。
[0013] The bend tube of the present invention can be formed into a fine austenite state and be immediately cooled with water as in the method of the present invention described below, whereby the effective crystal grains of the transformed bainite can be remarkably refined. , Low temperature toughness can be improved.
Bainite transformed from austenite having an average grain size of 10 μm or less has good low-temperature toughness due to a small effective crystal grain size. At this time, the bainite structure was changed to 7
If the content is not 0% or more, the required strength of X100 or more cannot be obtained.

【0014】低合金鋼の低温靭性は、(1) 結晶粒のサイ
ズ、(2) 上記MAや上部ベイナイトなどの硬化相の分散
状態など、種々の冶金学的要因に支配される。特に高強
度化するほど合金元素の添加量は必然的に多くなり、焼
入れ時の組織は上部ベイナイト主体の組織となり、MA
の生成や結晶粒の粗大化と相まって低温靭性は劣化す
る。しかしながら、上述のように、鋼材のミクロ組織を
厳密に制御しても目的とする特性を有する鋼材は得られ
ない。このためにはミクロ組織と同時に化学成分を限定
する必要がある。
The low-temperature toughness of low alloy steel is governed by various metallurgical factors such as (1) the size of crystal grains and (2) the dispersed state of the hardened phase such as MA and upper bainite. In particular, the higher the strength, the greater the amount of alloying elements necessarily added, and the structure during quenching becomes a structure mainly composed of upper bainite.
Low-temperature toughness is deteriorated in combination with the formation of grains and coarsening of crystal grains. However, as described above, even if the microstructure of the steel material is strictly controlled, a steel material having desired characteristics cannot be obtained. For this purpose, it is necessary to limit the chemical composition simultaneously with the microstructure.

【0015】したがって本発明の第1発明ベンド管は、
(1) 低C−高Mn−Ni−Mo−Nb−Ti系の限定し
た成分で、(2) 上記(1)式で定義されるP1 値が2.
5〜3.8の範囲の成分組成からなる鋼を母材とし、さ
らに、(3) 平均粒径で10μm以下のオーステナイトか
ら変態したベイナイトを体積分率で70%以上含有する
ミクロ組織としたことにより、X100以上の高強度を
有するとともに良好な低温靭性を有するものである。
Therefore, the first invention bend pipe of the present invention is:
(1) Low C- at high Mn-Ni-Mo-Nb- Ti -based limited ingredients of, (2) above (1) P 1 value defined by equation 2.
(3) A microstructure containing 70% or more by volume of bainite transformed from austenite having an average particle size of 10 μm or less in a volume fraction of 5% to 3.8. Thus, it has high strength of X100 or more and good low-temperature toughness.

【0016】以下に第1発明ベンド管における成分組成
の限定理由について説明する。Cは0.03〜0.10
%に限定する。Cは母材および溶接部の強度向上に有効
な元素であり、ベイナイトを主体とする組織において目
的の強度を得るためには、最低0.03%は必要であ
る。またこの量はNb,V添加による析出硬化、結晶粒
の微細化効果の発現のための最小量でもある。しかしC
量が多すぎると母材、HAZ(溶接熱影響部)の低温靭
性、現地溶接性の著しい劣化を招くので、その上限を
0.10%とした。
The reasons for limiting the component composition in the first invention bend tube will be described below. C is 0.03-0.10
%. C is an element effective for improving the strength of the base metal and the welded portion, and at least 0.03% is necessary for obtaining a desired strength in a structure mainly composed of bainite. This amount is also the minimum amount for the precipitation hardening due to the addition of Nb and V and the manifestation of the effect of refining the crystal grains. But C
If the amount is too large, the low-temperature toughness of the base material and the HAZ (welding heat affected zone) and the remarkable deterioration of on-site weldability are caused. Therefore, the upper limit is set to 0.10%.

【0017】Siは脱酸や強度向上のため添加する元素
であるが、多く添加するとHAZの靭性および現地溶接
性を著しく劣化させるので、上限を0.6%とした。鋼
の脱酸はTiあるいはAlでも十分可能であり、Siは
必ずしも添加する必要はない。Mnは強度および低温靭
性を確保する上で不可欠な元素であり、その下限は1.
8%である。しかしMnが多すぎると、鋼の焼入性が増
加してHAZの靭性および現地溶接性を劣化させるだけ
でなく、連続鋳造鋼片の中心偏析を助長し、母材の低温
靭性をも劣化させるのでその上限を2.5%とした。
[0017] Si is an element added for deoxidation and for improving the strength, but if added in a large amount, the toughness and on-site weldability of HAZ are remarkably deteriorated, so the upper limit was made 0.6%. Steel can be sufficiently deoxidized with Ti or Al, and Si need not always be added. Mn is an element indispensable for securing strength and low-temperature toughness.
8%. However, if the Mn content is too large, the hardenability of the steel increases and not only deteriorates the toughness and on-site weldability of the HAZ, but also promotes the center segregation of the continuously cast steel slab and deteriorates the low-temperature toughness of the base material. Therefore, the upper limit was set to 2.5%.

【0018】Niを添加する目的は、低炭素の本発明成
分系の強度を低温靭性や現地溶接性を劣化させることな
く向上させるためである。Ni添加はMnやCr,Mo
添加に比較して圧延組織(特にスラブの中心偏析帯)中
に低温靭性に有害な硬化組織を形成することが少なく、
微量のNi添加がHAZ靭性の改善にも有効であること
が判明した。この効果を発揮させるためには、0.20
%以上の添加が必要である。しかし、添加量が多すぎる
と経済性だけでなく、HAZ靭性や現地溶接性を劣化さ
せるので、その上限を1.0%とした。
The purpose of adding Ni is to improve the strength of the low carbon component system of the present invention without deteriorating low-temperature toughness and on-site weldability. Ni addition is Mn, Cr, Mo
It hardly forms a hardened structure harmful to low-temperature toughness in the rolled structure (especially the center segregation zone of the slab) as compared with the addition.
It has been found that the addition of a small amount of Ni is also effective for improving the HAZ toughness. To achieve this effect, 0.20
% Or more is required. However, if the addition amount is too large, not only economic efficiency but also HAZ toughness and on-site weldability are degraded, so the upper limit was made 1.0%.

【0019】Moを添加する理由は、鋼の焼入性を向上
させ、目的とするベイナイトイ主体の組織を得るためで
ある。このような効果を得るためには、Moは最低0.
25%必要である。しかし過剰なMo添加はHAZ靭
性、現地溶接性を劣化させるので、その上限を0.60
%とした。
The reason for adding Mo is to improve the hardenability of steel and obtain the desired bainite-based structure. In order to obtain such an effect, Mo should be at least 0.1.
25% is required. However, excessive Mo addition degrades HAZ toughness and on-site weldability, so the upper limit is 0.60.
%.

【0020】また第1発明ベンド管では、必須の元素と
してNb:0.01〜0.10%、Ti:0.005〜
0.030%を含有する。NbはMoと共存して結晶粒
の微細化や析出硬化に寄与し、鋼を強靭化する作用を有
する。この効果を発揮させるための最小量として、その
下限を0.01%とした。しかしNbを0.10%超添
加すると、HAZ靭性や現地溶接性に悪影響をもたらす
ので、その上限を0.10%とした。
In the first invention bend pipe, Nb: 0.01 to 0.10% and Ti: 0.005 to 0.005% are essential elements.
Contains 0.030%. Nb coexists with Mo and contributes to refinement of crystal grains and precipitation hardening, and has an effect of toughening steel. As the minimum amount for exhibiting this effect, the lower limit was set to 0.01%. However, if Nb exceeds 0.10%, the HAZ toughness and on-site weldability are adversely affected, so the upper limit was made 0.10%.

【0021】一方、Ti添加は微細なTiNを形成し、
加熱時および溶接HAZのオーステナイト粒の粗大化を
抑制してミクロ組織を微細化し、母材およびHAZの低
温靭性を改善する。またAl量が少ないとき(たとえば
0.005%以下)、Tiは酸化物を形成し、HAZに
おいて粒内フェライト生成核として作用し、HAZ組織
を微細化する効果も有する。このようなTi添加効果を
発現させるためには、最低0.005%のTi添加が必
要である。しかしTi量が多すぎると、TiNの粗大化
やTiCによる析出硬化が生じ、低温靭性が劣化するの
で、その上限は0.030%に限定した。
On the other hand, the addition of Ti forms fine TiN,
It suppresses coarsening of austenite grains in a heated and welded HAZ, refines the microstructure, and improves the low-temperature toughness of the base material and the HAZ. When the amount of Al is small (for example, 0.005% or less), Ti forms an oxide, acts as an intragranular ferrite generation nucleus in the HAZ, and has an effect of refining the HAZ structure. In order to exert such a Ti addition effect, at least 0.005% of Ti must be added. However, if the amount of Ti is too large, coarsening of TiN and precipitation hardening due to TiC occur, and low-temperature toughness deteriorates. Therefore, the upper limit is set to 0.030%.

【0022】Alは通常脱酸材として鋼に含まれる元素
で組織の微細化にも効果を有する。しかし、Al量が
0.06%を超えるとAl系非金属介在物が増加して鋼
の清浄度を害するので、上限を0.06%とした。脱酸
はTiあるいはSiでも可能であり、Alは必ずしも添
加する必要はない。
Al is an element usually contained in steel as a deoxidizing material, and has an effect on refining the structure. However, if the Al content exceeds 0.06%, Al-based nonmetallic inclusions increase and impair the cleanliness of the steel, so the upper limit was made 0.06%. Deoxidation can be performed with Ti or Si, and Al need not always be added.

【0023】NはTiNを形成して加熱時および溶接H
AZのオーステナイト粒の粗大化を抑制して、母材およ
びHAZの低温靭性を向上させる。このために必要な最
小量は0.001%である。しかし、多すぎるとスラブ
表面疵や固溶NによるHAZ靭性の劣化の原因となるの
で、その上限は0.006%に抑える必要がある。
N forms TiN so that it is heated and welded H
It suppresses coarsening of austenite grains in AZ and improves low-temperature toughness of the base material and HAZ. The minimum required for this is 0.001%. However, if the amount is too large, it causes deterioration of HAZ toughness due to slab surface flaws and solid solution N, so the upper limit must be suppressed to 0.006%.

【0024】また不純物元素であるP,S,O量を、そ
れぞれ、0.015%以下、0.003%以下、0.0
05%以下とする。この主たる理由は、母材およびHA
Zの低温靭性をより一層向上させるためである。P量の
低減は連続鋳造スラブの中心偏析を低減し、粒界破壊を
防止し低温靭性を向上させる。またS量の低減は、延伸
化したMnSを低減して延靭性を向上させる効果があ
る。O量の低減は、鋼中の酸化物を少なくして低温靭性
の改善に効果がある。
The contents of P, S, and O as impurity elements are set to 0.015% or less, 0.003% or less, and 0.05% or less, respectively.
It shall be not more than 05%. The main reason for this is that the base material and HA
This is for further improving the low-temperature toughness of Z. The reduction of the P content reduces the center segregation of the continuously cast slab, prevents grain boundary fracture, and improves low temperature toughness. Further, the reduction of the S content has the effect of reducing the stretched MnS and improving the ductility. Reduction of the amount of O is effective in improving low-temperature toughness by reducing oxides in steel.

【0025】つぎに、好ましい条件としてCu,Cr,
V,Caの1種または2種以上を添加する理由について
説明する。基本となる上記成分に加えて、さらにこれら
の元素を添加する主たる目的は、本発明の優れた特長を
損なうことなく、製造可能な板厚の拡大や母材の強度・
靭性などの特性の向上をはかるためである。したがっ
て、その添加量は自ら制限されるべき性質のものであ
る。
Next, preferable conditions are Cu, Cr,
The reason for adding one or more of V and Ca will be described. The main purpose of adding these elements in addition to the above-mentioned basic components is to increase the thickness of the plate that can be manufactured and the strength and strength of the base material without impairing the excellent features of the present invention.
This is for the purpose of improving properties such as toughness. Therefore, the amount of addition is of a nature that should be restricted.

【0026】CuはNiとほぼ同様な効果を持つととも
に、耐食性、耐水素誘起割れ特性の向上にも効果があ
る。またCu析出硬化によって強度を大幅に増加させ
る。この効果を発揮させるためには0.1%以上の添加
が必要である。しかし過剰に添加すると、析出硬化によ
り母材およびHAZの靭性低下や熱間圧延時にCuクラ
ックが生じるので、その上限を1.0%とした。
Cu has almost the same effect as Ni, and also has an effect on improving corrosion resistance and resistance to hydrogen-induced cracking. Also, the strength is greatly increased by Cu precipitation hardening. In order to exhibit this effect, it is necessary to add 0.1% or more. However, if added in excess, precipitation hardening lowers the toughness of the base material and HAZ and causes Cu cracks during hot rolling, so the upper limit was made 1.0%.

【0027】Crは母材および溶接部の強度を増加させ
る効果があり、この効果を発揮させるためには0.1%
以上の添加が必要である。しかし、多すぎるとHAZ靭
性や現地溶接性を著しく劣化させる。このためCr量の
上限を0.6%とした。Vは、ほぼNbと同様の効果を
有するがその効果はNbに比較して弱い。しかし、高強
度鋼におけるV添加の効果は大きい。この効果を発揮さ
せるためには0.01%以上の添加が必要である。その
上限はHAZ靭性や現地溶接性の点から0.10%まで
許容できる。
Cr has the effect of increasing the strength of the base metal and the welded portion. To exhibit this effect, 0.1%
The above addition is necessary. However, if it is too large, the HAZ toughness and the on-site weldability are remarkably deteriorated. Therefore, the upper limit of the Cr content is set to 0.6%. V has almost the same effect as Nb, but the effect is weaker than Nb. However, the effect of V addition on high strength steel is significant. In order to exhibit this effect, 0.01% or more must be added. The upper limit is allowable up to 0.10% from the viewpoint of HAZ toughness and on-site weldability.

【0028】Caは硫化物(MnS)の形態を制御し、
低温靭性を向上(シャルピー試験における吸収エネルギ
ーの増加など)させる。しかしCa量が0.001%以
下では実用上効果がなく、また0.005%を超えて添
加するとCaO−CaSが大量に生成してクラスター、
大型介在物となり、鋼の清浄度を害するだけでなく、現
地溶接性にも悪影響をおよぼす。このためCa添加量を
0.001〜0.005%に制限した。
Ca controls the form of sulfide (MnS),
Improve low-temperature toughness (increase in absorbed energy in Charpy test, etc.). However, if the Ca content is 0.001% or less, there is no practical effect, and if the Ca content exceeds 0.005%, CaO—CaS is generated in a large amount to form clusters,
It becomes a large inclusion, which not only impairs the cleanliness of the steel, but also adversely affects on-site weldability. For this reason, the amount of Ca added was limited to 0.001 to 0.005%.

【0029】以上の個々の添加元素の限定に加えて、さ
らに上記(1)式で定義されるP1値を2.5以上かつ
3.8以下に制限する必要がある。これはHAZ靭性、
現地溶接性を損なうことなく、目的とする強度・低温靭
性バランスを達成するためである。P1 値の下限を2.
5とした理由は、X100以上の強度と優れた低温靭性
を得るためである。またP1 値の上限を3.8としたの
は優れたHAZ靭性、現地溶接性を維持するためであ
る。
In addition to the above-mentioned limitation of the individual additive elements, it is necessary to further limit the P 1 value defined by the above formula (1) to 2.5 or more and 3.8 or less. This is HAZ toughness,
This is to achieve the target strength-low temperature toughness balance without impairing the on-site weldability. 1. Lower limit of P 1 value
The reason for setting the value to 5 is to obtain a strength of X100 or more and excellent low-temperature toughness. The upper limit of the P 1 value is set to 3.8 in order to maintain excellent HAZ toughness and on-site weldability.

【0030】つぎに第2発明ベンド管は、(1) 上記のよ
うな低C−高Mn−Mo−Nb−微量B−微量Ti系の
限定した成分で、(2) 上記(2)式で定義されるP2
が2.5〜4.0の範囲の成分組成からなる鋼を母材と
し、さらに、(3) 平均粒径で10μm以下のオーステナ
イトから変態したベイナイトを体積分率で70%以上含
有するミクロ組織としたことにより、X100以上の高
強度を有するとともに良好な低温靭性を有するものであ
る。
Next, the second invention bend tube is composed of (1) a low C-high Mn-Mo-Nb-trace B-trace Ti system limited component as described above, and (2) a formula (2). The base metal is a steel having a component composition having a defined P 2 value in the range of 2.5 to 4.0, and (3) bainite transformed from austenite having an average grain size of 10 μm or less by 70% by volume fraction. %, It has high strength of X100 or more and good low-temperature toughness.

【0031】第2発明ベンド管における成分系はBを添
加している。Bは、極微量で鋼の焼入性を飛躍的に高め
て目的とするベイナイト主体とする組織を得るために、
第2発明ベンド管において必要不可欠の元素である。後
述のP2 値において1に相当する、すなわち1%Mnに
相当する効果がある。さらにBは、Moの焼入性向上効
果を高めるとともに、Nbと共存して相乗的に焼入性を
増す。このような効果を得るためには、Bは最低でも
0.0003%必要である。一方、過剰に添加すると、
低温靭性を劣化させるだけでなく、かえってBの焼入性
向上効果を消失せしめることもあるので、その上限を
0.0020%とした。
The component system in the second invention bend tube contains B. B is to significantly improve the hardenability of steel in a trace amount and obtain the desired bainite-based structure,
The second invention is an indispensable element in the bend tube. There is an effect corresponding to 1 in the P 2 value described later, that is, 1% Mn. Further, B enhances the hardenability improving effect of Mo, and synergistically increases the hardenability together with Nb. In order to obtain such an effect, B must be at least 0.0003%. On the other hand, if added in excess,
Since not only the low-temperature toughness is deteriorated but also the effect of improving the hardenability of B may be lost, the upper limit is set to 0.0020%.

【0032】このようにBを添加した結果、Mnは1.
7%以上2.2%以下、Niは0.10%以上1.0%
以下、Moは0.15%以上0.50%以下とし、その
他の元素C,Si,Nb,Ti,Al,N,P,Sおよ
びOの量は第1発明ベンド管におけると同様である。そ
してこれら各元素量の限定理由も、第1発明ベンド管に
おけると同様である。
As a result of the addition of B, Mn is 1.
7% or more and 2.2% or less, Ni is 0.10% or more and 1.0% or less
Hereinafter, Mo is set to 0.15% or more and 0.50% or less, and the amounts of other elements C, Si, Nb, Ti, Al, N, P, S and O are the same as those in the first invention bend tube. The reasons for limiting the amounts of these elements are the same as in the first invention bend tube.

【0033】また好ましい条件として、Cu,Cr,
V,Caの1種または2種以上を添加する理由、および
その添加量の限定理由も第1発明ベンド管におけると同
様である。さらに第2発明ベンド管においては、上記
(2)式で定義されるP2 値を2.5以上かつ4.0以
下に制限する必要があり、その理由も第1発明ベンド管
におけると同様である。
As preferable conditions, Cu, Cr,
The reason for adding one or more of V and Ca, and the reason for limiting the amount of addition are the same as in the first invention bend tube. Further, in the second invention bend pipe, it is necessary to limit the P 2 value defined by the above equation (2) to 2.5 or more and 4.0 or less, for the same reason as in the first invention bend pipe. is there.

【0034】このような第1発明ベンド管および第2発
明ベンド管は、上記成分組成からなる鋼を溶製し、周知
の方法により鋼管とした後、後述の本発明法により曲げ
加工して製造することができる。鋼管とする際には、鋼
の圧延方法として、制御圧延または制御圧延〜加速冷却
することが望ましい。こうすることにより鋼管のミクロ
組織が微細化し、加熱〜曲げ加工時に微細なオーステナ
イトが生成して、焼入処理後のミクロ組織が微細なベイ
ナイト主体の組織となる。この結果、ベンド管の所定の
強度と低温靭性を確保することができる。
Such a first invention bend pipe and a second invention bend pipe are manufactured by melting a steel having the above-mentioned composition, forming a steel pipe by a known method, and then bending the steel pipe by the method of the present invention described later. can do. When forming a steel pipe, it is desirable to perform controlled rolling or controlled rolling to accelerated cooling as a method for rolling steel. By doing so, the microstructure of the steel pipe becomes finer, and fine austenite is generated during heating to bending, and the microstructure after quenching becomes a fine bainite-based structure. As a result, predetermined strength and low-temperature toughness of the bend pipe can be secured.

【0035】つぎに本発明法について説明する。本発明
法は、上記第1発明ベンド管および第2発明ベンド管に
おいて示した各成分組成の鋼管を、780〜950℃の
いわゆるγ/α2相域に加熱後、曲げ加工し直ちに10
℃/秒以上の冷却速度で水冷する方法である。
Next, the method of the present invention will be described. According to the method of the present invention, a steel pipe having each component composition shown in the first invention bend pipe and the second invention bend pipe is heated to a so-called γ / α2 phase region of 780 to 950 ° C., and then bent and immediately processed.
This is a method of cooling with water at a cooling rate of at least ° C / sec.

【0036】鋼管の加熱温度を780℃以上とする理由
は、加熱時に一部オーステナイト化させて、組織を微細
化すること、および曲げ加工後の水冷により所定の強度
を得るためである。鋼管の加熱温度が780℃未満の場
合、加熱前の旧オーステナイト粒界でのみオーステナイ
ト化され、この領域にCが拡散、濃縮すると、曲げ加工
後の水冷時に粗大かつ列状のMAが生成して低温靭性が
劣化する。このため加熱温度の下限は780℃とした。
しかし加熱温度が950℃を超えると、加熱時のオース
テナイト粒が成長し、変態後の組織が粗大化して低温靭
性の劣化を招いてしまう。このため加熱温度の上限は9
50℃とした。
The reason why the heating temperature of the steel pipe is set to 780 ° C. or higher is to make the structure finer by partially austenitizing during heating and to obtain a predetermined strength by water cooling after bending. When the heating temperature of the steel pipe is lower than 780 ° C., austenite is formed only at the former austenite grain boundaries before heating, and when C is diffused and concentrated in this region, coarse and row-like MA is generated during water cooling after bending. Low temperature toughness deteriorates. Therefore, the lower limit of the heating temperature was set to 780 ° C.
However, when the heating temperature exceeds 950 ° C., austenite grains grow during heating, the structure after transformation becomes coarse, and the low-temperature toughness is deteriorated. Therefore, the upper limit of the heating temperature is 9
50 ° C.

【0037】加熱後、鋼管を曲げ加工し直ちに10℃/
秒以上の冷却速度で水冷する必要がある。これは水冷す
ることにより70%以上の微細なベイナイト組織を生成
させて、高強度と優れた低温靭性を得るためである。冷
却速度が10℃/秒未満の場合、微細なベイナイト組織
が得られず、高強度と良好な低温靭性が同時に得られな
い。このため水冷時の冷却速度の下限を10℃/秒とし
た。曲げ加工後、直ちに水冷しないと鋼管の温度が低下
して、フェライトなどの生成により高強度化が達成でき
ない。なお水冷開始は、曲げ加工に支障を来さない範囲
であれば曲げ加工完了前であってもよい。
After heating, the steel pipe was bent and immediately heated to 10 ° C. /
It is necessary to perform water cooling at a cooling rate of at least seconds. This is because a fine bainite structure of 70% or more is formed by cooling with water to obtain high strength and excellent low-temperature toughness. If the cooling rate is less than 10 ° C./sec, a fine bainite structure cannot be obtained, and high strength and good low-temperature toughness cannot be obtained at the same time. For this reason, the lower limit of the cooling rate during water cooling was set to 10 ° C./sec. If the steel pipe is not cooled immediately after the bending, the temperature of the steel pipe decreases, and high strength cannot be achieved due to the formation of ferrite and the like. The water cooling may be started before the completion of the bending process as long as the range does not hinder the bending process.

【0038】[0038]

【実施例】[実施例1]:表1に示す種々の鋼成分の鋼
管からベンド管を製造して、諸性質を調査した結果を表
2に示す。機械的性質は圧延と直角方向で調査した。本
発明例No.1〜No.6の第1発明ベンド管は、所定の高
い強度と良好な低温靭性を有する。これに対して比較例
No.7〜No.19のベンド管は、成分組成またはミクロ
組織が適切でなく、いずれかの特性が劣る。
EXAMPLES Example 1 Bend pipes were manufactured from steel pipes having various steel components shown in Table 1, and the results of examination of various properties are shown in Table 2. The mechanical properties were investigated in the direction perpendicular to the rolling. Invention Example No. 1 to No. The first invention bend tube of No. 6 has a predetermined high strength and good low-temperature toughness. Comparative example
No. 7-No. The 19 bend tubes are not suitable in component composition or microstructure, and are inferior in either property.

【0039】また本発明例No.1〜No.6は、第1発明
ベンド管の成分組成からなり、かつ本発明法の条件を満
たしているので、適切なミクロ組織を有し、所定の高い
強度と良好な低温靭性を有する。これに対して比較例N
o.17〜No.19は、成分組成は適切だが本発明法の
条件から外れているので特性が劣る。
In the present invention example No. 1 to No. No. 6 is composed of the component composition of the bend tube of the first invention and satisfies the conditions of the method of the present invention, so that it has an appropriate microstructure, a predetermined high strength and good low-temperature toughness. On the other hand, Comparative Example N
o. 17-No. No. 19 is inferior in characteristics because the composition of the component is appropriate but out of the conditions of the method of the present invention.

【0040】No.7はC量が多すぎるため、低温靭性が
悪い。No.8はMn量が少ないため低温靭性が悪い。N
o.9はMn量が多すぎるため、低温靭性が悪い。No.
10はNi量が少ないため低温靭性が悪い。No.11は
Mo量が少ないため低温靭性が悪い。No.12はMo量
が多すぎるため低温靭性が悪い。No.13はP1 値が小
さいためX100以上の強度が得られない。No.14は
1 値が高すぎるため低温靭性が悪い。No.15は旧オ
ーステナイト粒径が大きいため低温靭性が悪い。No.1
6はベイナイト分率が低いためX100以上の強度を満
足しない。
No. Sample No. 7 has an inferior low-temperature toughness because the C content is too large. No. No. 8 has a low Mn content and thus has a low low-temperature toughness. N
o. No. 9 has a low Mn content because of an excessive amount of Mn. No.
Sample No. 10 has low Ni toughness and thus low toughness at low temperature. No. No. 11 has low Mo toughness due to low Mo content. No. In No. 12, the low temperature toughness is poor because the Mo content is too large. No. No. 13 cannot obtain an intensity of X100 or more because the P1 value is small. No. No. 14 has poor low-temperature toughness because the P 1 value is too high. No. No. 15 has poor low-temperature toughness due to a large prior austenite grain size. No. 1
No. 6 does not satisfy the strength of X100 or more because the bainite fraction is low.

【0041】No.17は曲げ加工時の加熱温度が低いた
め、旧オーステナイト粒径が大きくなり低温靭性が悪
い。No.18は同加熱温度が高いため、旧オーステナイ
ト粒径が大きくなり低温靭性が悪い。No.19は曲げ加
工直後の冷却速度が遅いため、ベイナイト分率が低下し
て低温靭性が悪い。
No. In No. 17, since the heating temperature at the time of bending is low, the prior austenite grain size is large and the low-temperature toughness is poor. No. Sample No. 18 had a high heating temperature, so the prior austenite grain size was large, and the low-temperature toughness was poor. No. In No. 19, the cooling rate immediately after bending was low, so that the bainite fraction was low and the low-temperature toughness was poor.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[実施例2]:表3に示す種々の鋼成分の
鋼管からベンド管を製造して、諸性質を調査した結果を
表4に示す。機械的性質は圧延と直角方向で調査した。
本発明例No.21〜No.26の第2発明ベンド管は、所
定の高い強度と良好な低温靭性を有する。これに対して
比較例No.27〜No.41のベンド管は、成分組成また
はミクロ組織が適切でなく、いずれかの特性が劣る。
Example 2 Bend pipes were manufactured from steel pipes of various steel components shown in Table 3 and the properties were investigated. Table 4 shows the results. The mechanical properties were investigated in the direction perpendicular to the rolling.
Invention Example No. 21 to No. The 26nd invention bend tube has predetermined high strength and good low-temperature toughness. In contrast, Comparative Example No. 27-No. The 41 bend tube is not suitable in component composition or microstructure, and is inferior in either property.

【0045】また本発明例No.21〜No.26は、第2
発明ベンド管の成分組成からなり、かつ本発明法の条件
を満たしているので、適切なミクロ組織を有し、所定の
高い強度と良好な低温靭性を有する。これに対して比較
例No.39〜No.41は、成分組成は適切だが本発明法
の条件から外れているので特性が劣る。
In the present invention example No. 21 to No. 26 is the second
Since it is composed of the component composition of the invention bend tube and satisfies the conditions of the method of the invention, it has an appropriate microstructure, and has a predetermined high strength and good low-temperature toughness. In contrast, Comparative Example No. 39-No. 41 has inferior properties because the component composition is appropriate but out of the conditions of the method of the present invention.

【0046】No.27はC量が多すぎるため、低温靭性
が悪い。No.28はMn量が少ないため低温靭性が悪
い。No.29はMn量が多すぎるため、低温靭性が悪
い。No.30はNi量が少ないため低温靭性が悪い。N
o.31はMo量が少ないため低温靭性が悪い。No.3
2はMo量が多すぎるため低温靭性が悪い。No.33は
B量が少ないため強度が低く、低温靭性が悪い。No.3
4はB量が多すぎるために低温靭性が悪い。No.35は
2 値が小さいためX100以上の強度が得られない。
No.36はP2 値が高すぎるため低温靭性が悪い。No.
37は旧オーステナイト粒径が大きいため低温靭性が悪
い。No.38はベイナイト分率が低いためX100以上
の強度を満足しない。
No. Sample No. 27 has too low a C content, so that the low-temperature toughness is poor. No. Sample No. 28 has a low low-temperature toughness due to a small amount of Mn. No. No. 29 has too low a Mn content, so that the low-temperature toughness is poor. No. No. 30 has low low temperature toughness due to low Ni content. N
o. No. 31 has low Mo toughness due to low Mo content. No. 3
No. 2 has a low Mo toughness because the Mo content is too large. No. No. 33 has low strength and low-temperature toughness due to low B content. No. 3
No. 4 has low temperature toughness due to too much B content. No. 35 can not be obtained X100 more strength for P 2 value is small.
No. 36 has poor low-temperature toughness for P 2 value is too high. No.
No. 37 has poor low-temperature toughness due to a large austenite grain size. No. No. 38 does not satisfy the strength of X100 or more because the bainite fraction is low.

【0047】No.39は曲げ加工時の加熱温度が低いた
め、旧オーステナイト粒径が大きくなり低温靭性が悪
い。No.40は同加熱温度が高いため、旧オーステナイ
ト粒径が大きくなり低温靭性が悪い。No.41は曲げ加
工直後の冷却速度が遅いため、ベイナイト分率が低下し
て低温靭性が悪い。
No. 39 has a low heating temperature at the time of bending, so that the prior austenite grain size is large and the low-temperature toughness is poor. No. In No. 40, since the heating temperature is high, the prior austenite grain size is large and the low-temperature toughness is poor. No. 41 has a low cooling rate immediately after bending, so that the bainite fraction decreases and the low-temperature toughness is poor.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【発明の効果】本発明ベンド管は、API規格でX10
0以上(降伏強さで約690N/mm2以上)の高強度を
有しかつ低温靭性に優れている。そして本発明法によ
り、このような高強度かつ高靭性のベンド管が安定して
製造できるようになった。その結果、パイプラインの安
全性が著しく向上するとともに、パイプラインの輸送効
率の向上が可能となった。
The bend pipe of the present invention has an API specification of X10.
It has high strength of 0 or more (yield strength of about 690 N / mm 2 or more) and excellent low-temperature toughness. According to the method of the present invention, such a high-strength and high-toughness bend pipe can be stably manufactured. As a result, the safety of the pipeline has been significantly improved, and the transportation efficiency of the pipeline has been improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/58 C22C 38/58 (72)発明者 丸山 直紀 神奈川県川崎市中原区井田3丁目35番1号 新日本製鐵株式会社技術開発本部内 (72)発明者 朝日 均 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/58 C22C 38/58 (72) Inventor Naoki Maruyama 3-35-1, Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Corporation (72) Inventor Hitoshi Asahi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Headquarters

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、 C :0.03〜0.10%、 Si:0.6%以下、 Mn:1.8〜2.5%、 P :0.015%以下、 S :0.003%以下、 Ni:0.20〜1.0%、 Mo:0.25〜0.60%、 Nb:0.01〜0.10%、 Ti:0.005〜0.030%、 Al:0.06%以下、 N :0.001〜0.006%、 O :0.005%以下 を含有し残部がFeおよび不可避的不純物からなり、か
つ下記(1)式で定義されるP1 値が2.5〜3.8の
範囲の成分組成であり、さらに平均粒径で10μm以下
のオーステナイトから変態したベイナイトを体積分率で
70%以上含有するミクロ組織を有していることを特徴
とする高強度高靭性ベンド管。 P1 =2.7C+0.4Si+Mn+0.8Cr +0.45(Ni+Cu)+Mo+V ・・・・・(1)
C: 0.03 to 0.10%, Si: 0.6% or less, Mn: 1.8 to 2.5%, P: 0.015% or less, S: 0.003% or less, Ni: 0.20 to 1.0%, Mo: 0.25 to 0.60%, Nb: 0.01 to 0.10%, Ti: 0.005 to 0.030%, Al: 0.06% or less, N: 0.001 to 0.006%, O: 0.005% or less, the balance being Fe and unavoidable impurities, and P defined by the following formula (1). 1 is a component composition in the range of 2.5 to 3.8, and further has a microstructure containing 70% or more by volume fraction of bainite transformed from austenite having an average particle size of 10 μm or less. High strength and high toughness bend tube. P 1 = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V (1)
【請求項2】 重量%にて、 C :0.03〜0.10%、 Si:0.6%以下、 Mn:1.7〜2.2%、 P :0.015%以下、 S :0.003%以下、 Ni:0.10〜1.0%、 Mo:0.15〜0.50%、 Nb:0.01〜0.10%、 Ti:0.005〜0.030%、 B :0.0003〜0.0020%、 Al:0.06%以下、 N :0.001〜0.006%、 O :0.005%以下 を含有し残部がFeおよび不可避的不純物からなり、か
つ下記(2)式で定義されるP2 値が2.5〜4.0の
範囲の成分組成であり、さらに平均粒径で10μm以下
のオーステナイトから変態したベイナイトを体積分率で
70%以上含有するミクロ組織を有していることを特徴
とする高強度高靭性ベンド管。 P2 =2.7C+0.4Si+Mn+0.8Cr +0.45(Ni+Cu)+2Mo ・・・・・(2)
2. In% by weight, C: 0.03 to 0.10%, Si: 0.6% or less, Mn: 1.7 to 2.2%, P: 0.015% or less, S: 0.003% or less, Ni: 0.10 to 1.0%, Mo: 0.15 to 0.50%, Nb: 0.01 to 0.10%, Ti: 0.005 to 0.030%, B: 0.0003% to 0.0020%, Al: 0.06% or less, N: 0.001% to 0.006%, O: 0.005% or less, with the balance being Fe and unavoidable impurities, and the following (2) P 2 value defined by formula of component composition in the range of 2.5 to 4.0, 70% more bainite that transformation from the austenite 10μm in average particle diameter at a volume fraction A high-strength, high-toughness bend pipe characterized by having a microstructure contained therein. P 2 = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo (2)
【請求項3】 重量%にてさらに、 Cu:0.1〜1.0%、 Cr:0.1〜1.0%、 V :0.01〜0.10%、 Ca:0.001〜0.005% のうち1種または2種以上を含有することを特徴とする
請求項1または2記載の高強度高靭性ベンド管。
3. In% by weight, Cu: 0.1 to 1.0%, Cr: 0.1 to 1.0%, V: 0.01 to 0.10%, Ca: 0.001 to The high-strength and high-toughness bend pipe according to claim 1 or 2, wherein one or more of 0.005% is contained.
【請求項4】 請求項1,2または3に記載された成分
組成からなる鋼管を、780〜950℃に加熱後、曲げ
加工し直ちに10℃/秒以上の冷却速度で水冷すること
を特徴とする高強度高靭性ベンド管の製造法。
4. A steel pipe having the composition described in claim 1, 2 or 3, which is heated to 780 to 950 ° C., bent, and immediately cooled with water at a cooling rate of 10 ° C./sec or more. To manufacture high strength and high toughness bend pipes.
JP34346897A 1997-12-12 1997-12-12 High strength and high toughness bend pipe and its manufacturing method Expired - Fee Related JP3466450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34346897A JP3466450B2 (en) 1997-12-12 1997-12-12 High strength and high toughness bend pipe and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34346897A JP3466450B2 (en) 1997-12-12 1997-12-12 High strength and high toughness bend pipe and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH11172374A true JPH11172374A (en) 1999-06-29
JP3466450B2 JP3466450B2 (en) 2003-11-10

Family

ID=18361766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34346897A Expired - Fee Related JP3466450B2 (en) 1997-12-12 1997-12-12 High strength and high toughness bend pipe and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3466450B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340990A (en) * 2000-03-31 2001-12-11 Kawasaki Steel Corp Tube stock of high strength thick-walled welded bend steel tube having superior toughness at welded portion
WO2005061749A3 (en) * 2003-12-19 2006-08-10 Nippon Steel Corp Steel plates for ultra-high-strength linepipes and ultra-high-strength linepipes having excellent low-temperature toughness and manufacturing methods thereof
WO2008054166A1 (en) * 2006-11-02 2008-05-08 Posco Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
JP2011067871A (en) * 2000-03-31 2011-04-07 Jfe Steel Corp Tube stock for high strength thick-walled welded bend steel tube having superior toughness at welded portion and method for manufacturing the same
WO2011096510A1 (en) * 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
JP2015218360A (en) * 2014-05-16 2015-12-07 新日鐵住金株式会社 Rolled steel and production method therefor
JP2018087382A (en) * 2018-01-26 2018-06-07 新日鐵住金株式会社 Rolled steel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340990A (en) * 2000-03-31 2001-12-11 Kawasaki Steel Corp Tube stock of high strength thick-walled welded bend steel tube having superior toughness at welded portion
JP4649753B2 (en) * 2000-03-31 2011-03-16 Jfeスチール株式会社 Elementary pipe for high strength thick welded bend steel pipe with excellent weld toughness and method for manufacturing the same
JP2011067871A (en) * 2000-03-31 2011-04-07 Jfe Steel Corp Tube stock for high strength thick-walled welded bend steel tube having superior toughness at welded portion and method for manufacturing the same
WO2005061749A3 (en) * 2003-12-19 2006-08-10 Nippon Steel Corp Steel plates for ultra-high-strength linepipes and ultra-high-strength linepipes having excellent low-temperature toughness and manufacturing methods thereof
US7736447B2 (en) 2003-12-19 2010-06-15 Nippon Steel Corporation Steel plates for ultra-high-strength linepipes and ultra-high-strength linepipes having excellent low-temperature toughness and manufacturing methods thereof
WO2008054166A1 (en) * 2006-11-02 2008-05-08 Posco Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
WO2011096510A1 (en) * 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
JP4837807B2 (en) * 2010-02-04 2011-12-14 新日本製鐵株式会社 High strength welded steel pipe and manufacturing method thereof
RU2509171C1 (en) * 2010-02-04 2014-03-10 Ниппон Стил Корпорейшн High-strength welded steel pipe and method of its production
US8974610B2 (en) 2010-02-04 2015-03-10 Nippon Steel & Sumitomo Metal Corporation High-strength welded steel pipe and method for producing the same
JP2015218360A (en) * 2014-05-16 2015-12-07 新日鐵住金株式会社 Rolled steel and production method therefor
JP2018087382A (en) * 2018-01-26 2018-06-07 新日鐵住金株式会社 Rolled steel

Also Published As

Publication number Publication date
JP3466450B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP2003306749A (en) Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JP2002129288A (en) High strength pipe bend and its manufacturing method
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
JPH05195057A (en) Production of high cr steel type uoe steel sheet and high cr type atmosphere corrosion resisting steel sheet both excellent in ys characteristic in l direction
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JP4133566B2 (en) Manufacturing method of high strength bend pipe with excellent low temperature toughness
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP3745722B2 (en) Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness
JP3466451B2 (en) High-strength bend pipe with excellent toughness of weld metal and method of manufacturing the same
JP4369555B2 (en) High strength steel pipes and pipelines with excellent weld toughness
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPH09316534A (en) Production of high strength steel excellent in toughness at low temperature and having weldability
JPH11172330A (en) Production of high strength steel plate excellent in toughness at low temperature

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030729

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees