JP2005503483A - Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same - Google Patents

Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same Download PDF

Info

Publication number
JP2005503483A
JP2005503483A JP2003530010A JP2003530010A JP2005503483A JP 2005503483 A JP2005503483 A JP 2005503483A JP 2003530010 A JP2003530010 A JP 2003530010A JP 2003530010 A JP2003530010 A JP 2003530010A JP 2005503483 A JP2005503483 A JP 2005503483A
Authority
JP
Japan
Prior art keywords
impact toughness
strength
toughness
weight
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003530010A
Other languages
Japanese (ja)
Other versions
JP3846729B2 (en
Inventor
パーク,インサオ
ジン,キュン−ブン
Original Assignee
ポスコ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポスコ コーポレーション filed Critical ポスコ コーポレーション
Publication of JP2005503483A publication Critical patent/JP2005503483A/en
Application granted granted Critical
Publication of JP3846729B2 publication Critical patent/JP3846729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

本発明は、 C:0.04〜0.07重量%、Mn:1.50〜1.65重量%、Si:0.15〜0.25重量%、P:0.010重量%以下、S:0.003重量%以下、Nb:0.040〜0.060重量%、V:0.040〜0.060重量%、Ti:0.010〜0.020重量%、Mo:0.10〜0.30重量%、Ni:0.10〜0.30重量%、残りのFe及びその他の不可避な不純物からなる鋼材及び前記組成の溶鋼を炉外精錬時、Ca-Siで介在物を球状化処理する段階と、球状化処理されたスラブを1150℃〜1180℃で再加熱する段階と、再加熱後最終パス(Pass)時、圧下率25〜30%、仕上温度900〜930℃で粗圧延する段階と、針状組織の確保のため、仕上温度790〜830℃で仕上圧延する段階と、急冷後540〜580℃で巻取する段階と、からなる極低温衝撃靭性の優れたラインパイプ用高張力鋼材の製造方法を提供する。
本発明のように、鋼材の成分系を適切に制御することによって、強度はもちろん、極低温環境下でも優れた衝撃靭性を有するラインパイプ用高張力熱延鋼材が提供されて、極寒地域でも原油輸送管等使用の寿命延長効果がある。
【選択図】図2
The present invention, C: 0.04-0.07 wt%, Mn: 1.50-1.65 wt%, Si: 0.15-0.25 wt%, P: 0.010 wt% or less, S: 0.003% wt% or less, Nb: 0.040-0.060 wt%, V: 0.040 to 0.060% by weight, Ti: 0.010 to 0.020% by weight, Mo: 0.10 to 0.30% by weight, Ni: 0.10 to 0.30% by weight, a steel material composed of the remaining Fe and other inevitable impurities, and a molten steel having the above composition During refining outside the furnace, the stage of spheroidizing inclusions with Ca-Si, the stage of reheating the spheroidized slab at 1150 ° C to 1180 ° C, and the reduction rate during the final pass after reheating A stage of rough rolling at 25-30% and a finishing temperature of 900-930 ° C, a stage of finishing rolling at a finishing temperature of 790-830 ° C to secure a needle-like structure, and a stage of winding at 540-580 ° C after quenching And a method for producing a high-strength steel material for line pipes having excellent cryogenic impact toughness.
As in the present invention, by appropriately controlling the component system of the steel material, a high-tensile hot-rolled steel material for line pipes having excellent impact toughness not only in strength but also in a cryogenic environment is provided. It has the effect of extending the service life of transport pipes.
[Selection] Figure 2

Description

【技術分野】
【0001】
本発明は、原油及び天然ガスの輸送手段として使用されるラインパイプ用高張力鋼材の製造方法に関し、特に、-60℃の極低温環境での優れた衝撃靭性を有するラインパイプ用高張力鋼材及びその製造方法に関する。
【背景技術】
【0002】
近来、石油輸送用鋼管の趨勢は、二元化される様相を示している。既存の油井が末期になって不純物が流入することにより耐環境性が要求され、新しい油井の開発が既存の油井とは距離のある劣悪な気候の極地方に移動しているため低温靭性が重視されている。また、使用者の立場からは、建設費を節減するための方法として大口径-高強度化が推進され、鉄鋼会社では、製品の特性を高強度厚物化に転換している。このような二つの要求特性は、一定部分は独立的な特性を有しているので、靭性の確保がなされた後、耐環境性を増大させる鉄鋼製造の開発が進行されている。
【0003】
そのうち、靭性は、一般の熱延鋼板に要求される加工性の限界を意味する変形による2次加工脆性とは異なる概念であって、無変形または初期変形を有する材料のノッチ(Notch)作用によりもたらされる破壊抵抗性を意味する。高強度と同時に優れた靭性を確保することは、ラインパイプ鋼の製造における終わりのなき目標であり努力であって、既存の研究により低温圧延による組織の微細化を通じて改善が可能であるということは既知であるが、単純なNb添加鋼を有するAPI-X70以上のAPI鋼材においては、商業的に容易に利用できる程度に技術が具体化されてはいない。特に、ラインパイプ用素材の厚物化が同時に進行されることによって、圧下率の不足による組織の不均一現象が現れる場合は、低温圧下率による靭性改善の限界を示している。よって、新しい技術を組み合わせて靭性を確保することは工業的に要求されている事項である。
【0004】
熱延鋼板において、優れた低温靭性を要求する従来の高張力ラインパイプ用鋼材の厚さは最大13.0mmであり、使用環境が極寒冷地に移動することによって鋼材の要求厚さは厚くなって15.0〜17.5mmの水準に至り、且つ、低温靭性の要求水準も厳格になるが、従来のパイプ鋼材の製造方法では多くの問題点を抱いている。これを具体的に説明すると次のようである。
【0005】
同じ成分組成で製造工程別に同じ製造技術を適用して鋼材を生産する場合、強度及び靭性の厚さに対する影響は非常に大きい。従来の製造方法の場合、強度及び靭性の確保のため、C-Mnをベースにして、析出強化型元素のNb-V-Tiの添加、またはNb-V-Moの析出強化型元素と変態強化型元素とを複合添加する技術を活用しているが、既存の成分系によっては結晶粒の微細化効果が大きくないため、充分な極低温靭性の確保には限界がある。且つ、従来の製造方法の場合、粗圧延時にバーの厚さを薄くすることによって仕上圧延時に累積圧下率が充分でないため、結晶粒の微細化効果が大きくないだけではなく、粗圧延の最終パス時に充分な圧下率を付与しないため動的再結晶を誘導できないので、結晶粒の微細化効果を発揮できず、よって、靭性の確保が困難である。
【0006】
また、従来の仕上圧延及び巻取の温度水準では、フェライト-パーライト組織が形成されるので、強度及び低温靭性を顕著に改善するに必要なベイニティックフェライト(Bainitic Ferrite)または針状フェライト(Acicular Ferrite)組織を確保するには限界がある。
【0007】
即ち、既存の方法では、API-X70パイプ熱延鋼材を製造する場合、強度の確保のため、化学成分組成を炭素(C)-マンガン(Mn)の他に析出強化型元素のニオビウム(Nb)-バナジウム(V)-チタニウム(Ti)を添加する(表1の比較例参照)。然し、極寒冷地のように使用環境が苛酷な場合は、強度及び衝撃靭性の要求特性も非常に厳格であると共に、パイプの厚さも一般のAPI材よりも厚いものが要求されるので、従来(比較例5〜8)の成分系によっては、強度と共に極低温靭性を同時に満足させるAPI-X70極厚物熱延鋼材を製造することは困難であるという問題点がある。
【発明の開示】
【0008】
本発明は、このような問題点を解決するために案出されたもので、鋼材の成分系を適切に制御することによって、強度はもちろん、極低温環境下でも優れた衝撃靭性を有するラインパイプ用高張力熱延鋼材を提供することで、極寒地域でも原油輸送管などに使用時に寿命を延長できる極厚物高張力熱延鋼板及びその製造方法を提供することを目的とする。
【0009】
本発明は、前記の目的を達成するため、C:0.04〜0.07重量%、Mn:1.50〜1.65重量%、Si:0.15〜0.25重量%、P:0.010重量%以下、S:0.003重量%以下、Nb:0.040〜0.060重量%、V:0.040〜0.060重量%、Ti:0.010〜0.020重量%、Mo:0.10〜0.30重量%、Ni:0.10〜0.30重量%、残りのFe及びその他の不可避な不純物からなる極低温衝撃靭性の優れたラインパイプ用高張力鋼材を提供することを特徴とする。
【0010】
また、本発明は、前記の組成からなる溶鋼を炉外精錬時、Ca-Siで介在物を球状化処理する段階と、球状化処理されたスラブを1150℃〜1180℃で再加熱する段階と、再加熱後最終パス(Pass)時、圧下率25〜30%、仕上温度900〜930℃で粗圧延する段階と、針状組織の確保のため、仕上温度790〜830℃で仕上圧延する段階と、急冷後540〜580℃で巻取する段階と、からなる極低温衝撃靭性の優れたラインパイプ用高張力鋼材の製造方法を提供する。
【0011】
(図面の簡単な説明)
図1は、析出強化(0.08Nb)及び変態強化(0.3Mo)時の遷移特性の変化を示すグラフ図である。
図2は、圧下による組織の微細化及び等軸晶化を示す制御圧延効果を示すグラフ図である。
図3は一般の熱間圧延工程図を示す図面である。
【発明を実施するための最良の形態】
【0012】
以下、本発明を図面を参照してより詳しく説明する。
従来は、API-X70パイプ熱延鋼材を製造する場合、強度の確保のため、化学成分組成を炭素(C)-マンガン(Mn)の他に析出強化型元素のニオビウム(Nb)-バナジウム(V)-チタニウム(Ti)を添加する(表1の比較例参照)。これに対し、発明材は、低温衝撃靭性を改善させるモリブデン(Mo)-ニッケル(Ni)を更に添加することで、変態組織強化鋼に製造した。
【0013】
以下、本発明鋼の組成範囲の限定理由を説明する。
C:本発明材においては、まず、既存材(比較例5〜8)より炭素含量をC:0.04〜0.07重量%範囲に低下させた。炭素含量を低下させた理由は、鋼材の内部にパーライト組織の分率を減らすことで、鋼の衝撃靭性の向上を図るためである。鋼材の内部にパーライトが多い場合、強度増加の効果はあるが、クラック源(Crack Source)を増加させて衝撃靭性及び熔接性を低下させる。よって、炭素は0.07重量%以下にする。比較例4は、炭素含量の過剰添加時、衝撃靭性を低下させることを示す。Cの含量が過度に少ないと強度の確保が難しいので、0.04重量%以上にする(比較例1参照)。
【0014】
Mn:Mnは、固溶強化元素で、且つ強度及び靭性を同時に向上できる元素であって、添加量の増加によって結晶粒は微細になる。 Mnを1.65重量%以上添加すると、連鋳操業時の鋳造性を低下させるだけでなく、中心部に偏析されて衝撃靭性を低下させ、1.50重量%未満添加すると高強度の確保が困難である。
【0015】
Si:Siは、フェライト安定化元素で、且つカーバイド(Carbide)形成抑制元素として使用される。トリップ(TRIP)鋼やデュアルフェーズ(Dual Phase)鋼では重要な役割をするが、API鋼材では多量のSiを活用することはない。適正な水準に規制しなければならない理由は、過剰添加される場合、遷移特性が急激に悪くなるためである。よって、0.15〜0.25重量%以下に規制することが靭性の側面で有効である。また、Siが過度に添加された場合、組織でSiがCの移動を速くしてパーライト(Pearlite)の形成を促進する現象が発生して靭性が低下する。
【0016】
P:燐(P)は、鋼材の衝撃靭性を大きく阻害する不純物であって、連鋳時、中心偏析部に集積して内部品質の劣化及び衝撃遷移温度の上昇により衝撃靭性を低下させる元素であるため、操業技術が許容する限り最大限に制限することが好ましいので、0.010重量%以下に制限した。
【0017】
S:硫黄(S)は、燐(P)と同じように有害な元素であって、連鋳時、表面クラック、内部クラック及び中心偏析の形成により衝撃靭性を大幅に減少させることができるので、0.003重量%以下に制限した。
【0018】
