JP4959402B2 - High strength welded structural steel with excellent surface cracking resistance and its manufacturing method - Google Patents

High strength welded structural steel with excellent surface cracking resistance and its manufacturing method Download PDF

Info

Publication number
JP4959402B2
JP4959402B2 JP2007089751A JP2007089751A JP4959402B2 JP 4959402 B2 JP4959402 B2 JP 4959402B2 JP 2007089751 A JP2007089751 A JP 2007089751A JP 2007089751 A JP2007089751 A JP 2007089751A JP 4959402 B2 JP4959402 B2 JP 4959402B2
Authority
JP
Japan
Prior art keywords
steel
welded structural
slab
strength welded
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007089751A
Other languages
Japanese (ja)
Other versions
JP2008248293A (en
Inventor
龍治 植森
義之 渡部
亘 山田
嘉秀 長井
明人 清瀬
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007089751A priority Critical patent/JP4959402B2/en
Publication of JP2008248293A publication Critical patent/JP2008248293A/en
Application granted granted Critical
Publication of JP4959402B2 publication Critical patent/JP4959402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、造船、海洋構造物、橋梁、建築、建設機械、タンク、ラインパイプなどの溶接構造物として広く利用可能な、耐表面割れ特性に優れた溶接構造物用鋼およびその製造方法に関するものである。   The present invention relates to a steel for welded structures having excellent surface cracking resistance and a method for producing the same, which can be widely used as welded structures such as shipbuilding, offshore structures, bridges, buildings, construction machines, tanks, and line pipes. It is.

周知のように、造船、海洋構造物、橋梁、建築など溶接構造物の高強度化、高靭性化を因る観点から、Cuはしばしば有効な添加元素として重用されてきた。通常、Cu添加した厚鋼板では、連続鋳造段階でのスラブ表面割れや圧延段階での鋼板表面部の割れが生じることがあり、その対策として、圧延前段階でのスラブ表面の手入れや高価な元素であるNiの添加などが行なわれる。しかしながら、これらの方法では、生産性の低下やコストアップなどの問題を新たに生むことになり、実用的な観点からさらなる改善策が求められている。   As is well known, Cu has often been used as an effective additive element from the viewpoint of increasing the strength and toughness of welded structures such as shipbuilding, offshore structures, bridges, and buildings. Usually, Cu-added thick steel sheets may cause cracks in the slab surface in the continuous casting stage and cracks in the steel plate surface part in the rolling stage. Ni is added. However, these methods cause new problems such as a decrease in productivity and an increase in cost, and further improvement measures are required from a practical viewpoint.

Cuによる表面割れの原因は必ずしも十分に解明されている訳ではないが、スラブ表面あるいは鋼板表面におけるスケール生成時にスケール/鋼板界面にCuの濃縮部が形成され、融点の低いCuが鋼板表面の結晶粒界に沿って鋼板内部に融液状態で浸入することによる粒界脆化とするのが定説とたっている。この原因から分かるように、Cu割れの抑制技術として、溶融Cuの粒界浸人量を小さく抑えることが有効であることが容易に想定される。粒界浸人量を抑制する技術として、スラブ段階での表面部の細粒化(粒界面積の増大によるCu浸入量の低減)が考えられる。従来、このような観点から、鋼板表面部の細粒化に着眼した厚鋼板の製造技術はほとんど知られていない。また、Cu融液の粒界拡散を抑制するような効力を有する元素の活用なども考えられる。   The cause of surface cracking due to Cu is not necessarily fully elucidated, but when a scale is formed on the slab surface or the steel plate surface, a concentrated portion of Cu is formed at the scale / steel plate interface, and Cu having a low melting point is crystallized on the surface of the steel plate. The established theory is that grain boundary embrittlement is caused by intrusion into the steel sheet in a molten state along the grain boundary. As can be seen from this cause, it is easily assumed that it is effective to reduce the amount of intergranular immersion of molten Cu as a Cu crack suppression technique. As a technique for suppressing the amount of intergranular infiltration, it is conceivable to make the surface portion finer in the slab stage (reduction of the amount of Cu intrusion due to an increase in the grain boundary area). Conventionally, from such a point of view, there are few known techniques for manufacturing thick steel plates focusing on the refinement of the steel plate surface. Moreover, utilization of the element which has the effect which suppresses the grain boundary diffusion of Cu melt is also considered.

細粒化技術に関しては、例えば、母材靭性を確保する技術として、最終のフェライト粒径を小さくする技術がこれまで開発されてきており、必要靭性レベルにより普通圧延法、制御圧延法、さらには制御圧延+加速冷却法などが利用されてきた。その基本はAlNやTiNなどの高温で安定な窒化物をピニング粒子として用いて、母材の加熱オーステナイト(γ)粒径を微細化した上で、さらに圧延によりオーステナイト中にフェライトの核生成サイトを多数導入し、最終フェライト粒径を微細にするというものである。   With regard to the fine graining technology, for example, as a technology for ensuring the toughness of the base metal, a technology for reducing the final ferrite grain size has been developed so far, depending on the required toughness level, a normal rolling method, a controlled rolling method, and further Controlled rolling + accelerated cooling methods have been used. The basics are that high-temperature stable nitrides such as AlN and TiN are used as pinning particles, the heated austenite (γ) grain size of the base material is refined, and further, the ferrite nucleation sites are formed in the austenite by rolling. A large number of them are introduced to make the final ferrite grain size fine.

しかしながら、このような母材製造において用いた技術は、あくまでも熱間圧延後の細粒化であり、今問題としているスラブ段階での細粒化には大きな効力は発揮しない。また、再加熱段階でも窒化物の種類により加熱温度を変える必要が生じたり、十分な微細化が達成できないこともしばしば起こる。すなわち、これらの窒化物ではスラブ段階での細粒化の実現は難しく、数1000μm(数mm)オーダーの粒径となる。   However, the technique used in the production of such a base material is just fine graining after hot rolling, and does not exert a great effect on fine graining at the slab stage, which is currently a problem. In addition, it is often necessary to change the heating temperature depending on the type of nitride even in the reheating stage, or sufficient miniaturization cannot be achieved. That is, with these nitrides, it is difficult to achieve fine graining at the slab stage, and the grain size is on the order of several thousand μm (several mm).

これに対して、近年、超大人熱溶接時の加熱γの細粒化方法として多用されつつある、例えば、超大入熱溶接においても溶接部HAZ組織を均質に微細化させ、溶接部HAZ靭性に優れた高強度溶接構造用鋼として、質量%で、C:0.01〜0.20%、Si:0.02〜0.50%、Mn:0.3〜2.0%、P:≦0.03%、S:0.0001〜0.030%、Al:0.0005〜0.050%、Ti:0.003〜0.050%、Mg:0.0001〜0.005%、Ca:0.0001〜0.005%を含み、残部が鉄および不可避的不純物からなり、さらに、Cr:0.005〜0.30%、Nb:0.001〜0.20%、Mo:0.005〜0.30%のうち1種以上を含有することを特徴とする高強度溶接構造用高靭性鋼(例えば、特許文献1参照)や、REMを含有する酸化物の分散を制御して、母材靭性および溶接部HAZ靭性の両方を向上させる高強度溶接構造用鋼として、質量%で、C:0.01〜0.2%、Si:0.02〜0.5%、Mn:0.3〜2%、P:0.03%以下、S:0.0001〜0.03%、Al:0.0005〜0.05%、Ti:0.003〜0.05%を含有し、さらに、Mg:0.0001〜0.01%、Ca:0.0001〜0.01%、REM:0.0001〜0.05%のうち1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、かつ、Mg、Ca、REMの1種または2種以上と、O、Sの一方もしくは両方を含み、粒子径0.005〜0.5μmである粒子が、1mm当たり10000個以上分散していることを特徴とする母材靭性と溶接部HAZ靭性に優れた高強度溶接構造用鋼(例えば、特許文献2参照)が提案されている。 On the other hand, in recent years, it has been widely used as a method for refining the heating γ during super adult heat welding. As an excellent high-strength welded structural steel, in mass%, C: 0.01 to 0.20%, Si: 0.02 to 0.50%, Mn: 0.3 to 2.0%, P: ≦ 0.03%, S: 0.0001 to 0.030%, Al: 0.0005 to 0.050%, Ti: 0.003 to 0.050%, Mg: 0.0001 to 0.005%, Ca : 0.0001 to 0.005%, the balance being iron and inevitable impurities, Cr: 0.005 to 0.30%, Nb: 0.001 to 0.20%, Mo: 0.00. High toughness for high-strength welded structures characterized by containing one or more of 005 to 0.30% Steel (for example, refer to Patent Document 1) and high strength welded structural steel that improves dispersion of both base metal toughness and welded portion HAZ toughness by controlling dispersion of oxide containing REM, in mass%, C : 0.01-0.2%, Si: 0.02-0.5%, Mn: 0.3-2%, P: 0.03% or less, S: 0.0001-0.03%, Al : 0.0005 to 0.05%, Ti: 0.003 to 0.05%, Mg: 0.0001 to 0.01%, Ca: 0.0001 to 0.01%, REM: 1 type or 2 types or more out of 0.0001-0.05%, the balance consists of iron and inevitable impurities, and 1 type or 2 types or more of Mg, Ca, REM, and O, S One or both of the particles having a particle diameter of 0.005 to 0.5 μm is 1000 per 1 mm 2. There has been proposed a high-strength welded structural steel (see, for example, Patent Document 2) excellent in base metal toughness and welded portion HAZ toughness characterized by being dispersed by zero or more.

これらの提案されている技術は、スラブ段階での細粒化に係わるものではない。スラブ段階での細粒化としては、高温でも溶解しにくい酸化物や硫化物の利用が考えられ、例えば、酸化物の導入方法として、複合脱酸法などさまざまな工夫がなされているが、従来知られている方法では、スラブ段階での鋼板表面部を1200μm以下程度に微細化する技術は現時点では確立できていない。   These proposed techniques are not related to fine graining at the slab stage. As the fine graining at the slab stage, the use of oxides and sulfides that are difficult to dissolve even at high temperatures is conceivable. For example, various methods such as a composite deoxidation method have been used for introducing oxides, In a known method, a technique for refining the steel plate surface portion at the slab stage to about 1200 μm or less has not been established at present.

特開2006−28627号公報JP 2006-28627 A 特開2003−49237号公報JP 2003-49237 A

本発明は、酸化物粒子(あるいは硫化物粒子)の微細分散によるスラブ段階での結晶粒の微細化技術による耐表面割れ特性に優れた高強度溶接構造用鋼およびその製造方法の提供を課題とした。   It is an object of the present invention to provide a high-strength welded structural steel excellent in surface cracking resistance by a crystal grain refinement technique at a slab stage by fine dispersion of oxide particles (or sulfide particles) and a method for producing the same. did.

本発明者らは、REMの強脱酸剤あるいは強力な硫化物生成能に着目するとともに、従来広く用いられてきたTiNとの組合せによって、スラブ段階での結晶粒の微細化が達成でき、それによって耐表面割れ特性に優れた高強度溶接構造用鋼が得られることを見出し、本発明を完成した。   The present inventors pay attention to the strong deoxidizer of REM or the strong sulfide generating ability, and by combining with TiN that has been widely used in the past, the refinement of crystal grains at the slab stage can be achieved. Has found that a high-strength welded structural steel having excellent surface cracking resistance can be obtained, thereby completing the present invention.

本発明の要旨は、以下の通りである。   The gist of the present invention is as follows.

(1) 質量%で、
C:0.01〜0.20%、
Si:0.02〜0.50%、
Mn:0.3〜2.5%、
P:≦0.03%、
S:0.0015〜0.03%、
Cu:0.01〜1.0%、
Nb:0.005〜0.05%、
Al:0.001〜0.05%、
Ti:0.005〜0.05%、
N:0.001〜0.01%、
REM:0.0005〜0.01%、
Ca:0.0001〜0.003%、
を含み、残部が鉄および不可避的不純物からなることを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼。
(1) In mass%,
C: 0.01-0.20%
Si: 0.02 to 0.50%,
Mn: 0.3 to 2.5%
P: ≦ 0.03%,
S: 0.0015 to 0.03%,
Cu: 0.01 to 1.0%,
Nb: 0.005 to 0.05%,
Al: 0.001 to 0.05%,
Ti: 0.005 to 0.05%,
N: 0.001 to 0.01%,
REM: 0.0005 to 0.01%,
Ca: 0.0001 to 0.003%,
A high-strength welded structural steel with excellent surface cracking resistance, characterized in that the balance is made of iron and inevitable impurities.

(2) 更に、質量%で、
Ni:0.01〜1.0%、
Cr:0.01〜0.5%、
Mo:0.01〜0.5%、
V:0.01〜0.5%、
Zr:0.005〜0.05%、
Ta:0.005〜0.05%、
うち1種または2種以上を含有することを特徴とする前記(1)記載の耐表面割れ特性に優れた高強度溶接構造用鋼。
(2) Furthermore, in mass%,
Ni: 0.01 to 1.0%,
Cr: 0.01 to 0.5%
Mo: 0.01 to 0.5%,
V: 0.01-0.5%
Zr: 0.005 to 0.05%,
Ta: 0.005 to 0.05 %,
1 type or 2 types or more of these, The steel for high-strength welded structures excellent in the surface crack-proof characteristic of the said (1) description characterized by the above-mentioned.

(3) スラブの表層γ粒径が1200μm以下であることを特徴とする前記(1)または(2)記載の耐表面割れ特性に優れた高強度溶接構造用鋼。   (3) The high strength welded structural steel having excellent surface cracking resistance as described in (1) or (2) above, wherein the surface layer γ grain size of the slab is 1200 μm or less.

(4) 前記(1)または(2)記載の鋼と同一成分を有する鋼片をAC3点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延した後、自然放冷することを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼の製造方法。   (4) After heating the steel slab having the same component as the steel described in (1) or (2) above to AC3 point or higher and 1350 ° C or lower, hot rolling in the recrystallization temperature range, and then naturally cooling. A method for producing high strength welded structural steel with excellent surface cracking resistance.

(5) 前記(1)または(2)記載の鋼と同一成分を有する鋼片をAC3点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、自然放冷することを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼の製造方法。   (5) A steel slab having the same composition as the steel described in (1) or (2) is heated to AC3 or higher and 1350 ° C or lower, and then hot-rolled in a recrystallization temperature range, and further in an unrecrystallization temperature range. A method for producing high strength welded structural steel having excellent surface cracking resistance, characterized by subjecting to natural rolling cooling after hot rolling at a cumulative rolling reduction of 40 to 90%.

(6) 前記(1)または(2)記載の鋼と同一成分を有する鋼片をAC3点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で0〜600℃まで冷却することを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼の製造方法。   (6) A steel slab having the same component as the steel described in (1) or (2) above is heated to AC3 or higher and 1350 ° C or lower, hot-rolled in a recrystallization temperature range, and further in an unrecrystallization temperature range. For high-strength welded structures with excellent surface cracking resistance, characterized by hot rolling at a cumulative rolling reduction of 40 to 90% and then cooling to 0 to 600 ° C. at a cooling rate of 1 to 60 ° C./sec. Steel manufacturing method.

(7) 前記(1)または(2)記載の鋼と同一成分を有する鋼片をAC3点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で0〜600℃まで冷却し、引き続いて300℃〜AC1点に加熱して焼戻し熱処理することを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼の製造方法。

(7) A steel slab having the same composition as the steel described in (1) or (2) is heated to AC3 or higher and 1350 ° C or lower, and then hot-rolled in a recrystallization temperature range, and further in an unrecrystallization temperature range. After hot rolling with a cumulative rolling reduction of 40 to 90%, cooling to 0 to 600 ° C. at a cooling rate of 1 to 60 ° C./sec, followed by heating to 300 ° C. to AC 1 point for tempering heat treatment. A method for producing high strength welded structural steel with excellent surface cracking resistance.

本発明の化学成分および製造方法に限定し、REM量、Ca量、Ti量、N量をそれぞれ適切に添加することで、スラブ段階でのγ粒径を微細化することができ、これによりCuに起因した表面割れ特性を飛躍的に向上させることができ、従来にない耐表面割れ特性に優れた高強度溶接構造用鋼の製造が可能となる。その結果、造船、海洋構造物、橋梁、建築、建設機械、タンク、ラインパイプなどの鋼構造物に利用可能なCu含有鋼の生産量が大幅に向上し、しかもNi等の高価な元素を添加することなく製造できることになり、産業上の効果は著しく大きい。   By limiting to the chemical components and the production method of the present invention and adding REM amount, Ca amount, Ti amount, and N amount appropriately, the γ particle size at the slab stage can be refined, thereby making Cu It is possible to dramatically improve the surface cracking characteristics resulting from the above, and it becomes possible to produce a high strength welded structural steel with excellent surface cracking resistance that has never been obtained. As a result, the production amount of Cu-containing steel that can be used for steel structures such as shipbuilding, offshore structures, bridges, buildings, construction machinery, tanks, and line pipes is greatly improved, and expensive elements such as Ni are added. Therefore, the industrial effect is remarkably great.

REMは、従来から強脱酸剤、脱硫剤として鋼の清浄度を高めることで、溶接熱影響部(HAZ)の靭性を向上させることが知られている。また、REMを含有する酸化物の分散を制御して、母材靭性および溶接部HAZ靭性の両方を向上させる技術として用いた例が特許文献2に記載されている。   REM is known to improve the toughness of the weld heat affected zone (HAZ) by increasing the cleanliness of steel as a strong deoxidizer and desulfurizer. Patent Document 2 describes an example in which the dispersion of an oxide containing REM is controlled to improve both the base material toughness and the welded portion HAZ toughness.

本発明者らは、そのようなREMの強脱酸剤あるいは強力な硫化物生成能に着目するとともに、従来広く用いられてきたTiNとの組合せによって、スラブ段階での結晶粒の微細化に活用できる余地があると考えた。   The present inventors pay attention to such a strong deoxidizer of REM or a strong sulfide generating ability, and use it for refining crystal grains at the slab stage by combining with TiN which has been widely used conventionally. I thought there was room for it.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、REMを添加した場合のスラブ段階での結晶粒の微細化の状況を系統的に調べた。その結果、Si、Mnによる脱酸後に、TiおよびAlを添加した溶鋼中に、まずCaを添加し、さらにREMを添加した場合に、REMの酸化物あるいは硫化物(REM(O、S))が極めて微細に、かつ高密度に生成されることを見出した。その粒子径は0.003〜0.3μm、粒子数は鋼中に1mm当たり5000個以上であり、これらの存在はスラブ段階でも強力なピニング力を有していることが確認された。特に、TiNと併用した場合に、REM無添加鋼と比較してTiNが著しく微細分散していることも明らかになった。その結果、REM酸化物(あるいは硫化物)の存在によって、スラブ段階のγ粒径が最大でも1200μmであることが判明した。 The present inventors systematically examined the state of crystal grain refinement at the slab stage when REM was added. As a result, after deoxidation with Si and Mn, in the molten steel to which Ti and Al are added, when Ca is first added and REM is further added, REM oxide or sulfide (REM (O, S)) Has been found to be produced very finely and with high density. The particle diameter was 0.003 to 0.3 μm, and the number of particles was 5000 or more per 1 mm 2 in steel, and it was confirmed that these existences have a strong pinning force even in the slab stage. In particular, it was also found that TiN was remarkably finely dispersed when used in combination with TiN compared to REM-free steel. As a result, it has been found that due to the presence of REM oxide (or sulfide), the γ particle size at the slab stage is 1200 μm at the maximum.

本発明は以上のようなスラブ段階でのγ粒の微細化によって達成される耐表面割れ特性に優れた鋼材に関するものであり、γ粒径の微細化によってγ粒界でのCu融液浸入量を極力抑えた画期的な技術である。すなわち、本発明の特徴は、REM添加によるスラブ表面微細化技術を通して、耐表面割れ特性に優れた高強度溶接構造用鋼を提供できる点にある。   The present invention relates to a steel material having excellent surface cracking resistance achieved by refining γ grains at the slab stage as described above, and the amount of Cu melt intrusion at the γ grain boundary by refining the γ grain size. Is an epoch-making technology that suppresses as much as possible. That is, a feature of the present invention is that a high-strength welded structural steel having excellent surface cracking resistance can be provided through a slab surface refinement technique by adding REM.

本発明におけるREMの添加方法であるが、既に述べたように、最初に、Si、Mnを添加後、まず、TiとA1を添加した後に、さらにCaを添加する。次いで、REMを添加する。このとき、CaはREM添加前のフリー酸素の量を低減させる効果を有し、REM(O、S)の微細化に寄与する。最適なREMの添加量は0.0005〜0.01%であり、Ti添加後の溶存酸素量などにも依存する。実験データによれば、最小の0.0005%は微細なREM酸化物(あるいはREM硫化物)ができる最小の量であり、0.01%を超えると粗大なREM酸化物ができるようになり、HAZ靭性が低下するなど悪影響が大きくなることからこれを限度とした。なお、REMは粗大酸化物として消費されやすいことから、スラグ中のFeOが10%以下であることが望ましい。また、REM添加持の製品中の酸素量(T.O)は、10〜50ppm程度が適量である。   Although it is the addition method of REM in this invention, as already stated, after adding Si and Mn first, after adding Ti and A1, first, it adds Ca further. REM is then added. At this time, Ca has an effect of reducing the amount of free oxygen before the addition of REM, and contributes to miniaturization of REM (O, S). The optimum addition amount of REM is 0.0005 to 0.01%, and depends on the dissolved oxygen amount after addition of Ti. According to the experimental data, the minimum 0.0005% is the minimum amount of fine REM oxide (or REM sulfide), and if it exceeds 0.01%, coarse REM oxide can be formed. This was limited because the adverse effects such as reduction of HAZ toughness increased. Since REM is easily consumed as a coarse oxide, it is desirable that FeO in the slag is 10% or less. In addition, an appropriate amount of oxygen (TO) in the REM-added product is about 10 to 50 ppm.

以下、本発明の成分の限定理由について述べる。   Hereinafter, the reasons for limiting the components of the present invention will be described.

C:Cは鋼における母材強度を向上させる基本的な元素として欠かせない元素であり、その有効な下限として0.01%以上の添加が必要であるが、0.20%を超える過剰の添加では、鋼材の溶接性や靭性の低下を招くので、その上限を0.20%とした。   C: C is an element indispensable as a basic element for improving the strength of the base metal in steel, and as an effective lower limit, addition of 0.01% or more is necessary, but an excess exceeding 0.20% Addition causes a decrease in the weldability and toughness of the steel material, so the upper limit was made 0.20%.

Si:Siは製鋼上脱酸元素として必要な元素であり、鋼中に0.02%以上の添加が必要であるが、0.5%を超えるとHAZ靭性を低下させるのでそれを上限とする。   Si: Si is an element necessary as a deoxidizing element in steelmaking, and 0.02% or more is necessary to be added to the steel. However, if it exceeds 0.5%, the HAZ toughness is lowered, so that is the upper limit. .

Mn:Mnは、母材の強度および靭性の確保に必要な元素であるが、2.5%を超えるとHAZ靭性を著しく阻害するが、逆に0.3%未満では、母材の強度確保が困難になるために、その範囲を0.3〜2.5%とする。なお、CaとREMを複合添加する本発明では結晶粒の微細化が著しいため、HAZ靭性への悪影響は小さく、2.5%まで添加することが可能である。   Mn: Mn is an element necessary for ensuring the strength and toughness of the base material. However, if it exceeds 2.5%, it significantly inhibits the HAZ toughness. Conversely, if it is less than 0.3%, the strength of the base material is secured. Therefore, the range is made 0.3 to 2.5%. In the present invention in which Ca and REM are added in combination, the crystal grains are remarkably refined, so the adverse effect on the HAZ toughness is small, and it is possible to add up to 2.5%.

P:Pは不純物として鋼中に含有され、鋼の靭性に影響を与える元素であり、0.03%を超えて含有すると鋼材の母材だけでなくHAZの脆性を著しく阻害するのでその含有される上限を0.03%とした。   P: P is contained as an impurity in steel and is an element that affects the toughness of steel. If it exceeds 0.03%, it is contained because it significantly inhibits the brittleness of HAZ as well as the base material of steel. The upper limit is set to 0.03%.

S:Sは0.030%を超えて過剰に添加されると粗大な硫化物の生成の原因となり、靭性を阻害するが、その含有量が0.001%未満になると、γ粒の細粒化や粒内フェライトの生成に有効なREM(O、S)やMnS等の硫化物生成量が著しく低下する。Sは実施例に示すSの下限0.0015%を下限とし、0.0015〜0.030%をその範囲とする。
S: When S is added in excess of 0.030%, coarse sulfides are generated and toughness is inhibited. However, when the content is less than 0.001%, fine γ grains The amount of sulfides such as REM (O, S) and MnS, which are effective for crystallization and the formation of intragranular ferrite, is significantly reduced . S has a lower limit of 0.0015% of S shown in the Examples as a lower limit, and a range of 0.0015 to 0.030%.

Cu:Cuは、脆性を低下させずに強度の上昇に有効な元素であるが、0.01%未満では効果がなく、1.0%を超えるとREM添加時においても鋼片加熱時や溶接時に割れを生じやすくする。従って、その含有量を0.01〜1.0%以下とする。   Cu: Cu is an element effective for increasing the strength without reducing brittleness, but if it is less than 0.01%, there is no effect, and if it exceeds 1.0%, the steel piece is heated or welded even when REM is added. Sometimes prone to cracking. Therefore, the content is made 0.01 to 1.0% or less.

Nb:Nbは、炭化物、窒化物を形成し母材強度の向上に効果がある元素であり、本発明では母材製造上必須の元素である。Nbは0.005%以下の添加ではその効果がなく、0.05%を超える添加では、母材靭性とHAZ脆性がいずれも低下するために、その範囲を0.005〜0.05%以下とする。なお、NbもMnと同様に本発明の結晶粒微細化効果によって、脆性への悪影響はCa無添加の場合に比べて小さい。   Nb: Nb is an element that forms carbides and nitrides and is effective in improving the strength of the base material. In the present invention, Nb is an essential element for manufacturing the base material. Nb has no effect when added in an amount of 0.005% or less, and when added over 0.05%, both the base metal toughness and the HAZ brittleness decrease, so the range is 0.005 to 0.05% or less. And Note that Nb, like Mn, has a smaller adverse effect on brittleness due to the grain refinement effect of the present invention than in the case where Ca is not added.

Al:Alは通常脱酸剤として添加されるが、本発明においては、0.05%超えて添加されるとREMの添加の効果を阻害するために、これを上限とする。また、REMの酸化物を安定に生成するためには0.001%は必要であり、これを下限とした。   Al: Al is usually added as a deoxidizer, but in the present invention, if added over 0.05%, the effect of the addition of REM is hindered. Further, 0.001% is necessary to stably generate the REM oxide, and this is set as the lower limit.

Ti:Tiは、脱酸剤として、さらには窒化物形成元素として結晶粒の細粒化に効果を発揮する元素であるが、多量の添加は炭化物の形成による靭性の著しい低下をもたらすために、その上限を0.05%にする必要があるが、所定の効果を得るためには0.005%以上の添加が必要であり、その範囲を0.005〜0.05%とする。   Ti: Ti is an element that exerts an effect on the refinement of crystal grains as a deoxidizer and further as a nitride-forming element. However, a large amount of addition causes a significant decrease in toughness due to the formation of carbides. Although the upper limit needs to be 0.05%, in order to acquire a predetermined effect, addition of 0.005% or more is required, and the range shall be 0.005-0.05%.

N:Nは本来不純物として取り扱うべきものであるが、この量が適正範囲の場合においては、極めて強力なTiNのピニング効果を現出させることから、0.001〜0.01%とした。下限値はピニング効果を発揮するための最小量であり、上限値はHAZ靭性を阻害するために規定した。   N: N should be handled as an impurity, but in the case where this amount is in an appropriate range, an extremely strong pinning effect of TiN appears, so the content was made 0.001 to 0.01%. The lower limit value is the minimum amount for exhibiting the pinning effect, and the upper limit value is specified to inhibit the HAZ toughness.

REM:REMは硫化物を生成することにより伸長MnSの生成を抑制し、鋼材の板厚方向の特性、特に耐ラメラティアー性を改善する。さらにREMの介在物を通して強力なピニング効果を有していることから、本発明の重要な元素である。REMの最適量は前述した通りであり、0.0005%未満では、十分な効果が得られないこと、また0.01%を超えるとREMの粗大酸化物個数が増加し、超微細な酸化物あるいは硫化物の個数が低下するため、その上限を0.01%とする。   REM: REM suppresses the generation of elongated MnS by generating sulfides, and improves the properties in the thickness direction of the steel material, particularly the lamellar resistance. Furthermore, since it has a strong pinning effect through the inclusion of REM, it is an important element of the present invention. The optimum amount of REM is as described above, and if it is less than 0.0005%, a sufficient effect cannot be obtained, and if it exceeds 0.01%, the number of coarse oxides in REM increases, resulting in an ultrafine oxide. Or since the number of sulfides falls, the upper limit is made 0.01%.

Ca:Caは硫化物を生成することにより伸長MnSの生成を抑制し、鋼材の板厚方向の特性、特に耐ラメラティアー性を改善する。さらに、CaはREMと同様な効果を有していることから、本発明の重要な元素である。Caの範囲は0.0001%〜0.003%の範囲に限定する。0.0001%未満では、十分な効果が得られたいこと、また0.003%を超えるとCaの粗大酸化物個数が増加し、母材靭性やHAZ靭性を低下させるため、その上限を0.003%とする。   Ca: Ca suppresses the generation of stretched MnS by generating sulfides, and improves the properties in the thickness direction of the steel material, particularly the lamellar resistance. Furthermore, Ca is an important element of the present invention because it has the same effect as REM. The range of Ca is limited to the range of 0.0001% to 0.003%. If the content is less than 0.0001%, a sufficient effect is desired to be obtained. If the content exceeds 0.003%, the number of coarse oxides of Ca increases, and the base metal toughness and the HAZ toughness are lowered. Set to 003%.

なお、本発明においては、強度および靭性を改善する元素として、Ni、Cr、Mo、V、Zr、Taの中で、1種または2種以上の元素を添加することができる。
In the present invention, one or more elements among Ni, Cr, Mo, V, Zr, and Ta can be added as elements for improving strength and toughness.

Ni:Niは、靭性および強度の改善に有効な元素であり、その効果を得るためには0.01%以上の添加が必要であるが、1.0%以上の添加では溶接性が低下するために、その上限を1.0%とする。   Ni: Ni is an element effective for improving toughness and strength. To obtain the effect, addition of 0.01% or more is necessary, but addition of 1.0% or more lowers weldability. Therefore, the upper limit is made 1.0%.

Cr:Crは析出強化による鋼の強度を向上させるために、0.01%以上の添加が有効であるが、多量に添加すると、焼入れ性を上昇させ、ベイナイト組織を生じさせ、靭性を低下させる。従って、その上限を0.5%とする。   Cr: Cr is effective to improve the strength of steel by precipitation strengthening, but addition of 0.01% or more is effective, but if added in a large amount, the hardenability is increased, the bainite structure is generated, and the toughness is decreased. . Therefore, the upper limit is made 0.5%.

Mo:Moは、焼入れ性を向上させると同時に、炭窒化物を形成し強度を改善する元素であり、その効果を得るためには、0.01%以上の添加が必要になるが、0.5%を超えた多量の添加は必要以上の強化とともに、靭性の著しい低下をもたらすために、その範囲を0.01〜0.5%以下とする。   Mo: Mo is an element that improves hardenability and at the same time forms carbonitride to improve strength. To obtain the effect, addition of 0.01% or more is necessary. Addition of a large amount exceeding 5% causes excessive reduction of toughness as well as unnecessary strengthening, so the range is made 0.01 to 0.5% or less.

V:Vは、炭化物、窒化物を形成し強度の向上に効果がある元素であるが、0.01%以下の添加ではその効果がなく、0.5%を超える添加では、逆に靭性の低下を招くために、その範囲を0.01〜0.5%とする。   V: V is an element that forms carbides and nitrides and is effective in improving the strength. However, the addition of 0.01% or less has no effect, and the addition of more than 0.5% conversely exhibits toughness. In order to cause a decrease, the range is set to 0.01 to 0.5%.

Zr、Ta:ZrとTaもNbと同様に炭化物、窒化物を形成し強度の向上に効果がある元素であるが、0.005%以下の添加ではその効果がなく、0.05%を超える添加では、逆に靭性の低下を招くために、その範囲を0.005〜0.05%とする。   Zr, Ta: Zr and Ta are elements that form carbides and nitrides as well as Nb and are effective in improving the strength. However, addition of 0.005% or less has no effect and exceeds 0.05%. Addition, on the contrary, causes a decrease in toughness, so the range is made 0.005 to 0.05%.

上記の成分を含有する鋼は、製鋼工程で溶製後、連続鋳造などを経て再加熱、圧延、冷却処理を施される。この場合、以下の点を限定した。   The steel containing the above components is subjected to reheating, rolling, and cooling through continuous casting after melting in the steelmaking process. In this case, the following points were limited.

熱間圧延・制御圧延ともに、鋼片をオーステナイト化するためにAC3点以上の温度に加熱する必要がある。しかし、1350℃を超えて加熱すると、熱源コストの増大が生じることから、加熱温度は1350℃以下とした。   In both hot rolling and controlled rolling, it is necessary to heat the steel slab to a temperature of 3 or more AC points to austenite. However, if heating exceeds 1350 ° C., the heat source cost increases, so the heating temperature is set to 1350 ° C. or lower.

次いで、母材製造時に利用する熱間圧延・制御圧延はともに、再結晶温度域で圧延することによりオーステナイト粒径を小さくすることが重要である。また、制御圧延を用いて、強度上昇と靭性向上を図る場合には、さらに未再結晶温度域で圧延することによりオーステナイト粒内に変形帯を導入し、フェライト変態核を導入することが有効である。未再結晶域での累積圧下率が40%未満では変形帯が十分に形成されないので、未再結晶域で累積圧下率の下限値を40%とした。しかし、累積圧下率が90%を超えると、母材シャルピー試験の吸収エネルギーの低下が著しくなるために、上限を90%にした。   Next, it is important to reduce the austenite grain size by rolling in the recrystallization temperature range in both the hot rolling and the controlled rolling utilized during the production of the base material. In addition, when using controlled rolling to increase strength and improve toughness, it is effective to introduce a deformation band into the austenite grains by rolling in the non-recrystallization temperature range and introduce ferrite transformation nuclei. is there. If the cumulative reduction rate in the non-recrystallized region is less than 40%, the deformation band is not sufficiently formed. Therefore, the lower limit value of the cumulative reduction rate in the non-recrystallized region is set to 40%. However, if the cumulative rolling reduction exceeds 90%, the absorbed energy in the base metal Charpy test is significantly reduced, so the upper limit was made 90%.

熱間圧延後は通常自然放冷で良い。しかし、自然放冷よりさらに強度を上昇させるためには加速冷却が必要である。しかしながら、冷却速度が1℃/sec未満では、十分な強度を得ることができない。逆に、冷却速度が60℃/sec超ではベイナイトあるいはマルテンサイトが主体のミクロ組織となるため母材の靭性が低下する。   After hot rolling, natural cooling is usually sufficient. However, accelerated cooling is necessary to increase the strength further than natural cooling. However, if the cooling rate is less than 1 ° C./sec, sufficient strength cannot be obtained. On the contrary, when the cooling rate exceeds 60 ° C./sec, the toughness of the base material decreases because the microstructure is mainly bainite or martensite.

したがって、冷却速度を1〜60℃/secに限定した。この場合、母材の強度を得るために変態が終了するまで加速冷却を継続する必要がある。このため、冷却停止温度の上限を600℃とした。600℃超の停止温度では変態が終了しないために、十分な強度が得られない。通常、加速冷却は水を冷却媒体として用いる。それ故、実際上の冷却停止温度の下限は0℃となるので、下限値を0℃とした。   Therefore, the cooling rate was limited to 1-60 ° C./sec. In this case, it is necessary to continue accelerated cooling until the transformation is completed in order to obtain the strength of the base material. For this reason, the upper limit of the cooling stop temperature was set to 600 ° C. Since the transformation does not end at a stop temperature exceeding 600 ° C., sufficient strength cannot be obtained. Usually, accelerated cooling uses water as a cooling medium. Therefore, since the lower limit of the actual cooling stop temperature is 0 ° C., the lower limit is set to 0 ° C.

加速冷却後の焼戻し熱処理は回復による母材組織の靭性向上を目的としたものであるから、加熱温度は逆変態が生じない温度域であるAC1点以下でなければならない。回復は転位の消滅・合体により格子欠陥密度を減少させるものであり、これを実現するためには300℃以上に加熱することが必要である。このため、加熱温度の下限を300℃とした。上限は変態点以下であるため、AC1を上限とした。   Since the tempering heat treatment after accelerated cooling is intended to improve the toughness of the base metal structure by recovery, the heating temperature must be AC1 point or less, which is a temperature range in which reverse transformation does not occur. Recovery reduces the lattice defect density by the disappearance and coalescence of dislocations. In order to realize this, heating to 300 ° C. or higher is necessary. For this reason, the minimum of heating temperature was 300 degreeC. Since the upper limit is below the transformation point, AC1 was set as the upper limit.

次に、本発明の実施例について述べる。   Next, examples of the present invention will be described.

表1の化学成分を有する鋳造スラブの表面部より50mm長さのブロックを切り出し、スラブのγ粒径と微細化の評価を行なった。ここで、長さ方向は鋳片幅方向に平行とした。γ粒径はミクロ組織写真より切断法にて求めた。また、γ粒径のサイズが1200μm以下を微細粒として評価した。次いで、本発明の重要特性である耐表面割れ特性を評価した。ここでは、割れの個数として、鋳片の表面を含み、鋳片幅方向に少なくとも50mmのサンプルを切り出し、鋳造方向に垂直な断面を光学顕微鏡で観察し、深さ0.1mm以上のものを割れとして測定した。最後に、表2に示す熱間圧延および熱処理を行い鋼板とした後、高強度溶接構造用鋼の基本特性として母材靭性を評価した。試験は−40℃におけるシャルピー衝撃試験により行い、シャルピー吸収エネルギーにより評価した。   A block having a length of 50 mm was cut out from the surface portion of the cast slab having the chemical components shown in Table 1, and the γ particle size and refinement of the slab were evaluated. Here, the length direction was parallel to the slab width direction. The γ particle size was determined by a cutting method from a microstructure photograph. Moreover, the size of the γ particle size was evaluated as fine particles of 1200 μm or less. Subsequently, the surface crack resistance characteristic which is an important characteristic of the present invention was evaluated. Here, the number of cracks includes the surface of the slab, cuts out a sample of at least 50 mm in the width direction of the slab, observes a cross section perpendicular to the casting direction with an optical microscope, and cracks with a depth of 0.1 mm or more As measured. Finally, after hot rolling and heat treatment shown in Table 2 to obtain a steel sheet, the base metal toughness was evaluated as a basic characteristic of high strength welded structural steel. The test was conducted by a Charpy impact test at −40 ° C. and evaluated by Charpy absorbed energy.

鋼1、3、4、6〜8、10〜14は本発明の例を示したものである。表2から明らかなように、本発明の鋼板は化学成分と製造条件の各要件を満足しており、スラブγ粒径が1200μm以下の微細組織を呈しており、これを反映して表面割れ特性が極めて優れていることがわかる。表2においては、0.2個/mmを指標としているが、これはスラブ表面の手入れの有無という実用的な基準に対比させたものである。さらに、表2からそれぞれの母材靭性も20kgf・m以上の高い吸収エネルギーを示し、いずれも高靭性を有していることがわかる。
Steels 1 , 3, 4, 6-8, and 10-14 are examples of the present invention. As is apparent from Table 2, the steel sheet of the present invention satisfies the requirements of chemical composition and production conditions, and exhibits a microstructure with a slab γ grain size of 1200 μm or less, reflecting this and surface cracking characteristics. It is understood that is very excellent. In Table 2, 0.2 / mm is used as an index, which is compared with a practical standard of whether or not the slab surface is maintained. Furthermore, it can be seen from Table 2 that each base metal toughness also shows a high absorbed energy of 20 kgf · m or more, and all have high toughness.

それに対し、鋼16〜28は、本発明から逸脱した比較例を示したものである。すなわち、鋼16〜24、26、28は基本成分あるいは選択元素の内いずれかの元素が、発明の要件を超えて添加されている例であり、本発明の重要な要素であるREM量、Ca量、Ti量、N量が適正な場合においても母材の靭性劣化要因となる元素が過剰に添加された事により母材靭性の劣化がいずれも助長されている。
In contrast, the steel 16-2 8 shows a comparative example in which depart the onset bright or al. That is, steels 16 to 24, 26, and 28 are examples in which any one of the basic components or selected elements is added in excess of the requirements of the invention, and REM amount, Ca, which is an important element of the present invention. Even when the amount, Ti amount, and N amount are appropriate, the deterioration of the base material toughness is promoted by the excessive addition of the elements that cause the base material toughness deterioration.

また、鋼16、18、20、22、25、27、29ではREM量、Ti量、N量が下限値より小さい場合に相当し、スラブのγ粒径が粗大化し、表面割れが生じている。この内、鋼25、27、28は母材靭性には問題がないものの耐表面割れ特性が不良である。鋼29はREM量が下限値以下であり、Ca量も上限値以上であるため、耐表面割れ特性と母材靭性がいずれも良くない。   Further, in Steels 16, 18, 20, 22, 25, 27, and 29, this corresponds to the case where the REM amount, Ti amount, and N amount are smaller than the lower limit values, and the γ particle size of the slab becomes coarse and surface cracks occur. . Of these, steels 25, 27, and 28 have no problem in the base material toughness but have poor surface crack resistance. Steel 29 has a REM amount equal to or lower than the lower limit value and a Ca content equal to or higher than the upper limit value. Therefore, neither the surface cracking resistance nor the base material toughness is good.

Figure 0004959402
Figure 0004959402

Figure 0004959402
Figure 0004959402

Claims (7)

質量%で、
C:0.01〜0.20%、
Si:0.02〜0.50%、
Mn:0.3〜2.5%、
P:≦0.03%、
S:0.0015〜0.03%、
Cu:0.01〜1.0%、
Nb:0.005〜0.05%、
Al:0.001〜0.05%、
Ti:0.005〜0.05%、
N:0.001〜0.01%、
REM:0.0005〜0.01%、
Ca:0.0001〜0.003%、
を含み、残部が鉄および不可避的不純物からなることを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼。
% By mass
C: 0.01-0.20%
Si: 0.02 to 0.50%,
Mn: 0.3 to 2.5%
P: ≦ 0.03%,
S: 0.0015 to 0.03%,
Cu: 0.01 to 1.0%,
Nb: 0.005 to 0.05%,
Al: 0.001 to 0.05%,
Ti: 0.005 to 0.05%,
N: 0.001 to 0.01%,
REM: 0.0005 to 0.01%,
Ca: 0.0001 to 0.003%,
A high-strength welded structural steel with excellent surface cracking resistance, characterized in that the balance is made of iron and inevitable impurities.
更に、質量%で、
Ni:0.01〜1.0%、
Cr:0.01〜0.5%、
Mo:0.01〜0.5%、
V:0.01〜0.5%、
Zr:0.005〜0.05%、
Ta:0.005〜0.05%、
うち1種または2種以上を含有することを特徴とする請求項1記載の耐表面割れ特性に優れた高強度溶接構造用鋼。
Furthermore, in mass%,
Ni: 0.01 to 1.0%,
Cr: 0.01 to 0.5%
Mo: 0.01 to 0.5%,
V: 0.01-0.5%
Zr: 0.005 to 0.05%,
Ta: 0.005 to 0.05 %,
The high strength welded structural steel having excellent surface cracking resistance according to claim 1, comprising one or more of them.
スラブの表層γ粒径が1200μm以下であることを特徴とする請求項1または請求項2記載の耐表面割れ特性に優れた高強度溶接構造用鋼。   The high strength welded structural steel excellent in surface crack resistance according to claim 1 or 2, wherein the slab has a surface γ particle size of 1200 µm or less. 請求項1または請求項2記載の鋼と同一成分を有する鋼片をAC3点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延した後、自然放冷することを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼の製造方法。   A steel slab having the same composition as that of the steel according to claim 1 or claim 2 is heated to AC3 point or higher and 1350 ° C or lower, hot-rolled in a recrystallization temperature range, and then naturally cooled. A method for producing high strength welded structural steel with excellent surface cracking characteristics. 請求項1または請求項2記載の鋼と同一成分を有する鋼片をAC3点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、自然放冷することを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼の製造方法。   A steel slab having the same composition as that of the steel according to claim 1 or claim 2 is heated to AC3 point or more and 1350 ° C or less, then hot-rolled in a recrystallization temperature range, and further at a cumulative reduction rate in an unrecrystallization temperature range. A method for producing high strength welded structural steel having excellent surface cracking resistance, characterized by performing natural rolling after 40 to 90% hot rolling. 請求項1または請求項2記載の鋼と同一成分を有する鋼片をAC3点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに未再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で0〜600℃まで冷却することを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼の製造方法。   A steel slab having the same composition as that of the steel according to claim 1 or claim 2 is heated to AC3 point or more and 1350 ° C or less, then hot-rolled in a recrystallization temperature range, and further at a cumulative reduction rate in an unrecrystallization temperature range. 40% to 90% hot rolling and then cooling to 0 to 600 ° C. at a cooling rate of 1 to 60 ° C./sec. . 請求項1または請求項2記載の鋼と同一成分を有する鋼片をAC3点以上、1350℃以下に加熱後、再結晶温度域で熱間圧延し、さらに再結晶温度域において累積圧下率で40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で0〜600℃まで冷却し、引き続いて300℃〜AC1点に加熱して焼戻し熱処理することを特徴とする耐表面割れ特性に優れた高強度溶接構造用鋼の製造方法。 Claim 1 or claim 2 wherein the steel a steel slab having the same components as AC3 or more points, after heating to 1350 ° C. or less, and hot-rolled at the recrystallization temperature region, further cumulative rolling reduction in the non-recrystallization temperature region 40% to 90% hot rolling, then cooled to 0 to 600 ° C. at a cooling rate of 1 to 60 ° C./sec, and subsequently subjected to tempering heat treatment by heating from 300 ° C. to AC 1 point. A method for producing high strength welded structural steel with excellent surface cracking characteristics.
JP2007089751A 2007-03-29 2007-03-29 High strength welded structural steel with excellent surface cracking resistance and its manufacturing method Active JP4959402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089751A JP4959402B2 (en) 2007-03-29 2007-03-29 High strength welded structural steel with excellent surface cracking resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089751A JP4959402B2 (en) 2007-03-29 2007-03-29 High strength welded structural steel with excellent surface cracking resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2008248293A JP2008248293A (en) 2008-10-16
JP4959402B2 true JP4959402B2 (en) 2012-06-20

Family

ID=39973589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089751A Active JP4959402B2 (en) 2007-03-29 2007-03-29 High strength welded structural steel with excellent surface cracking resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4959402B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347827B2 (en) * 2009-08-17 2013-11-20 新日鐵住金株式会社 High yield point 490 MPa class welded structural steel excellent in acoustic anisotropy and method for producing the same
JP5428705B2 (en) * 2009-09-25 2014-02-26 新日鐵住金株式会社 High toughness steel plate
EP2990500B1 (en) * 2013-04-25 2018-08-08 Nippon Steel & Sumitomo Metal Corporation Steel sheet
JP6349832B2 (en) * 2014-03-25 2018-07-04 新日鐵住金株式会社 Continuous cast slab for thick steel plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193240A (en) * 1994-11-18 1996-07-30 Nippon Steel Corp Steel material excellent in temper embrittlement resistance and its production
JP5132019B2 (en) * 2001-02-16 2013-01-30 Jfeスチール株式会社 Method for manufacturing ultra-low carbon steel welded joint with excellent weld joint toughness
JP4396851B2 (en) * 2005-03-31 2010-01-13 住友金属工業株式会社 High tensile steel with excellent plastic deformability after cold working and method for producing the same
JP4997805B2 (en) * 2005-03-31 2012-08-08 Jfeスチール株式会社 High-strength thick steel plate, method for producing the same, and high-strength steel pipe

Also Published As

Publication number Publication date
JP2008248293A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4547044B2 (en) High-strength thick steel material excellent in toughness and weldability, high-strength extra-thick H-shaped steel, and methods for producing them
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP2010229528A (en) High tensile strength steel sheet having excellent ductility and method for producing the same
JP2019502018A (en) High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
JP2019501281A (en) High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
WO2014175122A1 (en) H-shaped steel and method for producing same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2010222680A (en) Method for manufacturing high strength high toughness steel excellent in workability
JP2006336105A (en) Heat-resistant steel product and method for production thereof
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2011012315A (en) NON-TEMPERED HIGH TENSILE STRENGTH THICK STEEL PLATE HAVING YIELD STRENGTH OF 885 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP2011208213A (en) Low-yield ratio high-tensile strength thick steel plate having excellent weld crack resistance and weld heat-affected zone toughness
KR20160078714A (en) High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP4105990B2 (en) High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same
KR20230041060A (en) Thick steel plate and its manufacturing method
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP5245202B2 (en) High strength welded structural steel with excellent high heat input weld HAZ toughness and method for producing the same
JP2004323966A (en) Steel sheet superior in quake resistance and weldability, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4959402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350