KR100584762B1 - The method of manufacturing hot rolled steels with less anisotropic properties for linepipes - Google Patents

The method of manufacturing hot rolled steels with less anisotropic properties for linepipes Download PDF

Info

Publication number
KR100584762B1
KR100584762B1 KR1020010085091A KR20010085091A KR100584762B1 KR 100584762 B1 KR100584762 B1 KR 100584762B1 KR 1020010085091 A KR1020010085091 A KR 1020010085091A KR 20010085091 A KR20010085091 A KR 20010085091A KR 100584762 B1 KR100584762 B1 KR 100584762B1
Authority
KR
South Korea
Prior art keywords
steel
temperature
less
hot
hot rolled
Prior art date
Application number
KR1020010085091A
Other languages
Korean (ko)
Other versions
KR20030054700A (en
Inventor
배진호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010085091A priority Critical patent/KR100584762B1/en
Publication of KR20030054700A publication Critical patent/KR20030054700A/en
Application granted granted Critical
Publication of KR100584762B1 publication Critical patent/KR100584762B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

본 발명은 건축, 라인파이프 및 해양구조물 등의 용도로 사용되는 강판용 고장력 열연강판의 제조방법에 관한 것으로, 그 목적은 Mo, Cr, V와 Ti를 적절히 사용하고 압연 제조공정 조건을 최적화하여 석출 및 조직 미세화에 의한 강도 증가와 더불어 재질이방성을 개선시킬 수 있는 열연강판의 제조방법을 제공함에 있다.The present invention relates to a method for manufacturing a high tensile hot rolled steel sheet for steel sheets used for construction, line pipes and offshore structures, etc. The purpose of the present invention is to use Mo, Cr, V and Ti appropriately and optimize the rolling manufacturing process conditions to precipitate and The present invention provides a method for manufacturing a hot rolled steel sheet which can improve material anisotropy as well as increase in strength due to microstructure.

이와 같은 목적을 갖는 본 발명은, 중량%로, C; 0.03-0.10%, Si; 0.01-0.50%, Mn; 1.2-2.0%, P; 0.03%이하, S; 0.010%이하, Ti; 0.01-0.10%, N; 0.01%이하, Mo; 0.1-0.3%, Cr; 0.01-0.04%, Ni; 0.1-0.5%, Nb; 0.02-0.07%, V; 0.10%이하 및 나머지 Fe와 기타 불가피한 불순원소들로 구성된 강슬라브를 1260-1350℃의 온도에서 재가열하고, 780-820℃의 마무리 압연온도로 열간압연한 다음, 수냉각하여 540-600℃의 온도에서 권취하여 이루어지는 재질이방성이 작은 라인파이프용 열연강판의 제조방법에 관한 것을 그 기술적 요지로 한다. The present invention having such an object, in weight%, C; 0.03-0.10%, Si; 0.01-0.50%, Mn; 1.2-2.0%, P; 0.03% or less, S; 0.010% or less, Ti; 0.01-0.10%, N; 0.01% or less, Mo; 0.1-0.3%, Cr; 0.01-0.04%, Ni; 0.1-0.5%, Nb; 0.02-0.07%, V; The steel slab consisting of 0.10% or less and the remaining Fe and other unavoidable impurities is reheated at a temperature of 1260-1350 ° C, hot rolled to a finish rolling temperature of 780-820 ° C, and then cooled by water to a temperature of 540-600 ° C. The technical gist of the method for manufacturing a hot-rolled steel sheet for a line pipe having a small material anisotropy formed by winding in.

이러한 본 발명은 강의 화학성분을 조절하고 슬라브 가열온도, 열간압연 및 권취조건을 제어함으로써, 페라이트 및 침상형(acicular) 페라이트 조직을 형성시킬 수 있으며 재질이방성이 감소된 라인파이프용 열연강판을 제조할 수 있다.The present invention is to control the chemical composition of the steel and to control the slab heating temperature, hot rolling and winding conditions, to form a ferrite and acicular ferrite structure and to produce a hot-rolled steel sheet for line pipe with reduced material anisotropy Can be.

강슬라브, 열간압연, 재질이방성, 라인파이프, 페라이트Steel Slab, Hot Rolled, Anisotropic Material, Line Pipe, Ferrite

Description

재질이방성이 적은 라인파이프용 열연강판의 제조방법{THE METHOD OF MANUFACTURING HOT ROLLED STEELS WITH LESS ANISOTROPIC PROPERTIES FOR LINEPIPES}Manufacturing method of hot rolled steel sheet for line pipe with less material anisotropy {THE METHOD OF MANUFACTURING HOT ROLLED STEELS WITH LESS ANISOTROPIC PROPERTIES FOR LINEPIPES}

본 발명은 건축, 파이프라인 및 해양구조물 등의 용도로 사용되는 항복강도 540~570MPa의 라인파이프 강의 제조방법에 관한 것으로, 보다 상세하게는 Mo, Cr, V과 Ti을 복합첨가하고 열연공정을 적절히 제어함으로써 석출물 형성에 의한 미세조직의 관리와 석출물 자체의 분포 및 크기의 관리에 의해 재질이방성을 줄일 수 있는 열연강판의 제조방법에 관한 것이다. The present invention relates to a method for producing a line pipe steel having a yield strength of 540 to 570 MPa for use in construction, pipelines, and offshore structures. More specifically, a combination of Mo, Cr, V and Ti is added, and a hot rolling process is appropriately performed. The present invention relates to a method for manufacturing a hot rolled steel sheet which can reduce material anisotropy by controlling microstructure by controlling precipitate formation and controlling distribution and size of precipitate itself.