Nb:ニオビウム(Nb)は、析出強化元素で、且つ強度及び靭性の確保に大きく寄与する元素であって、オーステナイト(Austenite)相での析出が多く起こるので再結晶抑制効果を有しており、制御圧延技術に核心的な役割をする元素である。このような効果を示す範囲はCの含量によって異なるが、低炭素鋼の範囲では0.06重量%までであり、それ以上の含量では効率が急激に減少する傾向を示すので、Nbの含量は0.040〜0.060重量%に制限した。
【0019】
V:Vを添加する場合は、他の析出強化元素に比べて強化程度が大きく現れるが、その理由は、結晶粒の微細化効果が伴われるためである。バナジウム(V)は、V(C、N)析出元素であって、その含量の増加により降伏強度の増加よりは引張強度に大きく寄与する。よって、強度的な側面の他に靭性の側面を考慮すると、析出強化効果を示す範囲は0.04重量%以上であるので、Vの含量は0.040〜0.060重量%に制限し、過剰添加時、炭素当量の増加と共に強度の確保は可能であるが、母材及び溶接部の衝撃靭性を低下させる。
【0020】
Ti:チタニウム(Ti)の含量は、0.010〜0.020重量%に制限したが、Tiは析出強化効果の他に再加熱組織の安定化に使用される。TiNは、鉄鋼の析出物中、殆ど最も高い温度で析出するため、再加熱温度の1200℃でも安定した析出物として存在する。よって、再加熱時、オーステナイト(austenite)の非正常的な粗大化を抑制できる元素として使用が可能である。Tiを0.020重量%以上多量添加時、通常50〜60ppmの窒素水準を考慮すると、適正のTi/N比である1.0〜3.0から外れるようになり、Tiが過剰になればTiNが粗大化されてピンニング(pinning)機能が減少することによって靭性を阻害させるので好ましくない。
【0021】
Mo:一方、発明材にはモリブデン(Mo)を追加したが、Moは、変態強化元素であって、強度の増加及び靭性を向上させる特性を有する。Mo添加時、衝撃遷移特性は類似した水準で強度が増加する特性を有している。Moの添加において重要な事項は、低温巻取条件である。Moを使用する最も大きな理由は、組織を針状化して強度を増加させながらも靭性を維持するためである。よって、低温巻取が最も重要な事項になる。Moが効果を示す範囲は、図1に示すように、同一条件でMoが0.1重量%以上であるので、Moの含量を0.10〜0.30重量%添加した。比較例3のようにMoを過度に使用する場合は、既存材(表1、3の比較例参照)と比較するとき、強度は向上するが衝撃靭性は足りないことが分かる。
【0022】
Ni:ニッケル(Ni)は、オーステナイト安定化元素であって、フェライト-パーライト組織の形成反応を遅延させることでベイナイトの形成を容易にする作用があるため、モリブデン(Mo)と共に靭性及び強度の確保に有効な元素であるので、靭性の向上を図るために0.10〜0.30重量%添加した。ニッケルを過度に添加するときはかえって靭性を低下させる。表1、3の比較例2はその例として、強度は増加するが衝撃靭性は足りなかった。
【0023】
一方、本発明による化学成分組成範囲にして、比較材と類似した圧延条件(表2参照)で圧延した結果、強度及び衝撃靭性が大幅に向上することが表1及び表3から分かる。
【0024】
以下、本発明の製造方法について詳しく説明する。
図3は、圧下効果を示す図面で、変形量がないか、または少ない場合、粗大なオーステナイトから針状組織が形成され、変形が加えられる場合、フェライト組織が微細に形成されることが分かる。また、図3は、一般の熱間圧延工程を示す図面で、加熱炉で粗圧延及び仕上圧延を経て冷却された後巻取られる段階を示している。
【0025】
通常、微細なオーステナイトで現れるベイニティックフェライト(Bainitic Ferrite)は、高傾角粒界を形成するため、クラックの伝播に対する抵抗性が非常に大きい。反面、粗大なオーステナイトで形成されるベイナイト組織は、コロニー(Colony)が粗大であるため、コロニー(Colony)内におけるクラック伝播が行われやすい特性を有する。
【0026】
このような問題は、低温圧延及び低温巻取を通じて最小化できるので、本発明材は、比較材(表2参照)との差別化のため、粗圧延の仕上温度を約20℃〜30℃、巻取温度を約40℃ずつそれぞれ下げて製造することにより、冷却速度の側面で薄物材(鋼板の厚さ12.5mm以下)に比べて相対的に制御が不利であるため、強度及び衝撃靭性の確保が不利であるにもかかわらず、極厚物(鋼板の厚さ15.0mm以上)の熱延鋼材で衝撃靭性に有効な針状組織を形成することによって、極低温で優れた低温靭性を有するようになる。
【0027】
本発明においては、C:0.04〜0.07重量%、Mn:1.50〜1.65重量%、Si:0.15〜0.25重量%、P:0.010重量%以下、S:0.003重量%以下、Nb:0.040〜0.060重量%、V:0.040〜0.060重量%、Ti:0.010〜0.020重量%、Mo:0.10〜0.30重量%、Ni:0.10〜0.30重量%、残りのFe及びその他の不可避な不純物を含む鋼材及び前記組成の溶鋼を炉外精錬時、Ca-Siで介在物を球状化処理する。次いで、球状化処理されたスラブを1150℃〜1180℃で再加熱する。再加熱後、オーステナイトの粒度の微細化のため、粗圧延の最終パス時に圧下率としては25〜30%を適用する。また、粗圧延の仕上温度も、オーステナイト結晶粒の微細化のために900〜930℃に調節し、特に、衝撃靭性に有効な針状組織の確保のため、仕上圧延の仕上温度を790〜830℃に調節する。仕上圧延終了後、熱延板の冷却は、結晶粒の粗大化の防止のために剪断急冷パターンを適用し、巻取温度も針状組織の形成のために540〜580℃にして製造する。
【0028】
以下、本発明を実施例を通じて具体的に説明する。
【実施例1】
【0029】
本発明による実施例1においては、本発明による組成を備えた発明材、及び比較のために溶銑予備処理工程で脱燐処理を行わない点、炭素含量の調整(上向、下向)、Moの未添加及び添加時の含量の差別化、並びにNiの未添加及び添加時の含量の差別化により多様な組成にして、発明材と成分組成が異なるように比較材としての連鋳スラブを製造した(表1の比較例1〜8参照)。然し、本実施例1における熱延工程の操業条件は、発明材と比較材とを同じ条件にした(表2の比較例1〜8参照)。
【0030】
まず、本発明材の成分設計の基準を満足する組成になるように、予備処理工程で溶銑脱燐及び溶銑脱硫黄処理を行い、転炉吹錬を経た後、脱硫黄及び介在物の捕集能の向上のため、出鋼中レードル内に生石灰0.20〜0.30トン、蛍石0.20〜0.30トンを投入した。炉外精錬工程では、溶鋼の攪拌、成分微細調整過程を経た後、パウダーインジェクション時Ca-Si200〜300kgを投入し、最終的に、約6分以上充分に溶鋼を攪拌することで介在物の球状化を促進させた。前記溶鋼の成分は、表1の発明例1〜4のようである。
【0031】
また、連鋳鋳造時の中心偏析の防止のため、連鋳セグメント別鋼冷パターン(Pattern)を適用した。その後、連鋳工程で得られたスラブは、熱延工程で発明材及び比較材両方とも、表2に示すように、オーステナイトの粒度の微細化のため、再加熱温度を1150℃〜1180℃、粗圧延の最終パス時の圧下率として10〜25%を適用し、バー(Bar)の厚さは、仕上圧延で変形を最大に累積させるために45〜55mmの厚さにした。粗圧延の仕上温度も、オーステナイト結晶粒の微細化のために930〜950℃にし、衝撃靭性に有効な針状組織(Acicular Ferrite)の確保のため、仕上圧延の仕上温度を790〜830℃の低温にして圧延し、仕上圧延終了後、熱延板の冷却は、結晶粒の粗大化の防止のために剪断急冷パターンを適用し、巻取温度も、針状組織(Acicular Ferrite)の形成のために580〜620℃にして製造した。
【0032】
このように製造された発明材及び比較材に対し、それぞれ機械的性質及び衝撃靭性を測定し、その結果を表3に示した。発明材及び比較材の場合、両方ともAPI-X70の鋼材規格(降伏強度:482MPa以上、引張強度:570MPa以上、延伸率:23%以上)を満足するが、発明材の場合、比較材に比べて低温衝撃靭性が格段に優れる(表3の発明例の-30、-50℃でのDWTT破面率参照)。このような原因は、まず、燐(P)を最小化して鋳片内の中心偏析をなくすことで靭性の向上を図り、ここに、炭素の含量を減らしてフェライト-パーライト組織を大幅に減らすことで靭性の障害要素を除去し、ここに、低温靭性に寄与するモリブデン及びニッケルを適切な組成にすることで、強度及び衝撃靭性を同時に確保するようになった。
【0033】
【表1】

Figure 2005503483
【0034】
通常、熱延鋼材が厚いほど強度及び衝撃靭性の側面で不利であるにもかかわらず、極厚物(厚さ15.0mm以上)の発明材では、このような不利な点を克服して比較材よりも高い降伏強度を確保し、これは、ラインパイプの造管後に降伏強度が低下する点を考慮するとき、パイプの規格に不適合になることを防止できるという大きな利点を同時に備えていることを示唆する。
【0035】
【表2】
Figure 2005503483
【0036】
【表3】
Figure 2005503483
【実施例2】
【0037】
本実施例2においては、発明例及び比較例両方とも、本発明による組成範囲を満足するが、その製造条件の相違点を中心に対比して実験を実施した。
【0038】
本発明材は、表4に示すように、オーステナイトの粒度の微細化のため、粗圧延の最終パス(Pass)時の圧下率を25〜30%にし、粗圧延の仕上温度もオーステナイト結晶粒の微細化のために900〜930℃にし、衝撃靭性に有効な針状組織(Acicular Ferrite)の確保のため、仕上圧延の仕上温度を790〜830℃の低温にして圧延し、仕上圧延終了後の熱延板の冷却には、結晶粒の粗大化の防止のために剪断急冷パターンを適用し、巻取温度も、針状組織(Acicular Ferrite)の形成のために540〜580℃にして製造した。
【0039】
然し、比較材においては、発明材とは異なって、粗圧延の最終パス時の圧下率は15〜25%として低くし、バーの厚さは発明材に比べて薄い45mmにして製造した。また、粗圧延の仕上温度は比較的高い930〜950℃にし、巻取温度も580〜620℃として比較的高くして製造した熱延鋼材を比較材にした。
【0040】
このように製造された発明材及び比較材に対し、それぞれ機械的性質及び衝撃靭性を測定し、その結果を表5に示した。表5から分かるように、発明材の場合、比較材に比べて低温衝撃靭性が非常に優れることが分かる。
【0041】
このような原因は、比較材の場合は、粗大な晶粒フェライト及びパーライト組織からなるが、発明材の組織は、大部分微細な針状フェライト(Acicular Ferrite)により形成されているためである。
【0042】
【表4】
Figure 2005503483
【0043】
【表5】
Figure 2005503483
【産業上の利用可能性】
【0044】
本発明は、前述した構成により具体化され、次のような効果を提供する。
鋼材の成分系を適切に制御することで、強度はもちろん極低温環境下でも優れた衝撃靭性を有するラインパイプ用高張力熱延鋼材が提供されて、極寒地域でも原油輸送管等使用の寿命が延長される。
【0045】
また、強度及び低温衝撃靭性の優れたAPI-X70極厚物高張力熱延鋼板は、まず、強度面でAPI-X80に近似した水準の衝撃靭性を保有した熱延鋼材であるので、環境が劣悪な寒冷地で要求される最高水準の優れた熱延鋼板を製造できるようになった。特に、17.5mm材の場合は極厚物材であるため、厚さ方向の組織の不均衡により靭性の劣化を憂慮してこれまでは厚板工程でのみ製造したが、本発明により熱延工程での製造が可能になることによって、製造原価の節減効果が卓越して、API世界市場でAPI-X70規格に厚板工程で製造したAPI-X70よりも、熱延工程で製造したAPI-X70が価格競争力が一層高いという効果を有する。
【図面の簡単な説明】
【0046】
【図1】析出強化(0.08Nb)及び変態強化(0.3Mo)時の遷移特性の変化を示すグラフ図である。
【図2】圧下による組織の微細化及び等軸晶化を示す制御圧延効果を示すグラフ図である。
【図3】一般の熱間圧延工程図を示す図面である。【Technical field】
[0001]
The present invention relates to a method for producing a high-strength steel material for line pipes used as a means of transporting crude oil and natural gas, and in particular, a high-strength steel material for line pipes having excellent impact toughness in a cryogenic environment of -60 ° C and It relates to the manufacturing method.
[Background]
[0002]
Recently, the trend of steel pipes for oil transportation has been shown to be dualized. Environmental resistance is required due to the inflow of impurities at the end of the existing oil wells, and the development of new wells has moved to polar regions with a poor climate that is far from existing wells. Has been. From the user's point of view, large-diameter-high strength is being promoted as a method to reduce construction costs, and steel companies are changing the characteristics of products to high strength thickening. Since these two required characteristics have independent characteristics in certain portions, after the toughness is ensured, the development of steel production that increases the environmental resistance is in progress.
[0003]
Among them, toughness is a concept different from secondary work brittleness due to deformation, which means the limit of workability required for general hot-rolled steel sheets, and is due to the notch action of materials having no deformation or initial deformation. It means the resistance to destruction. Ensuring high strength and excellent toughness is a never-ending goal and effort in the production of line pipe steel, and that existing research can be improved through refinement of the structure by cold rolling. As is well known, the API steel material of API-X70 or higher having a simple Nb-added steel is not embodied in a technology that can be easily used commercially. In particular, when the thickness of the line pipe material is increased at the same time and the structure non-uniformity phenomenon due to insufficient rolling reduction appears, this indicates the limit of toughness improvement by low temperature rolling reduction. Therefore, securing toughness by combining new technologies is an industrially required matter.
[0004]
In hot-rolled steel sheets, the maximum thickness of conventional high-tensile line pipe steel that requires excellent low-temperature toughness is 13.0 mm, and the required thickness of steel increases as the usage environment moves to extremely cold regions. Although it reaches the level of 15.0 to 17.5 mm and the required level of low temperature toughness becomes strict, the conventional methods for producing pipe steel have many problems. This will be specifically described as follows.
[0005]
When steel materials are produced by applying the same manufacturing technology for each manufacturing process with the same composition, the influence of strength and toughness on the thickness is very large. In the case of the conventional manufacturing method, in order to ensure strength and toughness, the addition of Nb-V-Ti, which is a precipitation strengthening element, or Nb-V-Mo precipitation strengthening element and transformation strengthening based on C-Mn. Although a technology of adding a compound element in combination is utilized, there are limits to securing sufficient cryogenic toughness because the effect of crystal grain refinement is not large depending on the existing component system. In addition, in the case of the conventional manufacturing method, the cumulative rolling reduction ratio is not sufficient at the time of finish rolling by reducing the thickness of the bar at the time of rough rolling. At times, a sufficient reduction ratio is not imparted, so that dynamic recrystallization cannot be induced, so that the effect of crystal grain refinement cannot be exhibited, and it is difficult to ensure toughness.
[0006]
In addition, since the ferrite-pearlite structure is formed at the temperature level of conventional finish rolling and winding, bainitic ferrite or acicular ferrite (Acicular) is necessary to remarkably improve strength and low temperature toughness. Ferrite) There is a limit to securing the organization.
[0007]
That is, in the existing method, when producing API-X70 pipe hot-rolled steel, in order to ensure the strength, the chemical composition is made of precipitation strengthening element niobium (Nb) in addition to carbon (C) -manganese (Mn). Add vanadium (V) -titanium (Ti) (see comparative example in Table 1). However, when the usage environment is severe, such as in extremely cold regions, the required characteristics of strength and impact toughness are very strict, and the pipe thickness is also required to be thicker than general API materials. Depending on the component system of (Comparative Examples 5 to 8), there is a problem that it is difficult to produce API-X70 extra-thick hot-rolled steel material that satisfies both the strength and the cryogenic toughness at the same time.
DISCLOSURE OF THE INVENTION
[0008]
The present invention has been devised to solve such problems, and by appropriately controlling the component system of steel materials, the line pipe has excellent impact toughness not only in strength but also in a cryogenic environment. It is an object of the present invention to provide an extremely thick high-tensile-strength hot-rolled steel sheet and a method for producing the same that can extend the life when used in crude oil transport pipes and the like even in extremely cold regions.
[0009]
In order to achieve the above object, the present invention provides C: 0.04 to 0.07% by weight, Mn: 1.50 to 1.65% by weight, Si: 0.15 to 0.25% by weight, P: 0.010% by weight or less, S: 0.003% by weight or less, Nb: 0.040 to 0.060 wt%, V: 0.040 to 0.060 wt%, Ti: 0.010 to 0.020 wt%, Mo: 0.10 to 0.30 wt%, Ni: 0.10 to 0.30 wt%, remaining Fe and other inevitable impurities The present invention is characterized by providing a high-tensile steel material for line pipes having excellent cryogenic impact toughness.
[0010]
Further, the present invention comprises a step of spheroidizing inclusions with Ca-Si during out-of-core refining of molten steel having the above composition, and a step of reheating the spheroidized slab at 1150 ° C to 1180 ° C. During the final pass after reheating, a stage of rough rolling at a rolling reduction of 25 to 30% and a finishing temperature of 900 to 930 ° C, and a stage of finishing rolling at a finishing temperature of 790 to 830 ° C to secure a needle-like structure And a step of winding at 540 to 580 ° C. after quenching, and a method for producing a high-tensile steel material for line pipes having excellent cryogenic impact toughness.
[0011]
(Brief description of the drawings)
FIG. 1 is a graph showing changes in transition characteristics during precipitation strengthening (0.08Nb) and transformation strengthening (0.3Mo).
FIG. 2 is a graph showing the controlled rolling effect showing the refinement of the structure and the equiaxed crystallization by reduction.
FIG. 3 is a drawing showing a general hot rolling process diagram.
BEST MODE FOR CARRYING OUT THE INVENTION
[0012]
Hereinafter, the present invention will be described in more detail with reference to the drawings.
