KR100723203B1 - Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet - Google Patents

Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet Download PDF

Info

Publication number
KR100723203B1
KR100723203B1 KR1020050129512A KR20050129512A KR100723203B1 KR 100723203 B1 KR100723203 B1 KR 100723203B1 KR 1020050129512 A KR1020050129512 A KR 1020050129512A KR 20050129512 A KR20050129512 A KR 20050129512A KR 100723203 B1 KR100723203 B1 KR 100723203B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
low temperature
temperature toughness
line pipe
Prior art date
Application number
KR1020050129512A
Other languages
Korean (ko)
Inventor
나은혜
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020050129512A priority Critical patent/KR100723203B1/en
Application granted granted Critical
Publication of KR100723203B1 publication Critical patent/KR100723203B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Abstract

본 발명은 습윤 황화수소를 포함하는 가스 혹은 원유 수송용등에 사용되는 라인파이프 강판 및 그 제조방법에 관한 것으로서, 저온인성이 우수하고 수소유기균열 저항성이 높은 라인파이프 강판 및 그 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a line pipe steel sheet and a method for manufacturing the same, which are used for transporting gas or crude oil containing wet hydrogen sulfide, and to provide a line pipe steel sheet having excellent low temperature toughness and high hydrogen organic crack resistance, and a method of manufacturing the same. Its purpose is.

본 발명은 중량 %로, C:0.03-0.05%, Mn:1.0-1.5%, Si:0.1-0.3%, Al:0.02-0.50%, Ti:0.01-0.02%, Nb:0.03-0.05%, Mo:0.01-0.10%, S:0.002%이하, P:0.01%이하, N:20-60ppm, Ca:20-50ppm, Cu : 0.1~0.2%, Ni :0.05~0.3%, Cr:0.1~0.2%, 나머지 Fe 및 기타 불가피한 불순물로 이루어지고, 그리고 그 조직이 20~40%의 그래뉼러 베이나이트, 3%이하의 마르텐사이트 및 나머지 페라이트로 이루어진 저온인성 및 수소유기균열 저항성이 우수한 라인파이프 강판 및 그 제조방법을 그 요지로 한다.In the present invention, the weight%, C: 0.03-0.05%, Mn: 1.0-1.5%, Si: 0.1-0.3%, Al: 0.02-0.50%, Ti: 0.01-0.02%, Nb: 0.03-0.05%, Mo : 0.01-0.10%, S: 0.002% or less, P: 0.01% or less, N: 20-60ppm, Ca: 20-50ppm, Cu: 0.1 ~ 0.2%, Ni: 0.05 ~ 0.3%, Cr: 0.1 ~ 0.2% And a line pipe steel plate having excellent low temperature toughness and hydrogen organic crack resistance, consisting of remaining Fe and other unavoidable impurities, and composed of 20-40% granular bainite, 3% or less martensite, and remaining ferrite. The manufacturing method is taken as the summary.

본 발명에 의하면, API X65급을 만족하고, 저온인성 및 수소유기균열 저항성이 우수한 강판을 제공할 수 있다.According to the present invention, it is possible to provide a steel sheet that satisfies API X65 grade and is excellent in low temperature toughness and hydrogen organic crack resistance.

저온인성, 수소유기균열, 라인파이프, 그래뉼러 Low temperature toughness, hydrogen organic crack, line pipe, granulator

Description

저온인성 및 수소유기균열 저항성이 우수한 라인파이프 강판 및 그 제조방법{Linepipe Steel Sheet with Superior Low Temperature Toughness and High HIC Resistance and Method for Manufacturing the Steel Sheet }Linepipe Steel Sheet with Superior Low Temperature Toughness and High HIC Resistance and Method for Manufacturing the Steel Sheet}

도 1은 그래뉼러 베이나이트 분율에 따른 항복강도의 변화를 나타내는 그래프1 is a graph showing the change in yield strength according to granular bainite fraction

도 2는 마르텐사이트 분율에 따른 크랙길이비(Crack Length Ratio, %) 및 샤르피 충격 에너지 값의 변화를 나타내는 그래프2 is a graph showing the change in the crack length ratio (%) and the Charpy impact energy value according to the martensite fraction;

본 발명은 습윤 황화수소를 포함하는 가스 혹은 원유 수송용등에 사용되는 라인파이프 강을 제조하는 방법에 관한 것으로서, 저온인성이 우수하고 수소유기균열 저항성이 높은 라인파이프 강판 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing line pipe steel used for transporting wet hydrogen sulfide gas or crude oil. The present invention relates to a line pipe steel sheet having excellent low temperature toughness and high hydrogen organic crack resistance, and a method of manufacturing the same.

최근 열악한 환경의 유전 혹은 가스전이 개발됨에 따라 습윤 황화수소를 포함하는 가스 혹은 원유 수송용 강재의 수소유기균열(HIC, hydrogen induced crack)에 대한 저항성을 높이는 것이 요구되고 있다. Recently, with the development of a poor oil field or gas field, it is required to increase the resistance to hydrogen induced crack (HIC) of gas or crude oil transport steel containing wet hydrogen sulfide.

또한, 수송 경제성을 높이기 위해 점점 후육화가 요구되는 추세이다. In addition, thickening is increasingly required to increase transportation economics.

수소유기균열의 발생기구는 강재와 습윤 황화수소 분위기와의 부식반응에 의해 발생되는 수소가 원자상태로 강중에 침입, 확산하여 강중의 개재물 등에서 분자화됨에 의해 수소가스 압력이 발생되고, 이렇게 발생된 수소가스 압력이 작용하여 수소유기균열이 발생되는 것으로 알려져 있다. The mechanism of generating hydrogen organic cracks is that hydrogen generated by the corrosion reaction between steel and wet hydrogen sulphide atmosphere enters and diffuses into the river in an atomic state, and molecular hydrogen is generated in the inclusions in the river. Gas pressure is known to generate hydrogen organic cracks.

상기와 같이 발생되는 내수소유기균열성을 향상시키기 위한 종래 기술들로는 Cu 첨가, 개재물의 저감 및 형상제어, 또는 탄질화물의 미세분산 등에 의해 수소의 침입 혹은 확산을 억제하는 기술, 또는 강의 편석에 기인하는 경화부의 경도 제어, 편석에 기인하는 경화부의 경도 및 개재물 길이 제어 등에 의해 내수소유기균열성을 향상시키는 기술들이 제안되어 있다. Conventional techniques for improving the hydrogen cracking resistance generated as described above are due to the addition of Cu, reducing the inclusions and shape control, or to inhibit the intrusion or diffusion of hydrogen by fine dispersion of carbonitride, or segregation of steel Techniques for improving the hydrogen-organic crack resistance have been proposed by controlling the hardness of the hardened portion, controlling the hardness of the hardened portion due to segregation, and controlling the length of inclusions.

또한, 내수소유기균열성을 증대시키기 위한 다른 방법으로는 제어압연을 통해 펄라이이트 조직의 대상(帶狀)화를 억제하고 미세분산시키는 방법을 들수 있다. In addition, another method for increasing the hydrogen-organic crack resistance is a method of inhibiting and finely dispersing the object of pearlite tissue through controlled rolling.

상기 종래기술은 비교적 내수소유기균열성이 우수한 강재를 제공할 수 있으나, 강도에 따라서 미세한 펄얼라이트가 수소유기균열 발생 기점이 되는 등의 문제점이 있다. The prior art can provide a steel material having relatively excellent hydrogen organic crack resistance, but there is a problem such that the fine pearlite is the starting point of hydrogen organic crack generation depending on the strength.

본 발명은 퍼얼라이트 형성원소인 C의 함량을 줄이고 제어압연 및 가속 냉각공정의 제어를 통해 페라이트와 그래뉼러 베이나이트의 복합조직을 형성시킴으로써, API X65급을 만족하고, 내수소유기균열성 및 저온인성을 향상시킨 라인파이프 강판 및 그 제조방법을 제공하고자 하는데, 그 목적이 있는 것이다.The present invention satisfies the API X65 grade by forming a composite structure of ferrite and granular bainite by reducing the content of C, which is a formation element of pearlite, and controlling the controlled rolling and accelerated cooling process. An object of the present invention is to provide a line pipe steel sheet having improved toughness and a method of manufacturing the same.

본 발명은 중량 %로, C:0.03-0.05%, Mn:1.0-1.5%, Si:0.1-0.3%, Al:0.02-0.06%, Ti:0.01-0.02%, Nb:0.03-0.05%, Mo:0.01-0.10%, S:0.002%이하, P:0.01%이하, N:20-60ppm, Ca:20-50ppm, Cu : 0.1~0.2%, Ni :0.05~0.3%, Cr:0.1~0.2%, 나머지 Fe 및 기타 불가피한 불순물로 이루어지고, 필요에 따라 0.05%이하의 V이 첨가되고 , 그리고 그 조직이 20~40%의 그래뉼러 베이나이트, 3%이하의 마르텐사이트 및 나머지 페라이트로 이루어진 저온인성 및 수소유기균열 저항성이 우수한 라인파이프 강판에 관한 것이다.In the present invention, the weight%, C: 0.03-0.05%, Mn: 1.0-1.5%, Si: 0.1-0.3%, Al: 0.02-0.06%, Ti: 0.01-0.02%, Nb: 0.03-0.05%, Mo : 0.01-0.10%, S: 0.002% or less, P: 0.01% or less, N: 20-60ppm, Ca: 20-50ppm, Cu: 0.1 ~ 0.2%, Ni: 0.05 ~ 0.3%, Cr: 0.1 ~ 0.2% Low temperature toughness, consisting of the remaining Fe and other unavoidable impurities, and if necessary, up to 0.05% of V, and the texture of 20-40% granular bainite, up to 3% martensite and remaining ferrite And a line pipe steel sheet excellent in hydrogen organic cracking resistance.

또한, 본 발명은 중량 %로, C:0.03-0.05%, Mn:1.0-1.5%, Si:0.1-0.3%, Al:0.02-0.06%, Ti:0.01-0.02%, Nb:0.03-0.05%, Mo:0.01-0.10%, S:0.002%이하, P:0.01%이하, N:20-60ppm, Ca:20-50ppm, Cu : 0.1~0.2%, Ni :0.05~0.3%, Cr:0.1~0.2%, 나머지 Fe 및 기타 불가피한 불순원소로 이루어지고, 필요에 따라 0.05%이하의 V이 첨가된 강을 연주경압하를 거쳐 슬라브를 제조하여, 1100∼1200℃의 온도범위에서 가열하고, 재결정역에서 압하량을 50% 이상, 미재결정역에서 압하량을 70% 이상으로 하는 조건으로 열간압연한 다음, Ar3이상에서 냉각을 개시하여 10∼15℃/sec의 냉각속도로 400~500℃의 온도까지 가속냉각하고 상온까지 공냉하여 저온인성 및 수소유기균열 저항성이 우수한 라인파이프 강판을 제조하는 방법에 관한 것이다.In addition, the present invention is in weight%, C: 0.03-0.05%, Mn: 1.0-1.5%, Si: 0.1-0.3%, Al: 0.02-0.06%, Ti: 0.01-0.02%, Nb: 0.03-0.05% , Mo: 0.01-0.10%, S: 0.002% or less, P: 0.01% or less, N: 20-60 ppm, Ca: 20-50 ppm, Cu: 0.1-0.2%, Ni: 0.05-0.3%, Cr: 0.1- Steel, consisting of 0.2%, remaining Fe and other unavoidable impurities, and containing 0.05% or less of V, if necessary, was manufactured through slab under reduced pressure, and heated in a temperature range of 1100 to 1200 ° C. Hot rolling at 50% or more in the unrecrystallized region and 70% or more in the unrecrystallized region, and then started cooling at Ar 3 or more to obtain a temperature of 400 to 500 ° C. at a cooling rate of 10 to 15 ° C./sec. The present invention relates to a method for producing a line pipe steel sheet having excellent low temperature toughness and hydrogen organic crack resistance by accelerated cooling to temperature and air cooling to room temperature.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 탄소 함량을 0.05%이하로 하고 제어압연 및 가속 냉각공정, 특히 가속냉 각 속도와 냉각종료 온도를 제어하여 판 두께 전체에 걸쳐 기지조직을 페라이트(ferrite)와 그래뉼러 베이나이트(granular bainite)의 복합조직으로 하되 그래뉼러 베이나이트의 분율을 20~40%로 하여 강도를 유지하고, 저온변태 조직인 마르텐사이트 분율을 3%이하로 함으로써 수소유기균열 저항성 및 저온인성이 우수한 두께 25mm 이상인 라인파이프 강판 및 그 제조방법을 제공하는 것이다.In the present invention, the carbon content is less than 0.05% and controlled rolling and accelerated cooling processes, in particular, accelerated cooling rate and cooling end temperature to control the matrix structure throughout the thickness of the ferrite and granular bainite ) Linen pipe with a thickness of 25mm or more with excellent hydrogen organic cracking resistance and low temperature toughness by maintaining the strength with the granular bainite fraction of 20-40% and the martensite fraction of 3% or less of the low temperature transformation tissue. It is to provide a steel sheet and a method of manufacturing the same.

상기 C은 0.03~0.05%로 한정하는 것이 바람직한데, 그 함량이 0.03%미만인 경우에는 기지 상의 자체 강도가 저하되고, 0.05%를 초과하는 경우에는 편석이 발생하여 수소유기균열 저항성을 저하시키기 때문이다.It is preferable to limit the C to 0.03 to 0.05%, because if the content is less than 0.03%, the strength of the matrix on the matrix is lowered, and if it exceeds 0.05%, segregation occurs and the hydrogen organic cracking resistance is lowered. .

상기 Si은 탈산제 및 고용강화 원소로서 그리고 충격천이 온도를 높이기 위하여 첨가되는 성분으로서, 이러한 첨가효과를 달성하기 위해서는 0.1%이상 첨가하지만, 0.3%를 초과하여 첨가되면 용접성이 저하되고 강판표면에 산화 피막이 심하게 형성되므로 그 함량은 0.1~0.3%로 제한한다.Si is added as a deoxidizer and a solid solution strengthening element and a component added to increase the impact transition temperature. To achieve this effect, Si is added by 0.1% or more, but when added in excess of 0.3%, the weldability decreases and an oxide film is formed on the surface of the steel sheet. It is severely formed, so its content is limited to 0.1-0.3%.

상기 Mn은 S와 함께 연신된 비금속개재물인 MnS를 형성하여 상온 연신율 및 저온인성을 저하시키므로 1.5%이하로 관리하는 것이 바람직하나, 탄소함량이 낮은 본 발명의 성분 특성상 Mn이 1.0%미만이 되면 강의 소입성을 확보할 수 없어 베이나이트로 형성하기 어려워서 강도 확보가 어려우므로, 상기 망간의 첨가량은 1.0~1.5%로 제한한다.Since Mn forms MnS, which is a non-metallic inclusion drawn together with S, to lower room temperature elongation and low temperature toughness, it is preferable to manage the Mn less than 1.5%. However, Mn is less than 1.0% due to the low carbon content of the present invention. Since hardenability cannot be secured and it is difficult to form bainite, it is difficult to secure strength, so the amount of manganese added is limited to 1.0 to 1.5%.

상기 Al은 제강시에 탈산제로 0.02%이상 첨가되나 0.06%를 초과하여 첨가되면 비금속 산화물인 Al2O3를 형성하여 충격인성을 저하시키므로 상기 Al의 첨가량은 0.02~0.06%로 제한한다.The Al is added at least 0.02% as a deoxidizer during steelmaking, but when it is added in excess of 0.06%, Al forms a non-metal oxide Al 2 O 3 to lower impact toughness, so the amount of Al is limited to 0.02 to 0.06%.

상기 Ti은 강의 응고과정에서 TiN 석출물을 형성하여 주괴를 가열하는 동안에 결정립의 성장을 억제하고, 열간압연과정에서 재결정립의 성장을 억제함으로써, 강의 결정립 미세화에 큰 역할을 하는 주요한 원소이다. The Ti is a major element that forms a TiN precipitate during the solidification process of steel to suppress grain growth during heating of the ingot, and inhibits the growth of recrystallized grains during the hot rolling process, thereby playing a major role in grain refinement of steel.

상기 Ti의 적정 첨가량은 N의 함량에 따라 변하게 되는데, 질소의 양에 비해 Ti의 첨가가 상대적으로 적으면 형성되는 TiN의 양이 적어서 결정립을 미세화시키는데 불리하고, 반면 과량 첨가되면 가열 중 TiN이 조대해져서 또한 결정립 성장 억제 효과가 감소하게 된다. The appropriate amount of Ti is changed according to the content of N. When the amount of Ti is relatively small compared to the amount of nitrogen, the amount of TiN formed is small, which is disadvantageous to refine the grains, whereas when excessively added, TiN is coarse during heating. In addition, the effect of inhibiting grain growth is reduced.

따라서 Ti의 첨가량은 통상적으로 함유되는 N의 함량(20-60ppm)을 고려하여 0.01-0.02%로 한정한다.Therefore, the amount of Ti added is usually limited to 0.01-0.02% in consideration of the content of N contained (20-60 ppm).

상기 Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 기지(Matrix)와 정합을 이루는 탄질화물(Nb(C,N))로 석출함으로써 강의 강도를 증가시키는 중요한 원소이다. The Nb is an important element that increases the strength of the steel by solidifying the austenite to increase the hardenability of the austenite and to precipitate as carbonitrides (Nb (C, N)) matching with the matrix (Matrix).

그러나 다량으로 함유시킬 시 연주과정에서 조대한 석출물로 존재하여 수소유기 균열의 발생 자리가 되므로 그 함량은 0.05% 이하로 제한한다.However, when it is contained in a large amount, it is present as a coarse precipitate in the process of playing, and thus becomes a site of hydrogen organic cracking, so its content is limited to 0.05% or less.

상기 Mo은 경화능을 증진시켜 페라이트 변태를 억제함으로써 기지조직을 베이나이트 조직으로 만드는데 필수적인 원소이나, 가격이 비싼 단점이 있어 0.1%이하로 유지하고 Cr을 0.1∼0.2% 첨가하여 충격인성을 유지한다.  The Mo is an element essential to make the base structure into bainite structure by improving the hardenability and suppressing ferrite transformation, but it has a disadvantage of being expensive, so it is kept below 0.1% and Cr is added to 0.1 to 0.2% to maintain impact toughness. .

상기 P은 충격인성에 특히 나쁜 원소로 함량이 낮으면 낮을수록 좋으나 제강 과정에서 피할수 없는 원소이므로 물성에 해로운 영향을 끼치지 않도록 그 함량은 0.01%이하로 제한한다. The P is an element particularly bad for impact toughness, the lower the content is better, but is inevitable in the steelmaking process, so the content is limited to 0.01% or less so as not to adversely affect the physical properties.

상기 S은 MnS의 비금속 개재물로 존재하여 열간압연에 의하여 길게 연신되어 강판 물성의 이방성을 조장하고 충격인성을 저하시키므로 그 함량은 0.002% 이하로 제한한다.S is present as a non-metallic inclusion of MnS and is elongated by hot rolling to promote anisotropy of steel sheet properties and lower impact toughness, so the content thereof is limited to 0.002% or less.

상기 N는 Ti과 함께 TiN석출물을 형성하여 강의 결정립을 미세화시키는 역할을 하는데, 이를 위한 N의 첨가량은 Ti의 함량을 고려하여 20-60ppm으로 한다.The N serves to refine the grains of the steel by forming a TiN precipitate with Ti, the addition amount of N to 20-60ppm considering the content of Ti.

상기 Ca은 CaS로 생성되어 MnS의 비금속개재물을 억제하기 위해 첨가하는데, 이를 위해 20ppm이상 첨가한다. Ca is produced by CaS is added to suppress the non-metallic inclusions of MnS, for this purpose is added 20ppm or more.

그 첨가량이 많으면 강중에 함유된 O와 반응하여 비금속개재물인 CaO를 생성하므로 그 상한치는 50ppm로 한다. If the amount is large, the upper limit thereof is 50 ppm because it reacts with O contained in the steel to form CaO, which is a nonmetallic inclusion.

구리(Cu)는 강재의 산화피막형성원소로서, 그 함량이 0.10%미만이 되면 황화수소등의 부식성환경하에서 수소의 침투를 억제하는 효과가 적으며 0.20%을 초과하여 다량 첨가시에는 강도를 향상시키지만 충격인성을 저해한다.Copper (Cu) is an oxide film forming element of steel, and if its content is less than 0.10%, it has little effect of inhibiting hydrogen penetration under corrosive environment such as hydrogen sulfide, and improves strength when added in excess of 0.20%. Impairs impact toughness.

니켈(Ni)은 구리와 마찬가지로 강재의 산화피막형성을 위해 첨가되는데, 그 함량이 0.05%미만에서는 상기 효과가 떨어지고, 0.3%를 초과하게 되면 강도향상 효과는 크게 되지만 파이프로 용접후 충격시험시에 모재와 용접부간의 취성이 발생되어 바람직하지 않다. Nickel (Ni) is added to form an oxide film of steel like copper, but when the content is less than 0.05%, the above effect decreases, and when the content exceeds 0.3%, the strength improvement effect is increased, but during the impact test after welding with pipe It is not preferable because brittleness between the base material and the weld is generated.

바나듐(V)은 V(C,N)석출원소로서, 그 함랑의 증가에 따라 항복강도의 증가보다는 인장강도증가에 크게 기여한다. 따라서, 본 발명에서는 강도적인 측면외에 인성과의 균형을 고려하여 그 함량을 0.05%로 제한함이 바람직한데, 0.05%를 초과하여 다량 함유시 탄소당량(Ceq)의 증가와 함께 모재 및 용접부 충격인성을 크게 저해시킨다.Vanadium (V) is a V (C, N) precipitation element and contributes to the increase in tensile strength rather than the increase in yield strength as the dilution increases. Therefore, in the present invention, it is preferable to limit the content to 0.05% in consideration of the balance of toughness in addition to the strength aspect, the impact strength toughness of the base material and the welded part with an increase in the carbon equivalent (Ceq) when containing a large amount exceeding 0.05% Significantly inhibits.

상기 함금 성분 외에 O가 일반 구조용 강재의 경우와 같이 함유될 수 있는데, 이 경우 그 함량은 O:0.01-0.05%로 제한하는 것이 바람직하다. In addition to the alloying component O may be contained as in the case of a general structural steel, in which case the content is preferably limited to O: 0.01-0.05%.

이하, 본 발명의 제조방법에 대하여 설명한다. Hereinafter, the manufacturing method of this invention is demonstrated.

먼저, 열간압연 하기 전의 가열은 1100~1200℃의 온도범위에서 행하는데, 그 이유는 다음과 같다. First, heating before hot rolling is performed in the temperature range of 1100-1200 degreeC, for the following reason.

본 발명에서는 Nb을 오스테나이트 중에 용해된 상태로 존재하도록 하여, 미세한 Nb 석출에 의한 강도확보 및 미재결정역 확대시킨다.In the present invention, Nb is present in a dissolved state in austenite, thereby securing strength and fine recrystallization by fine Nb precipitation.

이를 위해 슬라브를 1100℃이상으로 가열하여 NbC가 용해되어 Nb이 원자상태로 존재하도록 해야하며, 단 가열 온도가 1200℃이상일 경우에는 오스테나이트 입자가 너무 조대화 되므로 슬라브 가열온도는 1100~1200 ℃범위로 하는 것이다.For this purpose, the slab should be heated to more than 1100 ℃ to allow NbC to dissolve and exist in the atomic state.However, if the heating temperature is more than 1200 ℃, the slab heating temperature ranges from 1100 to 1200 ℃ because the austenite particles are too coarse. It is to be.

상기와 같이 가열한 다음, 열간압연하는데, 이때 열간압연은 재결정역에서 50% 이상, 미재결정역에서 70%이상으로 한다. After heating as above, hot rolling, where hot rolling is 50% or more in the recrystallization zone and 70% or more in the non-recrystallization zone.

미재결정역에서의 압하량은 강도 이외에도 저온인성에 밀접한 연관이 있으므로 특히 엄격하에 관리하여야 할 지표이며, 압하량이 70%미만일 경우 핵생성 사이트의 부족으로 변태후 결정립 크기가 조대해 질 위험이 있다.. The rolling reduction in the unrecrystallized zone is closely related to low temperature toughness as well as strength, and it is an indicator that should be managed especially under strictness. If the rolling reduction is less than 70%, there is a risk of coarse grain size after transformation due to lack of nucleation sites. .

상기와 같이 압연하고 가속냉각한 후, 이어 상온까지 공냉하는데, 이때의 가속냉각은 Ar3온도이전에 냉각을 개시하여 10~15℃/sec의 냉각속도로 400~500℃의 온도까지 냉각한다. After rolling and accelerated cooling as described above, and then air-cooled to room temperature, accelerated cooling starts cooling before the Ar 3 temperature and cooled to a temperature of 400 ~ 500 ℃ at a cooling rate of 10 ~ 15 ℃ / sec.

여기서, 냉각개시온도를 Ar3온도 이상으로 한정하는 것은, 변태가 시작되기 전에 냉각을 개시하여야 페라이트 분율이 높아지는 것을 막고 그래뉼러 베이나이트 조직을 얻을 수 있기 때문이다. Here, the cooling start temperature is limited to the Ar 3 temperature or more because it is necessary to start cooling before the transformation starts to prevent the ferrite fraction from increasing and to obtain granular bainite structure.

또한, 냉각속도를 10~15℃/sec로 한정한 것은, 냉각속도가 너무 늦으면 펄라이트 밴드가 생겨 저온인성이 나빠지고 수소유기 균열의 전파가 용이 해지고, 냉각속도가 15℃/sec를 초과하는 경우 경도가 높은 하부 베이나이트 나 마르텐사이트가 생겨 수소유기균열의 발생이 높아지고, 후판의 경우 두께 전체에 거쳐 균일냉각이 어렵기 때문이다. In addition, the cooling rate is limited to 10 to 15 ° C / sec. If the cooling rate is too slow, a pearlite band may be formed, resulting in poor low temperature toughness, easy propagation of hydrogen organic cracks, and a cooling rate exceeding 15 ° C / sec. The lower bainite or martensite is formed to have a higher hardness, so that the occurrence of hydrogen organic cracking is high. In the case of thick plates, it is difficult to uniformly cool the entire thickness.

또한, 냉각종료온도가 400℃ 보다 낮으면 그래뉼러 베이나이트가 형성될 때, 불충분한 탄소 확산에 의해 MA 분율이 높아지면서 저온인성 및 수소유기 균열 저항성이 나빠진다. In addition, when the cooling end temperature is lower than 400 ° C, when granular bainite is formed, the MA fraction is increased due to insufficient carbon diffusion, resulting in poor low temperature toughness and hydrogen organic crack resistance.

냉각종료 온도가 500℃보다 높으면, Mn, C이 농축되어 베이나이트로 변태되지 않은부분이 펄라이트로 된다. If the cooling end temperature is higher than 500 ° C., Mn and C are concentrated, and the part not converted to bainite becomes pearlite.

본 발명의 라인파이프용 강판은 그 조직이 20~40%의 그래뉼러 베이나이트, 3%이하의 마르텐사이트 및 나머지 페라이트로 이루어진다.The steel sheet for line pipe of the present invention is composed of 20 to 40% granular bainite, 3% or less martensite, and the remaining ferrite.

상기 그래뉼러 베이나이트 비율이 너무 낮은 경우에는 충분한 강도를 확보할 수 없고, 너무 높은 경우에는 인성이 떨어지게 된다. If the granular bainite ratio is too low, sufficient strength cannot be secured, and if it is too high, the toughness falls.

상기 마르텐사이트의 분율은 3%이하로 제한하는 것이 바람직한데, 그 이유는 3%를 초과하는 경우에는 수소유기 균열저항성이 떨어지기 때문이다.It is preferable to limit the fraction of martensite to 3% or less, because when it exceeds 3%, hydrogen organic crack resistance is inferior.

본 발명은 그 두께가 25mm 이상인 라인파이프 강판에 바람직하게 적용된다.The present invention is preferably applied to a line pipe steel sheet having a thickness of 25 mm or more.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

하기 표 1과 같이 조성된 강 슬라브를 1150℃에서 가열하고, 재결정영역에서 55%, 미재결정역에서 75% 열간압연한 다음, 하기 표 2와 같은 냉각조건으로 냉각한 후, 그 미세조직, 항복강도, 저온인성 및 크랙길이비(Crack Length Ratio, %)를 조사하고, 그 결과를 하기 표 2에 나타내었다.The steel slab formed as shown in Table 1 was heated at 1150 ℃, hot-rolled 55% in the recrystallization zone, 75% in the non-recrystallization zone, and then cooled to the cooling conditions as shown in Table 2, the microstructure, yield The strength, low temperature toughness and crack length ratio (%) were investigated and the results are shown in Table 2 below.

하기 표1에서 비교재는 일반적인 저온인성용 항복강도 45kg/mm2 보증강을 나타낸다.In Table 1, the comparative material represents a yield strength of 45kg / mm 2 for the general low temperature toughness.

하기 표 2에서 F는 페라이트를, G.B는 그래뉼러 베이나이트를, 그리고 P는 퍼얼라이트를 나타낸다.In Table 2, F represents ferrite, G.B represents granular bainite, and P represents perlite.

저온인성은 -40℃에서 V노치를 갖는 시편을 샤르피충격시험을 행하여 얻은 샤르피 충격에너지값으로 평가한 것이다.Low temperature toughness is evaluated by the Charpy impact energy value obtained by Charpy impact test on a specimen having a V notch at -40 ° C.

하기 표 2에서 크랙길이비(Crack Length Ratio, %)는 NACE TM0277규격에 따라 측정된 것이다.In Table 2, the crack length ratio (%) is measured according to the NACE TM0277 standard.

조성(중량%)Composition (% by weight) CC MnMn SiSi AlAl CuCu NiNi CrCr MoMo TiTi VV CaCa N(ppm)N (ppm) NbNb 발명재Invention 0.030.03 1.31.3 0.250.25 0.030.03 0.20.2 0.30.3 0.150.15 0.10.1 0.010.01 0.050.05 20ppm20 ppm 4040 0.0470.047 바교재Bar textbook 0.070.07 1.41.4 0.20.2 0.040.04 -- -- -- -- 0.0150.015 0.0250.025 -- 5050 0.040.04

냉각개시 온도(℃)Cooling start temperature (℃) 냉각종료 온도(℃)Cooling end temperature (℃) 냉각속도 (℃/sec)Cooling rate (℃ / sec) 미세조직 및 분율(%)Microstructure and Fraction (%) 항복강도 (Mpa)Yield strength (Mpa) 저온인성 (J)Low temperature toughness (J) CLR(%)CLR (%) 발명재Invention 800800 450450 1212 F(65) + G.B(35)F (65) + G.B (35) 467467 443443 0.10.1 비교재Comparative material 750750 540540 88 F(74) + P(26)F (74) + P (26) 497497 370370 2525

상기 표 2에 나타난 바와 같이, 항복강도는 비교재가 높으나, 저온인성 및 H2S(sour)가스 저항성을 나타내는 CLR(Crack length ratio, %)은 발명재가 월등히 우수함을 알 수 있다.As shown in Table 2, the yield strength is high, but the CLR (Crack length ratio,%), which exhibits low temperature toughness and H 2 S (sour) gas resistance, can be seen that the invention is superior.

상기와 같이, 발명재가 CLR에 있어서 우수한 이유는 기존의 페라이트 기지조직에서는 퍼얼라이트 밴드를 따라서 HIC이 용이하게 전파하는 반면, 본 발명재의 경우에는 기지조직이 페라이트와 퍼얼라이트에 비해 경도 차가 적은 그래뉼러 베이나이트로 형성되었기 때문이다. As described above, the reason why the invention material is superior to the CLR is that the HIC easily propagates along the perlite band in the existing ferrite matrix, whereas in the case of the present invention, the matrix is less granular than the ferrite and the pearlite. Because it is formed as bainite.

(실시예 2) (Example 2)

강판의 조성은 상기 표 1의 발명재와 동일하고, 그래뉼러 베이나이트 비율을 변화시키면서 항복강도를 측정하고, 그 결과를 도 1에, 그리고 마르텐사이트의 분율을 변화시키면서 CLR 및 샤르피 충격에너지를 조사하고, 그 결과를 도 2에 나타내었다.The composition of the steel sheet is the same as the invention material of Table 1 above, Yield strength was measured while changing the granular bainite ratio, and the results were investigated in FIG. 1 and the CLR and Charpy impact energy while changing the fraction of martensite, and the results are shown in FIG. 2.

도 1에 나타난 바와 같이, 그래뉼러 베이나이트의 비율이 30% 이상이 되면 항복강도가 API X65급 (450Mpa 이상)을 만족함을 알 수 있고, 또한 도 2에 나타난 바와 같이, 마르텐사이트 분율이 3%이상이 되면 CLR 값은 증가하고 샤르피 충격에너지값은 감소함을 알 수 있다.As shown in FIG. 1, when the ratio of granular bainite is 30% or more, it can be seen that the yield strength satisfies API X65 grade (above 450Mpa), and as shown in FIG. 2, the martensite fraction is 3%. If it is abnormal, the CLR value increases and the Charpy impact energy value decreases.

상기한 바와 같이, 본 발명에 의하면, PI X65급을 만족하고, 내수소유기균열성 및 저온인성을 향상시킨 라인파이프 강판이 제공될 수 있다.As described above, according to the present invention, a line pipe steel sheet which satisfies the PI X65 grade and has improved hydrogen organic crack resistance and low temperature toughness can be provided.

Claims (4)

중량 %로, C:0.03-0.05%, Mn:1.0-1.5%, Si:0.1-0.3%, Al:0.02-0.06%, Ti:0.01-0.02%, Nb:0.03-0.05%, Mo:0.01-0.10%, S:0.002%이하, P:0.01%이하, N:20-60ppm, Ca:20-50ppm, Cu : 0.1~0.2%, Ni :0.05~0.3%, Cr:0.1~0.2%, 나머지 Fe 및 기타 불가피한 불순물로 이루어지고, 그리고 그 조직이 20~40%의 그래뉴얼 베이나이트, 3%이하의 마르텐사이트 및 나머지 페라이트로 이루어진 것을 특징으로 하는 저온인성 및 수소유기균열 저항성이 우수한 라인파이프 강판By weight%, C: 0.03-0.05%, Mn: 1.0-1.5%, Si: 0.1-0.3%, Al: 0.02-0.06%, Ti: 0.01-0.02%, Nb: 0.03-0.05%, Mo: 0.01- 0.10%, S: 0.002% or less, P: 0.01% or less, N: 20-60 ppm, Ca: 20-50 ppm, Cu: 0.1-0.2%, Ni: 0.05-0.3%, Cr: 0.1-0.2%, remaining Fe And a line pipe steel sheet having excellent low temperature toughness and hydrogen organic crack resistance, which are made of other unavoidable impurities, and its structure is made of 20-40% granular bainite, 3% or less martensite, and remaining ferrite. 제1항에 있어서, 상기 강판에 0.05%이하의 V이 추가로 첨가되는 것을 특징으로 하는 저온인성 및 수소유기균열 저항성이 우수한 라인파이프 강판The line pipe steel sheet having excellent low temperature toughness and hydrogen organic crack resistance according to claim 1, wherein V is added in an amount of 0.05% or less. 중량 %로, C:0.03-0.05%, Mn:1.0-1.5%, Si:0.1-0.3%, Al:0.02-0.06%, Ti:0.01-0.02%, Nb:0.03-0.05%, Mo:0.01-0.10%, V:0.05%이하, S:0.002이하, P:0.01%이하, N:20-60ppm, Ca:20-50ppm, Cu : 0.1~0.2%, Ni :0.05~0.3%, Cr:0.1~0.2%, 나머지 Fe 및 기타 불가피한 불순원소로 이루어진 강을 연주경압하를 거쳐 슬라브를 제조하여, 1100∼1200℃의 온도범위에서 가열하고, 재결정역에서 압하량을 50% 이상, 미재결정역에서 압하량을 70% 이상으로 하는 조건으로 열간압연한 다음, Ar3이상에서 냉각을 개시하여 10∼15℃/sec의 냉각속도로 400~500℃의 온도까지 가속냉각하고 상온까지 공냉하는 저온인성 및 수소유기균열 저항성이 우수한 라인파이프 강판의 제조방법By weight%, C: 0.03-0.05%, Mn: 1.0-1.5%, Si: 0.1-0.3%, Al: 0.02-0.06%, Ti: 0.01-0.02%, Nb: 0.03-0.05%, Mo: 0.01- 0.10%, V: 0.05% or less, S: 0.002 or less, P: 0.01% or less, N: 20-60 ppm, Ca: 20-50 ppm, Cu: 0.1-0.2%, Ni: 0.05-0.3%, Cr: 0.1- The slab is made of 0.2%, the remaining Fe and other unavoidable impurity elements under reduced pressure to produce slabs, heated at a temperature in the range of 1100 to 1200 ° C, and at least 50% of the reduction in the recrystallization zone. After hot rolling under the condition that the amount is 70% or more, the cooling is started at Ar 3 or more, accelerated cooling to a temperature of 400 to 500 ° C at a cooling rate of 10 to 15 ° C / sec, and air cooled to room temperature. Method for manufacturing line pipe steel sheet having excellent organic crack resistance 제3항에 있어서, 상기 강에 0.05%이하의 V이 추가로 첨가되는 것을 특징으로 하는 저온인성 및 수소유기균열 저항성이 우수한 라인파이프 강판의 제조방법The method of manufacturing a line pipe steel sheet having excellent low temperature toughness and hydrogen organic crack resistance according to claim 3, wherein V is added in an amount of 0.05% or less.
KR1020050129512A 2005-12-26 2005-12-26 Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet KR100723203B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050129512A KR100723203B1 (en) 2005-12-26 2005-12-26 Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050129512A KR100723203B1 (en) 2005-12-26 2005-12-26 Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet

Publications (1)

Publication Number Publication Date
KR100723203B1 true KR100723203B1 (en) 2007-05-29

Family

ID=38278651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050129512A KR100723203B1 (en) 2005-12-26 2005-12-26 Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet

Country Status (1)

Country Link
KR (1) KR100723203B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235944B1 (en) 2010-11-26 2013-02-21 현대제철 주식회사 High strength api hot-rolled steel sheet with low yield ratio for american petroleum institute and method of manufacturing the api hot-rolled steel sheet
KR101439685B1 (en) 2012-12-26 2014-09-12 주식회사 포스코 Steel plate for line pipe having superior uniform elongation ratio and low-temperature toughness
CN107363094A (en) * 2016-05-12 2017-11-21 鞍钢股份有限公司 A kind of Thin Specs pipe line steel milling method
CN109680135A (en) * 2019-02-19 2019-04-26 武汉钢铁有限公司 A kind of pipeline X80 hot-rolled coil and the production method of thickness >=22mm
CN114134405A (en) * 2021-05-25 2022-03-04 江阴兴澄特种钢铁有限公司 Acicular ferrite/massive ferrite steel plate for ship and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970015761A (en) * 1995-09-25 1997-04-28 김종진 Yield strength 50kgf / mm² grade steel with excellent resistance to hydrogen organic cracking and hydrogen sulfide stress corrosion cracking

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970015761A (en) * 1995-09-25 1997-04-28 김종진 Yield strength 50kgf / mm² grade steel with excellent resistance to hydrogen organic cracking and hydrogen sulfide stress corrosion cracking

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235944B1 (en) 2010-11-26 2013-02-21 현대제철 주식회사 High strength api hot-rolled steel sheet with low yield ratio for american petroleum institute and method of manufacturing the api hot-rolled steel sheet
KR101439685B1 (en) 2012-12-26 2014-09-12 주식회사 포스코 Steel plate for line pipe having superior uniform elongation ratio and low-temperature toughness
CN107363094A (en) * 2016-05-12 2017-11-21 鞍钢股份有限公司 A kind of Thin Specs pipe line steel milling method
CN107363094B (en) * 2016-05-12 2019-02-26 鞍钢股份有限公司 A kind of thin gauge pipe line steel milling method
CN109680135A (en) * 2019-02-19 2019-04-26 武汉钢铁有限公司 A kind of pipeline X80 hot-rolled coil and the production method of thickness >=22mm
CN109680135B (en) * 2019-02-19 2021-02-26 武汉钢铁有限公司 X80 hot-rolled coil with thickness larger than or equal to 22mm for pipeline and production method
CN114134405A (en) * 2021-05-25 2022-03-04 江阴兴澄特种钢铁有限公司 Acicular ferrite/massive ferrite steel plate for ship and manufacturing method thereof
CN114134405B (en) * 2021-05-25 2022-07-22 江阴兴澄特种钢铁有限公司 Acicular ferrite/massive ferrite steel plate for ship and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR102481712B1 (en) Seek hot-rolled H-beam having a yield strength of 500 megapascals and method for manufacturing the same
CA2668069C (en) Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
KR100833069B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof
KR101271954B1 (en) Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
JP5657026B2 (en) High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof
KR101676143B1 (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101601000B1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
KR20120075274A (en) High strength steel sheet having ultra low temperature toughness and method for manufacturing the same
KR20110062903A (en) Ultra high strength steel plate for pipeline with high resistance to surface cracking and manufacturing metod of the same
KR102131538B1 (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
KR101867701B1 (en) Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
KR100797326B1 (en) Steel plate for riser pipe guaranteed pwht and method of manufacturing thereof
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR100711371B1 (en) Thick steel sheet for linepipes having excellent excessive low temperature toughness and the method for manufacturing the same
KR100723203B1 (en) Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet
KR102164116B1 (en) Steel plate having excellent hic resistance and manufacturing method for thereof
KR102031451B1 (en) High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
JP6691967B2 (en) High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same
KR101758481B1 (en) Steel sheet for pipe having excellent corrosion resistance and low-temperature toughness, and method for manufacturing the same
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
KR101560943B1 (en) Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same
KR100584762B1 (en) The method of manufacturing hot rolled steels with less anisotropic properties for linepipes
KR102498135B1 (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR20170075925A (en) Steel sheet for pipe having excellent weldability, method for manufacturing the same, and method for manufacturing welded steel pipe using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130522

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140522

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150521

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160523

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170519

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190521

Year of fee payment: 13