북극해 또는 시베리아 등의 지역에서 사용되는 원유 또는 원유 또는 가스 수송용 강관이나 해양구조물에 사용되는 철강 소재는 그 환경의 가혹화로 말미암아 우수한 성질이 요구되고 있으며, 특히 저온에서의 파괴방지를 위하여 저온인성이 각별히 요구되어지고 있다. 이러한 철강소재는 경제적인 사용을 위하여 열연강판을 나선형 강관(spiral pipe)으로 제조하여 사용하고 있다.Crude oil used in the Arctic Ocean, Siberia, etc., or steel materials used in steel pipes or offshore structures for transporting oil or gas are required to have excellent properties due to the harsh environment, and especially low temperature toughness to prevent destruction at low temperatures. Specially required. These steel materials are manufactured by using a hot rolled steel sheet as a spiral pipe for economical use.

우수한 저온 인성을 지닌 고강도 열연강판을 제조하기 위해서 전 세계에 걸 쳐 많은 시도가 이루어 지고 있으며, 이러한 연구의 대부분은 열간압연을 대부분 낮은 온도에서 실시하여 저온인성 등을 향상시키고자 하는 것으로 일본특허 제52107225호, 제5214486호 및 한국 특허 특2000-0039479가 있다.Many attempts have been made all over the world to manufacture high strength hot rolled steel sheets with excellent low temperature toughness, and most of these studies have been conducted to improve low temperature toughness by performing hot rolling at most low temperatures. 52107225, 5214486 and Korean Patent No. 2000-0039479.

상기 제52107225호에 제안된 기술의 요지는 C;0.03-0.8%, Si;0.6%, Mn;0.7-2.0%, P;0.010%, S;0.008%, Nb;0.01-0.10%, V;0.01-0.15%, Mo;0.50%, Ni;1.0%, Cr;1.0% 및 Cu;1.0%를 함유한 강의 마무리 열간압연온도를 850-600℃의 저온으로 낮추어 저온인성을 확보하는 것이다. 그러나, 이 열연강판은 인장강도가 60kgf/mm2에 불과하여 합금원소 첨가의 최대효과와 압연공정의 적절화가 다소 미흡하다.The gist of the technique proposed in No. 52107225 is C; 0.03-0.8%, Si; 0.6%, Mn; 0.7-2.0%, P; 0.010%, S; 0.008%, Nb; 0.01-0.10%, V; 0.01 It is to secure the low-temperature toughness by lowering the finish hot rolling temperature of the steel containing -0.15%, Mo; 0.50%, Ni; 1.0%, Cr; 1.0% and Cu; 1.0% to a low temperature of 850-600 ° C. However, the hot rolled steel sheet has a tensile strength of only 60 kgf / mm 2 , which results in a lack of the maximum effect of alloying elements and the appropriateness of the rolling process.

상기 제5214486호에서는 열간압연을 하고 Ar3 온도 이상에서 15℃/sec 이상의 속도로 냉각하여 250℃ 정도에서 권취를 하는 방법이다. 이 방법은 합금성분계가 비교적 단순하나 권취온도가 매우 낮기 때문에 매우 큰 용량의 수냉각 설비를 보유하고 있어야 하는 단점이 있다. 5214486 is a method of hot rolling, cooling at a rate of 15 ° C / sec or more at an Ar3 temperature or more and winding at about 250 ° C. This method has a disadvantage in that the alloy component system is relatively simple but has a very large capacity of the water cooling system because the coiling temperature is very low.

위에서 언급한 선행기술들은 저온인성과 동시에 고강도를 얻을 수 있으나, 재질이방성 특히, 항복강도의 재질이방성의 차이가 크다는 문제가 제기되고 있다. 재질이방성은 압연직각방향의 강도와 압연방향에 45도 방향의 강도와의 차이를 의미한다. 최근에 들어와 강관 중에서 가장 널리 이용되고 있는 나선형 강관에 있어서는 소재의 재질을 압연방향에 45도인 방향의 것을 요구하고 있기 때문에 재질 이방성이 큰 경우, 즉 압연직각방향의 항복강도가 45도 방향보다 크게 되면 강관을 조관시 조관력이 크게 되어 조관불량률이 증가하고 강관의 진원성 역시 저하하게 된다.The above-mentioned prior arts can obtain high strength at the same time as low temperature toughness, but there is a problem that material anisotropy, in particular, the difference in material anisotropy of yield strength is large. Material anisotropy means the difference between the strength in the rolling direction and the strength in the 45 degree direction. In recent years, the most widely used spiral steel pipe requires a material of 45 degrees in the rolling direction. Therefore, when the material anisotropy is large, that is, the yield strength in the rolling perpendicular direction is larger than the 45 degree direction. When the steel pipe is piped, the power of the pipe is increased so that the pipe defective rate increases and the roundness of the steel pipe also decreases.

상기 특2000-0039479에서는 C;0.03-0.10%, Si;0.01-0.50%, Mn;1.2-2.0%, P;0.03%이하, S;;0.010%이하, Ti;0.01-0.10%, N;0.01%이하, B;0.003%이하, Nb;0.02-0.07%, V;0.10%이하로 조성된 강슬라브를 1100~1170℃에서 재가열하고 800-900℃의 마무리압연온도로 열간압연한 다음 수냉각하여 550-680℃의 온도에서 권취하여 재질이방성이 적은 강관용 고장력 열연강판을 제조하였다. 상기 발명강은 1250℃에서 재가열한 비교재에 비하여 재가열온도를 1150℃로하여 재질이방성이 적은 강재를 얻었으나, 상기의 조성 및 조건에서는 항복강도 490MPa, 인장강도 588MPa으로 본 발명에 비하여 항복강도 및 인장강도가 작아 동일한 조건에 사용되기 위해서는 두께가 두꺼운 강재를 사용해야 하는 단점이 있다. In the above 2000-0039479, C; 0.03-0.10%, Si; 0.01-0.50%, Mn; 1.2-2.0%, P; 0.03% or less, S ;; 0.010% or less, Ti; 0.01-1.10%, N; 0.01 Steel slabs made of% or less, B; 0.003% or less, Nb; 0.02-0.07%, V; 0.10% or less are reheated at 1100 ~ 1170 ° C, hot rolled to a finish rolling temperature of 800-900 ° C, and water cooled It was wound at a temperature of 550-680 ℃ to produce a high tensile strength hot rolled steel sheet for steel pipe with a low material anisotropy. The inventive steel obtained a steel with less material anisotropy with a reheating temperature of 1150 ° C. compared with the comparative material reheated at 1250 ° C., but yield strength 490 MPa and tensile strength 588 MPa under the above composition and conditions compared to the present invention. In order to be used under the same conditions because the tensile strength is small, there is a disadvantage that a thick steel must be used.

최근 소재 제조사에서는 합금첨가량을 증가시킴으로써 45도 방향의 항복강도 특성을 맞추어 재질이방성의 문제를 해결하려는 방안을 모색하고 있으나, 제조 비용이 높은 단점이 있어 실익이 없다. 따라서 본 발명자는 소량의 합금원소 첨가와 열간압연 제어만으로도 재질이방성이 작은 강관용 고장력 열연강판을 제조하는 방안을 모색하던 중 강도를 증가시키기 위해 석출물을 석출시키는 경우 석출물 형성에 의한 미세조직의 변화와 석출물 자체의 분포 및 크기 등을 적절히 관리하면 재질이방성이 크게 변화될 수 있다는 것을 실험을 통해 확인하고, 그 실험결과에 기초하여 본 발명을 제안하게 되었다. Recently, the material manufacturer is seeking to solve the problem of material anisotropy by adjusting the yield strength characteristics in the 45 degree direction by increasing the amount of alloy addition, but there is a disadvantage in that the manufacturing cost is high. Therefore, the present inventors have been searching for a method for manufacturing high tensile hot rolled steel sheet for steel pipes with small material anisotropy only by adding a small amount of alloying elements and hot rolling control. It is confirmed through experiments that the material anisotropy can be greatly changed by properly managing the distribution and size of the precipitates themselves, and the present invention has been proposed based on the experimental results.

이에 본 발명의 목적은 Mo, Cr, V 및 Ti을 복합첨가하고 열연공정을 적절히 제어함으로써 석출물 형성에 의한 미세조직의 관리와 석출물 자체의 분포 및 크기의 관리에 의해 재질이방성을 줄일 수 있는 열연강판의 제조방법을 제공하고자 한다.Therefore, an object of the present invention is a hot rolled steel sheet which can reduce the material anisotropy by managing the microstructure by the formation of precipitates and the distribution and size of the precipitates themselves by complex addition of Mo, Cr, V and Ti and appropriately control the hot rolling process To provide a method of manufacturing.

본 발명의 일견지에 의하면,According to one aspect of the invention,

중량%로, C; 0.03-0.10%, Si; 0.01-0.50%, Mn; 1.2-2.0%, P; 0.03%이하, S; 0.010%이하, Ti; 0.01-0.10%, N; 0.01%이하, Mo; 0.1-0.3%, Cr; 0.01-0.04%, Ni; 0.1-0.5%, Nb; 0.02-0.07%, V; 0.10%이하 및 나머지 Fe와 기타 불가피한 불순원소들로 구성된 강슬라브를 1260-1350℃의 온도에서 재가열하고, 780-820℃의 마무리 압연온도로 열간압연한 다음, 수냉각하여 540-600℃의 온도에서 권취하여 이루어지는 재질이방성이 작은 라인파이프용 열연강판의 제조방법이 제공된다.In weight percent C; 0.03-0.10%, Si; 0.01-0.50%, Mn; 1.2-2.0%, P; 0.03% or less, S; 0.010% or less, Ti; 0.01-0.10%, N; 0.01% or less, Mo; 0.1-0.3%, Cr; 0.01-0.04%, Ni; 0.1-0.5%, Nb; 0.02-0.07%, V; The steel slab consisting of 0.10% or less and the remaining Fe and other unavoidable impurities is reheated at a temperature of 1260-1350 ° C, hot rolled to a finish rolling temperature of 780-820 ° C, and then cooled by water to a temperature of 540-600 ° C. Provided is a method for producing a hot rolled steel sheet for a line pipe having a small material anisotropy obtained by winding at

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

C는 강을 강화시키는데 가장 경제적이며 효과적인 원소이나 다량 첨가에 따라 용접성, 성형성 및 인성이 저하되는 원소로, 본 발명에서는 이를 고려하여 0.03-0.10%로 한정한다. 첨가량이 0.03%미만이 되면 동일한 강도를 발휘시키기 위하여 다른 합금원소를 상대적으로 다량 첨가하여야 하기 때문에 경제적이지 못하며 0.10% 이상을 첨가하면 용접성, 성형성 및 인성이 저하하기 때문에 바람직하지 않다.C is the most economical and effective element for reinforcing steel, but the weldability, formability and toughness are reduced by the addition of a large amount, and in the present invention, C is limited to 0.03-0.10%. If the added amount is less than 0.03%, it is not economical because other alloy elements must be added in relatively large amounts in order to exhibit the same strength, and it is not preferable because the addition of 0.10% or more lowers the weldability, formability and toughness.

Si는 용강을 탈산시키기 위해서도 필요하고 고용강화원소로도 효과를 나타내므로 0.01-0.50% 범위의 첨가가 필요하다. 첨가량 0.01% 이하에서는 용강의 탈산역할을 충분히 하지 않기 때문에 청정한 강을 얻기 어려우며, 0.5%이상 첨가하면 열간압연시 Si에 의한 붉은형 스케일이 형성되어 강판표면 형상이 매우 나쁘게 되며 연성도 저하되기 때문에 바람직하지 않다.Si is also needed to deoxidize molten steel and is effective as a solid solution element, so an addition in the range of 0.01-0.50% is required. If the addition amount is 0.01% or less, it is difficult to obtain clean steel because it does not sufficiently deoxidize the molten steel, and if it is added more than 0.5%, a red scale formed by Si is formed during hot rolling, so the surface shape of the steel sheet becomes very bad and the ductility decreases. Not.

Mn은 강을 고용강화시키는데 효과적인 원소로서 1.2%이상 첨가되어야 소입성 증가효과와 더불어 고강도를 발휘할 수 있다. 그러나, 2.0%이상 첨가시키면 제강공정에서 슬라브를 주조시 두께 중심부에서 편석부가 크게 발달되고 최종제품의 용접성을 해치기 때문에 바람직하지 않다.Mn is an effective element to solidify the steel to be added more than 1.2% can exhibit high strength with the effect of increasing the hardenability. However, the addition of 2.0% or more is not preferable because the segregation part is greatly developed at the center of the thickness when casting the slab in the steelmaking process, and it damages the weldability of the final product.

P는 강 중에 존재하는 불순물 원소로서 Mn 등과 결합하여 비금속개재물을 형성하며 이에 따라 강의 인성 및 강도를 크게 손상시키기 때문에 가능한 한 감소시키는 것이 바람직하므로 그 상한을 0.03%로 한다.P is an impurity element present in steel and forms a non-metallic inclusion by combining with Mn or the like, and therefore, it is preferable to reduce it as much as possible because it greatly impairs the toughness and strength of the steel. Therefore, the upper limit is made 0.03%.

S도 역시 강 중에 존재하는 불순물 원소로서 Mn 등과 결합하여 비금속개재물을 형성하며 이에 따라 강의 인성 및 강도를 크게 손상시키기 때문에 가능한 한 감소시키는 것이 바람직하므로 그 상한을 0.01%로 정한다.S is also an impurity element present in the steel and forms a non-metallic inclusion by combining with Mn and the like, and thus it is desirable to reduce it as much as possible because it greatly impairs the toughness and strength of the steel. Therefore, the upper limit is set to 0.01%.

Ti은 결정립을 미세화시키는데 아주 유용한 원소로써 강 중에 TiN으로 존재하여 열간압연을 위한 가열 과정에서 결정립의 성장을 억제하는 효과가 있으며 또한 질소와 반응하고 남은 Ti이 강 중에 고용되어 탄소와 결합하여 TiC의 석출물이 형성되고 TiC의 형성은 매우 미세하여 강의 강도를 대폭적으로 향상시킨다. 따라서, TiN 석출에 의한 오스테나이트 결정립 성장 억제 효과 및 TiC 형성에 의한 강 도 증가를 얻기 위해서는 적어도 0.01%이상의 Ti이 첨가되어야 하며 0.03%이상이 첨가되면 강판을 용접하여 강관으로 제조시 용융점까지 급열됨에 의해서 TiN이 재고용됨에 따라 용접 열영향부의 인성이 열화되기 때문에 Ti 첨가의 상한은 0.03%로 한다.Ti is a very useful element for refining grains. It exists as TiN in steel and has the effect of inhibiting the growth of grains during heating for hot rolling. Also, Ti remaining after being reacted with nitrogen is dissolved in carbon to bond with carbon. Precipitates are formed and the formation of TiC is very fine, greatly improving the strength of the steel. Therefore, in order to obtain the effect of inhibiting austenite grain growth due to TiN precipitation and increasing the strength due to TiC formation, at least 0.01% of Ti should be added, and when 0.03% or more is added, the steel sheet is welded to the melting point when manufacturing the steel pipe. As the TiN is re-used, the toughness of the weld heat affected zone deteriorates, so the upper limit of Ti addition is made 0.03%.

N의 성분 한정 사유는 상기의 Ti 첨가에 기인한 것이다. 일반적으로 N은 강 중에 고용되었다가 석출되어 강의 강도를 증가시키는 역할을 하며 이러한 능력은 탄소보다도 훨씬 크다. 그러나, 한편으로 강 중에 질소가 존재하면 할 수록 인성은 크게 저하하는 것으로 알려져 있어 가능한 한 질소 함유량을 감소시키려는 것이 일반적인 추세이다. 그러나, 본 발명에서는 적정량의 질소를 존재케하여 Ti과 반응시켜 TiN를 형성, 재가열 과정에서의 결정립 성장을 억제시키는 역할을 부여하였다. 그러나, Ti의 일부는 N와 반응하지 않고 남아 이후의 공정에서 탄소와 반응하여 하기 때문에 그 상한을 0.01%이하로 한다.The reason for component limitation of N is attributable to the above Ti addition. In general, N is dissolved in the steel and precipitates to increase the strength of the steel, which is much greater than carbon. However, on the other hand, it is known that toughness decreases as more nitrogen exists in steel, and it is a general trend to reduce nitrogen content as much as possible. However, in the present invention, a proper amount of nitrogen is present to react with Ti to form TiN, thereby imparting a role of suppressing grain growth during reheating. However, since part of Ti does not react with N and reacts with carbon in a subsequent step, the upper limit thereof is made 0.01% or less.

Mo와 Cr은 소재의 강도를 상승시키는데 매우 유효하며, 저온변태 조직인 침상형(acicular) 페라이트 생성을 조장함에 의해 항복비를 낮추는 역할을 한다. 또한 시멘타이트와 탄화물이 집적되어 있어 열화한 충격특성을 보이는 펄라이트 조직의 생성을 억제하여 양호한 충격인성도 확보할 수 있다. 이를 위해 Mo은 0.1%이상을 첨가하여야 하나 고가의 원소이므로 0.3%이하로 제한하는 것이 바람직하다.Mo and Cr are very effective in increasing the strength of the material, and lowers the yield ratio by promoting the formation of acicular ferrite, which is a low temperature metamorphic tissue. In addition, cementite and carbides are integrated to suppress the formation of pearlite structures exhibiting deteriorated impact characteristics, thereby ensuring good impact toughness. To this end, Mo should be added to 0.1% or more but is an expensive element is preferably limited to less than 0.3%.

Cr은 Mo와 복합첨가하면 상호 보완작용에 의해 저항복비와 우수한 저온인성을 동시에 얻는 것이 가능하므로 0.01-0.04%를 첨가한다.When Cr is added in combination with Mo, it is possible to simultaneously obtain resistance ratio and excellent low-temperature toughness by complementary action, so 0.01-0.04% is added.

Ni은 오스테나이트 안정화 원소로서 펄라이트 형성을 억제하며, 저온변태 조 직인 침상형(acicular) 페라이트 형성을 용이하게 하는 원소로 0.1%이상 첨가하며 고가의 원소이므로 0.5%이하로 제한하는 것이 바람직하다.Ni is an austenite stabilizing element that inhibits the formation of pearlite, and is an element that facilitates the formation of acicular ferrite, which is a low temperature transformation organization, is added at least 0.1% and is an expensive element, so it is preferable to limit it to 0.5% or less.

Nb은 결정립을 미세화시키는데 아주 유용한 원소이며 동시에 강의 강도도 크게 향상시키는 역학을 하기 때문에 적어도 0.02% 이상을 첨가하여야 하나, 0.07%를 첨가하는 경우에는 과도한 Nb 탄질화물의 석출에 기인되어 오스테나이트 미재결정온도를 지나치게 높이기 때문에 재질이방성이 증가하게 되므로 0.02-0.07%로 제한한다.Nb should be added at least 0.02% because it is a very useful element to refine the grain and at the same time greatly improve the strength of steel, but when 0.07% is added, it is caused by excessive precipitation of Nb carbonitrides Because the material anisotropy increases because the temperature is too high, it is limited to 0.02-0.07%.

V은 Nb과 같이 탄질화물로 석출하여 강의 강도를 높이는데 유효한 원소로서 첨가하는데, 그 첨가량이 너무 많은 경우 석출량이 포화되어 강도 증가는 크지 않고 제조비용만 높아지므로 0.10%로 제한한다. V is added as an effective element to increase the strength of the steel by precipitation as carbonitrides, such as Nb, but when the addition amount is too large, the precipitation amount is saturated, so the strength increase is not large and the manufacturing cost is only limited to 0.10%.

다음으로 본 발명의 제조방법에 대해서 설명한다.Next, the manufacturing method of this invention is demonstrated.

상기와 같은 사유로 한정된 성분계의 강을 열간압연함에 있어서 상기 강슬라브의 재가열온도를 1260-1350℃로, 즉, 슬라브 가열대 온도를 1260-1350℃로 하고, 열간압연 마무리 온도(FDT;finish delivery temperature)를 780-820℃ 범위로 하며 수냉각하여 귄취온도를 540-600℃온도범위로 권취한다. 바람직하게, 이때 균열대 온도는 1170-1190℃로 한다.In hot rolling a steel of a component system limited by the above reason, the reheating temperature of the steel slab is 1260-1350 ° C, that is, the slab heating zone temperature is 1260-1350 ° C, and the hot rolling finish temperature (FDT; ) In the range of 780-820 ℃ and water-cooled to wind the odor temperature in the range of 540-600 ℃. Preferably, the crack zone temperature is 1170-1190 ° C.

재질의 이방성은 열간압연 중에 생성된 집합조직 및 석출물에 의해 결정되며 생성된 집합조직이 약할 수록, 무질서하게 석출된 석출물의 양이 많을수록 이방성 은 감소하게 된다. 슬라브를 재가열하는 온도는 본 발명에서 매우 중요하다. 만약, 재가열온도를 1255℃와 같이 석출물이 충분히 재고용되는 온도 이하로 설정하면 열간압연 이후의 공정에서 NbC 등의 석출물이 감소하게된다. 또한 가열온도가 낮을 수록 오스테나이트 결정립이 작게 되어 열간압연시 보다 강한 변형집합조직이 형성되어 최종 변태집합조직이 강하게 발달하게 된다. 그 결과 재질이방성은 증가하게 된다. 따라서, 재가열 온도를 1260℃이상으로, 균열대 온도를 1170℃이상으로 유지하므로써 석출물의 재고용을 조장하고 적당한 크기의 오스테나이트 결정립도를 유지하므로써 소재의 강도수준도 향상시키면서 집합조직의 형성을 완하시키기 때문에 소재의 재질이방성이 감소하는 것이다. 이때, 재가열대 온도가 너무 높으면 오스테나이트 결정립의 이상입성장에 의하여 강도가 저하되므로 재가열대 온도 상한은 1350℃로 하는 것이 좋다. The anisotropy of the material is determined by the textures and precipitates formed during hot rolling, and the weaker the textures formed, the more the precipitates precipitated out of order. The temperature of reheating the slab is very important in the present invention. If the reheating temperature is set below a temperature at which the precipitate is sufficiently reusable, such as 1255 ° C., precipitates such as NbC are reduced in the process after hot rolling. In addition, as the heating temperature is lowered, the austenite grains are smaller, so that a stronger strain set structure is formed than during hot rolling, and thus the final transformation set structure is strongly developed. As a result, material anisotropy increases. Therefore, the reheating temperature is maintained at 1260 ° C or higher and the crack zone temperature is maintained at 1170 ° C or higher, thereby facilitating the redistribution of precipitates and maintaining the austenite grain size of moderate size, thereby improving the strength level of the material and thereby slowing down the formation of the texture. The material anisotropy of the material is reduced. At this time, if the reheating zone temperature is too high, the strength decreases due to abnormal grain growth of the austenite grains, so the upper limit of the reheating zone temperature is preferably 1350 ° C.

본 발명에서는 Mo, Cr, V 및 Ti이 복합첨가 되어 있으며, 이와 같은 석출원소의 석출강화에 의한 강도 증대 효과 및 재질이방성을 감소시키기 위해서 열간압연 마무리온도를 780-820℃의 범위로 정하였다. 열간압연 마무리 온도가 780℃보다 낮으면, 열간압연 도중에 오스테나이트에 강한 변형집합조직이 형성되어 상변태에 의해 생성된 페라이트 및 침상형(acicular) 페라이트에도 강한 변태집합조직이 형성되게 된다. 한편, 열간압연 마무리 온도를 820℃보다 높게 설정하면 마무리 압연개시온도가 높게 되어 변태에 의해 생성되는 페라이트의 결정립이 미세하지 않게 되며, 그 결과 원하는 강도 수준을 나타내지 못하기 때문에 경제적이지 못하다.In the present invention, Mo, Cr, V and Ti is a composite addition, hot rolling finish temperature was set in the range of 780-820 ℃ to reduce the strength increase effect and material anisotropy by the precipitation strengthening of the precipitation element. When the hot rolling finish temperature is lower than 780 ° C, a strong deformation set structure is formed in austenite during hot rolling, so that a strong transformation set structure is formed even in the ferrite and acicular ferrite produced by phase transformation. On the other hand, when the hot rolling finish temperature is set higher than 820 ℃, the finish rolling start temperature is high and the grains of the ferrite produced by the transformation is not fine, as a result it is not economical because it does not exhibit the desired strength level.

열간압연을 마무리한 후, 런-아웃 테이블 상에서 수냉각을 실시함으로써 오 스테나이트 결정립 성장을 억제하고 동시에 페라이트 조대화를 방지하므로써 인성저하를 억제한다. 권취온도는 540-600℃ 온도범위가 적당한데, 600℃보다 높으면 미세조직이 조대한 페라이트와 펄라이트로 형성되고 석출물도 조대해져 소재의 강도가 크게 저하되며 540℃보다 낮으면 베이나이트 변태가 일어나 강도는 증가하나 소재의 인성이 크게 저하하고 재질이방성도 증가하기 때문이다.After the hot rolling is finished, water cooling is performed on the run-out table to suppress austenite grain growth and at the same time to suppress the decrease in toughness by preventing ferrite coarsening. The coiling temperature is suitable for the temperature range of 540-600 ℃. If it is higher than 600 ℃, the microstructure is formed of coarse ferrite and pearlite, and the precipitate is coarse, so that the strength of the material is greatly reduced. If it is lower than 540 ℃, the bainite transformation occurs. Is increased, but toughness of material is greatly reduced and material anisotropy is increased.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

하기 표 1과 같은 화학성분을 갖는 발명강을 용해하여 슬라브로 제조한 후, 열간압연하여 판재로 제조하였다.Invented steel having a chemical composition as shown in Table 1 was dissolved in a slab, and hot rolled to prepare a plate.

이때, 하기 표 2와 같은 조건으로 발명강을 압연(비교압연 또는 발명압연)하여 제조하고 인장시험을 하였다. 강종 A, B는 발명강을 이용하여 비교압연한 것이고, 강종 C, D는 발명강을 이용하여 발명압연한 것이다.At this time, the invention steel was rolled (compared or rolled invention) under the conditions as shown in Table 2 and subjected to a tensile test. Steel grades A and B are rolled comparatively using the invention steel, and steel grades C and D are rolled invention using the invention steel.

강종Steel grade CC SiSi MnMn PP SS NbNb VV NiNi CrCr MoMo TiTi NN 비고Remarks AA 0.0590.059 0.190.19 1.591.59 0.0080.008 0.0010.001 0.0560.056 0.0560.056 0.240.24 0.020.02 0.250.25 0.0180.018 0.00540.0054 발명강Invention steel BB 0.0610.061 0.220.22 1.551.55 0.0110.011 0.0010.001 0.0530.053 0.0530.053 0.250.25 0.030.03 0.240.24 0.0200.020 0.00720.0072 발명강Invention steel CC 0.0630.063 0.210.21 1.571.57 0.0110.011 0.0010.001 0.0520.052 0.0560.056 0.230.23 0.020.02 0.250.25 0.0170.017 0.00460.0046 발명강Invention steel DD 0.0610.061 0.200.20 1.571.57 0.0100.010 0.0010.001 0.0560.056 0.0520.052 0.250.25 0.010.01 0.230.23 0.0170.017 0.00560.0056 발명강Invention steel

강종Steel grade 가열로 온도(℃)Furnace temperature (℃) 마무리 압연온도(℃)Finish rolling temperature (℃) 권취온도 (℃)Winding temperature (℃) 비고Remarks 가열대Heating table 균열대Crack AA 12561256 11511151 792792 560560 발명강-비교압연Inventive Steel-Comparative Rolling BB 12551255 11551155 788788 565565 발명강-비교압연Inventive Steel-Comparative Rolling CC 12611261 11751175 783783 554554 발명강-발명압연Inventive Steel-Invention Rolling DD 12661266 11731173 787787 555555 발명강-발명압연Inventive Steel-Invention Rolling

하기 표 3은 발명강의 비교압연재와 발명강의 발명압연재의 30도 및 90도 방향 항복강도, 인장강도 및 그 편차를 나타낸 것이다.Table 3 below shows the yield strength, the tensile strength and the deviation of the comparative rolling material of the invention steel and the invention rolling material of the invention steel in the 30 and 90 degree directions.

강종Steel grade 30o방향 항복강도 (MPa)Yield strength in 30 o direction (MPa) 90o방향 항복강도 (MPa)Yield strength in 90 o direction (MPa) 30o방향 인장강도 (MPa)30 o direction tensile strength (MPa) 90o방향 항복강도 (MPa)Yield strength in 90 o direction (MPa) 항복강도 차이 (MPa)Yield strength difference (MPa) 인장강도 차이 (MPa)Tensile Strength Difference (MPa) 비고Remarks AA 503503 605605 670670 703703 102102 3333 발명강 -비교압연Inventive Steel-Comparative Rolling BB 498498 584584 689689 734734 8686 4545 발명강 -비교압연Inventive Steel-Comparative Rolling CC 550550 602602 693693 750750 5252 5757 발명강 -발명압연Inventive Steel -Invention Rolling DD 562562 607607 744744 725725 4545 1919 발명강 -발명압연Inventive Steel -Invention Rolling

본 발명 조성강을 사용하여 제조조건을 변경한 경우를 살펴보면 다음과 같다. 본 발명강을 이용하여 비교압연한 강종 A, B의 경우 경우에는 재질이방성을 나타내는 30도 방향과 90도 방향의 항복강도의 차이가 85MPa 이상으로 매우 크며 30도 방향의 항복강도도 503MPa 이하임을 알 수 있다. 반면, 본 발명강을 이용하여 발명압연 조건으로 제조한 강종 C, D의 경우에는 30도 방향과 90도 방향의 항복강도의 차이가 불과 52MPa 이내로 비교재에 비하여 매우 우수하게 나타나고 있으며, 30도 방향의 항복강도도 550MPa 이상임을 알 수 있다.Looking at the case of changing the manufacturing conditions using the composition steel of the present invention are as follows. In the case of steel grades A and B comparatively rolled using the present invention steel, the difference in yield strength in the 30 degree direction and the 90 degree direction showing material anisotropy is very large, more than 85 MPa, and the yield strength in the 30 degree direction is 503 MPa or less. Can be. On the other hand, in the case of steel grades C and D manufactured under the invention rolling conditions using the inventive steel, the difference in yield strength in the 30-degree direction and the 90-degree direction is within 52 MPa, which is very excellent compared to that of the comparative material. It can be seen that the yield strength of 550MPa or more.

이와 같이 본 발명조건으로 압연하는 경우, 30도 방향 항복강도 550MPa이상, 재질이방성 52MPa 이하의 적은 재질이방성을 지닌 우수한 라인파이프용 열연강판을 제조할 수 있다.As described above, when rolling under the conditions of the present invention, excellent hot-rolled steel sheet for line pipe having less material anisotropy of 550 MPa or more and a material anisotropy of 52 MPa or less in a 30 degree direction can be produced.

상술한 바와 같이, 본 발명은 강의 화학성분을 조절하고 슬라브 가열온도, 열간압연 및 권취조건을 제어함으로써, 페라이트 및 침상형(acicular) 페라이트 조직을 형성시킬 수 있고, 압연조건을 조절하므로써 미세한 석출물의 형성과 동시에 재질이방성이 감소하는 특성을 나타낸다. 또한 제조조건에 있어 비교적 정확한 열간압연 조건을 사용함으로써 압연 생산성을 향상시킬 수 있으며 상기 강을 사용함에 있어서도, 재질이방성이 적으므로 부품 제조시의 실수율 및 생산성을 향상시킬 수 있어, 본 발명에 의해 제조원가의 저하를 도모할 수 있는 등, 그 효과가 매우 크다고 하겠다.As described above, the present invention can form ferrite and acicular ferrite structures by controlling the chemical composition of the steel and controlling the slab heating temperature, hot rolling and winding conditions, and by adjusting the rolling conditions, fine precipitates are obtained. At the same time, the material anisotropy decreases. In addition, it is possible to improve the rolling productivity by using a relatively accurate hot rolling conditions in the manufacturing conditions, and even in the use of the steel, the material anisotropy is small, thereby improving the error rate and productivity in the manufacture of parts, the production cost according to the present invention It can be said that the effect is very large.

Claims (1)

중량%로, C; 0.03-0.10%, Si; 0.01-0.50%, Mn; 1.2-2.0%, P; 0.03%이하, S; 0.010%이하, Ti; 0.01-0.10%, N; 0.01%이하, Mo; 0.1-0.3%, Cr; 0.01-0.04%, Ni; 0.1-0.5%, Nb; 0.02-0.07%, V; 0.10%이하 및 나머지 Fe와 기타 불가피한 불순원소들로 구성된 강슬라브를 1260-1350℃의 온도에서 재가열하고, 780-820℃의 마무리 압연온도로 열간압연한 다음, 수냉각하여 540-600℃의 온도에서 권취하여 이루어지는 재질이방성이 작은 라인파이프용 열연강판의 제조방법.In weight percent C; 0.03-0.10%, Si; 0.01-0.50%, Mn; 1.2-2.0%, P; 0.03% or less, S; 0.010% or less, Ti; 0.01-0.10%, N; 0.01% or less, Mo; 0.1-0.3%, Cr; 0.01-0.04%, Ni; 0.1-0.5%, Nb; 0.02-0.07%, V; The steel slab consisting of 0.10% or less and the remaining Fe and other unavoidable impurities is reheated at a temperature of 1260-1350 ° C, hot rolled to a finish rolling temperature of 780-820 ° C, and then cooled by water to a temperature of 540-600 ° C. A method for producing a hot rolled steel sheet for a line pipe having a small material anisotropy formed by winding in.
KR1020010085091A 2001-12-26 2001-12-26 The method of manufacturing hot rolled steels with less anisotropic properties for linepipes KR100584762B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010085091A KR100584762B1 (en) 2001-12-26 2001-12-26 The method of manufacturing hot rolled steels with less anisotropic properties for linepipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010085091A KR100584762B1 (en) 2001-12-26 2001-12-26 The method of manufacturing hot rolled steels with less anisotropic properties for linepipes

Publications (2)

Publication Number Publication Date
KR20030054700A KR20030054700A (en) 2003-07-02
KR100584762B1 true KR100584762B1 (en) 2006-05-30

Family

ID=32213438

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010085091A KR100584762B1 (en) 2001-12-26 2001-12-26 The method of manufacturing hot rolled steels with less anisotropic properties for linepipes

Country Status (1)

Country Link
KR (1) KR100584762B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957907B1 (en) 2007-12-24 2010-05-13 주식회사 포스코 High Strength Ferritic Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof
KR100957991B1 (en) 2007-12-24 2010-05-18 주식회사 포스코 High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof
KR101505279B1 (en) 2013-04-30 2015-03-24 현대제철 주식회사 Hot-rolled steel sheet and method of manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946052B1 (en) * 2002-12-28 2010-03-09 주식회사 포스코 Method for manufacturing linepipe steel strips to minimize the deviation of yield strength through the longitudinal direction
KR101091368B1 (en) * 2004-09-30 2011-12-07 주식회사 포스코 Method for manufacturing a high-strength hot rolled steel sheet for linepipe with superior DWTT characteristics at low temperature
KR101105113B1 (en) * 2004-12-27 2012-01-16 주식회사 포스코 Manufacturing method of hot rolled steel plate for linepipe having excellent low temperature toughness and corrosion resistance
KR100711464B1 (en) * 2005-12-15 2007-04-24 주식회사 포스코 A method for manufacturing hot rolled steel sheet for linepipe having low yield ratio and excellent yield strength anisotropic properties
KR102508749B1 (en) 2020-12-18 2023-03-10 주식회사 포스코 Hot-rolled steel sheeet for line pipe with low yield strength anisotropy and its manufcaturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443822A (en) * 1977-09-14 1979-04-06 Nippon Steel Corp Manufacture of high tensile hot rolled steel sheet with low intrafacial plastic anisotropy
JPH06145787A (en) * 1992-11-02 1994-05-27 Sumitomo Metal Ind Ltd Production of high tensile strength steel excellent in weldability
JPH10298645A (en) * 1997-04-24 1998-11-10 Sumitomo Metal Ind Ltd Manufacture of hot rolled high tensile strength steel plate
JPH11343535A (en) * 1998-05-29 1999-12-14 Kawasaki Steel Corp Coating/baking hardening type high tensile strength steel plate and its production
KR20000035297A (en) * 1998-11-10 2000-06-26 에모또 간지 Hot rolled steel sheet having an ultrafine grain structure and process for producing steel sheet
KR20030021965A (en) * 2001-09-10 2003-03-15 주식회사 포스코 a hot-rolled steel sheet wiht good ultra low temperature toughness and the method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443822A (en) * 1977-09-14 1979-04-06 Nippon Steel Corp Manufacture of high tensile hot rolled steel sheet with low intrafacial plastic anisotropy
JPH06145787A (en) * 1992-11-02 1994-05-27 Sumitomo Metal Ind Ltd Production of high tensile strength steel excellent in weldability
JPH10298645A (en) * 1997-04-24 1998-11-10 Sumitomo Metal Ind Ltd Manufacture of hot rolled high tensile strength steel plate
JPH11343535A (en) * 1998-05-29 1999-12-14 Kawasaki Steel Corp Coating/baking hardening type high tensile strength steel plate and its production
KR20000035297A (en) * 1998-11-10 2000-06-26 에모또 간지 Hot rolled steel sheet having an ultrafine grain structure and process for producing steel sheet
KR20030021965A (en) * 2001-09-10 2003-03-15 주식회사 포스코 a hot-rolled steel sheet wiht good ultra low temperature toughness and the method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957907B1 (en) 2007-12-24 2010-05-13 주식회사 포스코 High Strength Ferritic Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof
KR100957991B1 (en) 2007-12-24 2010-05-18 주식회사 포스코 High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof
KR101505279B1 (en) 2013-04-30 2015-03-24 현대제철 주식회사 Hot-rolled steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
KR20030054700A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
KR101899689B1 (en) Steel plate for welded steel pipe having excellent elogation of the longitudinal direction, method for manufacturing thereof and welded steel pipe using same
KR100833035B1 (en) High-strength and high-toughness steel plate for linepipe excellent in deformability and method for manufacturing the same
KR100797326B1 (en) Steel plate for riser pipe guaranteed pwht and method of manufacturing thereof
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR100711371B1 (en) Thick steel sheet for linepipes having excellent excessive low temperature toughness and the method for manufacturing the same
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR100584762B1 (en) The method of manufacturing hot rolled steels with less anisotropic properties for linepipes
KR102031451B1 (en) High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
KR100723203B1 (en) Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet
KR101304822B1 (en) Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same
KR101143029B1 (en) High strength, toughness and deformability steel plate for pipeline and manufacturing metod of the same
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
KR101091510B1 (en) High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
KR101018159B1 (en) High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
KR100946052B1 (en) Method for manufacturing linepipe steel strips to minimize the deviation of yield strength through the longitudinal direction
KR101585730B1 (en) Thick steel sheet having excellent high temperature yield strength and low-temperature toughness, and method for manufacturing the same
KR101889186B1 (en) High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same
KR101105113B1 (en) Manufacturing method of hot rolled steel plate for linepipe having excellent low temperature toughness and corrosion resistance
KR101647226B1 (en) Steel plate having excellent fracture resistance and yield ratio, and method for manufacturing the same
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
KR101091368B1 (en) Method for manufacturing a high-strength hot rolled steel sheet for linepipe with superior DWTT characteristics at low temperature
KR100711464B1 (en) A method for manufacturing hot rolled steel sheet for linepipe having low yield ratio and excellent yield strength anisotropic properties
KR100833066B1 (en) High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same
KR100345716B1 (en) Manufacturing method of high tensile hot rolled steel sheet for steel pipe with low material anisotropy
KR100363191B1 (en) The method of manufacturing linepipe steel with good formability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130513

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150521

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160524

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170412

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180523

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190523

Year of fee payment: 14