JP2006241508A - HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD - Google Patents

HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2006241508A
JP2006241508A JP2005057854A JP2005057854A JP2006241508A JP 2006241508 A JP2006241508 A JP 2006241508A JP 2005057854 A JP2005057854 A JP 2005057854A JP 2005057854 A JP2005057854 A JP 2005057854A JP 2006241508 A JP2006241508 A JP 2006241508A
Authority
JP
Japan
Prior art keywords
steel
less
welded
temperature range
ht490mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005057854A
Other languages
Japanese (ja)
Inventor
Ryuji Uemori
龍治 植森
Hajime Ishikawa
肇 石川
Tadashi Koseki
正 小関
Yoshiyuki Watabe
義之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005057854A priority Critical patent/JP2006241508A/en
Publication of JP2006241508A publication Critical patent/JP2006241508A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a HT490MPa class refractory steel for welded structure having excellent galvanizing crack resistance in the weld zone. <P>SOLUTION: The HT490MPa class refractory steel for welded structure having excellent galvanizing crack resistance contains, by weight, 0.01 to 0.15% C, 0.02 to 0.5% Si, 0.3 to 2% Mn, ≤0.03% P, 0.0005 to 0.03% S, 0.001 to 0.2% Nb, 0.02 to <0.6% Mo, 0.0005 to 0.05% Al, 0.003 to 0.05% Ti, 0.0001 to 0.01% Mg and 0.0001 to 0.01% Ca, further satisfying the relation of free[Mg]=Total[Mg]-[Mg] contained in the total oxide ≥5 ppm, and the balance iron with inevitable impurities, and in which old austenite grain sizes in the weld HAZ structure are ≤200 μm, and the grain boundary part includes grain boundary ferrite. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主として建築分野において使用する引張強度490MPa級溶接構造用鋼およびその製造方法に関し、さらに詳しくは、溶接部の耐亜鉛めっき割れ性に優れた溶接構造用耐火鋼に関するものである。   The present invention relates to a welded structural steel having a tensile strength of 490 MPa mainly used in the construction field, and more particularly to a fireproof steel for welded structure having excellent resistance to galvanizing cracking at welds.

建築や橋梁分野では、鋼板の耐食性付与などの観点から亜鉛めっきを施して利用される場合がある。その場合、用いた鋼材や溶接条件[通常入熱は10kJ/mm以下 *最大入熱は10kJ/mm以下程度]により、溶接部において特異な割れが発生することが広く知られており、溶融亜鉛めっき割れと呼ばれている。溶融亜鉛めっき割れには、変形の少ないフランジ材などで生じる亜鉛脆化による割れと薄肉材であるウエブ材などで亜鉛めっき浸漬時の熱応力・ねじり変形などを原因とする面外変形による局部的な高ひずみ変形によって発生する割れの2種類がある。前者は溶接部のHAZで起こる粒界割れであり、主因である亜鉛の粒界への進入防止策を講じることにより、割れ発生確率を軽減できることがわかっている。例えば、粒界への亜鉛の進入を抑制する手段として、粒界部のミクロ組織の制御がある。これはベイナイトやマルテンサイトのような低温変態組織をなるべく少なくし、粒界フェライト主体にするものであり、機構そのものについては不明な点も多いが、このようなミクロ組織の制御により割れ感受性を大きく下げることができる。粒界フェライト分率の増加は成分的に炭素当量を下げることと、焼入性を高める元素(特に、B、Nb、Moなど)を低減することで達成できる(例えば、特許文献1参照)。なお、局部的な高ひずみ変形によって発生する割れの場合には、設計上の工夫などにより変形を極力なくす以外に今のところ十分な対策がないのが現状である。   In the field of architecture and bridges, there are cases where galvanization is applied for the purpose of imparting corrosion resistance to steel sheets. In that case, it is widely known that specific cracks occur in the weld due to the steel materials used and welding conditions [normal heat input is 10 kJ / mm or less * maximum heat input is about 10 kJ / mm or less]. This is called plating cracking. Hot dip galvanized cracks include localized cracks caused by out-of-plane deformation caused by thermal stress and torsional deformation when galvanized by cracking due to zinc embrittlement caused by flange materials with little deformation and thin web materials. There are two types of cracks caused by high strain deformation. The former is a grain boundary crack that occurs in the HAZ of the weld zone, and it is known that the probability of cracking can be reduced by taking measures to prevent zinc, which is the main cause, from entering the grain boundary. For example, as a means for suppressing zinc from entering the grain boundary, there is control of the microstructure of the grain boundary part. This is to reduce the low-temperature transformation structure such as bainite and martensite as much as possible and to make it mainly composed of grain boundary ferrite, and there are many unclear points about the mechanism itself, but the crack susceptibility is greatly increased by controlling the microstructure. Can be lowered. An increase in the grain boundary ferrite fraction can be achieved by lowering the carbon equivalent in terms of components and reducing elements (in particular, B, Nb, Mo, etc.) that enhance hardenability (see, for example, Patent Document 1). In the case of cracks caused by local high strain deformation, there are currently no sufficient countermeasures other than eliminating the deformation as much as possible by means of design.

一方、耐火鋼の場合には、MoやNbなどの焼入性の高い合金元素を同時に、しかも多量に添加することで高温強度を高めているため、普通鋼の成分に比べて焼入性が極めて高いという特徴がある。したがって、このような鋼材に対して、亜鉛めっきを施す場合には、上述したような最も簡便な成分元素の変更のみによる組織調整方法が使えない。
特開平9−87802号公報
On the other hand, in the case of refractory steel, high-strength alloy elements such as Mo and Nb are added at the same time and a large amount is added to increase the high-temperature strength. It is very expensive. Therefore, when galvanizing is applied to such a steel material, the simplest structural adjustment method by only changing the constituent elements as described above cannot be used.
JP-A-9-87802

本発明は、以上のような問題を解決し、溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の提供を課題とするものである。   This invention solves the above problems and makes it a subject to provide the HT490MPa class fireproof steel for welded structures excellent in the galvanization cracking resistance of a welding part.

本発明の要旨は、以下の通りである。すなわち、
(1)重量%で、
C :0.01〜0.15%
Si:0.02〜0.5%
Mn:0.3〜2%
P :0.03%以下
S :0.0001〜0.03%
Nb:0.0001〜0.2%
Mo:0.02〜0.6%未満
Al:0.0005〜0.05%
Ti:0.003〜0.05%
Mg:0.0001〜0.01%
Ca:0.0001〜0.01%
を含み、さらに
free[Mg]=Total[Mg]− 全酸化物中の含有[Mg]≧5ppm
なる関係を満足し、残部が鉄および不可避的不純物からなり、溶接部HAZ(Heat Affected Zone)組織の旧オーステナイト粒径が200μm以下でかつ粒界部に粒界フェライトを有することを特徴とする耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼。
The gist of the present invention is as follows. That is,
(1) By weight%
C: 0.01 to 0.15%
Si: 0.02 to 0.5%
Mn: 0.3-2%
P: 0.03% or less S: 0.0001-0.03%
Nb: 0.0001 to 0.2%
Mo: 0.02 to less than 0.6% Al: 0.0005 to 0.05%
Ti: 0.003 to 0.05%
Mg: 0.0001 to 0.01%
Ca: 0.0001 to 0.01%
Free [Mg] = Total [Mg]-content in the total oxide [Mg] ≧ 5 ppm
Satisfying the following relationship, the balance is made of iron and inevitable impurities, the prior austenite grain size of the weld zone HAZ (Heat Affected Zone) structure is 200 μm or less, and has grain boundary ferrite at the grain boundary part. HT490 MPa class refractory steel for welded structures with excellent galvanizing cracking properties.

(2)重量%で、さらに、
Cu:0.05〜1.5
Ni:0.05〜5%
Cr:0.02〜1.5%
V:0.01〜0.1%
Zr:0.0001〜0.05%
Ta:0.0001〜0.05%
B :0.0003〜0.005%
のうち1種または2種以上を含有することを特徴とする(1)に記載の溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼。
(2) In weight percent,
Cu: 0.05 to 1.5
Ni: 0.05-5%
Cr: 0.02 to 1.5%
V: 0.01 to 0.1%
Zr: 0.0001 to 0.05%
Ta: 0.0001 to 0.05%
B: 0.0003 to 0.005%
The HT490 MPa class fireproof steel for welded structures having excellent galvanizing cracking resistance of the welded portion according to (1), characterized by containing one or more of them.

(3)重量%で、さらに、
REM:0.0005〜0.005%
を含有することを特徴とする(1)あるいは(2)に記載の溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼。
(3) In wt%,
REM: 0.0005 to 0.005%
The HT490 MPa class fire resistant steel for welded structures having excellent galvanizing cracking resistance of the welded portion according to (1) or (2).

(4)(1)〜(3)の鋼と同一成分を有する鋼片をAC点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延した後、自然放冷することを特徴とする溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造方法。 (4) A steel slab having the same composition as the steels of (1) to (3) is heated to 3 AC or more and 1350 ° C. or less, then hot-rolled in a recrystallization temperature range, and then naturally cooled. The manufacturing method of the HT490MPa class refractory steel for welded structures excellent in the galvanization cracking resistance of the welded part.

(5)(1)〜(3)の鋼と同一成分を有する鋼片をAC点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、自然放冷することを特徴とする溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造方法。 (5) A steel slab having the same composition as the steels of (1) to (3) is heated to AC 3 points or more and 1350 ° C. or less, hot-rolled in the recrystallization temperature range, and further accumulated in the non-recrystallization temperature range. A method for producing a HT490 MPa class refractory steel for welded structures excellent in galvanizing cracking resistance of a welded portion, characterized by performing natural rolling after hot rolling at a rolling reduction of 40 to 90%.

(6)(1)〜(3)の鋼と同一成分を有する鋼片をAC点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で0〜650℃まで冷却することを特徴とする溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造方法。 (6) A steel slab having the same composition as the steels of (1) to (3) is heated to AC 3 points or more and 1350 ° C. or less, then hot-rolled in the recrystallization temperature range, and further accumulated in the non-recrystallization temperature range. HT 490 MPa class excellent in galvanization cracking resistance of the weld zone characterized by being hot rolled at a rolling reduction of 40 to 90% and then cooled to 0 to 650 ° C. at a cooling rate of 1 to 60 ° C./sec. A method for producing refractory steel for welded structures.

(7)(1)〜(3)の鋼と同一成分を有する鋼片をAC点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で0〜650℃まで冷却し、引き続いて300℃〜AC点で焼戻し熱処理することを特徴とする溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造方法。 (7) A steel slab having the same composition as the steels of (1) to (3) is heated to AC 3 points or more and 1350 ° C. or less, hot-rolled in the recrystallization temperature range, and further accumulated in the non-recrystallization temperature range. After hot rolling at a rolling reduction of 40 to 90%, the steel sheet is cooled to 0 to 650 ° C. at a cooling rate of 1 to 60 ° C./sec, and subsequently tempered at 300 ° C. to one AC point. The manufacturing method of the HT490MPa class refractory steel for welded structures excellent in the galvanization cracking resistance of a welding part.

本発明の化学成分および製造条件を限定し、free[Mg]=Total[Mg]− 全酸化物中の含有[Mg]≧5ppmなる関係を満足させることで、溶接部HAZ組織の旧オーステナイト粒径が200μm以下でかつ粒界部に粒界フェライトを有することを特徴とする耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造が可能となる。その結果、建築、橋梁などの耐食性の付与に用いられる亜鉛めっき技術を耐火鋼に利用することが可能となり、産業上の効果は著しく大きい。   By limiting the chemical components and production conditions of the present invention and satisfying the relationship of free [Mg] = Total [Mg]-content [Mg] ≧ 5 ppm in the total oxide, the prior austenite grain size of the weld zone HAZ structure Of HT490MPa welded structure with excellent galvanizing cracking resistance, characterized by having a grain boundary ferrite at the grain boundary part. As a result, the galvanizing technology used for imparting corrosion resistance to buildings, bridges, etc. can be used for fireproof steel, and the industrial effect is remarkably great.

MgとCaの添加は、従来から強脱酸剤、脱硫剤として鋼の清浄度を高めることで、溶接熱影響部の靱性を向上させることが知られている。また、これら元素を含有する酸化物の分散を制御して、優れた溶接部HAZ靭性を付与することが可能であるとする例(国際公開第01/027342号パンフレット参照)さらには母材靭性および溶接部HAZ靱性の両方を向上させる技術として用いた例が特開2003−49237号公報に記載されている。   It is known that the addition of Mg and Ca improves the toughness of the weld heat affected zone by increasing the cleanliness of steel as a strong deoxidizer and desulfurizer. In addition, an example in which dispersion of oxides containing these elements can be controlled to impart excellent weld zone HAZ toughness (see International Publication No. 01/027342 pamphlet) and base metal toughness and An example used as a technique for improving both the weld zone HAZ toughness is described in Japanese Patent Laid-Open No. 2003-49237.

本発明者らは、MgとCaの強脱酸剤あるいは強力な硫化物生成能に着目し、これら元素の添加順序および量を制御することで、加熱γ粒径の微細化に効果を有する酸化物の微細分散が期待できることから、本技術により溶接部HAZ組織を微細化することができ、しかも酸化物を形成しないMg量(free[Mg])をパラメータとした時に、free[Mg]≧5ppmなる関係を満足している場合には、HAZ細粒化の効果に加えて、粒界フェライト生成が顕著に促進され、結果として焼入性を高めるMoやNb含有量が多い溶接構造用耐火鋼の場合においても粒界焼入性を低下させることが可能であることを初めて知見するに至った。   The present inventors pay attention to a strong deoxidizer of Mg and Ca or a strong sulfide-forming ability, and by controlling the addition order and amount of these elements, an oxidation having an effect on refinement of the heated γ particle size Since the fine dispersion of the product can be expected, the welded HAZ structure can be refined by this technique, and when the amount of Mg that does not form oxide (free [Mg]) is used as a parameter, free [Mg] ≧ 5 ppm If the above relationship is satisfied, in addition to the HAZ refinement effect, the formation of intergranular ferrite is remarkably promoted, and as a result, the refractory steel for welded structures having a high Mo and Nb content increases the hardenability. In this case, it has been found for the first time that the grain boundary hardenability can be lowered.

以下、本発明に関して詳細に説明する。
本発明者らは、Tiを添加し弱脱酸した溶鋼中にMgあるいはCaを添加した場合の酸化物の状態を系統的に調べた。その結果、Si、Mnによる脱酸後に、Ti添加、Mg(Ca)添加の順に添加した場合に、あるいはTi添加とMg(Ca)添加を同時に行い、さらに平衡状態になった状態で再度Mg(Ca)を添加するというサイクルを行なうことで、Mg(あるいはCa)の酸化物あるいは硫化物が極めて微細に、かつ高密度に生成されることを見出した。このMg添加の効果はCaをMgの代わりに用いても同様に得られ、いずれの元素を添加した場合も添加元素を含む酸化物もしくは硫化物が生成され、その粒子径は0.005〜0.5μm、粒子数は鋼中に1mm2当たり10000個以上であり、強力なピニング力を有していることが確認され、母材製造時のスラブ加熱段階や溶接部HAZ組織の加熱γ粒径が溶接入熱によらず200μm以下となる。
Hereinafter, the present invention will be described in detail.
The present inventors systematically investigated the state of oxides when Mg or Ca was added to molten steel that was weakly deoxidized by adding Ti. As a result, after deoxidation with Si and Mn, when Ti addition and Mg (Ca) addition are added in this order, or Ti addition and Mg (Ca) addition are performed simultaneously, and Mg (Ca) is again in an equilibrium state. It has been found that by performing a cycle of adding Ca), an oxide or sulfide of Mg (or Ca) is generated extremely finely and with high density. The effect of adding Mg can be obtained in the same manner even when Ca is used instead of Mg. When any element is added, an oxide or sulfide containing the added element is generated, and the particle size is 0.005 to 0. .5 μm, the number of particles is 10,000 or more per 1 mm 2 in the steel, and it is confirmed that the steel has a strong pinning force. Regardless of welding heat input, it is 200 μm or less.

本発明は上記の介在物の存在状態によって達成される溶接部のHAZ組織の微細化により、溶接部HAZ組織における亜鉛の粒界脆化を極力抑えた画期的な技術である。すなわち、本発明の特徴は、溶接部HAZ組織の加熱γ粒径(旧オーステナイト粒径)が前述したように溶接入熱によらず200μm以下であり、この微細化効果により溶接部の加熱γの焼入性が低下し、一般的な建築部材において用いられる溶接入熱条件では、粒界部に粒界フェライトが生成される。粒界フェライトが生成されている粒界部では亜鉛浸漬時の亜鉛の粒界への進入が抑制されることは広く知られており、結果として亜鉛脆化が著しく抑制される。従来技術では、粒径の制御が難しいことから化学成分的に焼入性を変化させることで粒界のミクロ組織を変化させるというアプローチが取られていたが、耐火鋼のように必然的に焼入性の高い成分系では、その対処方法がなかった。本発明はこの点を粒径制御の方法でブレークスルーしたものである。   The present invention is an epoch-making technique that suppresses the intergranular embrittlement of zinc in the weld zone HAZ as much as possible by refining the HAZ microstructure of the weld zone achieved by the presence of the inclusions. That is, the feature of the present invention is that the heating γ particle size (old austenite particle size) of the welded HAZ structure is 200 μm or less regardless of the welding heat input as described above. The hardenability is lowered, and grain boundary ferrite is generated at the grain boundary part under welding heat input conditions used in general building members. It is widely known that in the grain boundary portion where the grain boundary ferrite is generated, the entry of zinc into the grain boundary during zinc immersion is suppressed, and as a result, zinc embrittlement is remarkably suppressed. In the prior art, since it is difficult to control the grain size, the approach of changing the microstructure of the grain boundary by changing the hardenability in terms of chemical composition has been taken, but inevitably it is hardened like refractory steel. There was no way to deal with the component system with high permeability. The present invention breaks through this point by a method of particle size control.

さらに、前述のように、free[Mg]を高精度に制御した場合に、HAZ組織の微細化効果に加えて、粒界フェライト分率が増加する。これは、酸化物を生成せずに含有したMgの大部分が(Mg,Mn)Sという硫化物となり、HAZの旧オーステナイト粒界上に析出し、これがフェライトの核生成サイトとして作用するために起こる。Mgは本来硫化物生成能が大きいことから、MgSが最初に生成し、これが(Mg,Mn)Sに変化したものと推定される。このような(Mg,Mn)Sによる粒界フェライト生成の促進はこれまで工業的に全く利用されていなかった冶金現象である。   Furthermore, as described above, when free [Mg] is controlled with high accuracy, the grain boundary ferrite fraction increases in addition to the effect of refining the HAZ structure. This is because most of Mg contained without forming an oxide becomes a sulfide called (Mg, Mn) S and precipitates on the former austenite grain boundary of HAZ, which acts as a nucleation site of ferrite. Occur. Since Mg inherently has a high sulfide-forming ability, it is presumed that MgS was first produced and changed to (Mg, Mn) S. Such promotion of grain boundary ferrite formation by (Mg, Mn) S is a metallurgical phenomenon that has not been used industrially at all.

本発明におけるMgとCaの添加方法であるが、既に述べたように、最初に、Si、Mnを添加後、まずTiを添加し溶鋼中の酸素量を調整した後、Mgを徐々に添加するか、あるいは、Tiと少量のMgを同時に添加した後に、最終段階で再度Mgを添加する。最適なMgの添加量は、Ti添加後、溶鋼中に存在する酸素量などに依存するが、実験では、その時の酸素濃度はTi添加量とMg添加までの時間に依存し、TiとMg添加量を適正な範囲で制御すればよい。なお、最終的なMg添加時の溶存酸素量は0.1〜50ppm程度が適量である。Mgの総量としては、微細なMg酸化物(あるいはMg硫化物)を生成させるために0.0001%以上は必要であるが、0.01%を超えると粗大なMg酸化物が生成されるようになり、ピニング力が極端に弱くなることからこれを限界とした。また、free[Mg]は上記の溶存酸素量においては、5ppmまでは粒界フェライト分率はそれほど大きくならないが、これを超えると急激に増加することからこれを最小値として規定した。なお、上述においては、Mgの代わりにCaあるいはそれらの両元素を同時に添加してもよい。   Although it is the addition method of Mg and Ca in this invention, as already stated, after adding Si and Mn first, after adding Ti first and adjusting the oxygen amount in molten steel, Mg is added gradually. Alternatively, after adding Ti and a small amount of Mg simultaneously, Mg is added again at the final stage. The optimum amount of Mg depends on the amount of oxygen present in the molten steel after the addition of Ti, but in the experiment, the oxygen concentration at that time depends on the amount of Ti addition and the time until the addition of Mg. The amount may be controlled within an appropriate range. The appropriate amount of dissolved oxygen at the final Mg addition is about 0.1 to 50 ppm. The total amount of Mg needs to be 0.0001% or more in order to produce fine Mg oxide (or Mg sulfide), but if it exceeds 0.01%, coarse Mg oxide is produced. This is the limit because the pinning force becomes extremely weak. In addition, free [Mg] is defined as a minimum value because the grain boundary ferrite fraction does not increase so much up to 5 ppm in the above-mentioned dissolved oxygen content, but increases rapidly beyond this. In the above description, Ca or both of these elements may be added simultaneously instead of Mg.

以下、本発明の成分の限定理由について述べる。   Hereinafter, the reasons for limiting the components of the present invention will be described.

C:Cは鋼における母材強度を向上させる基本的な元素として欠かせない元素であり、その有効な下限として0.01%以上の添加が必要であるが、0.15%を超える過剰の添加では、鋼材の溶接性や靱性の低下を招くので、その上限を0.15%とした。   C: C is an indispensable element as a basic element for improving the strength of the base metal in steel, and as an effective lower limit, addition of 0.01% or more is necessary, but an excess exceeding 0.15% Addition causes a decrease in weldability and toughness of the steel material, so the upper limit was made 0.15%.

Si:Siは製鋼上脱酸元素として必要な元素であり、鋼中に0.02%以上の添加が必要であるが、0.5%を超えるとHAZ靱性を低下させるのでそれを上限とする。   Si: Si is an element necessary as a deoxidizing element in steelmaking, and 0.02% or more is required to be added to the steel. However, if it exceeds 0.5%, the HAZ toughness is lowered, so that is the upper limit. .

Mn:Mnは、母材の強度および靱性の確保に必要な元素であるが、2.0%を超えるとHAZ靱性を阻害し、逆に0.3%未満では、母材の強度確保が困難になるために、その範囲を0.3〜2.0%とする。   Mn: Mn is an element necessary for securing the strength and toughness of the base material. However, if it exceeds 2.0%, the HAZ toughness is inhibited. Conversely, if it is less than 0.3%, it is difficult to ensure the strength of the base material. Therefore, the range is made 0.3 to 2.0%.

P:Pは鋼の靱性に影響を与える元素であり、0.03%を超えて含有すると鋼材の母材だけでなくHAZの靱性を著しく阻害することから、上限を0.03%とした。   P: P is an element that affects the toughness of steel, and if it exceeds 0.03%, not only the base material of steel but also the toughness of HAZ is significantly inhibited, so the upper limit was made 0.03%.

S:Sは0.030%を超えて過剰に添加されると粗大な硫化物の生成の原因となり、靱性を阻害するが、その含有量が0.0005%未満になると、粒内フェライトの生成に有効なMnS等の硫化物生成量が著しく低下するために、0.0005〜0.030%をその範囲とする。   S: When S is added in excess of 0.030%, coarse sulfides are formed and toughness is inhibited. When the content is less than 0.0005%, intragranular ferrite is formed. Since the amount of sulfides such as MnS that is effective in reducing significantly decreases, 0.0005 to 0.030% is made the range.

Nb:Nbは耐火鋼の必須元素であり、炭化物、窒化物を形成し、高温強度の向上に効果を有する元素であるが、0.001%未満の添加ではその効果が無く、0.2%を超える添加では、靭性の低下を招くために、その範囲を0.001〜0.2%とする。   Nb: Nb is an essential element of refractory steel, and is an element that forms carbides and nitrides and has an effect of improving high-temperature strength. However, if added less than 0.001%, there is no effect, and 0.2% In the case of addition exceeding C, the toughness is lowered, so the range is made 0.001 to 0.2%.

Mo:MoもNbと同様に耐火鋼の必須元素であり、焼入性を向上させると同時に、炭窒化物を形成し高温強度を改善する元素であり、その効果を得るためには、0.02%以上の添加が必要になるが、0.6%以上の添加は必要以上の強化とともに、靭性の著しい低下をもたらすために、その範囲を0.02〜0.6%未満とする。   Mo: Mo, as well as Nb, is an essential element of refractory steel, and is an element that improves hardenability and at the same time forms carbonitrides and improves high temperature strength. Addition of 02% or more is necessary, but addition of 0.6% or more brings about a remarkable decrease in toughness as well as an unnecessary reinforcement, so the range is made 0.02 to less than 0.6%.

Al:Alは通常脱酸剤として添加されるが、本発明においては、0.05%超えて添加されるとMg、Caの添加の効果を阻害するために、これを上限とする。また、Mg、Caの酸化物を安定に生成するためには0.0005%は必要であり、これを下限とした。   Al: Al is usually added as a deoxidizer, but in the present invention, if added over 0.05%, the effect of adding Mg and Ca is inhibited, so this is made the upper limit. Further, 0.0005% is necessary to stably produce Mg and Ca oxides, and this is set as the lower limit.

Ti:Tiは、脱酸剤として、さらには窒化物形成元素として結晶粒の細粒化に効果を発揮する元素であるが、多量の添加は炭化物の形成による靱性の著しい低下をもたらすために、その上限を0.050%にする必要があるが、所定の効果を得るためには0.003%以上の添加が必要であり、その範囲を0.003〜0.050%とする。   Ti: Ti is an element that exerts an effect on the refinement of crystal grains as a deoxidizer and further as a nitride-forming element. However, a large amount of addition causes a significant decrease in toughness due to the formation of carbides. Although the upper limit needs to be 0.050%, in order to acquire a predetermined effect, addition of 0.003% or more is required, and the range shall be 0.003-0.050%.

Mg:Mgは本発明の主たる合金元素であり、主に脱酸剤あるいは硫化物生成元素として添加されるが、0.01%を超えて添加されると、粗大な酸化物あるいは硫化物が生成し易くなり、母材およびHAZ靱性の低下をもたらす。しかしながら、0.0001%未満の添加では、ピニング粒子として必要な酸化物の生成が十分に期待できなくなるため、その添加範囲を0.0001〜0.01%と限定する。   Mg: Mg is the main alloying element of the present invention, and is mainly added as a deoxidizer or sulfide-forming element, but when added over 0.01%, coarse oxides or sulfides are formed. Resulting in a decrease in the base metal and HAZ toughness. However, if the addition is less than 0.0001%, generation of an oxide necessary as pinning particles cannot be sufficiently expected, so the addition range is limited to 0.0001 to 0.01%.

Ca:Caは硫化物を生成することにより伸長MnSの生成を抑制し、鋼材の板厚方向の特性、特に耐ラメラティアー性を改善する。さらに、CaはMgと同様な効果を有していることから、本発明の重要な元素である。Caは0.0001未満では、十分な効果が得られないので下限値を0.0001%にした。逆に、Caが0.01%を超えるとCaの粗大酸化物個数が増加し、超微細な酸化物あるいは硫化物の個数が低下するため、その上限を0.01%とする。   Ca: Ca suppresses the generation of stretched MnS by generating sulfides, and improves the properties in the thickness direction of the steel material, particularly the lamellar resistance. Furthermore, Ca is an important element of the present invention because it has the same effect as Mg. If Ca is less than 0.0001, a sufficient effect cannot be obtained, so the lower limit was made 0.0001%. On the contrary, when Ca exceeds 0.01%, the number of coarse oxides of Ca increases and the number of ultrafine oxides or sulfides decreases, so the upper limit is made 0.01%.

なお、本発明においては、強度および靱性を改善する元素として、Cu、Ni、Cr、V、Zr、Ta、Bの中で、1種または2種以上の元素を添加することができる。   In the present invention, one or more elements among Cu, Ni, Cr, V, Zr, Ta, and B can be added as elements for improving strength and toughness.

Cu:Cuは、靱性を低下させずに強度の上昇に有効な元素であるが、0.05%未満では効果がなく、1.5%を超えると鋼片加熱時や溶接時に割れを生じやすくする。従って、その含有量を0.05〜1.5%以下とする。   Cu: Cu is an element effective for increasing the strength without reducing toughness, but if it is less than 0.05%, it is not effective, and if it exceeds 1.5%, it tends to cause cracking when heating the steel slab or during welding. To do. Therefore, the content is made 0.05 to 1.5% or less.

Ni:Niは、靱性および強度の改善に有効な元素であり、その効果を得るためには0.05%以上の添加が必要であるが、1.5%を越えて添加するとコスト高になることと、場合によっては溶接性などが低下するために、その上限を1.5%とする。   Ni: Ni is an element effective for improving toughness and strength, and in order to obtain the effect, addition of 0.05% or more is necessary, but if it exceeds 1.5%, the cost increases. In some cases, weldability and the like deteriorate, so the upper limit is made 1.5%.

Cr:Crは析出強化による鋼の強度を向上させるために、0.02%以上の添加が有効であるが、多量に添加すると、焼入性を上昇させ、粒界部においてベイナイト組織を生じさせ、靱性および亜鉛めっき割れを助長する。従って、その上限を1.5%とする。   Cr: Cr is effective to add 0.02% or more to improve the strength of steel by precipitation strengthening, but if added in a large amount, the hardenability is increased and a bainite structure is formed at the grain boundary. Helps toughness and galvanizing cracking. Therefore, the upper limit is made 1.5%.

V:Vは、炭化物、窒化物を形成し強度の向上に効果がある元素であるが、0.01%未満の添加ではその効果がなく、0.1%を超える添加では、逆に靭性の低下を招くために、その範囲を0.01〜0.1%とする。   V: V is an element that forms carbides and nitrides and is effective in improving the strength. However, the addition of less than 0.01% has no effect, and the addition of more than 0.1% conversely exhibits toughness. In order to cause a decrease, the range is made 0.01 to 0.1%.

Zr、Ta:ZrとTaもVと同様に炭化物、窒化物を形成し強度の向上に効果がある元素であるが、0.0001%未満の添加ではその効果がなく、0.05%を超える添加では、逆に靱性の低下を招くために、その範囲を0.0001〜0.05%とする。   Zr, Ta: Zr and Ta are elements that form carbides and nitrides as well as V and are effective in improving the strength, but if added less than 0.0001%, there is no effect, exceeding 0.05% On the other hand, in order to cause a decrease in toughness, the range is made 0.0001 to 0.05%.

B:Bは、固溶し、焼入れ性を向上させ、強度を増す。また、BNとして固溶Nを低下させ、溶接部HAZ靱性を向上させる元素であるが、0.0003%未満ではその効果がなく、0.005%超ではその効果は飽和する。従って、その範囲を0.0003〜0.005%とする。   B: B dissolves, improves the hardenability and increases the strength. Moreover, although it is an element which reduces the solid solution N as BN and improves the welded part HAZ toughness, if it is less than 0.0003%, there is no effect, and if it exceeds 0.005%, the effect is saturated. Therefore, the range is made 0.0003 to 0.005%.

また、本発明においては、シャルピー吸収エネルギーを向上させるためにREMを添加することとしてもよい。   In the present invention, REM may be added to improve Charpy absorbed energy.

REM:MnSを球状化させ、シャルピー吸収エネルギーを向上させる他、圧延によって、延伸化したMnSと水素による内部欠陥を防止する。しかし、含有量が0.0005%未満であると事実上効果がなく、また、0.005%を超えると、REM−S(硫化物)またはREM−O−S(酸化物と硫化物の複合体)が大量に生成して大型介在物となり、鋼材の靱性のみならず清浄度を害し、また溶接性についても悪影響を及ぼす。従って、その範囲を0.0005〜0.005%とする。   In addition to spheroidizing REM: MnS and improving Charpy absorbed energy, internal defects due to MnS and hydrogen stretched by rolling are prevented. However, if the content is less than 0.0005%, there is practically no effect, and if it exceeds 0.005%, REM-S (sulfide) or REM-O-S (complex of oxide and sulfide) Body) is produced in large quantities and becomes a large inclusion, which not only affects the toughness of the steel material but also the cleanliness, and also adversely affects the weldability. Therefore, the range is made 0.0005 to 0.005%.

上記の成分を含有する鋼は、製鋼工程で溶製後、連続鋳造などを経て厚板加熱、圧延、冷却処理が施される。この場合、以下の点を限定した。   The steel containing the above components is subjected to thick plate heating, rolling, and cooling treatment through continuous casting after melting in the steel making process. In this case, the following points were limited.

熱間圧延・制御圧延ともに、鋼片をオーステナイト化するためにAC変態点以上の温度に加熱する必要がある。しかし、1350℃を超えて加熱すると、熱源コストの増大が生じることから、加熱温度は1350℃以下とした。 In both hot rolling and controlled rolling, it is necessary to heat the steel slab to a temperature not lower than the AC 3 transformation point in order to austenite the steel slab. However, if heating exceeds 1350 ° C., the heat source cost increases, so the heating temperature is set to 1350 ° C. or lower.

次いで、熱間圧延・制御圧延ともに、再結晶温度域で圧延することによりオーステナイト粒径を小さくすることが必要である。また、制御圧延を用いて、強度上昇と靭性向上を図る場合には、さらに未再結晶温度域で圧延することによりオーステナイト粒内に変形帯を導入し、フェライト変態核を導入することが有効である。未再結晶域での累積圧下率が40%未満では変形帯が十分に形成されないので、未再結晶域で累積圧下率の下限値を40%とした。しかし、累積圧下率が90%を超えると、母材シャルピー試験の吸収エネルギーの低下が著しくなるために、上限を90%にした。その後の冷却は自然放冷で良い。   Next, in both hot rolling and controlled rolling, it is necessary to reduce the austenite grain size by rolling in the recrystallization temperature range. In addition, when using controlled rolling to increase strength and improve toughness, it is effective to introduce a deformation band into the austenite grains by rolling in the non-recrystallization temperature range and introduce ferrite transformation nuclei. is there. If the cumulative reduction rate in the non-recrystallized region is less than 40%, the deformation band is not sufficiently formed. Therefore, the lower limit value of the cumulative reduction rate in the non-recrystallized region is set to 40%. However, if the cumulative rolling reduction exceeds 90%, the absorbed energy in the base metal Charpy test is significantly reduced, so the upper limit was made 90%. Subsequent cooling may be natural cooling.

自然放冷よりさらに強度を上昇させるためには加速冷却が必要である。しかしながら、冷却速度が1℃/sec未満では、十分な強度を得ることができない。逆に、冷却速度が60℃/sec超ではマルテンサイトやベイナイト主体組織が生成するおそれがあるため母材の靭性が低下する。したがって、冷却速度を1〜60℃/secに限定した。本発明においては、母材の強度と適正なYR(降伏比;2/3以上)を得るために、変態制御が重要であり、変態終了近くまで加速冷却を継続する必要がある。このため、冷却停止温度の上限を650℃とした。650℃超の停止温度では変態が不十分であるために、十分な強度が得られない。通常、加速冷却は水を冷却媒体として用いる。それ故、実際上の冷却停止温度の下限は0℃となるので、下限値を0℃とした。なお、冷却後、以下の焼戻し処理を行う場合には、当該処理を行う温度以下まで冷却すればよい。   Accelerated cooling is required to increase the strength further than natural cooling. However, if the cooling rate is less than 1 ° C./sec, sufficient strength cannot be obtained. On the contrary, when the cooling rate exceeds 60 ° C./sec, martensite and a bainite main structure may be generated, so that the toughness of the base material is lowered. Therefore, the cooling rate was limited to 1-60 ° C./sec. In the present invention, in order to obtain the strength of the base material and an appropriate YR (yield ratio; 2/3 or more), transformation control is important, and accelerated cooling needs to be continued near the end of transformation. For this reason, the upper limit of the cooling stop temperature was set to 650 ° C. Since the transformation is insufficient at a stop temperature of more than 650 ° C., sufficient strength cannot be obtained. Usually, accelerated cooling uses water as a cooling medium. Therefore, since the lower limit of the actual cooling stop temperature is 0 ° C., the lower limit is set to 0 ° C. In addition, what is necessary is just to cool to below the temperature which performs the said process, when performing the following tempering processes after cooling.

加速冷却後の焼戻し熱処理は回復による母材組織の靭性向上を目的としたものであるから、加熱温度は逆変態が生じない温度域であるAC変態点以下でなければならない。回復は転位の消滅・合体により格子欠陥密度を減少させるものであり、これを実現するためには300℃以上に加熱することが必要である。このため、加熱温度の下限を300℃とした。上限は変態点以下であるため、ACを上限とした。 Since the tempering heat treatment after accelerated cooling is intended to improve the toughness of the base metal structure by recovery, the heating temperature must be equal to or lower than the AC 1 transformation point, which is a temperature range in which reverse transformation does not occur. Recovery reduces the lattice defect density by the disappearance and coalescence of dislocations. In order to realize this, heating to 300 ° C. or higher is necessary. For this reason, the minimum of heating temperature was 300 degreeC. Since the upper limit is below the transformation point, AC 1 was taken as the upper limit.

次に、本発明の実施例について述べる。
表1の化学成分を有する鋼片を表2に示す条件にて圧延した。圧延は、普通圧延および制御圧延とし、後者の場合の圧延条件は再結晶域の圧下率を40%とし、未再結晶域の累積圧下率を70%として行った。その後500℃まで冷却速度15℃/secで冷却した。あるいは、圧延後、900℃から焼入れを行った。板厚30mm〜100mmの厚鋼板とした後、母材の機械的特性として、母材の常温強度(母材強度YP(yield point))、靭性(vEo;0℃におけるシャルピー吸収エネルギー)、高温強度(高温強度YP;600℃における降伏応力(0.2%オフセット耐力))を測定した。なお、前記鋼片は、Si、Mn等による脱酸後に、Tiを添加して溶鋼中の酸素量を0.1〜50ppmに調整し、MgやCaを徐々に添加することにより作製した。また、いくつかの鋼片においては、上記冷却後、600℃で焼き戻し処理を行い、厚鋼板とした。
Next, examples of the present invention will be described.
Steel slabs having the chemical components shown in Table 1 were rolled under the conditions shown in Table 2. Rolling was carried out by ordinary rolling and controlled rolling, and the rolling conditions in the latter case were set such that the reduction rate in the recrystallization region was 40% and the cumulative reduction rate in the non-recrystallization region was 70%. Thereafter, it was cooled to 500 ° C. at a cooling rate of 15 ° C./sec. Alternatively, after rolling, quenching was performed from 900 ° C. After forming a steel plate with a thickness of 30 to 100 mm, the mechanical properties of the base material include the normal temperature strength of the base material (base material strength YP (yield point)), toughness (vEo; Charpy absorbed energy at 0 ° C), high temperature strength. (High temperature strength YP; yield stress at 600 ° C. (0.2% offset proof stress)) was measured. The steel slab was prepared by adding Ti and adjusting the oxygen content in the molten steel to 0.1 to 50 ppm after deoxidation with Si, Mn, and the like, and gradually adding Mg and Ca. Further, some steel slabs were tempered at 600 ° C. after the cooling to obtain thick steel plates.

[表1]

Figure 2006241508
[Table 1]
Figure 2006241508

次いで、溶接条件として1.7kJ/mm、800℃から500℃での冷却時間が8sの小入熱溶接に相当する熱サイクルを付与し、亜鉛めっき割れ特性を比較検討した。この特性の評価は鉄塔用鋼や橋梁用鋼などで広く用いられている小型のNBT試験により行ない、SLM,400[%]の値で比較し、この値が60%以上を良好とした。SLM,400[%]は溶融亜鉛中での切欠破断応力の値を亜鉛が無いときの切欠破断応力の値で除したものであり、400は破断時間として400sを基準とした場合である。また、溶接部HAZ組織を光学顕微鏡により観察した。   Next, a heat cycle corresponding to small heat input welding with a welding time of 1.7 kJ / mm and a cooling time of 8 seconds from 800 ° C. to 500 ° C. was applied, and the galvanizing crack characteristics were compared and examined. This characteristic was evaluated by a small NBT test widely used for steel for steel towers, steel for bridges, etc., and compared with a value of SLM, 400 [%]. SLM, 400 [%] is obtained by dividing the value of notch rupture stress in molten zinc by the value of notch rupture stress in the absence of zinc, and 400 is a case in which 400 s is used as a rupture time. Also, the weld zone HAZ structure was observed with an optical microscope.

[表2]

Figure 2006241508
[Table 2]
Figure 2006241508

まず、鋼A〜Jは本発明の例を示したものである。表2に示すように、本発明の鋼板は化学成分と製造条件の各要件を満足しており、HT490MPa級鋼として母材強度・靭性には全く問題はない。また、耐火鋼の重要な特性である高温強度も常温強度の2/3以上を満足しており、極めて良好である。一方、亜鉛めっき割れ特性についても全ての発明鋼鈑でSLM,400の値が60%〜90%となっており、耐亜鉛めっき割れ性に優れていることがわかる。さらに、光学顕微鏡による観察の結果、本発明の鋼板全ての溶接部HAZ組織には、粒径が200μm以下の旧オーステナイトしか存在しないことが明らかになった。また、粒界部においては、粒界フェライトが生成されているのが確認できた。   First, steels A to J show examples of the present invention. As shown in Table 2, the steel sheet of the present invention satisfies the requirements of chemical components and production conditions, and there is no problem in the base material strength and toughness as HT490 MPa class steel. Moreover, the high temperature strength, which is an important characteristic of refractory steel, also satisfies 2/3 or more of the normal temperature strength, which is extremely good. On the other hand, regarding the galvanizing cracking characteristics, the values of SLM, 400 are 60% to 90% in all the steel sheets of the invention, indicating that the galvanizing cracking resistance is excellent. Furthermore, as a result of observation with an optical microscope, it has been clarified that only the prior austenite having a grain size of 200 μm or less is present in the weld zone HAZ structure of all the steel plates of the present invention. Moreover, it has confirmed that the grain boundary ferrite was produced | generated in the grain boundary part.

それに対し、鋼K〜Sは本発明方法から逸脱した比較例である。すなわち、鋼K〜Rは基本成分あるいは選択元素の内いずれかの元素が、発明の要件を満足していない添加量となっている例であり、母材靭性あるいは高温強度の値が規格外となっている。特に、本発明の重要な論点である亜鉛めっき割れ特性に関しては、free[Mg]が十分に確保されていないことからほとんどの鋼材においてSLM,400の値が60%以下となっており、耐亜鉛めっき割れ性の劣化を確認することができる。順に特性を見ると、まず鋼K、M、N、P〜Rでは合金元素が過多に添加されている事によって母材靭性が低くなっている。また、鋼Mと鋼OではMn、Mo量が低いために、耐火鋼の特性として不可欠な高温強度が十分に得られていない。さらに、鋼N、鋼Q、鋼Rを除いて全てSLM,400の値が60%以下となっている。特に、鋼Sは成分的には本発明の用件を満足しているものの、free[Mg]が3ppmであることに対応してSLM,400が低値を示していることから、free[Mg]の影響が大きいことが理解できる。また、光学顕微鏡による観察の結果、free[Mg]が5ppm未満の場合には、粒界フェライトが生成しないことも明らかになった。

On the other hand, steels K to S are comparative examples deviating from the method of the present invention. That is, steels K to R are examples in which any of the basic components or selected elements is in an added amount that does not satisfy the requirements of the invention, and the base material toughness or high temperature strength value is out of specification. It has become. In particular, regarding the galvanizing cracking characteristics, which is an important issue of the present invention, SLM, 400 is 60% or less in most steel materials because free [Mg] is not sufficiently secured. Deterioration of plating cracking property can be confirmed. Looking at the characteristics in order, first, steel K, M, N, and P to R have low base metal toughness due to excessive addition of alloying elements. Moreover, since the amount of Mn and Mo is low in steel M and steel O, high temperature strength indispensable as a characteristic of refractory steel is not sufficiently obtained. Furthermore, except for steel N, steel Q, and steel R, the value of SLM, 400 is 60% or less. In particular, although steel S satisfies the requirements of the present invention in terms of composition, SLM, 400 shows a low value corresponding to the free [Mg] being 3 ppm. ] Can be understood. Further, as a result of observation with an optical microscope, it was found that when free [Mg] is less than 5 ppm, no grain boundary ferrite is generated.

Claims (7)

重量%で、
C :0.01〜0.15%
Si:0.02〜0.5%
Mn:0.3〜2%
P :0.03%以下
S :0.0005〜0.03%
Nb:0.001〜0.2%
Mo:0.02〜0.6%未満
Al:0.0005〜0.05%
Ti:0.003〜0.05%
Mg:0.0001〜0.01%
Ca:0.0001〜0.01%
を含み、さらに
free[Mg]=Total[Mg]− 全酸化物中の含有[Mg]≧5ppm
なる関係を満足し、残部が鉄および不可避的不純物からなり、溶接部HAZ組織の旧オーステナイト粒径が200μm以下でかつ粒界部に粒界フェライトを有することを特徴とする耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼。
% By weight
C: 0.01 to 0.15%
Si: 0.02-0.5%
Mn: 0.3-2%
P: 0.03% or less S: 0.0005-0.03%
Nb: 0.001 to 0.2%
Mo: 0.02 to less than 0.6% Al: 0.0005 to 0.05%
Ti: 0.003-0.05%
Mg: 0.0001 to 0.01%
Ca: 0.0001 to 0.01%
Free [Mg] = Total [Mg]-content in the total oxide [Mg] ≧ 5 ppm
The galvanizing crack resistance is characterized in that the balance consists of iron and inevitable impurities, the prior austenite grain size of the weld zone HAZ structure is 200 μm or less, and has grain boundary ferrite at the grain boundary part. Excellent HT490MPa class refractory steel for welded structures.
重量%で、さらに、
Cu:0.05〜1.5%
Ni:0.05〜1.5%
Cr:0.02〜1.5%
V:0.01〜0.1%
Zr:0.0001〜0.05%
Ta:0.0001〜0.05%
B :0.0003〜0.005%
のうち1種または2種以上を含有することを特徴とする請求項1に記載の溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼。
In weight percent,
Cu: 0.05 to 1.5%
Ni: 0.05 to 1.5%
Cr: 0.02 to 1.5%
V: 0.01 to 0.1%
Zr: 0.0001 to 0.05%
Ta: 0.0001 to 0.05%
B: 0.0003 to 0.005%
The HT490 MPa class refractory steel for welded structures excellent in galvanizing cracking resistance of the welded portion according to claim 1, comprising one or more of them.
重量%で、さらに、
REM:0.0005〜0.005%
を含有することを特徴とする請求項1あるいは請求項2に記載の溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼。
In weight percent,
REM: 0.0005 to 0.005%
The HT490 MPa class refractory steel for welded structures having excellent galvanizing cracking resistance of the welded portion according to claim 1, comprising:
請求項1〜請求項3記載の鋼と同一成分を有する鋼片をAC点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延した後、自然放冷することを特徴とする溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造方法。 A steel slab having the same composition as that of the steel according to any one of claims 1 to 3 is heated to 3 AC or more and 1350 ° C. or less, then hot-rolled in a recrystallization temperature range, and then naturally cooled. The manufacturing method of the HT490MPa class refractory steel for welded structures excellent in the galvanization cracking resistance of a welding part. 請求項1〜請求項3記載の鋼と同一成分を有する鋼片をAC点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、自然放冷することを特徴とする溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造方法。 A steel slab having the same composition as that of the steel according to claims 1 to 3 is heated to 3 AC or more and 1350 ° C. or less, then hot-rolled in a recrystallization temperature range, and further, a cumulative reduction rate in an unrecrystallization temperature range. A method for producing a HT490 MPa class refractory steel for welded structures excellent in galvanizing cracking resistance of a welded portion, characterized by being naturally cooled after hot rolling at 40 to 90%. 請求項1〜請求項3記載の鋼と同一成分を有する鋼片をAC点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で0〜650℃まで冷却することを特徴とする溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造方法。 A steel slab having the same composition as that of the steel according to claims 1 to 3 is heated to 3 AC or more and 1350 ° C. or less, then hot-rolled in a recrystallization temperature range, and further, a cumulative reduction rate in an unrecrystallization temperature range. HT490 MPa class welded structure excellent in galvanizing cracking resistance of the welded portion, characterized by cooling to 0 to 650 ° C. at a cooling rate of 1 to 60 ° C./sec after hot rolling at 40 to 90% Of manufacturing refractory steel. 請求項1〜請求項3記載の鋼と同一成分を有する鋼片をAC点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で0〜650℃まで冷却し、引き続いて300℃〜AC点で焼戻し熱処理することを特徴とする溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼の製造方法。

A steel slab having the same composition as that of the steel according to claims 1 to 3 is heated to 3 AC or more and 1350 ° C. or less, then hot-rolled in a recrystallization temperature range, and further, a cumulative reduction rate in an unrecrystallization temperature range. 40% to 90% hot rolling at a cooling rate of 1 to 60 [deg.] C./sec to 0 to 650 [deg.] C., followed by tempering at 300 [deg.] C. to AC 1 point. HT490MPa class fireproof steel for welded structure with excellent galvanizing cracking resistance.

JP2005057854A 2005-03-02 2005-03-02 HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD Withdrawn JP2006241508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057854A JP2006241508A (en) 2005-03-02 2005-03-02 HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057854A JP2006241508A (en) 2005-03-02 2005-03-02 HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD

Publications (1)

Publication Number Publication Date
JP2006241508A true JP2006241508A (en) 2006-09-14

Family

ID=37048206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057854A Withdrawn JP2006241508A (en) 2005-03-02 2005-03-02 HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD

Country Status (1)

Country Link
JP (1) JP2006241508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038172A (en) * 2009-08-17 2011-02-24 Nippon Steel Corp STEEL FOR HIGH YIELD POINT 490 MPa CLASS WELDED STRUCTURE HAVING EXCELLENT SOUND ANISOTROPY, AND METHOD FOR PRODUCING THE SAME
CN102534383A (en) * 2012-03-01 2012-07-04 首钢总公司 High-tenacity steel plate for ocean engineering and manufacturing method thereof
WO2022267148A1 (en) * 2021-06-23 2022-12-29 南京钢铁股份有限公司 390 mpa-grade full-position gas-shielded welding wire for secondary fire-resistant building and fabrication method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038172A (en) * 2009-08-17 2011-02-24 Nippon Steel Corp STEEL FOR HIGH YIELD POINT 490 MPa CLASS WELDED STRUCTURE HAVING EXCELLENT SOUND ANISOTROPY, AND METHOD FOR PRODUCING THE SAME
CN102534383A (en) * 2012-03-01 2012-07-04 首钢总公司 High-tenacity steel plate for ocean engineering and manufacturing method thereof
CN102534383B (en) * 2012-03-01 2013-11-27 首钢总公司 High-tenacity steel plate for oceengineering and manufacturing method thereof
WO2022267148A1 (en) * 2021-06-23 2022-12-29 南京钢铁股份有限公司 390 mpa-grade full-position gas-shielded welding wire for secondary fire-resistant building and fabrication method

Similar Documents

Publication Publication Date Title
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP2016084524A (en) H shape steel for low temperature and manufacturing method therefor
WO2014175122A1 (en) H-shaped steel and method for producing same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
TWI526545B (en) Steel material for welding
JP5432548B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP5432565B2 (en) Thick steel plate with excellent brittle crack propagation stopping properties and fatigue crack growth inhibition properties
JPWO2013088715A1 (en) Steel material for large heat input welding
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2005015859A (en) High-strength steel sheet having excellent weldability, method for manufacturing the same, and welded steel structure
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
JP5245202B2 (en) High strength welded structural steel with excellent high heat input weld HAZ toughness and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513