KR100363191B1 - The method of manufacturing linepipe steel with good formability - Google Patents

The method of manufacturing linepipe steel with good formability Download PDF

Info

Publication number
KR100363191B1
KR100363191B1 KR10-1998-0056281A KR19980056281A KR100363191B1 KR 100363191 B1 KR100363191 B1 KR 100363191B1 KR 19980056281 A KR19980056281 A KR 19980056281A KR 100363191 B1 KR100363191 B1 KR 100363191B1
Authority
KR
South Korea
Prior art keywords
steel
temperature
less
cooling
present
Prior art date
Application number
KR10-1998-0056281A
Other languages
Korean (ko)
Other versions
KR20000040611A (en
Inventor
주세돈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0056281A priority Critical patent/KR100363191B1/en
Publication of KR20000040611A publication Critical patent/KR20000040611A/en
Application granted granted Critical
Publication of KR100363191B1 publication Critical patent/KR100363191B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 가공이 용이한 라인파이프용 강의 제조방법에 관한 것으로, 그 목적은 항복강도 50kgf/mm2급을 유지하면서 항복비가 85%이하로서 조관가공이 용이하고, H2S가스에 의한 크랙이 생성(HIC:Hydrogrn Induced Cracking)되지 않는 극저탄소형 베이나이트계 라인파이프용 강의 제조방법을 제공함에 있다.The present invention relates to a method for manufacturing line pipe steel, which is easy to process, and its purpose is to maintain a yield strength of 50 kgf / mm 2 and to maintain a yield ratio of 85% or less, so that the pipe is easy to be processed, and cracks due to H 2 S gas The present invention provides a method for producing ultra low carbon bainite line pipe steel that is not produced (HIC).

이와 같은 목적을 갖는 본 발명은, 중량%로, C:0.02-0.03%, Mn:1.6-2.0%, Si:0.1-0.2%, Al:0.02-0.05%, Ti:0.01-0.02%, Nb:0.04-0.06%, Mo:0.15-0.25%, B:0.001-0.002%, V:0.01%이하, S:0.002%이하, P:0.02%이하, N:20-60ppm, Ca:20-50ppm, 나머지 Fe 및 기타 불가피한 불순원소로 이루어진 강슬라브를 1150∼1250℃의 온도범위에서 가열하여 마무리압연온도를 Ar3+(100∼200)℃로 하는 조건으로 열간압연한 다음, Ar3온도이전에 냉각을 개시하여 7∼11℃/sec의 냉각속도로 480±30℃의 온도까지 가속냉각하고 상온까지 공냉하여 이루어지는 가공성이 우수한 라인파이프용 강의 제조방법에 관한 것을 그 기술적요지로 한다.The present invention having such an object is, in weight%, C: 0.02-0.03%, Mn: 1.6-2.0%, Si: 0.1-0.2%, Al: 0.02-0.05%, Ti: 0.01-0.02%, Nb: 0.04-0.06%, Mo: 0.15-0.25%, B: 0.001-0.002%, V: 0.01% or less, S: 0.002% or less, P: 0.02% or less, N: 20-60 ppm, Ca: 20-50 ppm, remaining A steel slab made of Fe and other unavoidable impurities is heated in the temperature range of 1150 to 1250 ° C., hot rolled under the condition that the finish rolling temperature is Ar 3 + (100 to 200 ° C.), and then cooled before the Ar 3 temperature. The technical gist of the present invention relates to a method for producing a line pipe steel having excellent workability by accelerating cooling to a temperature of 480 ± 30 ° C. at a cooling rate of 7 to 11 ° C./sec and air cooling to room temperature.

Description

가공성이 우수한 라인파이프용 강의 제조방법 {THE METHOD OF MANUFACTURING LINEPIPE STEEL WITH GOOD FORMABILITY}Method for manufacturing line pipe steel with excellent workability {THE METHOD OF MANUFACTURING LINEPIPE STEEL WITH GOOD FORMABILITY}

본 발명은 가공이 용이한 라인파이프용 강의 제조방법에 관한 것으로, 보다 상세하게는 기존의 라인파이프용 항복강도 50kgf/mm2급 API(미국석유협회)X70급 강재에 비해 제반물성이 우수한 극저탄소형 베이나이트계 합금강의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing line pipe steel that is easy to process. More specifically, yield strength of 50kgf / mm 2 grade API (American Petroleum Association) X70 grade steel has excellent overall properties compared to conventional line pipe yield strength. A method for producing a type bainite alloy steel.

종래에는 항복강도 50kgf/mm2급 이상을 요구하는 고강도 구조용 강재는 C, Mn 및 미량원소들을 다량 함유시켜 강재의 강도를 높이는 방법과, 혹은 강재의 필수적인 후속공정인 용접시의 용접성을 개선하기 위하여 합금원소의 함유를 가급적 줄이고, 이에 따른 강도 저하는 가속냉각을 통한 미세조직의 제어를 통하여 보상하는 방법이 주로 이용되어 왔다.Conventionally, high strength structural steels requiring a yield strength of 50kgf / mm 2 or more contain a large amount of C, Mn and trace elements to increase the strength of the steel, or to improve weldability during welding, which is an essential subsequent process of the steel. The method of compensating the content of the alloying element as much as possible and thus reducing the strength through the control of the microstructure through accelerated cooling has been mainly used.

그러나, 이러한 기술은 기본적으로 최종 미세조직을 페라이트+ 퍼얼라이트 조직을 가짐으로써, 항복강도의 더 이상의 증진을 기대할 수 없고, 기준이상의 강도를 확보하기 위해서는 저온압연 및 가속냉각의 공정을 거치되 압연온도, 냉각개시온도, 냉각종료온도, 냉각속도 등을 엄격히 관리해야 하므로 생산성의 저하를 수반하고, 최종제품의 불량율이 비교적 크므로 생산단가가 비싼 단점이 있다. 또한, 라인파이프에 필요한 물성인 H2S(sour)가스 저항성 또한 열위한데 이는 수소유기 크랙이 퍼얼라이트 밴드를 따라 전파하기 때문이다. 특히, 페라이트+ 퍼얼라이트 강재의 또 하나의 단점은 항복비(YR=항복강도/인장강도)가 90% 정도의 값을 가짐으로써 라인파이프재의 후속공정인 조관공정시에 가공이 어려운 단점이 있다는 점이다. 최근, 조관업체에서의 항복비 요구수준은 85%이하인데 반하여, 항복비가 90%정도인 기존의 조직으로는 조관 불량율이 높아질 우려가 있다.However, this technique basically has a ferrite + pearlite structure of the final microstructure, and further improvement in yield strength cannot be expected, and in order to secure a strength above the standard, it is subjected to low temperature rolling and accelerated cooling, but the rolling temperature is increased. Because the cooling start temperature, cooling end temperature, cooling rate, etc. must be strictly controlled, there is a disadvantage in that the productivity is expensive and the production cost is expensive because the defective rate of the final product is relatively large. In addition, the H 2 S (sour) gas resistance, which is required for the line pipe, is also heat-resistant because hydrogen organic cracks propagate along the pearlite band. In particular, another disadvantage of ferritic + perlite steels is that the yield ratio (YR = yield strength / tensile strength) has a value of about 90%, which makes it difficult to process during the piping process, which is a subsequent process of line pipe material. to be. In recent years, the demand for surrendering costs is lower than 85% in the market, but there is a concern that the failure rate of tubing will increase in existing organizations with a surrendering cost of around 90%.

종합하면 기존의 가속냉각기술로 제조된 라인파이프강은, 페라이트+펄라이트조직을 가짐으로써 강도, 가공성, H2S가스저항성 등을 종합적으로 만족하기 어려운 문제점이 있었다. 따라서, 본 발명자는 선행기술의 문제점을 개선하기 위해 다각적으로 연구한 결과, 강성분계의 조절과 가속냉각조건을 적절히 결합하여 강의 미세조직을 베이나이트가 되도록 하면 그 해결이 가능하다는 것을 실험을 통해 확인하고 본 발명을 제안하게 이르렀다.In sum, the line pipe steel manufactured by the existing accelerated cooling technology has a problem that it is difficult to comprehensively satisfy the strength, workability, H 2 S gas resistance, etc. by having a ferrite + pearlite structure. Therefore, the present inventors have made a multifaceted study to improve the problems of the prior art, and it is confirmed through experiments that the microstructure of the steel can be solved by appropriately combining the control of the steel system and the accelerated cooling conditions to make the bainite. It came to propose the present invention.

본 발명은 항복강도 50kgf/mm2급을 유지하면서 항복비가 85%이하로서 조관가공이 용이하고, H2S가스에 의한 크랙이 생성(HIC:Hydrogrn Induced Cracking)되지 않는 극저탄소형 베이나이트계 라인파이프용 강의 제조방법을 제공하는데, 그 목적이 있다.The present invention maintains a yield strength of 50kgf / mm 2 class, yield rate is 85% or less, easy pipe processing, and H 2 S gas (HIC: Hydrogrn Induced Cracking) ultra-low carbon type bainite line It is an object of the present invention to provide a method for producing steel for pipes.

도 1은 발명강과 비교강의 물성을 종합하여 비교한 그래프1 is a graph comparing the physical properties of the inventive steel and the comparative steel

상기 목적을 달성하기 위한 본 발명의 라인파이프용 강의 제조방법은, 중량%로, C:0.02-0.03%, Mn:1.6-2.0%, Si:0.1-0.2%, Al:0.02-0.05%, Ti:0.01-0.02%, Nb:0.04-0.06%, Mo:0.15-0.25%, B:0.001-0.002%, V:0.01%이하, S:0.002%이하, P:0.02%이하, N:20-60ppm, Ca:20-50ppm, 나머지 Fe 및 기타 불가피한 불순원소로 이루어진 강슬라브를 1150∼1250℃의 온도범위에서 가열하여 마무리압연온도를 Ar3+(100∼200)℃로 하는 조건으로 열간압연한 다음, Ar3온도이전에 냉각을 개시하여 7∼11℃/sec의 냉각속도로 480±30℃의 온도까지 가속냉각하고 상온까지 공냉하는 것을 포함하여 구성된다.Method for producing a line pipe steel of the present invention for achieving the above object, in weight%, C: 0.02-0.03%, Mn: 1.6-2.0%, Si: 0.1-0.2%, Al: 0.02-0.05%, Ti : 0.01-0.02%, Nb: 0.04-0.06%, Mo: 0.15-0.25%, B: 0.001-0.002%, V: 0.01% or less, S: 0.002% or less, P: 0.02% or less, N: 20-60 ppm Hot-rolled steel slab consisting of Ca: 20-50ppm, remaining Fe and other unavoidable impurity elements in the temperature range of 1150-1250 ℃ and finishing rolling temperature under Ar 3 + (100-200) ℃ And cooling before the Ar 3 temperature is accelerated to a temperature of 480 ± 30 ° C. at a cooling rate of 7 to 11 ° C./sec and air cooled to room temperature.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 강성분을 극저탄소로 하고, 또한 기존에 항복강도 50kgf/mm2급강에 필수성분으로 관리하던 합금원소인 V를 첨가하지 않으면서 기타 성분을 적절히 관리하고 이와 함께 적정 가속냉각조건을 제어함으로써, 강의 최종미세조직을 베이나이트로 만들어 제반물성을 개선하는데, 그 특징이 있다.According to the present invention, the steel component is made of ultra low carbon, and the other components are properly managed without adding the alloying element V, which has been managed as an essential component in the yield strength of 50kgf / mm 2 steel, and the appropriate accelerated cooling conditions are controlled. By doing so, the final microstructure of the steel is made of bainite to improve the overall physical properties.

통상 강의 합금성분중 C는 함량이 작을 경우 제 2상 조직의 분율이 저하하여 강도가 저하되고, 많을 경우에는 강도가 증가하나 충격인성 특히 저온인성을 해치고 용접시의 용접성을 저하시킨다. 따라서, 본 발명은 C의 함량을 0.03%이하의 극저로 관리하여, 압연 후의 기지조직을 베이나이트로 만들고 제 2상의 생성을 억제시키되, C의 함량이 0.02%이하이면 베이나이트 기지상의 자체 강도가 저하되므로 C의 함량을 0.02~0.03%범위로 한정한다.In general, the content of C in the steel alloy is low, so that the fraction of the second phase structure is lowered, the strength is lowered. In many cases, the strength is increased, but the impact toughness, especially low temperature toughness, is impaired and the weldability at the time of welding is lowered. Therefore, the present invention manages the content of C at an extremely low level of 0.03% or less, makes the base structure after rolling into bainite and suppresses the formation of the second phase, but when the content of C is less than 0.02%, the strength of the bainite matrix is lower than Since the content of C is limited to 0.02% to 0.03%.

상기 Si는 제강시에 탈산제로 첨가되며 고용강화 효과도 있으나, 충격천이 온도를 높이는 원소로 이를 위해 0.1%이상 첨가하나, 0.2% 이상 첨가되면 용접성이 저하되며 강판표면에 산화 피막이 심하게 형성되므로 그 함량은 0.1~0.2% 범위로 한정한다.The Si is added as a deoxidizer during steelmaking and also has a solid solution effect, but the impact transition is an element that increases the temperature. However, at least 0.1% of Si is added, so that weldability is lowered and an oxide film is severely formed on the surface of the steel sheet. Is limited to the range of 0.1 to 0.2%.

상기 Mn은 S와 같이 연신된 비금속개재물인 MnS를 형성하여 상온연신율 및 저온인성을 저하시키므로 2.0%이하로 관리하는 것이 바람직하나, 극저탄소형인 본 발명의 성분 특성상 Mn이 1.6%이하가 되면 강의 소입성을 확보할 수 없어 베이나이트로 형성하기 어려워서 강도 확보가 어려우므로 1.6~2.0%로 제한한다.Since Mn forms MnS, which is an elongated non-metallic inclusion such as S, and thus lowers room temperature elongation and low temperature toughness, it is preferable to manage it to 2.0% or less. However, when Mn is 1.6% or less due to the component properties of the present invention, which is extremely low carbon, Since granularity cannot be secured, it is difficult to form bainite, so it is difficult to secure strength, so it is limited to 1.6 ~ 2.0%.

상기 Al은 제강시에 탈산제로 0.02%이상 첨가되나 0.05% 이상 첨가되면 비금속 산화물인 Al2O3를 형성하여 충격인성을 저하시키므로 0.02~0.05%범위로 제한한다.The Al is added at least 0.02% as a deoxidizer during steelmaking, but when 0.05% or more is added, Al 2 O 3 , which is a non-metal oxide, is formed to reduce impact toughness. Therefore, Al is limited to 0.02% to 0.05%.

상기 Ti은 강의 응고과정에서 TiN석출물을 형성하여 주괴를 가열하는 동안에 결정립의 성장을 억제하고, 열간압연과정에서 재결정립의 성장을 억제함으로써, 강의 결정립 미세화에 큰 역할을 하는 주요한 원소이다. Ti의 적정 첨가량은 N의 함량에 따라 변하게 되는데, 질소의 양에 비해 Ti의 첨가가 상대적으로 적으면 형성되는 TiN의 양이 적어서 결정립을 미세화시키는데 불리하고, 반면 과량 첨가되면 가열 중 TiN이 조대해져서 또한 결정립 성장 억제 효과가 감소하게 된다. 따라서 Ti의 첨가량은 통상적으로 함유되는 N의 함량(20-60ppm)을 고려하여 0.01-0.02%로 한정한다.Ti is a major element that forms a TiN precipitate during the solidification process of steel to suppress grain growth during heating of the ingot, and inhibits the growth of recrystallized grains during hot rolling, thereby playing a major role in grain refinement of steel. The amount of Ti added varies depending on the content of N. When the amount of Ti is relatively small compared to the amount of nitrogen, the amount of TiN formed is small, which is disadvantageous to refine the grains, whereas when excessively added, TiN becomes coarse during heating. In addition, the effect of inhibiting grain growth is reduced. Therefore, the amount of Ti added is usually limited to 0.01-0.02% in consideration of the content of N contained (20-60 ppm).

상기 Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 기지(Matrix)와 정합을 이루는 탄질화물(Nb(C,N))로 석출함으로써 강의 강도를 증가시키는 중요한 원소이다. 또한, 본 발명의 특징이 베이나이트 기지 조직의 형성에 의하여 강도 및 저온인성이 우수한 강을 제조함에 있으므로 경화능을 증진시키기 위해서는 Nb을 다량 함유시키는 것이 중요하나, 0.06% 이상 첨가하여도 상기의 효과가 증대시키는 것이 아니며, 페라이트 내에 고용된 상태로 존재하여 충격인성을 저하시킬 위험이 있고, 용접성을 저하시킬 수도 있으므로 0.04%-0.06%로 제한한다.The Nb is an important element that increases the strength of the steel by solidifying the austenite to increase the hardenability of the austenite and to precipitate as carbonitrides (Nb (C, N)) matching with the matrix (Matrix). In addition, the characteristics of the present invention is to produce a steel having excellent strength and low temperature toughness by the formation of the bainite matrix structure, it is important to contain a large amount of Nb in order to enhance the hardenability, even if added at least 0.06% Is not increased, and is present in the solid solution in the ferrite, thereby reducing the impact toughness and reducing the weldability, so it is limited to 0.04% -0.06%.

상기 B은 기지조직에 고용되어 있을 때 경화능을 증대시킬 뿐만 아니라 편석하여 입계의 결합력을 증진시키는 것으로 알려져 있다. 이는 입계를 따라 파단이 진전되는 인성 파괴 특성을 보이는 강에서의 저온인성을 증진시키는데 B이 큰 기여를 하게 됨을 의미하므로 B을 0.001%이상 함유시키는 것이 필요하다. 그러나, 0.002%이상 함유하면 입계를 오히려 취하시키는 경향이 있으므로 0.001%-0.002% 범위로 제한한다.The B is known to increase the hardenability as well as segregation to enhance the binding of the grain boundary when dissolved in the matrix structure. This means that B contributes to the enhancement of low temperature toughness in the steel showing toughness fracture properties that progress along the grain boundary. Therefore, it is necessary to contain B more than 0.001%. However, if it contains more than 0.002%, the grain boundary tends to be withdrawn, so it is limited to the range of 0.001% -0.002%.

상기 Mo은 경화능을 증진시켜 페라이트 변태를 억제함으로써 기지조직을 베이나이트 조직으로 만드는데 필수적인 원소이나, 0.25%이상 함유하면 Mo-C 석출물이 형성되어 입계를 취하시키고, C에 의한 냉각능 또한 저하시키므로 0.15~0.25%범위로 제한한다.Mo is an element essential for making the base structure into bainite structure by increasing the hardenability and suppressing ferrite transformation, but when it contains 0.25% or more, Mo-C precipitates are formed to drop grain boundaries, and the cooling ability by C is also lowered. The limit is 0.15 ~ 0.25%.

상기 P은 충격인성에 특히 나쁜 원소로 함량이 낮으면 낮을수록 좋으나 제강과정에서 피할수 없는 원소이므로 물성에 해로운 영향을 끼치지 않도록 그 함량은 0.02%이하로 제한한다.The P is a particularly bad element to impact toughness, the lower the content is better, but is inevitable in the steelmaking process, so the content is limited to 0.02% or less so as not to adversely affect the physical properties.

상기 S은 MnS의 비금속 개재물로 존재하여 열간압연에 의하여 길게 연신되어 강판물성의 이방성을 조장하고 충격인성을 저하시키므로 그 함량은 0.002% 이하로 관리한다.S is present as a non-metallic inclusion of MnS and is elongated by hot rolling to promote anisotropy of steel sheet properties and lower impact toughness, so that its content is controlled to 0.002% or less.

상기 N는 Ti과 함께 TiN석출물을 형성하여 강의 결정립을 미세화하는 역할을 하는데, 이를 위한 N의 첨가량은 Ti의 함량을 고려하여 20-60ppm으로 한다.The N forms a TiN precipitate with Ti to refine the grains of the steel, and the amount of N added thereto is 20-60 ppm in consideration of the Ti content.

상기 Ca은 CaS로 생성되어 MnS의 비금속개재물을 억제하기 위해 첨가하는데, 이를 위해 20ppm이상 첨가한다. 그 첨가량이 많으면 강중에 함유된 O와 반응하여 비금속개재물인 CaO를 생성하므로 50ppm이하로 한다.Ca is produced by CaS is added to suppress the non-metallic inclusions of MnS, for this purpose is added 20ppm or more. If the amount is large, it is reacted with O contained in the steel to produce CaO, which is a nonmetallic inclusion, so it is 50 ppm or less.

상기 함금 성분 외에 O가 일반 구조용 강재의 경우와 같이 함유될 수 있는데, 이 경우 그 함량은 O:0.01-0.05%로 관리한다.In addition to the alloying components, O may be contained as in the case of general structural steel, in which case the content is controlled to O: 0.01-0.05%.

이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated.

본 발명에서는 상기와 같이 조성되는 강슬라브를 가열하여 재결정 영역에서 열간 압연하고, Ar3+100℃~Ar3+200℃의 온도범위에서 종료하는 열간압연을 행한 압연판을 물을 이용하여 냉각속도 7℃/sec 이상으로 일정온도까지 냉각한 다음, 상온까지 공냉하는 일련의 공정으로 이루어지는데, 이를 구분하여 설명하면 다음과 같다.In the present invention, the steel slab formed as described above is heated and hot rolled in the recrystallization region, and the cold rolling rate is performed using hot rolling to finish the hot rolling in the temperature range of Ar 3 + 100 ° C to Ar 3 + 200 ° C. After cooling to a certain temperature of 7 ℃ / sec or more, and then consists of a series of processes to air-cooled to room temperature.

먼저, 열간압연 하기 전의 가열은 1150~1250℃의 온도범위에서 행하는데, 그 이유는 다음과 같다. 본 발명에서는 Nb를 오스테나이트 중에 용해된 상태로 존재하도록 하여, 이 Nb에 의한 경화능 증가로 생기는 변태온도의 강하로 페라이트를 미세화 시키는 것이 강도 및 저온인성 향상을 위하여 주요한 점이다. 슬라브 상태에서는 Nb이 C와 결합하여 탄화물 NbC로 존재하며, 따라서 열간압연전에 슬라브를 1150℃이상으로 가열하여 NbC가 용해되어 Nb이 원자상태로 존재하도록 해야하며, 단 가열 온도가 1250℃이상일 경우에는 오스테나이트 입자가 너무 조대화되고, 강중에 델타 페라이트(δ-ferrite)가 일부 생성되어 강판의 성질을 열화시키므로 슬라브 가열온도는 1150~1250℃ 범위로 하는 것이다.First, heating before hot rolling is performed in the temperature range of 1150-1250 degreeC, for the following reason. In the present invention, Nb is present in a dissolved state in austenite, and the refinement of the ferrite to the drop in the transformation temperature caused by the increase in the hardenability by the Nb is a major point for improving the strength and low temperature toughness. In the slab state, Nb is combined with C to exist as carbide NbC. Therefore, before hot rolling, the slab must be heated to 1150 ° C or higher to allow NbC to dissolve and exist in the atomic state, provided that the heating temperature is 1250 ° C or higher. The slab heating temperature is in the range of 1150 to 1250 ° C because the austenite particles are too coarse and some delta ferrite is generated in the steel to degrade the properties of the steel sheet.

상기와 같이 가열한 다음, 열간압연하는데, 이때 열간압연은 재결정영역에서 행하고 압연마무리온도는 Ar3+100℃~Ar3+200℃로 한다. 이를 설명하면 다음과 같다.After heating as above, it is hot rolled. At this time, the hot rolling is performed in the recrystallization zone and the rolling finish temperature is set at Ar 3 + 100 ° C to Ar 3 + 200 ° C. This is described as follows.

마무리압연온도는 강도이외에도 저온인성에 밀접한 연관이 있으므로 특히 엄격하게 관리하여야 할 지표이며 종래의 페라이트+퍼얼라이트 강의 경우에는 Ar3를 기준으로 ±30℃정도에서 압연을 종료하였다. 이는 압연마무리온도가 너무 높으면 연성, 저온인성 등은 우수하지만 강도가 저하되고, 압연마무리온도가 너무 낮으면 이상역 압연이 발생하여 연신된 페라이트와 퍼얼라이트가 존재하고 퍼얼라이트 밴드가 형성되어 연성 및 저온인성을 매우 저하시키므로 마무리압연온도는 아래 식(1)의 Ar3를 기준으로 ±30℃이내에서 관리하는 것이 종래의 기술이었다.The finish rolling temperature is closely related to low-temperature toughness as well as strength, which is an index to be strictly controlled. In the case of conventional ferritic and perlite steels, the rolling was finished at about 30 ° C based on Ar 3 . If the rolling finish temperature is too high, the ductility and low-temperature toughness are excellent, but the strength is lowered. If the rolling finish temperature is too low, abnormal reverse rolling occurs, resulting in stretched ferrite and pearlite, and the pearlite band is formed. Since the low temperature toughness is greatly lowered, the prior art has been to control the finish rolling temperature within ± 30 ° C based on Ar 3 of Equation (1) below.

Ar3=910-310C-80Mn-20Cu-55Ni-15Cr-80Mo(℃)······(1)Ar 3 = 910-310C-80Mn-20Cu-55Ni-15Cr-80Mo (℃) ····· (1)

여기서, C, Mn, Cu, Ni, Cr, Mo의 단위는 중량%임.Here, the unit of C, Mn, Cu, Ni, Cr, Mo is weight percent.

본 발명의 특징은 상대적 고온에서 압연을 종료함으로써 생산성을 25%정도 향상시킨 강재의 제조방법을 제공하는 것으로, 이는 공냉 후의 미세조직이 베이나이트로 이루어질수 있기 때문에 가능하다. 공냉 후의 조직이 베이나이트가 되면 강도 및 인성의 마무리압연온도 의존성이 매우 작아지므로 종래의 기술보다 고온에서 압연을 종료할 수 있으며, 본 발명에서는 상기의 Ar3온도 보다 100℃~200℃ 높은 온도 범위에서 압연을 종료하는 것이다.It is a feature of the present invention to provide a method for producing steel having improved productivity by about 25% by finishing rolling at a relatively high temperature, which is possible because the microstructure after air cooling can be made of bainite. When the structure after air cooling becomes bainite, the dependence on the finish rolling temperature of the strength and toughness becomes very small, so that rolling can be terminated at a higher temperature than in the prior art. In the present invention, the temperature range is 100 ° C. to 200 ° C. higher than the Ar 3 temperature. To finish rolling.

상기와 같이 압연하고 가속냉각한 후, 이어 상온까지 공냉하는데, 이때의 가속냉각은 Ar3온도이전에 냉각을 개시하여 7∼11℃/sec의 냉각속도로 480±30℃의 온도까지 냉각한다. 여기서 냉각개시온도를 Ar3온도이전으로 한정하는 것은, 변태가 시작되기전에 냉각을 개시하여야 초석페라이트의 석출을 막을 수 있기 때문이다. 또한 냉각속도를 7∼11℃/sec로 한정한 것은, 냉각속도가 너무 늦으면 베이나이트가 생겨도 층간간격이 커서 저온인성이 나빠지기 때문이며, 냉각속도가 11℃/sec 보다 빠르더라도 후판의 경우 균일냉각이 어렵기 때문이다. 또한, 냉각종료온도가 450℃ 보다 낮으면 불안전한 상이 나오며, 510℃보다 높으면 Mn, C이 농축되어 베이나이트로변태되지 않은 부분이 펄라이트로 된다.After rolling and accelerated cooling as described above, and then air-cooled to room temperature, accelerated cooling starts cooling before the Ar 3 temperature and cooled to a temperature of 480 ± 30 ℃ at a cooling rate of 7 ~ 11 ℃ / sec. The cooling start temperature is limited to the temperature before Ar 3 because the cooling must be started before the transformation starts to prevent precipitation of the cornerstone ferrite. In addition, the cooling rate is limited to 7 to 11 ° C./sec because the cooling rate is too slow, and even if bainite is formed, the interlayer spacing is so low that the low temperature toughness is worsened. Because this is difficult. In addition, when the cooling end temperature is lower than 450 ℃ unstable phase, when higher than 510 ℃ Mn, C is concentrated and the part which is not transformed into bainite becomes pearlite.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

아래의 실시예에서는 표 1과 같이 조성되는 합금강의 슬라브를 대상강종으로 하였는데, 여기서 발명강 A는 본 발명의 성분 범위를 만족하는 강이고, 비교강 B,C,D,E는 현재 공지기술에 의해 상용화되어 있는 강으로써 본 발명의 성분범위를 벗어나는 강이다.In the following examples, the slab of the alloy steel, which is composed as shown in Table 1, was used as a target steel type, wherein the inventive steel A is a steel that satisfies the component range of the present invention, and the comparative steels B, C, D, and E are presently known in the art. It is steel which is commercialized by the steel outside the component range of this invention.

구분division 화학조성(중량%)Chemical composition (% by weight) CC MnMn SiSi NbNb TiTi VV MoMo BB CuCu NiNi 발명강AInventive Steel A 0.0200.020 1.811.81 0.160.16 0.0450.045 0.0130.013 -- 0.200.20 0.00110.0011 -- -- 비교강Comparative steel BB 0.0630.063 1.741.74 0.290.29 0.0460.046 0.0170.017 0.0720.072 -- -- -- -- CC 0.0990.099 1.501.50 0.280.28 0.0550.055 0.0140.014 0.0670.067 -- -- -- -- DD 0.0950.095 1.301.30 0.310.31 0.0480.048 0.0130.013 0.0690.069 -- -- 0.240.24 0.120.12 EE 0.0770.077 1.21.2 0.250.25 0.0450.045 0.0140.014 0.0660.066 -- -- 0.240.24 0.130.13 발명강 및 비교강 모두 Al:30ppm, N:50ppm, O:20ppm, S:20ppm, P150ppm으로 관리함.Both the invention and comparative steels were managed with Al: 30ppm, N: 50ppm, O: 20ppm, S: 20ppm, P150ppm.

구체적으로 표 1에 제시된 발명강과 비교강의 조성차이를 설명하면 다음과 같다. 발명강A은 탄소의 함량을 0.02% 정도로 극저화하여 제 2상의 석출을 억제하고 대신 소입성을 향상시키기 위하여 미량의 보론과 0.2%의 Mo를 첨가하였으며, 가속냉각을 이용한 페라이트 미세화에 필수적인 원소인 바나듐을 배제한 것이다. 그리고, 비교재중 B강, C강은 항복강도 50kgf/mm2급 라인파이프중에서 저온용도로 개발 상용화된강종이고, D, E강은 sour가스 저항성을 증진시키기 위하여 Cu, Ni을 함유시키고 Mn의 함량을 1.3%이하로 제한한 강종이다.Specifically, the compositional difference between the inventive steel and the comparative steel shown in Table 1 is as follows. Inventive steel A was added with a very small amount of boron and 0.2% of Mo in order to minimize precipitation of the second phase by reducing the carbon content to about 0.02% and to improve the hardenability. Vanadium is excluded. In comparison, B and C steels were commercialized and developed for low temperature in 50kgf / mm grade 2 line pipe, and D and E steels contained Cu, Ni and Mn content to improve sour gas resistance. The steel grade is limited to 1.3% or less.

[실시예 1]Example 1

표 1의 5개 강슬라브를 아래 표 2와 같이 압연하고 이어 가속냉각한 다음 공냉하여 후판을 얻은 다음, 이 후판에 대해 인장시험과 저온인성시험을 하고 그 결과를 표 3에 나타내었다.Five steel slabs of Table 1 were rolled as shown in Table 2 below, followed by accelerated cooling, followed by air cooling to obtain a thick plate. Tensile test and low temperature toughness test were performed on the thick plate, and the results are shown in Table 3.

마무리압연온도Finish rolling temperature 냉각개시온도Cooling start temperature 냉각종료온도Cooling end temperature 냉각속도Cooling rate 발명강AInventive Steel A 950℃950 ℃ 750℃750 ℃ 550℃550 ℃ 7.8℃/sec7.8 ℃ / sec 비교강Comparative steel BB 740℃740 ℃ 720℃720 ℃ 480℃480 ℃ 11.3℃/sec11.3 ℃ / sec CC 740℃740 ℃ 720℃720 ℃ 475℃475 ℃ 11.7℃/sec11.7 ℃ / sec DD 700℃700 ℃ 676℃676 ℃ 506℃506 ℃ 9.1℃/sec9.1 ℃ / sec EE 763℃763 ℃ 723℃723 ℃ 432℃432 ℃ 10.0℃/sec10.0 ° C / sec

항복강도YP(Kgf/mm2)Yield strength YP (Kgf / mm 2 ) 인장강도TS(Kgf/mm2)Tensile Strength TS (Kgf / mm 2 ) 항복비(YP/TS)Yield Ratio (YP / TS) 챠피충격치(-50℃)Charpy impact value (-50 ℃) 발명강(A)Inventive Steel (A) 52.052.0 63.763.7 0.8160.816 225J/cm225J / cm 비교강Comparative steel BB 54.254.2 61.061.0 0.8880.888 270J/cm270J / cm CC 53.953.9 62.762.7 0.8600.860 293J/cm293J / cm DD 56.556.5 61.261.2 0.9230.923 150J/cm150 J / cm EE 55.855.8 59.959.9 0.9310.931 189J/cm189 J / cm

표 3에서 알 수 있듯이, 항복강도는 D,E강이 우수하고, 저온인성은 B,C강이 우수하나 비교강들은 항복비가 0.82를 휠씬 상회함을 볼 수 있다. 따라서, 비교강을 라인파이프강에 적용할 경우 후속공정인 조관가공시에 가공이 불균일하게 일어나고 국부적으로는 가공중에 터짐현상이 일어날 가능성이 많음을 알 수 있다. 반면, 발명강은 항복비가 0.816으로써 가공성이 매우 우수함을 알 수 있다.As can be seen from Table 3, the yield strength is superior to the D and E steels, and the low temperature toughness is superior to the B and C steels, but the comparative steels have a yield ratio far higher than 0.82. Therefore, it can be seen that when the comparative steel is applied to the line pipe steel, the processing occurs unevenly in the subsequent pipe processing, and locally, the bursting phenomenon may occur during the processing. On the other hand, the invention steel has a yield ratio of 0.816, it can be seen that the workability is very excellent.

[실시예 2]Example 2

라인파이프강에 필요한 요구물성중 가장 중요한 항목중 하나가 H2S(sour)가스 저항성이다. 라인파이프강은 원유 및 쳔연가스 수송에 이용되므로 항상 원유중에 함유되어 있는 H2S gas에 노출되어 있으므로 HIC에 의한 갑작스런 취성 파단이 일어날 위험이 있다. 이러한 이유로 라인파이프 물성 평가중에는 HIC 저항성이 포함되어야 하며, 하기의 표 4는 발명강과 비교강의 HIC특성 실험 결과를 보였는데, HIC실험조건은 NACE-77규격을 따라 실험하였다.One of the most important properties required for line pipe steel is H 2 S (sour) gas resistance. Since line pipe steel is used to transport crude oil and natural gas, it is always exposed to H 2 S gas contained in crude oil, so there is a danger of sudden brittle fracture by HIC. For this reason, the HIC resistance should be included in the evaluation of the line pipe properties, and Table 4 below shows the results of the HIC characteristics test of the inventive steel and the comparative steel, and the HIC test conditions were tested according to the NACE-77 standard.

크랙길이 비(Crack Length Ratio)(%)Crack Length Ratio (%) 발명강(A)Inventive Steel (A) 00 비교강Comparative steel BB 72.572.5 CC 25.625.6 DD 14.714.7 EE 2.32.3

표 4에서 알수 있듯이, 비교강 B,C는 HIC실험 후의 절단면 관찰결과 크랙이 20%이상 관찰되었으며, 기존의 페라이트 기지조직강중에서 HIC저항성을 증진시킨 D,E강도 10%내외의 HIC 크랙이 관찰되었다. 반면, 발명강 A는 HIC크랙이 전혀 관찰되지 않았음을 볼 수 있다. 이는 기존의 페라이트 기지조직에서는 퍼얼라이트 밴드를따라서 HIC이 용이하게 전파하는 반면, 본 발명강은 기지조직 전체가 베이나이트이기 때문에 HIC이 전파할 통로를 가지지 못하므로 HIC이 전혀 생성되지 않기 때문이다.As can be seen from Table 4, the cracks of the comparative steels B and C observed more than 20% of the cracks after the HIC test, and HIC cracks of about 10% of the D and E strengths, which enhanced the HIC resistance, were observed in the existing ferrite matrix steels. It became. In contrast, the inventive steel A can be seen that no HIC crack was observed. This is because in the existing ferrite matrix, the HIC easily propagates along the perlite band, whereas the present invention steel has no path for HIC propagation because the entire tissue is bainite, so no HIC is generated.

[실시예 3]Example 3

이상의 실험결과를 종합하여 도 1에 발명강과 비교강의 물성 차이를 비교하였다. 여기서 가공성은 항복비, H2S gas저항성은 HIC 크랙비, 저온인성은 -50℃에서의 챠피충격에너지, 생산성은 발명재 및 비교재의 물성을 나타내게 하는 마무리 압연온도, 품질안정성은 가속냉각 속도로 각각 표시하였다. 가속냉각속도가 커지면 판내 재질편차나 판변형 등이 발생되기 때문에 가능한 한 작은 냉각속도로 동일한 물성을 얻을 수 있어야 하므로 가속냉각 속도를 품질안정성의 지수로 삼는 것은 합당하다 하겠다. 전술한 바와 같이 고온에서 압연을 마무리 할수록 생산성 측면에서는 유리하므로 마무리 압연온도를 생산성의 지수로 평가하였다.The experimental results were compared to compare the physical properties of the inventive and comparative steels in FIG. The workability is yield ratio, the H 2 S gas resistance is HIC crack ratio, the low temperature toughness is -50 ° C, the chaffe impact energy at -50 ° C, the productivity is the finish rolling temperature, and the quality stability is accelerated cooling rate. Each was marked. If the accelerated cooling rate is increased, material variation and plate deformation in the plate are generated. Therefore, it is reasonable to use the accelerated cooling rate as an index of quality stability because the same physical properties should be obtained at the smallest possible cooling rate. As described above, the higher the rolling finish at a higher temperature, the more favorable in terms of productivity. Therefore, the finishing rolling temperature was evaluated as an index of productivity.

도 1에 나타난 바와 같이, 상기의 평가항목을 종합적으로 고려할 때 발명강이 비교강에 비하여 월등히 우수한 물성 및 제조조건을 가짐을 알 수 있다.As shown in Figure 1, when considering the above-mentioned evaluation items as a whole it can be seen that the invention steel has significantly superior physical properties and manufacturing conditions than the comparative steel.

상기한 바와 같이, 본 발명에 의하면 항복강도 150kgf/mm2급을 만족하고, 가공성이우수하며, HIC저항성이 우수한 강재를 고온압연+가속냉각법을 이용하여 제조할 수 있으므로, 생산성이 향상되는 방법으로 제반물성이 우수한 라인파이프용 강을 안정적으로 제공하는 효과가 있는 것이다.As described above, according to the present invention, steel products satisfying the yield strength of 150kgf / mm 2 , excellent in workability, and excellent in HIC resistance can be manufactured by using high temperature rolling + accelerated cooling method, thereby improving productivity. It is effective in stably providing steel for line pipes having excellent physical properties.

Claims (1)

중량%로, C:0.02-0.03%, Mn:1.6-2.0%, Si:0.1-0.2%, Al:0.02-0.05%, Ti:0.01-0.02%, Nb:0.04-0.06%, Mo:0.15-0.25%, B:0.001-0.002%, V:0.01%이하, S:0.002%이하, P:0.02%이하, N:20-60ppm, Ca:20-50ppm, 나머지 Fe 및 기타 불가피한 불순원소로 이루어진 강슬라브를 1150∼1250℃의 온도범위에서 가열하여 마무리압연온도를 Ar3+(100∼200)℃로 하는 조건으로 열간압연한 다음, Ar3온도이전에 냉각을 개시하여 7∼11℃/sec의 냉각속도로 480±30℃의 온도까지 가속냉각하고 상온까지 공냉하여 이루어지는 가공성이 우수한 라인파이프용 강의 제조방법.By weight, C: 0.02-0.03%, Mn: 1.6-2.0%, Si: 0.1-0.2%, Al: 0.02-0.05%, Ti: 0.01-0.02%, Nb: 0.04-0.06%, Mo: 0.15- Steel with 0.25%, B: 0.001-0.002%, V: 0.01% or less, S: 0.002% or less, P: 0.02% or less, N: 20-60ppm, Ca: 20-50ppm, remaining Fe and other unavoidable impurities The slab is heated in the temperature range of 1150 to 1250 ° C. and hot rolled under the condition that the finish rolling temperature is Ar 3 + (100 to 200) ° C., and then cooling is started before the Ar 3 temperature to be 7-11 ° C./sec. A method for producing line pipe steel with excellent workability by accelerating cooling to a temperature of 480 ± 30 ℃ at a cooling rate and air cooling to room temperature.
KR10-1998-0056281A 1998-12-18 1998-12-18 The method of manufacturing linepipe steel with good formability KR100363191B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0056281A KR100363191B1 (en) 1998-12-18 1998-12-18 The method of manufacturing linepipe steel with good formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0056281A KR100363191B1 (en) 1998-12-18 1998-12-18 The method of manufacturing linepipe steel with good formability

Publications (2)

Publication Number Publication Date
KR20000040611A KR20000040611A (en) 2000-07-05
KR100363191B1 true KR100363191B1 (en) 2003-01-24

Family

ID=19563842

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0056281A KR100363191B1 (en) 1998-12-18 1998-12-18 The method of manufacturing linepipe steel with good formability

Country Status (1)

Country Link
KR (1) KR100363191B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049925A (en) * 2000-12-20 2002-06-26 이구택 A mini-mill hot-rolled steel sheet with superior pipe formability and a method for manufacturing it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749157B1 (en) * 2005-12-21 2007-08-14 황병호 Protective pipes for gas pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049925A (en) * 2000-12-20 2002-06-26 이구택 A mini-mill hot-rolled steel sheet with superior pipe formability and a method for manufacturing it

Also Published As

Publication number Publication date
KR20000040611A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
CA2668069C (en) Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
KR20110060449A (en) Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR20120074638A (en) Ultra thick steel sheet for pressure vessel having excellent central properties and hydrogen induced cracking resistance, and method for manufacturing the same
KR101601000B1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
KR20130076569A (en) Pressure vessel steel with excellent sulfide stress cracking resistance and low temperature toughness and manufacturing method thereof
KR100797326B1 (en) Steel plate for riser pipe guaranteed pwht and method of manufacturing thereof
KR20160079166A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR101585724B1 (en) A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same
KR100256350B1 (en) The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
KR20080042518A (en) Steel plate for linepipe having ultra-high strength and excellent crack propagation resistance and manufacturing method of the same
KR100711371B1 (en) Thick steel sheet for linepipes having excellent excessive low temperature toughness and the method for manufacturing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP2023110068A (en) High strength steel excellent in resistance to sulfide stress corrosion crack and manufacturing method thereof
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
KR102031451B1 (en) High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
KR100723203B1 (en) Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet
KR20190076782A (en) Hot rolled steel plate having exellent strength and high dwtt toughness at low temperature and method for manufacturing the same
KR101758481B1 (en) Steel sheet for pipe having excellent corrosion resistance and low-temperature toughness, and method for manufacturing the same
KR100833033B1 (en) Ultra-high strength linepipe steel plate excellent in deformability and method for producing the same
KR100584762B1 (en) The method of manufacturing hot rolled steels with less anisotropic properties for linepipes
KR102498135B1 (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR20200047926A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR101786262B1 (en) Hot-rolled thick steel plate having excellent strength and dwtt toughness at low temperature, and method for manufacturing the same
KR100363191B1 (en) The method of manufacturing linepipe steel with good formability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131113

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141113

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151117

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161109

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee