JP3274013B2 - Method for producing sour resistant high strength steel sheet having excellent low temperature toughness - Google Patents

Method for producing sour resistant high strength steel sheet having excellent low temperature toughness

Info

Publication number
JP3274013B2
JP3274013B2 JP03463794A JP3463794A JP3274013B2 JP 3274013 B2 JP3274013 B2 JP 3274013B2 JP 03463794 A JP03463794 A JP 03463794A JP 3463794 A JP3463794 A JP 3463794A JP 3274013 B2 JP3274013 B2 JP 3274013B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
less
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03463794A
Other languages
Japanese (ja)
Other versions
JPH07242944A (en
Inventor
明彦 児島
好男 寺田
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12419937&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3274013(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP03463794A priority Critical patent/JP3274013B2/en
Publication of JPH07242944A publication Critical patent/JPH07242944A/en
Application granted granted Critical
Publication of JP3274013B2 publication Critical patent/JP3274013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は優れた低温靭性を有する
耐サワー高強度ラインパイプ用鋼板(米国石油協会(A
PI)規格X60以上の強度、板厚15mm以上)の製造
方法に関するものであり、鉄鋼業において厚板ミルに適
用することが望ましい。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sour-resistant high-strength linepipe steel sheet having excellent low-temperature toughness.
(PI) strength of X60 or more, plate thickness of 15 mm or more), and is desirably applied to a thick plate mill in the steel industry.

【0002】[0002]

【従来の技術】寒冷地、オフショアーにおける原油、天
然ガス輸送用大径ラインパイプに対しては、高強度と優
れた低温靭性および現地溶接性が要求される。さらに最
近は、海水の注入による原油・ガス井戸のサワー化や劣
悪資源の開発に伴うパイプラインのサワー化が進行し、
耐水素誘起割れ性が求められるようになった。従来、優
れた耐水素誘起割れ性は、鋼の高純度・高清浄度化、
硫化物系介在物のCa添加による形態制御、連続鋳
造時の軽圧下による中心偏析の低減、加速冷却による
中心偏析部のミクロ組織の改善、などの技術を駆使して
達成されてきた(例えば特公昭63−001369号公
報、特開昭62−112722号公報)。特に、加速冷
却の適用は中心偏析部を含むミクロ組織を改善し、耐水
素誘起割れ性の向上に非常に有効な手段である。この時
Ar3 (変態開始温度)以上の温度からの加速冷却が必
須であるため、圧延終了温度は必然的にAr3 以上に規
制される。このような圧延終了温度の制限のもとで優れ
た低温靭性と高強度を同時に満足するためには、圧延方
法の最適化をはかることが重要である。制御圧延におけ
るオーステナイト未再結晶域での圧延は、オーステナイ
ト粒の延伸化と粒内への変形帯の積極的な導入によって
フェライト核生成サイトを増加させ、変態後のフェライ
ト粒を微細化させることから、低温靭性および強度の向
上に極めて有効である。オーステナイト未再結晶域での
圧延においてフェライト核生成サイトの増加をはかる方
法として、例えばProceedings of Microalloying 75
(1975),p120で公知のように累積圧下量を増加させるこ
と、例えば鉄と鋼60(1974) 11,S557で公知のように圧
延温度の低温化をはかること、が有効である。従ってフ
ェライト粒の微細化には、Ar3 直上のオーステナイト
極低温域での等温的な圧延によって累積圧下量を大きく
することが望ましい。
2. Description of the Related Art Large diameter line pipes for transporting crude oil and natural gas in cold regions and offshore are required to have high strength, excellent low-temperature toughness and on-site weldability. More recently, sourcing of oil and gas wells by injecting seawater and sourcing of pipelines due to the development of poor resources have progressed.
Hydrogen-induced cracking resistance has been required. Conventionally, excellent hydrogen-induced cracking resistance has been achieved by improving the purity and purity of steel,
It has been achieved by making full use of technologies such as morphological control by adding Ca to sulfide-based inclusions, reduction of central segregation under light pressure during continuous casting, and improvement of the microstructure of the central segregation part by accelerated cooling (for example, JP-B-63-001369, JP-A-62-112722). In particular, the application of accelerated cooling is a very effective means for improving the microstructure including the center segregation and improving the resistance to hydrogen-induced cracking. At this time, since accelerated cooling from a temperature higher than Ar 3 (transformation start temperature) is essential, the rolling end temperature is necessarily restricted to Ar 3 or higher. In order to simultaneously satisfy excellent low-temperature toughness and high strength under such a limitation of the rolling end temperature, it is important to optimize the rolling method. Rolling in the austenite non-recrystallized region in controlled rolling increases ferrite nucleation sites by elongating austenite grains and actively introducing deformation bands into grains, thereby reducing ferrite grains after transformation. It is extremely effective for improving low-temperature toughness and strength. As a method of increasing the number of ferrite nucleation sites in rolling in the austenite unrecrystallized region, for example, Proceedings of Microalloying 75
(1975), it is effective to increase the cumulative rolling reduction as known in p120, for example, to reduce the rolling temperature as known in Iron and Steel 60 (1974) 11, S557. Therefore, in order to refine the ferrite grains, it is desirable to increase the cumulative rolling reduction by isothermal rolling in the austenite extremely low temperature region just above Ar 3 .