Conventionally, when producing API-X70 pipe hot-rolled steel, in order to ensure strength, the chemical composition is made of precipitation-strengthening element niobium (Nb) -vanadium (V) in addition to carbon (C) -manganese (Mn). ) -Titanium (Ti) is added (see comparative example in Table 1). In contrast, the inventive material was manufactured into a transformation structure strengthened steel by further adding molybdenum (Mo) -nickel (Ni) that improves low temperature impact toughness.
[0013]
Hereinafter, the reasons for limiting the composition range of the steel of the present invention will be described.
C: In the present invention material, first, the carbon content was reduced to a range of C: 0.04 to 0.07% by weight from the existing material (Comparative Examples 5 to 8). The reason for lowering the carbon content is to improve the impact toughness of the steel by reducing the fraction of the pearlite structure inside the steel. When there is a lot of pearlite inside the steel material, there is an effect of increasing the strength, but the crack toughness and weldability are lowered by increasing the crack source. Therefore, carbon is made 0.07% by weight or less. Comparative Example 4 shows that impact toughness is reduced when the carbon content is excessively added. If the C content is too small, it is difficult to ensure strength, so 0.04% by weight or more (see Comparative Example 1).
[0014]
Mn: Mn is a solid solution strengthening element and is an element that can simultaneously improve the strength and toughness, and the crystal grains become finer as the addition amount increases. When Mn is added in an amount of 1.65% by weight or more, not only the castability during continuous casting operation is lowered, but also segregated at the center part to lower the impact toughness, and if it is added less than 1.50% by weight, it is difficult to ensure high strength.
[0015]
Si: Si is a ferrite stabilizing element and is used as a carbide formation suppressing element. Although it plays an important role in trip (TRIP) steel and dual phase steel, API steel does not utilize a large amount of Si. The reason why it must be regulated to an appropriate level is that the transition characteristics deteriorate rapidly when excessively added. Therefore, it is effective in terms of toughness to restrict to 0.15 to 0.25% by weight or less. In addition, when Si is excessively added, a phenomenon in which Si accelerates the movement of C in the structure and promotes the formation of pearlite occurs, resulting in a decrease in toughness.
[0016]
P: Phosphorus (P) is an impurity that significantly impairs the impact toughness of steel materials, and is an element that accumulates in the center segregation part during continuous casting and lowers the impact toughness due to deterioration in internal quality and increase in impact transition temperature. For this reason, it is preferable to limit it to the maximum as the operation technology allows, so the limit was limited to 0.010% by weight or less.
[0017]
S: Sulfur (S) is a harmful element like phosphorus (P), and during continuous casting, impact toughness can be greatly reduced by the formation of surface cracks, internal cracks and center segregation. The amount was limited to 0.003% by weight or less.
[0018]
Nb: Niobium (Nb) is a precipitation strengthening element and an element that greatly contributes to ensuring strength and toughness, and has a recrystallization suppressing effect because a large amount of precipitation occurs in the austenite phase. It is an element that plays a central role in controlled rolling technology. The range showing such an effect varies depending on the content of C, but in the range of low carbon steel, it is up to 0.06% by weight, and since the efficiency tends to decrease sharply at a content higher than that, the content of Nb is 0.040 to Limited to 0.060 wt%.
[0019]
V: When V is added, the degree of strengthening appears larger than that of other precipitation strengthening elements because the crystal grain refinement effect is accompanied. Vanadium (V) is a V (C, N) precipitation element, and its increase in content contributes more to the tensile strength than the increase in yield strength. Therefore, considering the toughness aspect in addition to the strength aspect, the range showing the precipitation strengthening effect is 0.04% by weight or more, so the V content is limited to 0.040 to 0.060% by weight. Although the strength can be secured with an increase in the thickness, the impact toughness of the base metal and the welded portion is lowered.
[0020]
Ti: The content of titanium (Ti) is limited to 0.010 to 0.020% by weight, but Ti is used for stabilizing the reheat structure in addition to the precipitation strengthening effect. Since TiN precipitates at almost the highest temperature among the steel precipitates, it exists as a stable precipitate even at a reheating temperature of 1200 ° C. Therefore, it can be used as an element that can suppress abnormal coarsening of austenite during reheating. When a large amount of Ti is added in an amount of 0.020% by weight or more, usually considering the nitrogen level of 50-60ppm, it will deviate from the appropriate Ti / N ratio of 1.0-3.0, and if Ti becomes excessive, TiN will be coarsened It is not preferable because the toughness is inhibited by decreasing the pinning function.
[0021]
Mo: On the other hand, molybdenum (Mo) was added to the inventive material, but Mo is a transformation strengthening element and has the characteristics of increasing strength and improving toughness. When Mo is added, the impact transition characteristic has the characteristic that the strength increases at a similar level. An important matter in the addition of Mo is the low temperature winding condition. The biggest reason for using Mo is to maintain the toughness while increasing the strength by acicularizing the structure. Therefore, low temperature winding is the most important matter. As shown in FIG. 1, the range in which Mo is effective is such that Mo is 0.1 wt% or more under the same conditions, so the Mo content was added from 0.10 to 0.30 wt%. When Mo is used excessively as in Comparative Example 3, when compared with existing materials (see Comparative Examples in Tables 1 and 3), it can be seen that the strength is improved but the impact toughness is insufficient.
[0022]
Ni: Nickel (Ni) is an austenite stabilizing element and has the effect of facilitating the formation of bainite by delaying the formation reaction of the ferrite-pearlite structure, ensuring toughness and strength together with molybdenum (Mo). In order to improve toughness, 0.10 to 0.30% by weight was added. When nickel is added excessively, the toughness is reduced. As an example, Comparative Example 2 in Tables 1 and 3 increased in strength but lacked impact toughness.
[0023]
On the other hand, it can be seen from Tables 1 and 3 that the strength and impact toughness are greatly improved as a result of rolling under the rolling conditions similar to those of the comparative material (see Table 2) within the chemical composition range according to the present invention.
[0024]
Hereinafter, the production method of the present invention will be described in detail.
FIG. 3 is a drawing showing the rolling effect, and it can be seen that when there is no or little deformation, a needle-like structure is formed from coarse austenite, and when deformation is applied, a ferrite structure is formed finely. FIG. 3 is a view showing a general hot rolling process, and shows a stage where the film is wound after being cooled through rough rolling and finish rolling in a heating furnace.
[0025]
In general, bainitic ferrite that appears in fine austenite forms a high-angle grain boundary and therefore has a very high resistance to crack propagation. On the other hand, the bainite structure formed of coarse austenite has a characteristic that crack propagation is easily performed in the colony because the colony is coarse.
[0026]
Since such a problem can be minimized through low temperature rolling and low temperature winding, the material of the present invention has a finishing temperature of rough rolling of about 20 ° C. to 30 ° C. for differentiation from the comparative material (see Table 2). By lowering the coiling temperature by about 40 ° C, the control is relatively disadvantageous compared to thin materials (steel plate thickness of 12.5 mm or less) in terms of the cooling rate. Despite the disadvantage of securing, it has excellent low temperature toughness at extremely low temperatures by forming an acicular structure effective for impact toughness with hot-rolled steel of extremely thick material (thickness of steel plate of 15.0 mm or more) It becomes like this.
[0027]
In the present invention, C: 0.04 to 0.07 wt%, Mn: 1.50 to 1.65 wt%, Si: 0.15 to 0.25 wt%, P: 0.010 wt% or less, S: 0.003 wt% or less, Nb: 0.040 to 0.060 wt% , V: 0.040 to 0.060 wt%, Ti: 0.010 to 0.020 wt%, Mo: 0.10 to 0.30 wt%, Ni: 0.10 to 0.30 wt%, remaining steel and other steels containing other unavoidable impurities and molten steel of the above composition During the out-of-furnace refining, the inclusions are spheroidized with Ca-Si. Next, the spheroidized slab is reheated at 1150 ° C to 1180 ° C. After reheating, a reduction ratio of 25-30% is applied during the final pass of rough rolling in order to refine the austenite grain size. Also, the finishing temperature of rough rolling is adjusted to 900 to 930 ° C. for the refinement of austenite crystal grains, and in particular, the finishing temperature of finishing rolling is set to 790 to 830 in order to secure an acicular structure effective for impact toughness. Adjust to ℃. After finishing rolling, the hot-rolled sheet is cooled by applying a shear quenching pattern to prevent coarsening of crystal grains, and the winding temperature is 540 to 580 ° C. to form a needle-like structure.
[0028]
Hereinafter, the present invention will be described in detail through examples.
[Example 1]
[0029]
In Example 1 according to the present invention, the inventive material having the composition according to the present invention, and the point that no dephosphorization treatment is performed in the hot metal pretreatment step for comparison, adjustment of the carbon content (upward and downward), Mo Production of continuous cast slabs as comparative materials so that the composition differs from that of the inventive material by differentiating the content when not added and added, and differentiating the content when Ni is not added and added (See Comparative Examples 1 to 8 in Table 1). However, the operating conditions of the hot rolling process in Example 1 were the same for the inventive material and the comparative material (see Comparative Examples 1 to 8 in Table 2).
[0030]
First, hot metal dephosphorization and hot metal desulfurization treatment are performed in the preliminary treatment step so that the composition satisfies the component design criteria of the present invention material, and after passing through the converter blowing, desulfurization and collection of inclusions In order to improve performance, 0.20 to 0.30 tonnes of quicklime and 0.20 to 0.30 tonnes of fluorite were introduced into the ladle during steel production. In the out-of-furnace refining process, 200-300 kg of Ca-Si is added at the time of powder injection after stirring the molten steel and finely adjusting the components. Finally, the molten steel is thoroughly stirred for about 6 minutes or longer. Promoted. The components of the molten steel are as shown in Invention Examples 1 to 4 in Table 1.
[0031]
In order to prevent center segregation during continuous casting, a steel cooling pattern (Pattern) for each continuous casting segment was applied. Thereafter, in the slab obtained in the continuous casting process, both the inventive material and the comparative material in the hot rolling process had a reheating temperature of 1150 ° C to 1180 ° C in order to refine the austenite grain size, as shown in Table 2. A rolling reduction of 10-25% was applied during the final pass of rough rolling, and the thickness of the bar was 45-55 mm in order to accumulate the deformation to the maximum in finish rolling. The finishing temperature of the rough rolling is also set to 930 to 950 ° C in order to refine the austenite grains, and the finishing temperature of the finishing rolling is set to 790 to 830 ° C in order to secure an acicular ferrite effective for impact toughness. Rolling at a low temperature, after finishing rolling, cooling the hot-rolled sheet applies a shear quenching pattern to prevent coarsening of the crystal grains, and the coiling temperature is also the formation of acicular ferrite. Therefore, it was manufactured at 580 to 620 ° C.
[0032]
The mechanical properties and impact toughness of the inventive material and the comparative material thus produced were measured, and the results are shown in Table 3. In the case of the inventive material and the comparative material, both satisfy the steel standard of API-X70 (yield strength: 482 MPa or more, tensile strength: 570 MPa or more, draw ratio: 23% or more), but the inventive material is compared with the comparative material. Therefore, the low temperature impact toughness is remarkably excellent (refer to the DWTT fracture surface ratio at −30 to −50 ° C. in the invention example of Table 3). The cause of this is to first improve the toughness by minimizing phosphorus (P) and eliminating the central segregation in the slab, and by reducing the carbon content, the ferrite-pearlite structure is greatly reduced. By removing molybdenum and nickel that contribute to low temperature toughness, the strength and impact toughness can be secured at the same time.
[0033]
[Table 1]
Figure 2005503483
[0034]
In general, the thicker the hot-rolled steel material, the more disadvantageous in terms of strength and impact toughness, but the invention material of extremely thick material (thickness of 15.0 mm or more) overcomes such disadvantages and is a comparative material. Higher yield strength, which has the great advantage that it can prevent the pipe from being incompatible with the standard when considering the fact that the yield strength decreases after pipe construction. Suggest.
[0035]
[Table 2]
Figure 2005503483
[0036]
[Table 3]
Figure 2005503483
[Example 2]
[0037]
In Example 2, both the invention example and the comparative example satisfy the composition range according to the present invention, but the experiment was conducted focusing on the difference in the production conditions.
[0038]
As shown in Table 4, the material of the present invention has a reduction ratio of 25-30% during the final pass of rough rolling in order to refine the austenite grain size, and the finishing temperature of rough rolling is also austenite crystal grains. The temperature is set to 900 to 930 ° C for miniaturization, and in order to secure an acicular structure (Acicular Ferrite) effective for impact toughness, the finish rolling is finished at a low finish temperature of 790 to 830 ° C. For cooling the hot-rolled plate, a shear quenching pattern was applied to prevent coarsening of the crystal grains, and the coiling temperature was also set to 540 to 580 ° C. to form an acicular structure (Acicular Ferrite). .
[0039]
However, unlike the inventive material, the comparative material was manufactured with a reduction rate of 15 to 25% at the final pass of the rough rolling and a bar thickness of 45 mm, which was thinner than that of the inventive material. In addition, a hot rolled steel material manufactured with a relatively high finishing temperature of rough rolling at 930 to 950 ° C. and a relatively high winding temperature of 580 to 620 ° C. was used as a comparative material.
[0040]
The mechanical properties and impact toughness of the inventive material and the comparative material thus manufactured were measured, and the results are shown in Table 5. As can be seen from Table 5, in the case of the inventive material, the low temperature impact toughness is very excellent compared to the comparative material.
[0041]
This is because, in the case of the comparative material, it consists of coarse grained ferrite and pearlite structure, but the structure of the invention material is mostly formed by fine acicular ferrite.
[0042]
[Table 4]
Figure 2005503483
[0043]
[Table 5]
Figure 2005503483
[Industrial applicability]
[0044]
The present invention is embodied by the above-described configuration and provides the following effects.
By appropriately controlling the component system of steel materials, high-strength hot-rolled steel materials for line pipes that have excellent impact toughness not only in strength but also in extremely low temperature environments are provided. Extended.
[0045]
In addition, API-X70 extra-thick high-tensile hot-rolled steel sheet, which has excellent strength and low-temperature impact toughness, is a hot-rolled steel material that possesses the same level of impact toughness as API-X80 in terms of strength. It has become possible to produce excellent hot-rolled steel sheets of the highest standard required in poor cold regions. In particular, the 17.5mm material is an extremely thick material. API-X70 manufactured by hot-rolling process is superior to API-X70 manufactured by thick plate process to API-X70 standard in the API global market. Has the effect of higher price competitiveness.
[Brief description of the drawings]
[0046]
FIG. 1 is a graph showing changes in transition characteristics during precipitation strengthening (0.08Nb) and transformation strengthening (0.3Mo).
FIG. 2 is a graph showing the controlled rolling effect showing the refinement of the structure and the equiaxed crystallization by reduction.
FIG. 3 is a drawing showing a general hot rolling process diagram.

Claims (2)

C:0.04〜0.07重量%、Mn:1.50〜1.65重量%、Si:0.15〜0.25重量%、P:0.010重量%以下、S:0.003重量%以下、Nb:0.040〜0.060重量%、V:0.040〜0.060重量%、Ti:0.010〜0.020重量%、Mo:0.10〜0.30重量%、Ni:0.10〜0.30重量%、残りのFe及びその他の不可避な不純物を含む極低温衝撃靭性の優れたラインパイプ用熱延鋼板。C: 0.04 to 0.07 wt%, Mn: 1.50 to 1.65 wt%, Si: 0.15 to 0.25 wt%, P: 0.010 wt% or less, S: 0.003 wt% or less, Nb: 0.040 to 0.060 wt%, V: 0.040 to 0.060 wt%, Ti: 0.010 to 0.020 wt%, Mo: 0.10 to 0.30 wt%, Ni: 0.10 to 0.30 wt%, heat for line pipe with excellent cryogenic impact toughness including the remaining Fe and other inevitable impurities Rolled steel sheet. C:0.04〜0.07重量%、Mn:1.50〜1.65重量%、Si:0.15〜0.25重量%、P:0.010重量%以下、S:0.003重量%以下、Nb:0.040〜0.060重量%、V:0.040〜0.060重量%、Ti:0.010〜0.020重量%、Mo:0.10〜0.30重量%、Ni:0.10〜0.30重量%、残りのFe及びその他の不可避な不純物からなる溶鋼を炉外精錬時、Ca-Siで介在物を球状化処理する段階と、
上記球状化処理されたスラブを1150℃〜1180℃で再加熱する段階と、
再加熱後、スラブを最終パス(Pass)時、圧下率25〜30%、仕上温度900〜930℃で粗圧延する段階と、
上記粗圧延されたスラブを針状組織の確保のため、仕上温度790〜830℃で仕上圧延する段階と、
上記仕上圧延されたスラブを急冷後540〜580℃で巻取する段階と、
を含むことを特徴とする極低温衝撃靭性の優れたラインパイプ用熱延鋼板の製造方法。
C: 0.04 to 0.07 wt%, Mn: 1.50 to 1.65 wt%, Si: 0.15 to 0.25 wt%, P: 0.010 wt% or less, S: 0.003 wt% or less, Nb: 0.040 to 0.060 wt%, V: 0.040 to 0.060 wt%, Ti: 0.010 to 0.020 wt%, Mo: 0.10 to 0.30 wt%, Ni: 0.10 to 0.30 wt%, and molten steel composed of the remaining Fe and other inevitable impurities during out-of-furnace refining with Ca-Si Spheroidizing the inclusions;
Reheating the spheroidized slab at 1150 ° C. to 1180 ° C .;
After reheating, during the final pass, the slab is roughly rolled at a reduction rate of 25-30% and a finishing temperature of 900-930 ° C.
In order to secure the needle-like structure of the rough-rolled slab, finish rolling at a finishing temperature of 790 to 830 ° C;
Winding the finish-rolled slab at 540-580 ° C. after rapid cooling;
A method for producing a hot-rolled steel sheet for line pipes having excellent cryogenic impact toughness.
JP2003530010A 2001-09-10 2002-09-09 Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same Expired - Fee Related JP3846729B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010055561A KR20030021965A (en) 2001-09-10 2001-09-10 a hot-rolled steel sheet wiht good ultra low temperature toughness and the method of the same
PCT/KR2002/001692 WO2003025241A1 (en) 2001-09-10 2002-09-09 Hot-rolled steel sheet with good ultra low temperature toughness and the method of the same

Publications (2)

Publication Number Publication Date
JP2005503483A true JP2005503483A (en) 2005-02-03
JP3846729B2 JP3846729B2 (en) 2006-11-15

Family

ID=19714123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003530010A Expired - Fee Related JP3846729B2 (en) 2001-09-10 2002-09-09 Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same

Country Status (5)

Country Link
JP (1) JP3846729B2 (en)
KR (1) KR20030021965A (en)
CN (1) CN1288268C (en)
RU (1) RU2268311C2 (en)
WO (1) WO2003025241A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132882A1 (en) 2007-03-01 2008-11-06 Nippon Steel Corporation High-strength hot-rolled steel plate for line pipes excellent in low-temperature toughness and process for production of the same
WO2009145328A1 (en) 2008-05-26 2009-12-03 新日本製鐵株式会社 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same
WO2012002481A1 (en) 2010-06-30 2012-01-05 新日本製鐵株式会社 Hot-rolled steel sheet and method for producing same
US9062356B2 (en) 2007-03-08 2015-06-23 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel plate for spiral line pipe superior in low temperature toughness and method of production of same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584762B1 (en) * 2001-12-26 2006-05-30 주식회사 포스코 The method of manufacturing hot rolled steels with less anisotropic properties for linepipes
KR100568365B1 (en) * 2001-12-27 2006-04-05 주식회사 포스코 Method for manufacturing heavy gauge high strength linepipe steel with superior low temperature toughness
KR101091368B1 (en) * 2004-09-30 2011-12-07 주식회사 포스코 Method for manufacturing a high-strength hot rolled steel sheet for linepipe with superior DWTT characteristics at low temperature
CN100392132C (en) * 2005-03-30 2008-06-04 宝山钢铁股份有限公司 Steel for low temperature and high tenacity structure use and its production method
KR100723169B1 (en) * 2005-12-26 2007-05-30 주식회사 포스코 A method for manufacturing precipitaion hardened steel for linepipe having excellent property of hot rolling
CN101928882B (en) * 2010-08-03 2012-06-27 武钢集团昆明钢铁股份有限公司 X60 pipe line steel and production method thereof
CN104060170B (en) * 2014-06-18 2016-08-17 攀钢集团攀枝花钢铁研究院有限公司 A kind of hot rolled steel plate and production method thereof
CN106392029A (en) * 2016-09-28 2017-02-15 南京钢铁股份有限公司 Method for improving tissue property by cooling pipeline steel casting blank and heating pipeline steel casting blank at low temperature
RU2649110C1 (en) * 2017-04-26 2018-03-29 Публичное акционерное общество "Северсталь" Dispersion-solid steel thick sheet for hot stamping and method of its production
KR101949036B1 (en) * 2017-10-11 2019-05-08 주식회사 포스코 Thick steel sheet having excellent low temperature strain aging impact properties and method of manufacturing the same
JP6569745B2 (en) * 2018-01-29 2019-09-04 Jfeスチール株式会社 Hot rolled steel sheet for coiled tubing and method for producing the same
CN113151651B (en) * 2020-09-25 2022-06-03 攀钢集团研究院有限公司 Production method of low-temperature annealed ultra-deep drawn cold-rolled steel plate and cold-rolled steel plate
CN113373376A (en) * 2021-05-27 2021-09-10 本钢板材股份有限公司 Bainite non-quenched and tempered high-strength steel with tensile strength of more than or equal to 960MPa and manufacturing method thereof
CN113564479B (en) * 2021-07-30 2023-08-01 日钢营口中板有限公司 High-wall-thickness steel with good low-temperature toughness for station sites and manufacturing method thereof
CN115449709B (en) * 2022-08-30 2024-02-13 鞍钢股份有限公司 Thick-specification high-strength-toughness L485M pipeline steel and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131320A (en) * 1981-02-06 1982-08-14 Kawasaki Steel Corp Production of high tensile steel plate having superior low temperature toughness
JP3390596B2 (en) * 1995-03-23 2003-03-24 川崎製鉄株式会社 Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same
KR100635074B1 (en) * 1999-12-28 2006-10-16 주식회사 포스코 A method for production of the high strength and toughness steel by coarse precipitate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132882A1 (en) 2007-03-01 2008-11-06 Nippon Steel Corporation High-strength hot-rolled steel plate for line pipes excellent in low-temperature toughness and process for production of the same
US8562762B2 (en) 2007-03-01 2013-10-22 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel products for line-pipes excellent in low temperature toughness and production method of the same
US9062356B2 (en) 2007-03-08 2015-06-23 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel plate for spiral line pipe superior in low temperature toughness and method of production of same
WO2009145328A1 (en) 2008-05-26 2009-12-03 新日本製鐵株式会社 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same
US9657364B2 (en) 2008-05-26 2017-05-23 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel sheet for line pipe use excellent in low temperature toughness and ductile fracture arrest performance and method of production of same
WO2012002481A1 (en) 2010-06-30 2012-01-05 新日本製鐵株式会社 Hot-rolled steel sheet and method for producing same
KR101302298B1 (en) 2010-06-30 2013-09-03 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and method for producing same

Also Published As

Publication number Publication date
CN1553966A (en) 2004-12-08
KR20030021965A (en) 2003-03-15
JP3846729B2 (en) 2006-11-15
RU2004110947A (en) 2005-03-27
WO2003025241A1 (en) 2003-03-27
CN1288268C (en) 2006-12-06
RU2268311C2 (en) 2006-01-20

Similar Documents

Publication Publication Date Title
JP3846729B2 (en) Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
US4591396A (en) Method of producing steel having high strength and toughness
KR100957963B1 (en) Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP7244718B2 (en) Steel material for thick high-strength line pipe with excellent low-temperature toughness, elongation and small yield ratio, and method for producing the same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
JP2022510214A (en) Ultra-high-strength steel with excellent cold workability and SSC resistance and its manufacturing method
CN114892080B (en) 720 MPa-grade precipitation-strengthening type hot rolled bainitic steel and production method thereof
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP2002173734A (en) Steel having excellent weldability and its production method
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
KR100452303B1 (en) Manufacturing method of high-tension steel for line pipe having excellent tenacity at low temperature
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
KR100360091B1 (en) A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JPH02179847A (en) Hot rolled steel plate excellent in workability and its production
JPS6367524B2 (en)
KR20040019452A (en) Method for manufacturing a hot coil for the high toughness and strength line pipe with high productivity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees