JP5657026B2 - High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof - Google Patents

High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof Download PDF

Info

Publication number
JP5657026B2
JP5657026B2 JP2012546997A JP2012546997A JP5657026B2 JP 5657026 B2 JP5657026 B2 JP 5657026B2 JP 2012546997 A JP2012546997 A JP 2012546997A JP 2012546997 A JP2012546997 A JP 2012546997A JP 5657026 B2 JP5657026 B2 JP 5657026B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
heat treatment
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012546997A
Other languages
Japanese (ja)
Other versions
JP2013515861A (en
Inventor
スン−テク ホン、
スン−テク ホン、
ソン−ホ チャン、
ソン−ホ チャン、
ユン−チョ ロ、
ユン−チョ ロ、
チェ−ヒュン パク、
チェ−ヒュン パク、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44226971&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5657026(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2013515861A publication Critical patent/JP2013515861A/en
Application granted granted Critical
Publication of JP5657026B2 publication Critical patent/JP5657026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は湿潤硫化水素環境での原油精製設備、貯蔵タンク、熱交換器、反応炉、凝縮器などに用いられる鋼板に関し、より詳細には、溶接後熱処理(PWHT、Post Weld Heat Treatment)でも強度と靭性に優れた鋼板及びその製造方法に関する。   The present invention relates to a steel sheet used in a crude oil refining facility, a storage tank, a heat exchanger, a reaction furnace, a condenser, etc. in a wet hydrogen sulfide environment, and more specifically, it is strong even after a post-weld heat treatment (PWHT). And a steel plate excellent in toughness and a method for producing the same.

最近、石油の品薄現象及び高油価時代を迎え、劣悪な環境の油田が活発に開発される傾向により、原油の精製及び貯蔵用鋼材に対して厚物化が行われている。   Recently, with the trend of oil shortage and high oil prices, oil fields with poor environment have been actively developed, and thickening has been performed on steel for refinement and storage of crude oil.

上記のような鋼材の厚物化の他にも、鋼材を溶接した場合に溶接後の構造物の変形を防止し、形状及び寸法を安定させる目的で、溶接時に発生した応力を除去するために溶接後熱処理(PWHT、Post Weld Heat Treatment)を行う。しかし、長期間のPWHT工程を行った鋼板は、その組織の粗大化によって鋼板の引張強度が低下するという問題がある。   In addition to the thickening of steel materials as described above, welding is performed to remove stress generated during welding for the purpose of preventing deformation of the structure after welding and stabilizing the shape and dimensions when welding steel materials. Post heat treatment (PWHT, Post Weld Heat Treatment) is performed. However, a steel sheet that has been subjected to a long-term PWHT process has a problem that the tensile strength of the steel sheet decreases due to the coarsening of the structure.

即ち、長期間のPWHT後には基地組織(Matrix)及び結晶粒界の軟化、結晶粒成長、炭化物の粗大化などにより強度及び靭性が同時に低下する現象が引き起こされる。   That is, after PWHT for a long period of time, a phenomenon in which strength and toughness simultaneously decrease due to softening of the matrix structure (Matrix) and crystal grain boundaries, crystal grain growth, coarsening of carbides, and the like.

上記長期間のPWHT熱処理による物性の低下を防止するための手段として、特許文献1では重量%で、C:0.05〜0.20%,Si:0.02〜0.5%,Mn:0.2〜2.0%,Al:0.005〜0.10%、必要に応じて、Cu、Ni、Cr、Mo、V、Nb、Ti、B、Ca、希土類元素のうち1種又は2種以上を含み、残部が鉄及び不可避な不純物からなるスラブを加熱及び熱間圧延した後、室温で空冷し、Ac1〜Ac3変態点で加熱し徐冷する工程により、16時間までPWHTを保持できるようにした。   As means for preventing deterioration of physical properties due to the above-mentioned long-term PWHT heat treatment, in Patent Document 1, the weight percentage is C: 0.05 to 0.20%, Si: 0.02 to 0.5%, Mn: 0.2 to 2.0%, Al: 0.005 to 0.10%, if necessary, one of Cu, Ni, Cr, Mo, V, Nb, Ti, B, Ca, rare earth elements or After heating and hot rolling a slab containing two or more types, the balance being iron and inevitable impurities, air cooling at room temperature, and maintaining at PWHT up to 16 hours by heating at the Ac1 to Ac3 transformation points and gradually cooling I was able to do it.

しかし、上記技術に示されたPWHT保持時間は、厚物化及び溶接部の条件が苛酷な場合には非常に不足し、それ以上の長期間のPWHTの適用は不可能であるという問題がある。   However, the PWHT holding time shown in the above technique is very short when the conditions for thickening and welding are severe, and there is a problem that it is impossible to apply PWHT for a longer period of time.

従って、鋼材の厚物化及び溶接部の条件の苛酷化に伴い、長期間のPWHT後にも強度と靭性が低下しないPWHTに対する抵抗性の大きい鋼材が求められている。   Accordingly, as the steel material becomes thicker and the conditions of the weld zone become severe, there is a demand for a steel material having high resistance to PWHT in which strength and toughness do not decrease even after long-term PWHT.

特開1997−256037号公報Japanese Patent Laid-Open No. 1997-256037

本発明の一側面は、長期間の溶接後熱処理(Post Weld Heat Treatment、PWHT)後にも強度と靭性が低下しない溶接後熱処理(PWHT)抵抗性に優れた高強度鋼板及びその製造方法を提供する。   One aspect of the present invention provides a high-strength steel sheet having excellent post-weld heat treatment (PWHT) resistance that does not decrease strength and toughness even after long-term post-weld heat treatment (PWHT) and a method for manufacturing the same. .

本発明は質量%で、C:0.1〜0.3%、Si:0.15〜0.50%、Mn:0.6〜1.2%、P:0.08%以下、S:0.020%以下、Al:0.001〜0.05%、Cr:0.01〜0.35%、Mo:0.005〜0.2%、V:0.005〜0.05%、Nb:0.001〜0.05%、Ti:0.001〜0.05%、Ca:0.0005〜0.005%、Ni:0.05〜0.5%を含み、Cu:0.005〜0.5%、Co:0.005〜0.2%及びW:0.005〜0.2%からなる群より選択された1種以上、残りはFe及び不可避な不純物からなり、上記組成は下記関係式を満たす溶接後熱処理抵抗性に優れた高強度鋼板を提供する。
Cu+Ni+Cr+Mo:1.5%以下
Cr+Mo:0.4%以下
V+Nb:0.1%以下
Ca/S:1.0以上
The present invention is mass %, C: 0.1-0.3%, Si: 0.15-0.50%, Mn: 0.6-1.2%, P: 0.08 % or less, S: 0.020% or less, Al: 0.001 to 0.05%, Cr: 0.01 to 0.35%, Mo: 0.005 to 0.2%, V: 0.005 to 0.05%, Nb: 0.001-0.05%, Ti: 0.001-0.05%, Ca: 0.0005-0.005%, Ni: 0.05-0.5%, Cu: 0.00 005~0.5%, Co: 0.005~0.2% and W: 0.005 to 0.2% is selected from the group consisting of the one or more, and the remainder of Fe and unavoidable impurities, the The composition provides a high-strength steel sheet excellent in post-weld heat treatment resistance that satisfies the following relational expression.
Cu + Ni + Cr + Mo: 1.5% or less Cr + Mo: 0.4% or less V + Nb: 0.1% or less Ca / S: 1.0 or more

また、本発明は上記組成範囲を満たす鋼スラブを1050〜1250℃の温度範囲で再加熱する段階と、上記再加熱した鋼スラブをTnr〜Tnr+100℃の温度範囲で熱間圧延する段階と、上記熱間圧延した熱延鋼板を850〜950℃の温度範囲で、1.3×t+(10〜30分)(但し、tは鋼材の厚さ(mm)を意味する)間保持する熱処理段階と、上記熱処理した鋼板を0.1〜10℃/secの冷却速度で冷却する段階とを含む溶接後熱処理抵抗性に優れた高強度鋼板の製造方法を提供する。 Further, step present invention to hot rolling at the stage and a temperature range of the re-heated steel slab T nr ~T nr + 100 ℃ reheating the steel slab satisfying the above composition range in a temperature range of from 1,050 to 1250 ° C. And the above hot-rolled hot-rolled steel sheet is held at a temperature range of 850 to 950 ° C. for 1.3 × t + (10 to 30 minutes) (where t means the thickness (mm) of the steel material). Provided is a method for producing a high-strength steel plate having excellent post-weld heat treatment resistance, including a heat treatment step and a step of cooling the heat-treated steel plate at a cooling rate of 0.1 to 10 ° C./sec.

本発明によると、500MPa級以上の強度を有し、100時間に及ぶPWHT後にも強度及び靭性が劣化せず、耐水素誘起割れ性に優れた圧力容器用鋼板を提供することができる。   According to the present invention, it is possible to provide a steel plate for a pressure vessel that has a strength of 500 MPa class or more, does not deteriorate in strength and toughness even after 100 hours of PWHT, and has excellent resistance to hydrogen-induced cracking.

以下では、本発明について詳しく説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の組成範囲について詳しく説明する(以下、質量%)。
First, the composition range of this invention is demonstrated in detail (henceforth, mass %).

炭素(C)の含量は0.1〜0.3%に限定することが好ましい。Cは強度を向上させる元素で、その含量が0.1%未満では基地相の強度が低下し、0.3%を超えると組織内に偏析が発生し、水素誘起割れの抵抗性を低下させるという問題点がある。   The content of carbon (C) is preferably limited to 0.1 to 0.3%. C is an element that improves the strength. If the content is less than 0.1%, the strength of the matrix phase decreases, and if it exceeds 0.3%, segregation occurs in the structure and decreases the resistance to hydrogen-induced cracking. There is a problem.

シリコン(Si)の含量は0.15〜0.50%に限定することが好ましい。Siは脱酸及び固溶強化に効果的な元素で、衝撃遷移温度の上昇効果のために添加される元素である。このような効果を達成するためには、0.15%以上添加されなければならず、0.5%を超えて添加されると、溶接性が低下し、鋼板表面に酸化皮膜がひどく形成されるという問題点がある。   The silicon (Si) content is preferably limited to 0.15 to 0.50%. Si is an element effective for deoxidation and solid solution strengthening, and is an element added for increasing the impact transition temperature. In order to achieve such an effect, 0.15% or more must be added. If it exceeds 0.5%, the weldability deteriorates and an oxide film is severely formed on the steel sheet surface. There is a problem that.

マンガン(Mn)の含量は0.6〜1.2%に限定することが好ましい。MnはSとともに延伸された非金属介在物であるMnSを形成して常温伸び率及び低温靭性を低下させるため、1.2%以下に管理することが好ましい。しかし、本発明の特性上、Mnが0.6%未満添加されると、適切な強度を確保することが困難であるため、その含量は0.6〜1.2%に限定する。   The manganese (Mn) content is preferably limited to 0.6 to 1.2%. Since Mn forms MnS which is a non-metallic inclusion stretched with S and lowers the room temperature elongation and the low temperature toughness, it is preferably controlled to 1.2% or less. However, if Mn is added in an amount of less than 0.6% due to the characteristics of the present invention, it is difficult to ensure an appropriate strength, so the content is limited to 0.6 to 1.2%.

アルミニウム(Al)の含量は0.001〜0.5%に限定することが好ましい。Alは上記Siとともに製鋼工程において強力な脱酸剤の一つであり、0.001%未満では上記脱酸効果がわずかで、0.05%を超えて添加されると、上記脱酸効果は飽和し、製造原価が上昇するという問題点がある。   The aluminum (Al) content is preferably limited to 0.001 to 0.5%. Al is one of the powerful deoxidizers in the steel making process together with Si. If less than 0.001%, the deoxidation effect is slight, and if added over 0.05%, the deoxidation effect is There is a problem that the manufacturing cost increases due to saturation.

リン(P)は低温靭性を阻害する元素で、製鋼工程で除去するのに多くの費用がかかるため、0.08%以下の範囲内で管理することが好ましい。
Phosphorus (P) is an element that inhibits low-temperature toughness, and it takes a lot of money to remove it in the steelmaking process. Therefore, it is preferable to manage it within a range of 0.08 % or less.

硫黄(S)もPとともに低温靭性に悪影響を与える元素で、Pと同様に製鋼工程で除去するのに多くの費用がかかり得るため、0.020%以下の範囲内で管理することが好ましい。   Sulfur (S) is an element that adversely affects low-temperature toughness together with P, and it can be costly to remove in the steel making process in the same manner as P. Therefore, it is preferable to manage it within a range of 0.020% or less.

クロム(Cr)の含量は0.01〜0.35%に限定することが好ましい。Crは強度を増加させる元素で、本発明において、強度増加の効果のためには0.01%以上添加されなければならないが、高価の元素であるため、0.35%を超えて添加すると、製造費用の上昇をもたらし、0.35%以下に管理することが好ましい。   The content of chromium (Cr) is preferably limited to 0.01 to 0.35%. Cr is an element that increases the strength, and in the present invention, it must be added 0.01% or more for the effect of increasing the strength, but since it is an expensive element, if added over 0.35%, It causes an increase in manufacturing cost and is preferably controlled to 0.35% or less.

モリブデン(Mo)の含量は0.005〜0.2%に限定することが好ましい。MoはCrと同様に、強度増大に有効な元素である上、硫化物による割れの発生を防止する元素である。上記効果のためには0.005%以上添加されなければならないが、Moも高価の元素で、製造費用の上昇をもたらすため、0.2%以下に限定することが好ましい。   The molybdenum (Mo) content is preferably limited to 0.005 to 0.2%. Like Cr, Mo is an element effective for increasing the strength, and is an element that prevents the occurrence of cracks due to sulfides. For the above effect, 0.005% or more must be added. However, Mo is also an expensive element and causes an increase in manufacturing cost, so it is preferable to limit it to 0.2% or less.

バナジウム(V)の含量は0.005〜0.05%に限定することが好ましい。VはCr、Moのように強度の増大に効果的な元素である。従って、0.005%以上添加されなければ、強度増大の効果が図れないが、高価であるため、0.05%以下添加することが好ましい。   The vanadium (V) content is preferably limited to 0.005 to 0.05%. V is an element effective for increasing the strength, such as Cr and Mo. Accordingly, if 0.005% or more is not added, the effect of increasing the strength cannot be achieved, but it is expensive, so 0.05% or less is preferably added.

ニオビオム(Nb)の含量は0.001〜0.05%に限定することが好ましい。Nbはオーステナイトに固溶されてオーステナイトの硬化能を増大させ、基地(Matrix)と整合する炭窒化物(Nb(C,N))として析出されることで、強度を増加させる重要な元素である。その含量が0.001%以上添加されなければ上記効果が得られないが、多量添加すると、連鋳過程で粗大な析出物となり、水素誘起割れのサイト(site)の役割をすることがあるため、その含量は0.05%以下に制限することが好ましい。   The content of niobium (Nb) is preferably limited to 0.001 to 0.05%. Nb is an important element that increases the strength by being dissolved in austenite to increase the hardening ability of austenite and precipitated as carbonitride (Nb (C, N)) consistent with the matrix (Matrix). . The above effect cannot be obtained unless the content is 0.001% or more, but if added in a large amount, coarse precipitates may be formed in the continuous casting process, which may serve as sites for hydrogen-induced cracking. The content is preferably limited to 0.05% or less.

チタン(Ti)の含量は0.001〜0.05%に限定することが好ましい。TiはNbと同様に炭窒化物(Ti(C,N))として析出されることで、強度を増加させる重要な元素である。その含量が0.001%以上添加されなければ上記効果が得られないが、多量添加すると、連鋳過程で粗大な析出物となり、水素誘起割れのサイトの役割をすることがあるため、その含量は0.05%以下に制限することが好ましい。   The content of titanium (Ti) is preferably limited to 0.001 to 0.05%. Ti is an important element that increases the strength by being precipitated as carbonitride (Ti (C, N)) in the same manner as Nb. The above effect cannot be obtained unless the content is 0.001% or more. However, if added in a large amount, coarse precipitates may be formed in the continuous casting process, which may serve as a site for hydrogen-induced cracking. Is preferably limited to 0.05% or less.

カルシウム(Ca)の含量は0.0005〜0.005%に限定することが好ましい。CaはCaSに生成されてMnSの非金属介在物を抑制するために添加するが、そのためには0.0005%以上添加されなければならない。しかし、その含量が0.005%を超えると、鋼中に含有されたOと反応して非金属介在物であるCaOを生成するため、その上限値は0.005%に限定することが好ましい。   The calcium (Ca) content is preferably limited to 0.0005 to 0.005%. Ca is generated in CaS and added to suppress non-metallic inclusions of MnS. For this purpose, 0.0005% or more must be added. However, if its content exceeds 0.005%, it reacts with O contained in the steel to produce CaO which is a non-metallic inclusion, so the upper limit is preferably limited to 0.005%. .

ニッケル(Ni)の含量は0.05〜0.5%に限定することが好ましい。Niは低温靭性の向上に最も効果的な元素で、その含量が0.05%以上添加されなければ上記効果が得られないが、高価の元素で、製造費用の上昇をもたらすため、0.5%以下に添加することが好ましい。   The nickel (Ni) content is preferably limited to 0.05 to 0.5%. Ni is the most effective element for improving low-temperature toughness, and the above effect cannot be obtained unless the content is 0.05% or more. However, since it is an expensive element and causes an increase in manufacturing cost, 0.5% It is preferable to add to below%.

本発明は、上記組成にCu、Co及びWからなる群より選択された1種以上を含む。   The present invention includes one or more selected from the group consisting of Cu, Co and W in the above composition.

銅(Cu)の含量は0.005〜0.5%を添加することが好ましい。Cuは固溶強化又はe−Cu析出などによる基地組織(matrix)の強化によるPWHT熱処理後にも強度の劣化を防止し、基地強化及びリカバリー抑制を通じて強度及び靭性の劣化を防止する。但し、高価であるため、その含量を0.005〜0.5%の範囲内で添加することが好ましい。   The content of copper (Cu) is preferably 0.005 to 0.5%. Cu prevents strength deterioration even after PWHT heat treatment by strengthening the matrix structure by solid solution strengthening or e-Cu precipitation, and prevents strength and toughness deterioration by strengthening the base and suppressing recovery. However, since it is expensive, it is preferable to add the content within the range of 0.005 to 0.5%.

コバルト(Co)の含量は0.005〜0.2%を添加することが好ましい。Coは基地組織の軟化を防止するのに効果的な元素ではあるが、高価であるため、0.005〜0.2%の範囲内で添加することが好ましい。   The content of cobalt (Co) is preferably 0.005 to 0.2%. Co is an effective element for preventing the softening of the matrix structure, but is expensive, so it is preferably added in the range of 0.005 to 0.2%.

タングステン(W)の含量は0.005〜0.2%添加することが好ましい。WはWCを形成したり、セメンタイト(Cementite)析出分率を減少させ、セメンタイトの成長/凝集抑制を防止して強度及び靭性の劣化を防止することができるという特性を有するため、0.005%以上添加することが好ましい。但し、上記Wは高価であるため、0.005〜0.2%の範囲内で添加することがより好ましい。   The content of tungsten (W) is preferably 0.005 to 0.2%. W has the characteristics that it can form WC, decrease the cementite precipitation rate, prevent the growth / aggregation of cementite and prevent deterioration of strength and toughness, so 0.005% It is preferable to add more. However, since W is expensive, it is more preferable to add it in the range of 0.005 to 0.2%.

本発明の鋼材は圧力容器用鋼材として使用することができる。これを考慮すると、下記Cu、Ni、Cr、Mo、V、Nbなどの元素の含量は次の関係を満たすことが好ましい。
Cu+Ni+Cr+Mo:1.5%以下
Cr+Mo:0.4%以下
V+Nb:0.1%以下
Ca/S:1.0以上
The steel material of the present invention can be used as a steel material for pressure vessels. Considering this, it is preferable that the content of elements such as Cu, Ni, Cr, Mo, V, and Nb below satisfy the following relationship.
Cu + Ni + Cr + Mo: 1.5% or less Cr + Mo: 0.4% or less V + Nb: 0.1% or less Ca / S: 1.0 or more

即ち、Cu+Ni+Cr+Mo、Cr+Mo及びV+Nbの関係は、圧力容器用鋼材の基本規格(ASTM A20)においてそれぞれ制限している数値で、これにより、Cu+Ni+Cr+Mo含量は1.5%以下、Cr+Mo含量は0.4%以下、V+Nb含量は0.1%以下に制限する。但し、本発明の実施形態により含まれない合金元素は0と計算することができる。   That is, the relationship of Cu + Ni + Cr + Mo, Cr + Mo, and V + Nb is a numerical value restricted respectively in the basic standard (ASTM A20) of steel materials for pressure vessels, whereby the Cu + Ni + Cr + Mo content is 1.5% or less and the Cr + Mo content is 0.4%. Hereinafter, the V + Nb content is limited to 0.1% or less. However, alloy elements not included in the embodiment of the present invention can be calculated as zero.

また、Ca/S比は、MnS介在物を球状化させて水素誘起割れの抵抗性を向上させる必須構成比で、1.0未満の場合には、その効果が期待し難いため、その比率は1.0以上になるよう調節する。
Further, the Ca / S ratio is an essential component ratio for improving the resistance of hydrogen-induced cracking by spheroidizing MnS inclusions, and when the ratio is less than 1.0, the effect is difficult to expect. Adjust to 1.0 or higher .

残りはFe及び不可避な不純物からなる。   The remainder consists of Fe and inevitable impurities.

以下、本発明の微細組織について詳しく説明する。   Hereinafter, the microstructure of the present invention will be described in detail.

上記のような組成を有する鋼を、後述する過程により適した制御圧延及び熱処理をすると、その微細組織はフェライト又はフェライトとパーライトの混合組織からなることができ、上記組織内には低温組織が出来るだけ含まれないことが好ましいが、10%まではベイナイトが含まれてよい。組織を上述した形態に制御する理由は、本発明で対象とする水素誘起割れに対する抵抗性に優れ、適切な強度と靭性を持たせるためである。   When the steel having the above composition is subjected to controlled rolling and heat treatment more suitable for the process described later, the microstructure can be composed of ferrite or a mixed structure of ferrite and pearlite, and a low temperature structure can be formed in the structure. Is preferably not included, but up to 10% may include bainite. The reason why the structure is controlled to the above-described form is that it has excellent resistance to hydrogen-induced cracking, which is a target of the present invention, and has appropriate strength and toughness.

また、水素誘起割れの抵抗性を確保するためには、水素誘起割れに脆弱なバンド組織がどれだけ形成されたのかを示すバンディングインデックス(Banding Index)(ASTM E−1268により測定される)が0.25以下であることが好ましい。上記バンディングインデックス(Banding Index)値が0.25を超えると、その微細組織では水素誘起割れの抵抗性が急激に低下する。   Further, in order to ensure the resistance of hydrogen-induced cracking, a banding index (measured by ASTM E-1268) indicating how much a band structure vulnerable to hydrogen-induced cracking has been formed is 0. .25 or less is preferable. When the banding index value exceeds 0.25, the resistance of hydrogen-induced cracking rapidly decreases in the microstructure.

鋼板の厚さ方向の中心部(3/8〜5/8t、t:鋼板の厚さ)のフェライト結晶粒の平均サイズは50μm以下であることが好ましい。これは上記フェライト結晶粒のサイズが大き過ぎると、強度と靭性が低下する恐れがあるためである。結晶粒のサイズに対する下限はないが、本発明で対象とする鋼材では、大体5μm未満の結晶粒を得ることが困難であるため、結晶粒のサイズは5μm以上にしてもよい。   The average size of the ferrite crystal grains in the central portion (3/8 to 5 / 8t, t: thickness of the steel plate) in the thickness direction of the steel plate is preferably 50 μm or less. This is because if the size of the ferrite crystal grains is too large, the strength and toughness may decrease. Although there is no lower limit to the size of the crystal grains, it is difficult to obtain crystal grains of less than 5 μm with the steel material targeted by the present invention, so the crystal grain size may be 5 μm or more.

以下では、本発明の製造方法について詳しく説明する。   Below, the manufacturing method of this invention is demonstrated in detail.

本発明は、上記組成範囲を満たす鋼スラブを1050〜1250℃の温度範囲で再加熱する。上記再加熱温度が1050℃より低いと、溶質原子の固溶が困難で、1250℃を超えると、オーステナイト結晶粒のサイズが過度に粗大となり、鋼板の性質を阻害するためである。   In the present invention, a steel slab satisfying the above composition range is reheated in a temperature range of 1050 to 1250 ° C. When the reheating temperature is lower than 1050 ° C., it is difficult to dissolve the solute atoms. When the reheating temperature is higher than 1250 ° C., the size of the austenite crystal grains becomes excessively large, which impairs the properties of the steel sheet.

上記再加熱後、本発明では水素誘起割れの抵抗性を有するためのフェライト+パーライトの2相複合組織を有し、且つバンディングインデックス(Banding Index)(ASTM E−1268により測定)が0.25以下になるよう再結晶制御圧延、熱処理、PWHT熱処理が求められる。   After the reheating, the present invention has a ferrite + pearlite two-phase composite structure for resistance to hydrogen-induced cracking, and a banding index (measured by ASTM E-1268) is 0.25 or less. Recrystallization controlled rolling, heat treatment, and PWHT heat treatment are required.

再結晶制御圧延は、上記再加熱された鋼スラブを未再結晶以上の温度で熱間圧延を施すことで行う。上記未再結晶温度であるTnrは、下記式から計算することができる。 Recrystallization controlled rolling is performed by subjecting the reheated steel slab to hot rolling at a temperature higher than non-recrystallization. T nr which is the non-recrystallization temperature can be calculated from the following equation.

Tnr(℃)=887+464×C+890×Ti+363×Al−357×Si+(6446×Nb−644×Nb1/2)+(732×V−230×V1/2Tnr (° C.) = 887 + 464 × C + 890 × Ti + 363 × Al-357 × Si + (6446 × Nb−644 × Nb 1/2 ) + (732 × V−230 × V 1/2 )

バンディングインデックス(Banding Index)(ASTM E−1268により測定)値を0.25以下にするには、再結晶制御圧延が最も重要な変数であり、再結晶制御圧延はTnr〜Tnr+100℃の温度範囲の区間で各圧延パス当たりに10%以上の圧下率を加えて、累積圧下率30%以上を付与することが好ましい。これは、上記累積圧下率が30%未満では、バンディングインデックス(Banding Index)値の0.25以下を期待することができないためである。また、再結晶制御圧延の温度を限定する理由も、バンディングインデックスを制御するためであり、結晶粒が粗大化しない状態でバンド組織を抑制するためである。より詳細には、温度が再結晶域基準温度(Tnr)より低いと、オーステナイトがパンケーキ化し、バンディングインデックスが高くなるため好ましくなく、逆に、温度が高すぎると、結晶粒のサイズが大きくなりすぎるため好ましくない。 In order to reduce the banding index (measured by ASTM E-1268) value to 0.25 or less, the recrystallization controlled rolling is the most important variable, and the recrystallization controlled rolling is performed between T nr and T nr + 100 ° C. It is preferable that a rolling reduction rate of 10% or more is added to each rolling pass in the temperature range to give a cumulative rolling reduction rate of 30% or more. This is because when the cumulative rolling reduction is less than 30%, it is not possible to expect a banding index value of 0.25 or less. Moreover, the reason for limiting the temperature of the recrystallization controlled rolling is to control the banding index and to suppress the band structure in a state where the crystal grains are not coarsened. More specifically, if the temperature is lower than the recrystallization zone reference temperature (T nr ), austenite is pancakeed and the banding index becomes high, which is not preferable. Conversely, if the temperature is too high, the size of the crystal grains becomes large. Since it becomes too much, it is not preferable.

以後、上記熱間圧延を行い、冷却された熱延鋼板を熱処理する。上記熱処理は850〜950℃の温度範囲で、1.3×t+(10〜30分)(但し、tは鋼材の厚さ(mm)を意味する)の条件で保持する。上記熱処理温度が850℃未満では、固溶溶質元素の再固溶が困難で、強度を確保することが困難となり、熱処理温度が950℃を超えると、結晶粒の成長が起きて低温靭性を阻害する。   Thereafter, the hot rolling is performed, and the cooled hot-rolled steel sheet is heat-treated. The heat treatment is held in the temperature range of 850 to 950 ° C. under the conditions of 1.3 × t + (10 to 30 minutes) (where t means the thickness (mm) of the steel material). If the heat treatment temperature is less than 850 ° C., it is difficult to re-dissolve the solid solution solute element and it is difficult to ensure the strength. If the heat treatment temperature exceeds 950 ° C., crystal grain growth occurs and inhibits low temperature toughness. To do.

上記熱処理保持時間を制約する理由は、上記保持時間が1.3×t+10分(tは鋼材の厚さ(mm)を意味する)より短いと、組織の均質化が困難で、1.3×t+30分(tは鋼材の厚さ(mm)を意味する)を超えると、生産性を阻害するためである。   The reason for limiting the heat treatment holding time is that when the holding time is shorter than 1.3 × t + 10 minutes (t means the thickness (mm) of the steel material), it is difficult to homogenize the structure. This is because when t + 30 minutes (t means the thickness (mm) of the steel material) is exceeded, productivity is hindered.

上記保持された鋼板を中心部の冷却速度を基準として0.1〜120℃/secで冷却する。それ以下の冷却速度では冷却中にフェライト結晶粒の粗大化が発生する恐れがあり、それ以上の冷却速度では過大な第2相(ベイナイト分率10%以上)が発生する可能性が高いためである。
The held steel sheet is cooled at 0.1 to 120 ° C./sec with reference to the cooling rate at the center. If the cooling rate is lower than that, ferrite crystal grains may be coarsened during cooling, and if the cooling rate is higher than that, an excessive second phase (more than 10% bainite fraction) is likely to occur. is there.

上記冷却速度は、鋼板中心部のフェライトの平均結晶粒のサイズを50μm以下に調整するためである。   The cooling rate is to adjust the average crystal grain size of ferrite in the center of the steel sheet to 50 μm or less.

上記熱処理工程を経て製造された本発明の鋼板は、圧力容器の製作時に付加される溶接工程により残留応力を除去するなどのためにPWHT処理が必要である。一般的に長期間のPWHT熱処理後には強度及び靭性の劣化が発生するが、上記本発明により製造された鋼板は、通常のPWHT温度条件である600〜640℃で、長期間(〜100時間)実施しても強度及び靭性の大きな低下なく溶接施工が可能であるという長所がある。特に、本発明の鋼板は、100時間のPWHT後にも450MPa以上の引張強度を有し、−50℃でのシャルピー衝撃エネルギー値が50J以上を満たす。   The steel sheet of the present invention manufactured through the above heat treatment process needs PWHT treatment in order to remove residual stress by a welding process added at the time of manufacturing the pressure vessel. Generally, deterioration of strength and toughness occurs after long-term PWHT heat treatment, but the steel sheet produced according to the present invention has a normal PWHT temperature condition of 600 to 640 ° C. and a long period (up to 100 hours). Even if it is carried out, there is an advantage that welding can be performed without a great decrease in strength and toughness. In particular, the steel sheet of the present invention has a tensile strength of 450 MPa or more even after 100 hours of PWHT, and satisfies a Charpy impact energy value at −50 ° C. of 50 J or more.

以下、本発明の実施例について詳しく説明する。但し、本発明は下記実施例に限定されない。   Examples of the present invention will be described in detail below. However, the present invention is not limited to the following examples.

下記表1には発明鋼と比較鋼の化学成分をそれぞれ示した。表1のような組成を有する鋼スラブを表2の鋼板厚、再加熱温度、圧延、熱処理及び冷却して鋼板を製造した。   Table 1 below shows the chemical components of the inventive steel and the comparative steel. Steel slabs having the composition shown in Table 1 were manufactured by manufacturing the steel plate thickness, reheating temperature, rolling, heat treatment and cooling shown in Table 2.

上記条件で製造された鋼板に対し、PWHTなどを下記表2のような条件で実施した後、降伏強度、引張強度、低温靭性及びクラックの長さ比(CLR、Crack Length Ratio、%)を調べ、その結果を下記表2に示した。   After the steel sheet manufactured under the above conditions is subjected to PWHT etc. under the conditions shown in Table 2 below, the yield strength, tensile strength, low temperature toughness, and crack length ratio (CLR, Crack Length Ratio,%) are examined. The results are shown in Table 2 below.

但し、低温靭性は、−50℃でVノッチを有する試片に対し、シャルピー衝撃試験を行って得たシャルピー衝撃エネルギー値で評価し、下記表2におけるクラックの長さ比(Crack Length Ratio、%)はNACE TM0277規格により測定したものである。   However, the low temperature toughness was evaluated by a Charpy impact energy value obtained by conducting a Charpy impact test on a specimen having a V notch at −50 ° C., and the crack length ratio (Crack Length Ratio,%) in Table 2 below. ) Is measured according to NACE TM0277 standard.

Figure 0005657026
Figure 0005657026

Figure 0005657026
Figure 0005657026

上記表1及び2の結果から分かるように、本発明の組成及製造条件を満たす発明鋼は、PWHT時間が50時間以上100時間になっても強度と靭性が低下しない。比較鋼は本発明の組成及び製造条件から外れるもので、発明鋼と比べると、PWHT時間が短い場合は、発明鋼と略同等の強度と靭性を示すが、PWHT時間が50時間以上と長くなるにつれ、発明鋼より強度と靭性が著しく劣化することが分かる。   As can be seen from the results in Tables 1 and 2 above, the strength and toughness of the invention steel satisfying the composition and production conditions of the present invention does not decrease even when the PWHT time is 50 hours or more and 100 hours. The comparative steel deviates from the composition and production conditions of the present invention. Compared with the inventive steel, when the PWHT time is short, it shows substantially the same strength and toughness as the inventive steel, but the PWHT time is as long as 50 hours or more. It can be seen that the strength and toughness of the steel according to the invention are significantly deteriorated.

特に、発明鋼では、100時間のPWHT後にも低温靭性値の低下が大きくないが、比較鋼では低温靭性値の低下がひどいことが分かる。   In particular, it can be seen that the low-temperature toughness value of the invention steel is not significantly reduced even after 100 hours of PWHT, but the low-temperature toughness value of the comparative steel is severely reduced.

一方、HS(Sour Gas)ガス雰囲気下での水素誘起割れの抵抗性を示すCLR(Crack Length Ratio、%)は、発明鋼が抜群に優れていることが分かる。このように、発明鋼が、CLRにおいて優れる理由が、フェライト及びパーライトの複合組織で構成される微細組織の均質化の程度を示すバンディングインデックス(Banding Index)が0.25以下に低く制御されるためであることが本実施例により分かる。 On the other hand, CLR (Crack Length Ratio,%) indicating the resistance of hydrogen-induced cracking in an H 2 S (Sour Gas) gas atmosphere shows that the inventive steel is excellent. Thus, the reason why the inventive steel is superior in CLR is that the banding index indicating the degree of homogenization of the microstructure composed of the composite structure of ferrite and pearlite is controlled to be lower than 0.25. It can be seen from this example that this is true.

Claims (3)

質量%で、C:0.1〜0.3%、Si:0.15〜0.50%、Mn:0.6〜1.2%、P:0.08%以下、S:0.020%以下、Al:0.001〜0.05%、Cr:0.01〜0.35%、Mo:0.005〜0.2%、V:0.005〜0.05%、Nb:0.001〜0.05%、Ti:0.001〜0.05%、Ca:0.0005〜0.005%、Ni:0.05〜0.5%を含み、Cu:0.005〜0.5%、Co:0.005〜0.2%及びW:0.005〜0.2%からなる群より選択された1種以上、残りはFe及び不可避な不純物からなり、
上記組成は下記関係式を満たし、
鋼板の微細組織は、フェライト又はフェライトとパーライトの混合組織からなっており、このとき、鋼板中心部のフェライト結晶粒の平均サイズが50μm以下であり、鋼板のバンディングインデックス(BandingIndex)(ASTM E−1268により測定)が0.25以下である、溶接後熱処理抵抗性に優れた高強度鋼板。
Cu+Ni+Cr+Mo:1.5%以下
Cr+Mo:0.4%以下
V+Nb:0.1%以下
Ca/S:1.0以上
In mass%, C: 0.1 to 0.3%, Si: 0.15 to 0.50%, Mn: 0.6 to 1.2%, P: 0.08% or less, S: 0.020 % Or less, Al: 0.001 to 0.05%, Cr: 0.01 to 0.35%, Mo: 0.005 to 0.2%, V: 0.005 to 0.05%, Nb: 0 0.001 to 0.05%, Ti: 0.001 to 0.05%, Ca: 0.0005 to 0.005%, Ni: 0.05 to 0.5%, Cu: 0.005 to 0 1 or more selected from the group consisting of 0.5%, Co: 0.005 to 0.2%, and W: 0.005 to 0.2%, the remainder consisting of Fe and inevitable impurities,
The above composition meets the following equation,
The fine structure of the steel sheet is composed of ferrite or a mixed structure of ferrite and pearlite. At this time, the average size of ferrite crystal grains in the central part of the steel sheet is 50 μm or less, and the banding index (ASTM E-1268) of the steel sheet. high-strength steel sheet measurement) is 0.25 or less, which is excellent in the heat treatment after welding resistance by.
Cu + Ni + Cr + Mo: 1.5% or less Cr + Mo: 0.4% or less V + Nb: 0.1% or less Ca / S: 1.0 or more
上記鋼板は、100時間の溶接後熱処理(Post Weld Heat Treatment、PWHT)でも引張強度が450MPa以上で、−50℃でのシャルピー衝撃エネルギー値が50J以上である請求項1に記載の溶接後熱処理抵抗性に優れた高強度鋼板。   2. The post-weld heat treatment resistance according to claim 1, wherein the steel sheet has a tensile strength of 450 MPa or more and a Charpy impact energy value at −50 ° C. of 50 J or more even after 100 hours of post-weld heat treatment (PWHT). High strength steel plate with excellent properties. 質量%で、C:0.1〜0.3%、Si:0.15〜0.50%、Mn:0.6〜1.2%、P:0.08%以下、S:0.020%以下、Al:0.001〜0.05%、Cr:0.01〜0.35%、Mo:0.005〜0.2%、V:0.005〜0.05%、Nb:0.001〜0.05%、Ti:0.001〜0.05%、Ca:0.0005〜0.005%、Ni:0.05〜0.5%を含み、Cu:0.005〜0.5%、Co:0.005〜0.2%及びW:0.005〜0.2%からなる群より選択された1種以上、残りはFe及び不可避な不純物からなり、
上記組成は下記関係式を満たす鋼スラブを1050〜1250℃の温度範囲で再加熱する段階と、
上記再加熱した鋼スラブをTnr〜Tnr+100℃の温度範囲で各圧延パス当たりに10%以上の圧下率を加え、累積圧下率30%以上で熱間圧延する段階と、
上記熱間圧延した熱延鋼板を850〜950℃の温度範囲で、1.3×t+(10〜30分)(但し、tは鋼材の厚さ(mm)を意味する)間保持する熱処理段階と、
上記熱処理した鋼板を0.1〜120℃/secの冷却速度で冷却する段階
とを含み、前記Tnr(℃)=887+464×C+890×Ti+363×Al−357×Si+(6446×Nb−644×Nb1/2)+(732×V−230×V1/2であり、
鋼板の微細組織は、フェライト又はフェライトとパーライトの混合組織からなっており、このとき、鋼板中心部のフェライト結晶粒の平均サイズが50μm以下であり、鋼板のバンディングインデックス(BandingIndex)(ASTM E−1268により測定)が0.25以下である、溶接後熱処理抵抗性に優れた高強度鋼板の製造方法。
Cu+Ni+Cr+Mo:1.5%以下
Cr+Mo:0.4%以下
V+Nb:0.1%以下
Ca/S:1.0以上
In mass%, C: 0.1 to 0.3%, Si: 0.15 to 0.50%, Mn: 0.6 to 1.2%, P: 0.08% or less, S: 0.020 % Or less, Al: 0.001 to 0.05%, Cr: 0.01 to 0.35%, Mo: 0.005 to 0.2%, V: 0.005 to 0.05%, Nb: 0 0.001 to 0.05%, Ti: 0.001 to 0.05%, Ca: 0.0005 to 0.005%, Ni: 0.05 to 0.5%, Cu: 0.005 to 0 1 or more selected from the group consisting of 0.5%, Co: 0.005 to 0.2%, and W: 0.005 to 0.2%, the remainder consisting of Fe and inevitable impurities,
The above composition is a step of reheating a steel slab satisfying the following relational expression in a temperature range of 1050 to 1250 ° C .;
Adding the rolling reduction of 10% or more to each rolling pass in the temperature range of T nr to T nr + 100 ° C. and hot rolling the reheated steel slab at a cumulative rolling reduction of 30% or more ;
Heat treatment stage for holding the hot-rolled hot-rolled steel sheet in the temperature range of 850 to 950 ° C. for 1.3 × t + (10 to 30 minutes) (where t means the thickness (mm) of the steel material). When,
Cooling the heat-treated steel sheet at a cooling rate of 0.1 to 120 ° C./sec, and said T nr (° C.) = 887 + 464 × C + 890 × Ti + 363 × Al-357 × Si + (6446 × Nb−644 × Nb) 1/2 ) + (732 × V−230 × V 1/2 ) ,
The fine structure of the steel sheet is composed of ferrite or a mixed structure of ferrite and pearlite. At this time, the average size of ferrite crystal grains in the central part of the steel sheet is 50 μm or less, and the banding index (ASTM E-1268) of the steel sheet. (Measured by) is 0.25 or less, a method for producing a high-strength steel sheet having excellent heat resistance after welding.
Cu + Ni + Cr + Mo: 1.5% or less Cr + Mo: 0.4% or less V + Nb: 0.1% or less Ca / S: 1.0 or more
JP2012546997A 2009-12-28 2010-12-22 High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof Active JP5657026B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0132129 2009-12-28
KR1020090132129A KR101322067B1 (en) 2009-12-28 2009-12-28 High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
PCT/KR2010/009225 WO2011081350A2 (en) 2009-12-28 2010-12-22 High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2013515861A JP2013515861A (en) 2013-05-09
JP5657026B2 true JP5657026B2 (en) 2015-01-21

Family

ID=44226971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012546997A Active JP5657026B2 (en) 2009-12-28 2010-12-22 High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof

Country Status (5)

Country Link
EP (1) EP2520680B1 (en)
JP (1) JP5657026B2 (en)
KR (1) KR101322067B1 (en)
CN (1) CN102782169B (en)
WO (1) WO2011081350A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417231B1 (en) * 2011-12-28 2014-07-08 주식회사 포스코 Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same
JP6201376B2 (en) * 2013-04-01 2017-09-27 Jfeスチール株式会社 Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
CN104195465A (en) * 2014-07-24 2014-12-10 安徽广源科技发展有限公司 Alloy steel for resisting low temperature and corrosion and preparation method thereof
CN104109801B (en) * 2014-07-30 2016-04-27 宝山钢铁股份有限公司 High tenacity, anti-PWHT soften brittle steel plate and manufacture method thereof
KR101758497B1 (en) * 2015-12-22 2017-07-27 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof
CN105671436B (en) * 2016-02-05 2017-10-03 山东钢铁股份有限公司 Low-welding crack sensitivity coefficient crude oil storage tank high-strength tenacity steel plate and its manufacture method of high temperature resistance PWHT softenings
KR101917453B1 (en) 2016-12-22 2018-11-09 주식회사 포스코 Steel plate having excellent ultra low-temperature toughness and method for manufacturing same
KR101899691B1 (en) * 2016-12-23 2018-10-31 주식회사 포스코 Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
KR101999024B1 (en) 2017-12-26 2019-07-10 주식회사 포스코 Steel plate having excellent HIC resistance and manufacturing method for the same
KR102280641B1 (en) * 2019-10-22 2021-07-22 주식회사 포스코 Steel plate for pressure vessel having excellent resistance for high-temperature post weld heat treatment, and method for manufacturing thereof
CN112813353B (en) * 2021-01-29 2022-05-27 日钢营口中板有限公司 Steel for ultra-high temperature SPWHT high-toughness normalizing container and manufacturing method thereof
US11656169B2 (en) 2021-03-19 2023-05-23 Saudi Arabian Oil Company Development of control samples to enhance the accuracy of HIC testing
US11788951B2 (en) 2021-03-19 2023-10-17 Saudi Arabian Oil Company Testing method to evaluate cold forming effects on carbon steel susceptibility to hydrogen induced cracking (HIC)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness
JP3795949B2 (en) * 1995-02-16 2006-07-12 新日本製鐵株式会社 Welded joint with excellent fatigue strength
CN1078910C (en) * 1996-02-13 2002-02-06 新日本制铁株式会社 Welded joint of high fatigue strength
JPH09256037A (en) 1996-03-22 1997-09-30 Nippon Steel Corp Production of thick high tensile strength steel plate for stress relieving annealing treatment
JPH11131177A (en) * 1997-08-29 1999-05-18 Nippon Steel Corp Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
CZ293084B6 (en) 1999-05-17 2004-02-18 Jinpo Plus A. S. Steel for creep-resisting and high-strength wrought parts, particularly pipes, plates and forgings
DE60213736T2 (en) * 2001-11-14 2007-08-16 Sumitomo Metal Industries, Ltd. Steel with improved fatigue strength and method of manufacture
JP2004027355A (en) * 2001-11-14 2004-01-29 Sumitomo Metal Ind Ltd Steel member having excellent fatigue crack propagation resistance and method of producing the same
JP4267367B2 (en) 2002-06-19 2009-05-27 新日本製鐵株式会社 Crude oil tank steel and its manufacturing method, crude oil tank and its anticorrosion method
JP5028760B2 (en) * 2004-07-07 2012-09-19 Jfeスチール株式会社 Method for producing high-tensile steel plate and high-tensile steel plate
JP4718866B2 (en) * 2005-03-04 2011-07-06 新日本製鐵株式会社 High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP2008100277A (en) * 2006-10-23 2008-05-01 Jfe Steel Kk Method for producing low yield-ratio thick electric resistance welded pipe having weld zone excellent in toughness
KR100833070B1 (en) 2006-12-13 2008-05-27 주식회사 포스코 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof
KR100833071B1 (en) 2006-12-13 2008-05-27 주식회사 포스코 Steel plate for pressure vessel with ts 600mpa grade and excellent hic resistance and manufacturing method thereof
CN101541998B (en) 2007-03-30 2012-06-06 住友金属工业株式会社 Expandable oil well pipe to be expanded in well and process for production of the pipe
JP2009041073A (en) * 2007-08-09 2009-02-26 Sumitomo Metal Ind Ltd High-tensile strength steel weld joint having excellent resistivity to generation of ductile crack from weld zone, and method for producing the same
JP4326020B1 (en) * 2008-03-28 2009-09-02 株式会社神戸製鋼所 High-strength steel plate with excellent stress-relieving annealing characteristics and low-temperature joint toughness
JP5716640B2 (en) 2011-11-21 2015-05-13 新日鐵住金株式会社 Rolled steel bar for hot forging

Also Published As

Publication number Publication date
WO2011081350A2 (en) 2011-07-07
WO2011081350A3 (en) 2011-11-17
CN102782169A (en) 2012-11-14
KR101322067B1 (en) 2013-10-25
EP2520680B1 (en) 2016-10-26
CN102782169B (en) 2014-11-19
EP2520680A2 (en) 2012-11-07
EP2520680A4 (en) 2014-11-19
KR20110075630A (en) 2011-07-06
JP2013515861A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5657026B2 (en) High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof
JP6514777B2 (en) Steel material for high strength pressure vessel excellent in low temperature toughness after PWHT and method for manufacturing the same
JP7161536B2 (en) Steel plate for pressure vessel excellent in tensile strength and low-temperature impact toughness and method for producing the same
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
KR101417231B1 (en) Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same
JP6754494B2 (en) High-strength high-manganese steel with excellent low-temperature toughness and its manufacturing method
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
JP2011001620A (en) High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same
JP6152375B2 (en) Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
KR20070116561A (en) Steel sheets having superior haz toughness and reduced lowering of strength by post weld heat treatment
KR101253888B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
KR20140056760A (en) Steel for pressure vessel and method of manufacturing the same
KR101257161B1 (en) Hot-rolled steel sheet, method of manufacturing the hot-rolled steel sheet and method of manufacturing oil tubular country goods using the hot-rolled steel sheet
JP7096337B2 (en) High-strength steel plate and its manufacturing method
KR102164107B1 (en) High strength steel plate having superior elongation percentage and excellent low-temperature toughness, and manufacturing method for the same
KR101271968B1 (en) Steel sheet for high temperature applications having excellent property after post weld heat treatment and method for manufacturing the same
KR101143029B1 (en) High strength, toughness and deformability steel plate for pipeline and manufacturing metod of the same
KR101568504B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
KR101546132B1 (en) Extremely thick steel sheet and method of manufacturing the same
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
KR101400662B1 (en) Steel for pressure vessel and method of manufacturing the same
KR101443446B1 (en) Non-heated type hot-rolled steel sheet and method of manufacturing the same
JP4967373B2 (en) Non-tempered high-tensile steel sheet and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5657026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250