【0003】一般的な厚板ミルにおける1パス当りの圧
下率は大きくても高々15%程度であり、このような従
来の圧延では圧延中に鋼板温度の降下が大きくなるた
め、外部から鋼板を加熱することなしにAr3 直上の狭
い温度範囲内で強度の圧延をすることは困難であった。
例えば特開昭63−050426号公報では圧延温度域
としてAr3 〜Ar3 +150℃のように150℃の温
度範囲を規定している。従って、従来の圧延ではAr3
直上のオーステナイト極低温域での累積圧下量を十分大
きくとれないため、フェライト粒の微細化に限界があ
り、耐サワー高強度鋼板において優れた低温靭性を得る
ことが困難であった。
[0003] In a general plate mill, the rolling reduction per pass is at most about 15% at most. In such conventional rolling, the temperature drop of the steel sheet becomes large during rolling. It was difficult to perform high-strength rolling in a narrow temperature range just above Ar 3 without heating.
For example, Japanese Patent Application Laid-Open No. 63-050426 defines a rolling temperature range of 150 ° C. such as Ar 3 to Ar 3 + 150 ° C. Therefore, in the conventional rolling, Ar 3
Since the amount of cumulative reduction in the very low temperature region of austenite immediately above cannot be sufficiently large, there is a limit to the refinement of ferrite grains, and it has been difficult to obtain excellent low-temperature toughness in a sour-resistant high-strength steel sheet.

【0004】[0004]

【発明が解決しようとする課題】本発明は、優れた低温
靭性と耐水素誘起割れ性を有するAPI5L−X60以
上の高強度鋼板の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a method for producing a high-strength steel sheet of API5L-X60 or higher having excellent low-temperature toughness and resistance to hydrogen-induced cracking.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、重量%
でC:0.02〜0.12%、Si:0.6%以下、M
n:0.6〜1.5%、P:0.015%以下、S:
0.001%以下、Al:0.06%以下、Ti:0.
005〜0.03%、Nb:0.01〜0.1%、C
a:0.001〜0.005%、N:0.001〜0.
005%、O:0.003%以下を含有し、かつ 0.5≦〔Ca〕(1−124〔O〕)/1.25〔S〕≦7.0 を満足し、さらに必要に応じてNi:0.5%以下、C
r:0.5%未満、Mo:0.5%以下、Cu:0.5
%以下、V:0.1%以下のうち1種以上を含有する残
部が鉄および不可避的不純物からなる鋼を、1000〜
1300℃の温度範囲に加熱後、950℃以上での累積
圧下量が30%以上とし、続いてAr3 〜Ar3 +10
0℃での累積圧下量が60%以上で、かつ全パス回数の
60%以上は1パス当りの圧下率が15%以上である圧
延を行った後、Ar3 以上の温度から5〜40℃/秒の
冷却速度で350〜550℃まで加速冷却し、その後放
冷することである。
Means for Solving the Problems The gist of the present invention is that the weight%
C: 0.02 to 0.12%, Si: 0.6% or less, M
n: 0.6 to 1.5%, P: 0.015% or less, S:
0.001% or less, Al: 0.06% or less, Ti: 0.
005-0.03%, Nb: 0.01-0.1%, C
a: 0.001 to 0.005%, N: 0.001 to 0.
005%, O: 0.003% or less, and 0.5 ≦ [Ca] (1-124 [O]) / 1.25 [S] ≦ 7.0, and if necessary Ni: 0.5% or less, C
r: less than 0.5%, Mo: 0.5% or less, Cu: 0.5
%, V: 0.1% or less of steel containing at least one of iron and unavoidable impurities.
After heating to a temperature range of 1300 ° C., the cumulative reduction at 950 ° C. or more was made 30% or more, and then Ar 3 to Ar 3 +10
After rolling at 60 ° C. or more at 0 ° C. and rolling at a rolling reduction of 15% or more per pass for 60% or more of the total number of passes, 5 to 40 ° C. from a temperature of Ar 3 or more. Accelerated cooling to a temperature of 350 to 550 ° C. at a cooling rate of / sec, and then allowed to cool.

【0006】以下、本発明について詳細に説明する。優
れた耐水素誘起割れ性、低温靭性、強度および現地溶接
性を同時に達成するためには、鋼の化学成分および製造
方法を最適化しなければならない。化学成分について
は、耐水素誘起割れ性の観点からスラブに中心偏析しや
すいC,Mn,Pを低減し、さらに極低S化およびCa
添加によって硫化物系介在物の低減および形態制御を行
う必要がある。製造方法については、制御圧延における
オーステナイト再結晶域圧延によって再結晶オーステナ
イト粒を均一に細粒化し、続くオーステナイト未再結晶
域圧延によってオーステナイト粒を延伸化するとともに
粒内へ変形帯を導入してフェライト核生成サイトを増加
させ、圧延後Ar3 以上からの加速冷却によって中心偏
析部を含むミクロ組織を改善し高強度化をはかる必要が
ある。
Hereinafter, the present invention will be described in detail. In order to simultaneously achieve excellent hydrogen-induced cracking resistance, low-temperature toughness, strength and field weldability, the chemical composition of steel and the production method must be optimized. As for the chemical components, C, Mn, and P, which are likely to be segregated in the center of the slab from the viewpoint of resistance to hydrogen-induced cracking, are reduced.
It is necessary to reduce sulfide inclusions and control morphology by addition. Regarding the manufacturing method, the austenite recrystallization zone rolling in controlled rolling uniformly refines the recrystallized austenite grains, and the subsequent austenite non-recrystallization zone rolling elongates the austenite grains and introduces a deformation zone into the grains. It is necessary to increase the number of nucleation sites, improve the microstructure including the center segregation portion by accelerated cooling from Ar 3 or more after rolling, and increase the strength.

【0007】本発明の技術的思想は、オーステナイト未
再結晶域での圧延において1パス当りの圧下率を利用し
て圧延温度を制御することにより、Ar3 直上のオース
テナイト極低温域で強度の圧延を行い、フェライト核生
成サイトを著しく増加させてフェライト粒を極限まで微
細化し、優れた低温靭性を有する耐サワー高強度鋼板を
製造することにある。950℃未満のオーステナイト未
再結晶域における圧延温度と1パス当りの圧下率との関
連について発明者らが鋭意検討した結果、図1に示すよ
うに1パス当りの圧下率を15%以上に増加させること
で、圧延中の鋼板温度の降下が著しく小さくなり、10
0℃以内の狭い温度範囲内での圧延が可能であることが
明らかとなった。
[0007] The technical idea of the present invention is to control the rolling temperature by using the rolling reduction per pass in the rolling in the austenite non-recrystallized region, so that the strength is reduced in the austenite cryogenic region just above Ar 3. To significantly increase the number of ferrite nucleation sites and refine the ferrite grains to the limit, thereby producing a sour-resistant high-strength steel sheet having excellent low-temperature toughness. As a result of extensive studies by the inventors on the relationship between the rolling temperature and the rolling reduction per pass in the austenite non-recrystallized region below 950 ° C., the rolling reduction per pass was increased to 15% or more as shown in FIG. As a result, the temperature drop of the steel sheet during rolling is significantly reduced,
It became clear that rolling in a narrow temperature range of 0 ° C. or less was possible.

【0008】このような温度降下の小さい圧延が可能と
なる理由は、パス回数の減少によるロール抜熱量の減
少、加工発熱量の増加、などである。発明者らはこの
ような温度降下の小さい圧延を利用して、Ar3 〜Ar
3 +100℃のオーステナイト極低温域の狭い温度範囲
内で累積圧下量が60%以上となるような強度の圧延を
行うことにより、極めて微細なフェライト粒を得る方法
を発明した。
[0008] The reason why such rolling with a small temperature drop becomes possible is that the amount of heat removed from the roll due to the decrease in the number of passes and the amount of heat generated during processing increase. We used a small rolling of such temperature drop, Ar 3 to Ar
The present inventors have invented a method for obtaining extremely fine ferrite grains by performing rolling at a strength such that the cumulative rolling reduction is 60% or more within a narrow temperature range of austenite extremely low temperature range of 3 + 100 ° C.

【0009】以下、化学成分の限定理由について説明す
る。C量はX60以上の高強度鋼では必然的に多くなる
が、C量の増加はスラブの中心偏析におけるMnやPの
偏析を強めて耐水素誘起割れ性を著しく劣化させるた
め、上限を0.12%とした。下限は強度・低温靭性を
確保するため0.02%とした。Mn,P量は中心偏析
を軽減して耐水素誘起割れ性を確保するため、上限をそ
れぞれ1.5%、0.010%とした。Mn量の下限は
母材および溶接部の強度・低温靭性を確保するため0.
6%とした。一方、P量は少ないほど耐水素誘起割れ性
が向上する。
The reasons for limiting the chemical components will be described below. Although the C content inevitably increases in high-strength steels of X60 or more, an increase in the C content strengthens the segregation of Mn and P in the center segregation of the slab and significantly deteriorates the resistance to hydrogen-induced cracking. It was 12%. The lower limit is set to 0.02% to ensure strength and low-temperature toughness. The upper limits of the amounts of Mn and P are set to 1.5% and 0.010%, respectively, in order to reduce center segregation and secure resistance to hydrogen-induced cracking. The lower limit of the Mn content is set at 0. 0 to ensure the strength and low-temperature toughness of the base metal and the welded portion.
6%. On the other hand, the smaller the amount of P, the better the resistance to hydrogen-induced cracking.

【0010】Nb,Tiは本発明鋼に必須の元素であ
る。Nbは制御圧延におけるオーステナイト組織の微細
化や析出強化に寄与して鋼を強靭化する。Tiは微細な
TiNを形成し、スラブ加熱時および溶接時の加熱オー
ステナイト粒の粗大化を抑制し、母材靭性およびHAZ
靭性を改善する。Nb,Ti量の下限はこれらの元素が
その効果を発揮するための最小量であり、その上限はH
AZ靭性や現地溶接性を劣化させない添加量の限界であ
る。
[0010] Nb and Ti are essential elements in the steel of the present invention. Nb contributes to refinement of austenite structure and precipitation strengthening in controlled rolling, and strengthens steel. Ti forms fine TiN, suppresses coarsening of heated austenite grains during slab heating and welding, and improves base material toughness and HAZ.
Improve toughness. The lower limit of the amount of Nb and Ti is the minimum amount for these elements to exhibit their effects, and the upper limit is H.
This is the limit of the amount of addition that does not deteriorate the AZ toughness or the on-site weldability.

【0011】Siは多く添加すると現地溶接性、HAZ
靭性を劣化させるため、その上限を0.6%とした。鋼
の脱酸はAl,Tiのみでも十分であり、Siは必ずし
も添加する必要はない。本発明鋼においては不純物であ
るSを0.001%以下とし、かつCaを添加して、
0.5≦〔Ca〕(1−124〔O〕)/1.25
〔S〕≦7.0とする。SはMnS系介在物を形成し、
MnSは圧延で伸長してHICの発生起点となる。これ
を防止するには、介在物の絶対量を低減するとともに、
硫化物の形態を制御して圧延で延伸化し難いCaS(−
O)としなければならない。そこでS量を0.001%
以下とし、Ca量を0.001〜0.005%添加し、
Caによる硫化物の形態制御を十分に行うため、ESS
P=〔Ca〕(1−124〔O〕)/1.25〔S〕≧
0.5とした。しかしESSPが大きすぎると、Ca系
介在物が増加、HICの発生起点となるので、その上限
を7.0とした。
When a large amount of Si is added, on-site weldability, HAZ
In order to deteriorate toughness, the upper limit was set to 0.6%. Al and Ti alone are sufficient for deoxidizing steel, and Si need not always be added. In the steel of the present invention, the content of S, which is an impurity, is set to 0.001% or less, and Ca is added.
0.5 ≦ [Ca] (1-124 [O]) / 1.25
[S] ≦ 7.0. S forms MnS-based inclusions,
MnS elongates by rolling and becomes a starting point of HIC. To prevent this, while reducing the absolute amount of inclusions,
By controlling the sulfide morphology, CaS (-
O). Therefore, the amount of S is 0.001%
The following, the amount of Ca is added 0.001 to 0.005%,
In order to sufficiently control the sulfide morphology by Ca, ESS
P = [Ca] (1-124 [O]) / 1.25 [S] ≧
0.5. However, if the ESSP is too large, Ca-based inclusions increase and become a starting point of HIC. Therefore, the upper limit was set to 7.0.

【0012】上記に関連してO量を0.003%以下に
限定した。これはHICの起点となる酸化物系介在物を
低減し、Ca量で硫化物の形態制御を行うためである。
Alは脱酸元素として鋼に含まれる元素であるが、脱酸
はTiあるいはSiでも可能であり、必ずしも添加する
必要はない。Al量が0.06%以上になるとAl系非
金属介在物が増加して鋼の清浄度を害するので、その上
限を0.06%とした。
In relation to the above, the amount of O is limited to 0.003% or less. This is for reducing the oxide-based inclusions that are the starting points of HIC and controlling the sulfide morphology with the amount of Ca.
Al is an element contained in steel as a deoxidizing element, but deoxidizing is also possible with Ti or Si, and it is not always necessary to add it. When the amount of Al is 0.06% or more, Al-based nonmetallic inclusions increase and impair the cleanliness of the steel. Therefore, the upper limit is set to 0.06%.

【0013】次に選択元素であるNi,Mo,Cr,C
u,Vを添加する理由について説明する。基本となる成
分にさらにこれらの元素を添加する主な目的は、本発明
鋼の優れた特徴を損なうことなく強度、靭性などの特性
の向上をはかるためである。従って、その添加量は自ら
制限されるべき性質のものである。Niは溶接性および
HAZ靭性に悪影響を及ぼすことなく母材の強度、靭性
を向上させるが、過剰な添加は溶接性に好ましくないた
め上限を0.5%とした。
Next, the selected elements Ni, Mo, Cr, C
The reason for adding u and V will be described. The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the addition amount thereof is Ru der of a nature to be itself limited. Ni improves the strength and toughness of the base material without adversely affecting the weldability and HAZ toughness, but the upper limit is set to 0.5% because excessive addition is not preferable for the weldability.

【0014】Moは母材の強度、靭性をともに向上させ
るが、過剰な添加は母材およびHAZの靭性、溶接性の
劣化を招くため、上限を0.5%とした。CrはCCス
ラブにおいて中心偏析し難く、かつ母材の強度を向上さ
せるが、過剰な添加は母材およびHAZの靭性、溶接性
を劣化させるため、上限を0.5%とした。CuはNi
とほぼ同様の効果を有するが、過剰な添加は熱間圧延時
にCu−クラックを発生し製造が困難となるため、上限
を0.5%とした。VはNbとほぼ同様な効果を有し、
ミクロ組織の微細化による靭性の向上や、焼入れ性の増
大、析出硬化による強度の向上を可能とする。しかし、
過剰な添加はHAZ靭性、溶接性の劣化を招くため、上
限を0.1%とした。
Mo improves both the strength and the toughness of the base material, but an excessive addition causes deterioration of the toughness and weldability of the base material and HAZ, so the upper limit was made 0.5%. Cr does not easily segregate in the center of the CC slab and improves the strength of the base material, but excessive addition deteriorates the toughness and weldability of the base material and HAZ, so the upper limit was made 0.5%. Cu is Ni
The effect is almost the same as that described above, but excessive addition generates Cu-cracks during hot rolling and makes production difficult, so the upper limit was made 0.5%. V has almost the same effect as Nb,
It enables toughness to be improved by microstructural refinement, hardenability to be increased, and strength to be improved by precipitation hardening. But,
Excessive addition causes deterioration of HAZ toughness and weldability, so the upper limit was made 0.1%.

【0015】次に製造方法の限定理由について述べる。
鋼(スラブ)の加熱温度は1000〜1300℃としな
ければならない。これはNbを十分に固溶させると同時
に加熱オーステナイト粒の粗大化を抑制するためであ
る。加熱温度が1000℃未満ではNbが十分に固溶し
ないため、圧延によるオーステナイト組織の微細化やN
bによる析出強化が不十分となって低温靭性および強度
が劣化する。加熱温度が1300℃を超える場合、加熱
オーステナイト粒が粗大化してしまい、フェライト粒が
十分に微細化されずに低温靭性が劣化してしまう。望ま
しい加熱温度は1150〜1250℃である。
Next, the reasons for limiting the manufacturing method will be described.
The heating temperature of the steel (slab) must be 1000-1300 ° C. This is because Nb is sufficiently dissolved to form a solid solution, and at the same time, coarsening of the heated austenite grains is suppressed. If the heating temperature is lower than 1000 ° C., Nb does not form a solid solution sufficiently, so
The precipitation strengthening by b becomes insufficient, and the low-temperature toughness and strength deteriorate. When the heating temperature exceeds 1300 ° C., the heated austenite grains become coarse, and the ferrite grains are not sufficiently refined, and the low-temperature toughness deteriorates. Desirable heating temperature is 1150-1250 ° C.

【0016】950℃以上での圧延において累積圧下量
を30%以上としなければならない。これは、オーステ
ナイト再結晶域での圧延によって均一で細粒なオーステ
ナイト粒を得るためである。950℃以上での圧延にお
いてはオーステナイト粒はほぼ完全に再結晶する。95
0℃以上での累積圧下量が30%未満であると再結晶に
よる細粒化が不十分となり、一部粗大な再結晶粒のまま
オーステナイト未再結晶域での圧延が行われるため、粗
大なフェライト粒を含む混粒組織が形成されて低温靭性
が劣化してしまう。
In rolling at 950 ° C. or higher, the cumulative rolling reduction must be 30% or higher. This is because uniform and fine austenite grains are obtained by rolling in the austenite recrystallization region. In rolling at 950 ° C. or higher, austenite grains are almost completely recrystallized. 95
If the cumulative rolling reduction at 0 ° C. or more is less than 30%, refining by recrystallization becomes insufficient, and rolling is performed in the austenite unrecrystallized region with some coarse recrystallized grains. A mixed grain structure containing ferrite grains is formed, and the low-temperature toughness deteriorates.

【0017】続いて、Ar3 〜Ar3 +100℃での累
積圧下量が60%以上で、かつ全パス回数の60%以上
は1パス当りの圧下率が15%以上である圧延を行わな
ければならない。これは本発明の特徴であり、Ar3
上での強度の圧延によってオーステナイト粒のフェライ
ト核生成サイトを著しく増加させ、フェライト粒を極限
まで微細化するための新しい方法である。図2に平均の
フェライト粒径に及ぼすAr3 〜Ar3 +100℃での
累積圧下量の影響を示す。Ar3 〜Ar3 +100℃で
の累積圧下量が60%未満であるとフェライト核生成サ
イトの形成が不十分となり、フェライト粒が十分に微細
化しない。
Subsequently, rolling must be performed in which the cumulative rolling reduction at Ar 3 to Ar 3 + 100 ° C. is 60% or more, and the rolling reduction per pass is 15% or more for 60% or more of the total number of passes. No. This is a feature of the present invention, and is a new method for remarkably increasing the number of ferrite nucleation sites of austenite grains by rolling the strength just above Ar 3 and reducing the size of the ferrite grains to the limit. FIG. 2 shows the effect of the cumulative reduction at Ar 3 to Ar 3 + 100 ° C. on the average ferrite grain size. If the cumulative reduction at Ar 3 to Ar 3 + 100 ° C. is less than 60%, the formation of ferrite nucleation sites becomes insufficient, and the ferrite grains are not sufficiently refined.

【0018】圧延温度がAr3 未満になると変態の進行
に伴って中心偏析部へCの濃化が起こり、圧延後に加速
冷却を適用しても中心偏析部に硬化組織が形成されて耐
水素誘起割れ性が劣化する。1パス当りの圧下率が15
%以上となるパス回数の割合が60%未満であると、圧
延中の鋼板温度の降下が大きくなり、Ar3 〜Ar3
100℃での累積圧下量が60%以上となる強度の圧延
ができない。
When the rolling temperature is lower than Ar 3 , C is concentrated in the central segregation part as the transformation progresses, and even if accelerated cooling is applied after rolling, a hardened structure is formed in the central segregation part and hydrogen resistance is induced. Cracking property deteriorates. Reduction rate per pass is 15
% Is less than 60%, the temperature drop of the steel sheet during rolling becomes large, and Ar 3 to Ar 3 +
Rolling with a strength at which the cumulative rolling reduction at 100 ° C. becomes 60% or more cannot be performed.

【0019】圧延後はAr3 以上の温度から5〜40℃
/秒の冷却速度で350〜550℃まで加速冷却し、そ
の後放冷しなければならない。加速冷却は中心偏析部を
含むミクロ組織を改善して耐水素誘起割れ性を向上させ
るとともに、低温靭性を損なわずに高強度化を可能とす
る。冷却開始温度がAr3 未満であったり、冷却速度が
5℃/秒未満であったり、冷却停止温度が550℃を超
えたりすると、変態の進行に伴う中心偏析部へのCの濃
化によって硬化組織が形成され耐水素誘起割れ性が劣化
する。一方、冷却速度が40℃/秒を超えたり、水冷停
止温度が350℃未満であったりすると、低温変態生成
物が形成されて耐水素誘起割れ性および低温靭性が劣化
する。
After rolling, a temperature of 5 to 40 ° C. from a temperature of Ar 3 or more
It must be accelerated and cooled at a cooling rate of 350/550 ° C./sec, and then allowed to cool. Accelerated cooling improves the microstructure including the central segregation to improve the resistance to hydrogen-induced cracking, and also enables high strength without impairing the low-temperature toughness. If the cooling start temperature is lower than Ar 3 , the cooling rate is lower than 5 ° C./sec, or the cooling stop temperature is higher than 550 ° C., the carbon is hardened by enrichment of C in the central segregation part as the transformation proceeds. A structure is formed, and the resistance to hydrogen-induced cracking deteriorates. On the other hand, if the cooling rate exceeds 40 ° C./sec or the water cooling stop temperature is less than 350 ° C., low-temperature transformation products are formed, and the hydrogen-induced cracking resistance and low-temperature toughness deteriorate.

【0020】なお、本鋼板をAc1 以下の温度に焼戻し
処理することは何ら本発明鋼の特性を損なうものではな
い。また、省エネルギーなどを目的としてCCスラブを
加熱炉にホットチャージして圧延してもよい。本発明鋼
は寒冷地における耐サワーラインパイプの他、耐サワー
圧力容器としても適用できる。
It should be noted that tempering the steel sheet to a temperature equal to or lower than Ac 1 does not impair the properties of the steel sheet of the present invention. Further, the CC slab may be hot-charged into a heating furnace and rolled for energy saving and the like. The steel of the present invention can be applied not only to a sour resistant line pipe in a cold region but also to a sour resistant pressure vessel.

【0021】[0021]

【実施例】表1に鋼片の化学成分を示す。表2に鋼板の
製造条件を示す。表3に鋼板の機械的性質および耐水素
誘起割れ性を示す。
EXAMPLES Table 1 shows the chemical composition of the billet. Table 2 shows the manufacturing conditions of the steel sheet. Table 3 shows the mechanical properties and the resistance to hydrogen-induced cracking of the steel sheet.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】表1,表2,表3中の鋼1〜6は本発明鋼
であり、鋼7〜25は比較鋼である。本発明鋼は、AP
I5L−X60以上の高強度を有し、かつ優れた低温靭
性(vTrs≦−140℃、BDWTT85% She
ar FATT≦−50℃)とNACE溶液での優れた
耐水素誘起割れ性(CAR=0%)を有する。一方、比
較鋼は化学成分あるいは圧延方法が適当でないために強
度、低温靭性、耐水素誘起割れ性の何れかが劣る。鋼
7,8,9はそれぞれC量,Mn量,P量が多すぎるた
め、中心偏析部に硬化組織が形成され耐水素誘起割れ性
が劣っている。
Steels 1 to 6 in Tables 1, 2 and 3 are steels of the present invention, and steels 7 to 25 are comparative steels. The steel of the present invention has an AP
It has high strength of I5L-X60 or more and excellent low-temperature toughness (vTrs ≦ −140 ° C., BDWTT 85% She)
ar FATT ≦ −50 ° C.) and excellent hydrogen-induced cracking resistance (CAR = 0%) in a NACE solution. On the other hand, the comparative steel is inferior in strength, low-temperature toughness, or resistance to hydrogen-induced cracking due to an inappropriate chemical composition or rolling method. Steels 7, 8, and 9 each have too much C, Mn, and P contents, so that a hardened structure is formed at the center segregation portion, and the resistance to hydrogen-induced cracking is poor.

【0027】鋼10は、S量が多すぎるためにESSP
(=〔Ca〕(1−124〔O〕)/1.25〔S〕)
が0.5未満となり、硫化物系介在物の形態制御が不十
分となって耐水素誘起割れ性が劣っている。鋼11はN
b量が少なすぎるために圧延によるオーステナイト組織
の微細化とNbによる析出強化が不十分となり、低温靭
性および強度が劣っている。鋼12はCa量が少なすぎ
るために硫化物系介在物の形態制御が不十分となり、耐
水素誘起割れ性が劣っている。鋼13はTi量が少なす
ぎるためにTiNによる加熱オーステナイト粒の成長抑
制が不十分となり、加熱オーステナイト粒の粗大化によ
ってフェライト粒が十分に微細化されず、低温靭性が劣
っている。
[0027] Steel 10 has an ESP
(= [Ca] (1-124 [O]) / 1.25 [S])
Is less than 0.5, the morphological control of the sulfide-based inclusions is insufficient, and the hydrogen-induced cracking resistance is poor. Steel 11 is N
Since the amount of b is too small, refinement of the austenite structure by rolling and precipitation strengthening by Nb become insufficient, and the low-temperature toughness and strength are inferior. Since the amount of Ca is too small in the steel 12, the morphological control of the sulfide-based inclusions is insufficient, and the hydrogen-induced cracking resistance is poor. In Steel 13, the amount of Ti is too small, so that the suppression of the growth of heated austenite grains by TiN becomes insufficient, and the ferrite grains are not sufficiently refined due to the coarsening of the heated austenite grains, resulting in poor low-temperature toughness.

【0028】鋼14は、加熱温度が1000℃未満であ
るため、加熱時の固溶Nb量が少なく、圧延によるオー
ステナイト粒の微細化およびNbによる析出強化が不十
分となり、低温靭性および強度が劣っている。鋼15は
加熱温度が1300℃を超えるため、加熱オーステナイ
ト粒が粗大化してしまい、フェライト粒が十分に微細化
されず低温靭性が劣っている。鋼16は950℃以上の
圧延での累積圧下量が30%未満であるため、再結晶に
よるオーステナイト粒の細粒化が不十分であり、フェラ
イト粒が混粒となって低温靭性が劣っている。鋼17は
950℃未満での圧延開始温度が高すぎるため、Ar3
〜Ar3 +100℃での累積圧下量が60%未満となっ
てしまい、フェライト粒が十分に微細化されず低温靭性
が劣っている。
Since the heating temperature of steel 14 is lower than 1000 ° C., the amount of solute Nb during heating is small, the austenite grains are not refined by rolling and the precipitation strengthening by Nb is insufficient, and the low-temperature toughness and strength are poor. ing. Since the heating temperature of steel 15 exceeds 1300 ° C., the heated austenite grains are coarsened, and the ferrite grains are not sufficiently refined, and the low-temperature toughness is poor. Since the cumulative reduction in rolling at 950 ° C. or more is less than 30%, the austenite grains are not sufficiently refined by recrystallization, and ferrite grains are mixed to deteriorate the low-temperature toughness. . Since the rolling start temperature of steel 17 at a temperature lower than 950 ° C. is too high, Ar 3
Cumulative reduction ratio in to Ar 3 + 100 ° C. is becomes less than 60%, the ferrite grains have poor low-temperature toughness is not sufficiently fine.

【0029】鋼18は、950℃未満での圧延開始温度
が低すぎるために、圧延終了温度がAr3 未満となり、
中心偏析部のミクロ組織が改善されず耐水素誘起割れ性
が劣っている。鋼19は950℃未満の圧延において1
パス当りの圧下率が15%以上となるパス回数の割合が
60%未満であるため、Ar3 〜Ar3 +100℃での
累積圧下量が60%未満となり、フェライト粒が十分に
微細化されずに低温靭性が劣っている。鋼20は950
℃以下の圧延において1パス当りの圧下率が15%以上
となるパス回数の割合が60%未満であるため、Ar3
〜Ar3 +100℃での累積圧下量が60%未満となる
とともに圧延終了温度がAr3 未満となってしまい、フ
ェライト粒の微細化および中心偏析部のミクロ組織の改
善が不十分となって低温靭性および耐水素誘起割れ性が
劣っている。
Since the rolling start temperature of steel 18 at a temperature lower than 950 ° C. is too low, the rolling end temperature is lower than Ar 3 ,
The microstructure of the center segregation was not improved, and the resistance to hydrogen-induced cracking was poor. Steel 19 is 1 in rolling below 950 ° C.
Since the ratio of the number of passes at which the rolling reduction per pass is 15% or more is less than 60%, the cumulative rolling reduction at Ar 3 to Ar 3 + 100 ° C. is less than 60%, and the ferrite grains are not sufficiently refined. Low temperature toughness. Steel 20 is 950
Since the ratio of the number of passes at which the rolling reduction per pass is 15% or more in rolling at a temperature of not more than 60 ° C. is less than 60%, Ar 3
The rolling reduction temperature becomes less than Ar 3 at the same time as the cumulative rolling reduction at ~ Ar 3 + 100 ° C., and the ferrite grains are not sufficiently refined and the microstructure of the center segregation part is insufficiently improved, resulting in low temperature. Poor toughness and resistance to hydrogen-induced cracking.

【0030】鋼21は、加速冷却の開始温度がAr3
満であるため、鋼22は加速冷却の停止温度が550℃
を超えるため、鋼23は加速冷却の冷却速度が5℃/秒
未満であるため、中心偏析部のミクロ組織が改善されず
耐水素誘起割れ性が劣っている。鋼24は加速冷却の停
止温度が350℃未満であるため、鋼25は加速冷却の
冷却速度が40℃/秒を超えるため、低温変態生成物が
形成されて低温靭性および耐水素誘起割れ性が劣ってい
る。
Since the start temperature of accelerated cooling of steel 21 is lower than Ar 3 , the stop temperature of accelerated cooling of steel 22 is 550 ° C.
Since the cooling rate of the accelerated cooling of the steel 23 is less than 5 ° C./sec, the microstructure of the central segregation portion is not improved and the resistance to hydrogen-induced cracking is inferior. Since the stop temperature of accelerated cooling of steel 24 is lower than 350 ° C., the cooling rate of accelerated cooling of steel 25 exceeds 40 ° C./sec, so that a low-temperature transformation product is formed and low-temperature toughness and hydrogen-induced cracking resistance are reduced. Inferior.

【0031】[0031]

【発明の効果】本発明法によって製造された耐サワー高
強度ラインパイプ用鋼板は、従来の鋼に比較して非常に
優れた低温靭性を有しており、寒冷でかつサワーな環境
におけるパイプラインの安全性が格段に向上した。
The sour-resistant high-strength linepipe steel sheet produced by the method of the present invention has extremely low temperature toughness as compared with conventional steel, and is suitable for pipelines in cold and sour environments. The safety of has been greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】950℃未満での累積圧下量が60%となる圧
延(板厚15mm)における、圧延温度に及ぼす1パス当
りの圧下率の影響を示す図表。
FIG. 1 is a chart showing the effect of the rolling reduction per pass on the rolling temperature in rolling (sheet thickness 15 mm) in which the cumulative rolling reduction below 950 ° C. is 60%.

【図2】平均のフェライト粒径に及ぼすAr3 〜Ar3
+100℃での累積圧下量の影響を示す図表。
[2] on the ferrite grain size in average Ar 3 to Ar 3
The chart which shows the influence of the cumulative rolling reduction at +100 degreeC.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−173208(JP,A) 特開 平3−236420(JP,A) 特開 平5−9575(JP,A) 特開 平2−217417(JP,A) 特開 平4−202712(JP,A) 特開 平5−9573(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-173208 (JP, A) JP-A-3-236420 (JP, A) JP-A-5-9575 (JP, A) JP-A-2- 217417 (JP, A) JP-A-4-202712 (JP, A) JP-A-5-9573 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) C21D 8/00-8 / 10 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.02〜0.12%、 Si:0.6%以
下、 Mn:0.6〜1.5%、 P :0.015
%以下、 S :0.001%以下、 Al:0.06%
以下、 Ti:0.005〜0.03%、 Nb:0.01〜
0.1%、 Ca:0.001〜0.005%、 N :0.001
〜0.005%、 O :0.003%以下 を含有し、かつ0.5≦〔Ca〕(1−124〔O〕)
/1.25〔S〕≦7.0を満足する残部が鉄および不
可避的不純物からなる鋼を、1000〜1300℃の温
度範囲に加熱後、950℃以上での累積圧下量が30%
以上となる圧延を行い、続いてAr3 〜Ar3 +100
℃での累積圧下量が60%以上で、かつ全パス回数の6
0%以上は1パス当りの圧下率が15%以上である圧延
を行った後、Ar3 以上の温度から5〜40℃/秒の冷
却速度で350〜550℃まで加速冷却し、その後放冷
することを特徴とする優れた低温靭性を有する耐サワー
高強度鋼板の製造方法。 但し、〔Ca〕:Ca含有量(重量%) 〔O〕 :O 含有量(重量%) 〔S〕 :S 含有量(重量%)
C: 0.02 to 0.12%, Si: 0.6% or less, Mn: 0.6 to 1.5%, P: 0.015% by weight
% Or less, S: 0.001% or less, Al: 0.06%
Hereinafter, Ti: 0.005 to 0.03%, Nb: 0.01 to
0.1%, Ca: 0.001 to 0.005%, N: 0.001
0.005%, O: 0.003% or less, and 0.5 ≦ [Ca] (1-124 [O])
/1.25[S]≦7.0 The steel whose balance satisfies 7.0 is composed of iron and unavoidable impurities is heated to a temperature range of 1000 to 1300 ° C., and the cumulative rolling reduction at 950 ° C. or more is 30%.
The rolling as described above is performed, and subsequently, Ar 3 to Ar 3 +100
The cumulative reduction at 60 ° C is 60% or more and the total number of passes is 6
After rolling at 0% or more, the rolling reduction per pass is 15% or more, accelerated cooling from a temperature of Ar 3 or more to 350 to 550 ° C. at a cooling rate of 5 to 40 ° C./sec, and then cooling A method for producing a sour-resistant high-strength steel sheet having excellent low-temperature toughness. However, [Ca]: Ca content (% by weight) [O]: O content (% by weight) [S]: S content (% by weight)
【請求項2】 重量%でさらに、 Ni:0.5%以下、 Cr:0〜0.5%
未満、 Mo:0.5%以下、 Cu:0〜0.5%
以下、 V :0.1%以下 のうち1種以上を含有することを特徴とする請求項1記
載の優れた低温靭性を有する耐サワー高強度鋼板の製造
方法。
2. A further weight%, Ni: 0.5% or less, Cr: 0 to 0.5%
Less than , Mo: 0.5% or less, Cu: 0 to 0.5%
The method for producing a sour-resistant high-strength steel sheet having excellent low-temperature toughness according to claim 1, wherein one or more of V: 0.1% or less are contained.
JP03463794A 1994-03-04 1994-03-04 Method for producing sour resistant high strength steel sheet having excellent low temperature toughness Expired - Fee Related JP3274013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03463794A JP3274013B2 (en) 1994-03-04 1994-03-04 Method for producing sour resistant high strength steel sheet having excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03463794A JP3274013B2 (en) 1994-03-04 1994-03-04 Method for producing sour resistant high strength steel sheet having excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH07242944A JPH07242944A (en) 1995-09-19
JP3274013B2 true JP3274013B2 (en) 2002-04-15

Family

ID=12419937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03463794A Expired - Fee Related JP3274013B2 (en) 1994-03-04 1994-03-04 Method for producing sour resistant high strength steel sheet having excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP3274013B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256350B1 (en) * 1995-09-25 2000-05-15 이구택 The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
KR100256347B1 (en) * 1995-12-11 2000-05-15 이구택 The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property
KR100256352B1 (en) * 1995-12-14 2000-05-15 이구택 The manufacturing method for high strength steel sheet used line pipe with excellent ultra low temperature impact toughness
JP4788146B2 (en) * 2004-03-09 2011-10-05 Jfeスチール株式会社 Hot rolled steel sheet for low YR type ERW welded steel pipe excellent in aging resistance and method for producing the same
JP4802450B2 (en) * 2004-03-17 2011-10-26 Jfeスチール株式会社 Thick hot-rolled steel sheet with excellent HIC resistance and manufacturing method thereof
JP4700740B2 (en) 2009-02-18 2011-06-15 新日本製鐵株式会社 Manufacturing method of steel plate for sour line pipe

Also Published As

Publication number Publication date
JPH07242944A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
CA2295582C (en) Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
US4591396A (en) Method of producing steel having high strength and toughness
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JPH0598350A (en) Production of line pipe material having high strength and low yield ratio for low temperature use
JP2005503483A (en) Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JPH059575A (en) Production of high streangth steel plate excellent in corrosion resistance
JPH11172374A (en) Bent pipe with high strength and high toughness, and its production
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JP3752078B2 (en) High strength steel plate excellent in sour resistance and manufacturing method thereof
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JPH09316534A (en) Production of high strength steel excellent in toughness at low temperature and having weldability
KR20030054424A (en) Method for Manufacturing No-Heat Treated Steel with High Weldability, High Toughness and High Strength

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees