JP6152375B2 - Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method - Google Patents

Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method Download PDF

Info

Publication number
JP6152375B2
JP6152375B2 JP2014260539A JP2014260539A JP6152375B2 JP 6152375 B2 JP6152375 B2 JP 6152375B2 JP 2014260539 A JP2014260539 A JP 2014260539A JP 2014260539 A JP2014260539 A JP 2014260539A JP 6152375 B2 JP6152375 B2 JP 6152375B2
Authority
JP
Japan
Prior art keywords
carbide
steel
hydrogen sulfide
less
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014260539A
Other languages
Japanese (ja)
Other versions
JP2015124442A (en
Inventor
淳 澤 洪
淳 澤 洪
熙 君 ▲虜▼
熙 君 ▲虜▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2015124442A publication Critical patent/JP2015124442A/en
Application granted granted Critical
Publication of JP6152375B2 publication Critical patent/JP6152375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は低温圧力容器用鋼材に関し、より詳細には、低温靭性及び硫化水素応力腐食割れ(Sulfide Stress Corrosion Cracking、SSCC)に対する抵抗性に優れた圧力容器用鋼材、その製造方法、及び上記鋼材を用いた深絞り製品の製造方法に関する。   The present invention relates to a steel material for a low temperature pressure vessel, and more specifically, a steel material for a pressure vessel excellent in low temperature toughness and resistance to hydrogen sulfide stress corrosion cracking (SSCC), a method for producing the same, and the above steel material The present invention relates to a method of manufacturing a deep drawing product used.

原油を精製する精製設備や貯蔵タンクなどのように圧力が作用する圧力容器は、その容器が用いられる温度及び容器内に貯蔵される物質の特性に応じて求められる物性が決まる。特に、使用温度が低い場合には低温靭性が求められ、貯蔵物質の種類に応じて腐食による鋼材の劣化が異なるため、貯蔵物質の種類に応じた特殊な物性が求められる。   A pressure vessel such as a refining facility or a storage tank for refining crude oil determines the physical properties required depending on the temperature at which the vessel is used and the characteristics of the substance stored in the vessel. In particular, when the use temperature is low, low temperature toughness is required, and the deterioration of the steel material due to corrosion differs depending on the type of storage material, so that special physical properties corresponding to the type of storage material are required.

最近、硫化水素(HS)の含量の高い原油の採掘が増加するにつれて、原油精製設備に必要な鋼材には、硫化水素による材料の劣化に対する抵抗性が高いことが求められている。また、採掘及び精製環境が低温環境に変わる傾向にあるため、低温靭性の向上が求められており、これにより、これらに適用される圧力容器に用いられる鋼材も、硫化水素による腐食抵抗性及び低温靭性をともに満たすものの需要が増加している。 Recently, as the mining of crude oil having a high hydrogen sulfide (H 2 S) content increases, steel materials necessary for crude oil refining facilities are required to have high resistance to deterioration of the material due to hydrogen sulfide. In addition, since the mining and refining environment tends to change to a low temperature environment, improvement in low temperature toughness is required, and as a result, the steel materials used in pressure vessels applied to these also have corrosion resistance due to hydrogen sulfide and low temperature. The demand for materials that satisfy both toughness is increasing.

一方、従来は、高い引張強度を有する低温圧力容器用鋼板を製造するために継ぎ目のないパイプ(Seamless Pipe)を使用して、スピニング(Spinning type)加工法で圧力容器用シリンダを製作する方法が用いられた。しかし、当該方法により製造されたシリンダは、継ぎ目があるため、外観が美麗でない上、継ぎ目部分の物性が低下する恐れがある。   On the other hand, conventionally, there is a method of manufacturing a cylinder for a pressure vessel by a spinning type processing method using a seamless pipe to manufacture a steel plate for a low-temperature pressure vessel having a high tensile strength. Used. However, since the cylinder manufactured by the method has a seam, the appearance is not beautiful and the physical properties of the seam portion may be deteriorated.

また、従来に用いられた低温圧力容器用鋼板は、継ぎ目のないパイプで作製されたものであって、強力な炭化物析出元素であるバナジウム(V)が含有されることが多かった。従って、加工性を付与すべく、球状化熱処理を行うと、バナジウムの析出強化現象によって鋼材の強度が過度に高くなり、後続する深絞り(Deep Drawing)工程で直接成形することが困難であった。   In addition, conventionally used steel plates for low-temperature pressure vessels are made of seamless pipes and often contain vanadium (V), which is a strong carbide precipitation element. Therefore, when spheroidizing heat treatment is performed to impart workability, the strength of the steel material becomes excessively high due to the precipitation strengthening phenomenon of vanadium, and it is difficult to form directly in the subsequent deep drawing process. .

さらに、従来の低温圧力容器用鋼材に対する球状化熱処理には90分以上の長時間がかかるため、鋼材の生産性及び生産費用の側面で不利であり、脱炭現象が発生し得て鋼材の強度がむしろ低下する恐れがある。   Furthermore, since the conventional spheroidizing heat treatment for steel materials for low-temperature pressure vessels takes a long time of 90 minutes or more, it is disadvantageous in terms of the productivity and production cost of the steel materials, and decarburization can occur and the strength of the steel materials However, there is a risk of decline.

本発明の一側面は、従来の低温圧力容器用鋼材より硫化水素応力腐食割れ(SSCC)に対する抵抗性に優れて、容器の寿命及び安定性を効果的に増大させ、且つ低温靭性に優れた圧力容器用鋼材、その製造方法、及び上記鋼材を用いた深絞り製品の製造方法を提供する。   One aspect of the present invention is a pressure superior in resistance to hydrogen sulfide stress corrosion cracking (SSCC) than conventional steel materials for low-temperature pressure vessels, effectively increasing the life and stability of the vessel, and excellent in low-temperature toughness. A steel material for containers, a method for producing the same, and a method for producing a deep-drawn product using the steel material are provided.

本発明の一側面は、質量%で、炭素(C):0.3〜0.4%、シリコン(Si):0.15〜0.40%、マンガン(Mn):0.4〜1.0%、アルミニウム(Al):0.001〜0.05%、クロム(Cr):0.8〜1.2%、モリブデン(Mo):0.15〜0.80%、ニッケル(Ni):0.1%以下、カルシウム(Ca):0.0005〜0.0020%、リン(P):0.015%以下、硫黄(S):0.015%以下、残部Fe及び不可避な不純物を含み、微細組織はフェライト、ベイナイト及びマルテンサイトの3相複合組織からなる低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材を提供する。   One aspect of the present invention is mass%, carbon (C): 0.3-0.4%, silicon (Si): 0.15-0.40%, manganese (Mn): 0.4-1. 0%, aluminum (Al): 0.001 to 0.05%, chromium (Cr): 0.8 to 1.2%, molybdenum (Mo): 0.15 to 0.80%, nickel (Ni): 0.1% or less, calcium (Ca): 0.0005 to 0.0020%, phosphorus (P): 0.015% or less, sulfur (S): 0.015% or less, balance Fe and inevitable impurities The microstructure provides a steel material for pressure vessels excellent in low-temperature toughness and hydrogen sulfide stress corrosion cracking resistance, which consists of a three-phase composite structure of ferrite, bainite and martensite.

本発明の他の一側面は、上述した成分組成を満たす鋼塊を1000〜1250℃で再加熱する段階と、上記再加熱した鋼塊を750〜1000℃で仕上げ圧延して熱延鋼板に製造する段階と、上記熱延鋼板を焼きならし処理する段階と、上記焼きならし処理した熱延鋼板をAc1〜Ac3温度で30分以上球状化熱処理する段階と、を含み、上記仕上げ圧延は、下記関係式2で表される圧延パス当たりの圧延形状比が0.9〜1.5を満たすように行う低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材の製造方法を提供する。   According to another aspect of the present invention, a steel ingot satisfying the above-described composition is reheated at 1000 to 1250 ° C., and the reheated steel ingot is finish-rolled at 750 to 1000 ° C. to produce a hot rolled steel sheet. A step of normalizing the hot-rolled steel sheet, and a step of subjecting the hot-rolled steel sheet subjected to the normalization treatment to a spheroidizing heat treatment at a temperature of Ac1 to Ac3 for 30 minutes or more. Provided is a method for producing a steel material for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance so that the rolling shape ratio per rolling pass represented by the following relational expression 2 satisfies 0.9 to 1.5. To do.

[関係式2]
圧延形状比=(圧延ロール半径(mm)×圧下量(mm))0.5/(鋼板の平均厚さ(mm))
(ここで、上記鋼板の平均厚さは、仕上げ圧延の入側及び出側における厚さの平均値を意味する。)
[Relational expression 2]
Rolling shape ratio = (rolling roll radius (mm) x reduction amount (mm)) 0.5 / (average thickness of steel sheet (mm))
(Here, the average thickness of the steel sheet means the average value of the thicknesses on the entry side and the exit side of finish rolling.)

本発明のさらに他の一側面は、上述した製造方法により製造された圧力容器用鋼材を深絞りする段階と、上記深絞り後、850〜950℃で1.6t+(10〜30分)(t:mm単位で表した鋼材の厚さがtmmであるときにt分間を意味する)の間保持する焼入れ(Quenching)段階と、上記焼入れ後、550〜625℃で焼戻し(Tempering)する段階と、を含む深絞り製品の製造方法を提供する。   Still another aspect of the present invention includes a step of deep drawing the pressure vessel steel manufactured by the above-described manufacturing method, and 1.6 t + (10 to 30 minutes) at 850 to 950 ° C. after the deep drawing (t A quenching step for holding for a period of t minutes when the thickness of the steel material expressed in mm is tmm, and a step of tempering at 550 to 625 ° C. after the quenching, A method of manufacturing a deep drawing product including

本発明によると、球状化熱処理の時間を画期的に短縮することで、費用及び時間を節約することができる上、高価な合金元素の添加量を下げても、既存の圧力容器用鋼材より硫化水素応力腐食割れ抵抗性を画期的に向上させることができる鋼材を提供することができる。   According to the present invention, the time for the spheroidizing heat treatment can be dramatically shortened, so that cost and time can be saved, and even if the amount of the expensive alloy element added is reduced, the existing steel material for pressure vessels can be reduced. It is possible to provide a steel material that can remarkably improve resistance to hydrogen sulfide stress corrosion cracking.

本発明者らは、原油を精製する精製設備や貯蔵タンクなどのように圧力が作用する圧力容器の素材として用いられる、低温靭性と硫化水素応力腐食割れ抵抗性に優れた鋼材を開発するために研究を重ねた結果、高価な合金元素の添加量を減らしても、製造条件を最適化することで目標とする鋼材が製造できることを見出し、本発明を完成するに至った。   In order to develop a steel material excellent in low temperature toughness and resistance to hydrogen sulfide stress corrosion cracking, which is used as a material for pressure vessels such as refining equipment and storage tanks for refining crude oil. As a result of repeated research, it has been found that the target steel material can be produced by optimizing the production conditions even if the addition amount of the expensive alloy element is reduced, and the present invention has been completed.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の一側面による低温靭性及び硫化水素応力腐食割れ(Sulfide Stress Corrosion Cracking)抵抗性に優れた圧力容器用鋼材は、質量%で、炭素(C):0.3〜0.4%、シリコン(Si):0.15〜0.40%、マンガン(Mn):0.4〜1.0%、アルミニウム(Al):0.001〜0.05%、クロム(Cr):0.8〜1.2%、モリブデン(Mo):0.25〜0.80%、ニッケル(Ni):0.1%以下、カルシウム(Ca):0.0005〜0.0020%、リン(P):0.015%以下、硫黄(S):0.015%以下、残部Fe及び不可避な不純物を含むことが好ましい。   The steel material for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance according to one aspect of the present invention is mass%, carbon (C): 0.3 to 0.4%, silicon (Si): 0.15-0.40%, Manganese (Mn): 0.4-1.0%, Aluminum (Al): 0.001-0.05%, Chromium (Cr): 0.8- 1.2%, molybdenum (Mo): 0.25 to 0.80%, nickel (Ni): 0.1% or less, calcium (Ca): 0.0005 to 0.0020%, phosphorus (P): 0 .015% or less, sulfur (S): 0.015% or less, preferably including the remainder Fe and inevitable impurities.

以下では、本発明で合金成分組成を上記のように制限する理由について詳細に説明する。このとき、各成分の含量は、特に記載しない限り、質量%を意味する。   Below, the reason for restrict | limiting an alloy component composition as mentioned above by this invention is demonstrated in detail. At this time, the content of each component means mass% unless otherwise specified.

C:0.3〜0.4%
炭素(C)は、鋼材の強度を確保するために添加する元素で、その含量が0.3%未満では、強度が低下して目標とする強度を確保することができず、また、0.4%を超えると、靭性が低下するため、好ましくない。従って、本発明におけるCの含量は、0.3〜0.4%に制限することが好ましい。
C: 0.3 to 0.4%
Carbon (C) is an element added to ensure the strength of the steel material, and if its content is less than 0.3%, the strength decreases and the target strength cannot be ensured. If it exceeds 4%, the toughness decreases, which is not preferable. Therefore, the C content in the present invention is preferably limited to 0.3 to 0.4%.

Si:0.15〜0.40%
シリコン(Si)は、製鋼工程の脱酸剤として作用するだけでなく、固溶強化元素であり、強度の向上にも有利な元素である。このようなSiの含量が0.15%未満では、上述した効果を得られず、また、0.40%を超えると、靭性が低下し、鋼板の表面に酸化皮膜を形成して表面品質を低下させるという問題がある。従って、本発明におけるSiの含量は、0.15〜0.40%に制限することが好ましい。
Si: 0.15-0.40%
Silicon (Si) not only acts as a deoxidizer in the steelmaking process, but is a solid solution strengthening element and is an element advantageous for improving the strength. If the Si content is less than 0.15%, the above-described effects cannot be obtained. If the Si content exceeds 0.40%, the toughness is reduced, and an oxide film is formed on the surface of the steel sheet to improve the surface quality. There is a problem of lowering. Therefore, the Si content in the present invention is preferably limited to 0.15 to 0.40%.

Mn:0.4〜1.0%
マンガン(Mn)は、鋼の強度及び靭性に重要な影響を与える元素で、その含量が0.4%未満では、上述した効果を期待することが困難で、1.0%を超えると、加工性が低下し、合金原料の費用が上昇して製造原価が増加するという問題がある。従って、本発明におけるMnの含量は、0.4〜1.0%に制限することが好ましい。
Mn: 0.4 to 1.0%
Manganese (Mn) is an element that has an important influence on the strength and toughness of steel. If its content is less than 0.4%, it is difficult to expect the above-mentioned effects. There is a problem that the production cost is increased due to a decrease in the property, the cost of the alloy raw material is increased. Therefore, the Mn content in the present invention is preferably limited to 0.4 to 1.0%.

Al:0.001〜0.05%
アルミニウム(Al)は、上記Siと同様に、製鋼工程で強力な脱酸剤として作用し、その含量が0.001%未満では、上述した効果を期待することが困難である。一方、Alの含量が0.05%を超えると、脱酸効果が飽和するだけでなく、製造原価の上昇をもたらすため、好ましくない。従って、本発明におけるAlの含量は、0.001〜0.05%に制限することが好ましい。
Al: 0.001 to 0.05%
Similar to Si, aluminum (Al) acts as a strong deoxidizer in the steelmaking process, and if its content is less than 0.001%, it is difficult to expect the above-described effects. On the other hand, if the Al content exceeds 0.05%, not only the deoxidation effect is saturated but also the production cost is increased, which is not preferable. Therefore, the Al content in the present invention is preferably limited to 0.001 to 0.05%.

Cr:0.8〜1.2%
クロム(Cr)は、鋼の焼入れ性の向上に有利な元素で、当該効果を得るためには、Crを0.8%以上添加することが好ましい。但し、Crは高価な元素であり、その含量が1.2%を超えると、製造費用の急激な上昇をもたらす。従って、本発明におけるCrの含量は、0.8〜1.2%に制限することが好ましい。
Cr: 0.8-1.2%
Chromium (Cr) is an element advantageous for improving the hardenability of steel, and in order to obtain the effect, it is preferable to add 0.8% or more of Cr. However, Cr is an expensive element, and if its content exceeds 1.2%, the production cost is rapidly increased. Therefore, the Cr content in the present invention is preferably limited to 0.8 to 1.2%.

Mo:0.15〜0.80%
モリブデン(Mo)は、鋼の焼入れ性の向上に有効な元素で、硫化物による割れの発生を防止する元素として知られている。また、焼入れ−焼戻し後の微細炭化物の析出による強度確保に有効な元素である。上述した効果を得るためには、Moを0.15%以上添加することが好ましい。但し、Moも高価な元素であり、その含量が0.80%を超えると、製造費用の上昇をもたらすため、好ましくない。従って、本発明におけるMoの含量は、0.15〜0.80%に制限することが好ましく、0.3〜0.7%含まれることがより好ましい。
Mo: 0.15-0.80%
Molybdenum (Mo) is an element effective for improving the hardenability of steel, and is known as an element that prevents the occurrence of cracks due to sulfides. Further, it is an element effective for securing strength by precipitation of fine carbides after quenching and tempering. In order to acquire the effect mentioned above, it is preferable to add Mo 0.15% or more. However, Mo is also an expensive element, and if its content exceeds 0.80%, it causes an increase in manufacturing cost, which is not preferable. Therefore, the Mo content in the present invention is preferably limited to 0.15 to 0.80%, more preferably 0.3 to 0.7%.

Ni:0.1%以下(0%を除く)
ニッケル(Ni)は、鋼の低温靭性の向上に非常に効果的な元素であるが、非常に高価な元素でありながら、その含量が多すぎると、炭化物の球状化を妨げるため、その含量を0.1%以下に制限することが好ましい。
Ni: 0.1% or less (excluding 0%)
Nickel (Ni) is a very effective element for improving the low-temperature toughness of steel. However, although it is a very expensive element, if its content is too large, it prevents spheroidization of carbides, so its content is reduced. It is preferable to limit to 0.1% or less.

Ca:0.0005〜0.0020%
カルシウム(Ca)は、MnSのように圧延方向に長く延伸される介在物を球状化させて、圧延後、圧延方向による材質異方性を減少させるのに有利な元素であり、本発明では、上記効果を得るために、Caを0.0005%以上添加することが好ましい。但し、その含量が多すぎると、鋼中に含有されたOと反応して非金属介在物であるCaOを生成して鋼の物性を悪化させるため、上限を0.0020%に制限することが好ましい。
Ca: 0.0005 to 0.0020%
Calcium (Ca) is an element that is advantageous for reducing the material anisotropy due to the rolling direction after rolling by spheroidizing inclusions that are elongated in the rolling direction like MnS. In order to acquire the said effect, it is preferable to add 0.0005% or more of Ca. However, if the content is too large, it reacts with O contained in the steel to produce non-metallic inclusions CaO and deteriorates the physical properties of the steel, so the upper limit may be limited to 0.0020%. preferable.

P:0.015%以下
リン(P)は、鋼の低温靭性を劣化させる元素であるため、その含量を最大限抑制することが好ましく、製鋼工程を考慮して、その含量を0.015%以下に制限することが好ましい。
P: 0.015% or less Since phosphorus (P) is an element that deteriorates the low temperature toughness of steel, it is preferable to suppress the content to the maximum, and considering the steel making process, the content is 0.015%. It is preferable to limit to the following.

S:0.015%以下
硫黄(S)は、上記Pと同様に、鋼の低温靭性を害する元素であるため、これもその含量を最大限抑制することが好ましい。但し、製鋼工程を考慮して、その含量を0.015%以下に管理することが好ましい。
S: 0.015% or less Sulfur (S) is an element that impairs the low temperature toughness of steel, as in the case of P described above. However, in consideration of the steel making process, the content is preferably controlled to 0.015% or less.

本発明の残りの成分は鉄(Fe)である。但し、通常の鉄鋼製造過程では、原料または周囲の環境から意図しない不純物がやむを得ず混入されることがあるため、それを排除することは実際上できない。当該不純物は、通常の鉄鋼製造過程の技術者には周知のことであり、本明細書では、その全内容を具体的に言及しない。   The remaining component of the present invention is iron (Fe). However, in an ordinary steel manufacturing process, unintentional impurities may be inevitably mixed from the raw material or the surrounding environment, so it is practically impossible to eliminate them. Such impurities are well known to those skilled in the ordinary steel manufacturing process, and the entire contents thereof are not specifically mentioned in this specification.

上述した成分組成を満たす本発明の鋼材は、その微細組織がフェライト、ベイナイト及びマルテンサイトの3相複合組織からなることが好ましい。   It is preferable that the steel material of the present invention that satisfies the above-described component composition has a three-phase composite structure of ferrite, bainite, and martensite.

以下に、より具体的に説明するが、本発明で提供する鋼材の製造段階において、焼きならし処理後、鋼板の微細組織をフェライト、ベイナイト及びマルテンサイトの3相複合組織状に形成することができる。   Although explained more specifically below, in the manufacturing stage of the steel material provided by the present invention, after normalizing, the microstructure of the steel sheet may be formed into a three-phase composite structure of ferrite, bainite and martensite. it can.

上記3相複合組織のうちマルテンサイト及びベイナイト組織は、鋼材の強度を確保するとともに、球状化熱処理の時間を短縮させることができる。より具体的には、マルテンサイト、ベイナイト、パーライトなどのような低温変態組織では、炭化物(carbide)が微細であるほど、球状化速度が速くなるという特徴があり、通常、マルテンサイト>ベイナイト>パーライトの順に球状化の時間を短縮させることができる。   Among the three-phase composite structures, the martensite and bainite structures can secure the strength of the steel material and reduce the time for the spheroidizing heat treatment. More specifically, a low temperature transformation structure such as martensite, bainite, pearlite, etc. is characterized in that the finer the carbide, the faster the spheroidization rate, and usually martensite> bainite> pearlite. The spheroidizing time can be shortened in the order of.

また、フェライトは鋼の延性確保に有利であり、特に、本発明では深絞り性を確保するために有利な組織である。   Ferrite is advantageous for securing the ductility of steel, and in particular, in the present invention, it is an advantageous structure for securing deep drawability.

より具体的には、上記微細組織のうちマルテンサイト+ベイナイトは面積分率で70〜98%含まれ、フェライトは面積分率で2〜30%含まれることが好ましい。マルテンサイト+ベイナイト相の分率が98%を超えると、鋼の延性が足りなくなり、成形性、特に深絞り性が低下し、また、フェライトの分率が30%を超えると、十分な延性が確保できるため、成形性には優れるが、球状化熱処理の時間が過度に増加するという問題がある。   More specifically, it is preferable that martensite + bainite is included in the fine structure in an area fraction of 70 to 98%, and ferrite is included in an area fraction of 2 to 30%. If the martensite + bainite phase fraction exceeds 98%, the ductility of the steel will be insufficient, the formability, especially deep drawability, will decrease, and if the ferrite fraction exceeds 30%, sufficient ductility will be achieved. Since it can be secured, the moldability is excellent, but there is a problem that the time for the spheroidizing heat treatment is excessively increased.

また、本発明の圧力容器用鋼材は炭化物を含み、このとき、下記関係式1で表される球形度が2以下である炭化物が総炭化物のうち50面積%以上含まれることが好ましい。上限値については特に制限はないが、実際上95面積%程度であり、典型的には85面積%程度である。本発明における炭化物の球形度は、炭化物の形状の球形状への近さを意味し、これは鋼材の硫化物による割れ発生の抵抗性に影響を与える。球形度が2以下である炭化物が総炭化物のうち50面積%未満では、硫化水素応力腐食割れに対する抵抗性を十分に確保することができない。より好ましくは、上記球形度が2以下である炭化物が総炭化物のうち60面積%以上含まれることである。下記式において、「幅」は顕微鏡等で観察される炭化物の二次元像における最も長い径であり、「長さ」は該幅に直行する径を意味する。   Moreover, the steel material for pressure vessels of this invention contains a carbide | carbonized_material, At this time, it is preferable that 50 area% or more of carbide | carbonized_materials whose sphericity represented by the following relational formula 1 is 2 or less is contained among total carbides. The upper limit is not particularly limited, but is actually about 95 area%, typically about 85 area%. The sphericity of the carbide in the present invention means the closeness of the shape of the carbide to the spherical shape, which affects the resistance to cracking due to sulfide in the steel material. If the carbide having a sphericity of 2 or less is less than 50% by area of the total carbide, sufficient resistance to hydrogen sulfide stress corrosion cracking cannot be ensured. More preferably, the carbide having a sphericity of 2 or less is included in 60% by area or more of the total carbides. In the following formula, “width” is the longest diameter in a two-dimensional image of carbide observed with a microscope or the like, and “length” means a diameter perpendicular to the width.

[関係式1]
炭化物の球形度=(炭化物の幅(nm))/(炭化物の長さ(nm))
[Relational expression 1]
Sphericality of carbide = (Carbide width (nm)) / (Carbide length (nm))

上述した有利な組成と微細組織を有する本発明の鋼板は、本発明が属する技術分野で通常の知識を有する者であれば、過度な繰り返し実験をせずに本発明が属する技術分野の通常の知識を用いて容易に製造できる。但し、本発明では、本発明の発明者が見出したより有利な製造方法で上記鋼板を製造する方法を提供する。   The steel sheet of the present invention having the above-described advantageous composition and microstructure is a normal one in the technical field to which the present invention belongs without undue repeated experimentation, if it is a person having ordinary knowledge in the technical field to which the present invention belongs. Can be easily manufactured using knowledge. However, the present invention provides a method for producing the steel sheet by a more advantageous production method found by the inventors of the present invention.

本発明による圧力容器用鋼材は、本発明で提案する成分組成を満たす鋼塊の再加熱−熱間圧延−焼きならし−球状化熱処理を行うことで製造することができ、以下では、上記それぞれの工程条件について詳細に説明する。 Steel for pressure vessels according to the present invention, reheating of the steel ingot satisfying the chemical composition proposed by the present invention - hot rolling - normalizing - can be prepared by performing a spheroidizing heat treatment, in the following, the respective The process conditions will be described in detail.

鋼塊の再加熱
鋼塊の再加熱は、後続して施される熱間圧延を行うために高温で加熱する工程で、1000〜1250℃で行うことが好ましい。
Reheating of a steel ingot Reheating of a steel ingot is preferably performed at 1000 to 1250 ° C. in a process of heating at a high temperature in order to perform subsequent hot rolling.

再加熱温度が1000℃未満では、溶質原子の固溶が困難になり、1250℃を超えると、オーステナイト結晶粒のサイズが粗大になりすぎて鋼材の物性を劣化させるという問題があるため、好ましくない。   If the reheating temperature is less than 1000 ° C, it is difficult to dissolve the solute atoms. If the reheating temperature exceeds 1250 ° C, the size of the austenite crystal grains becomes excessively large and the physical properties of the steel are deteriorated. .

熱間圧延
上記再加熱した鋼塊を熱間仕上げ圧延して熱延鋼板を製造することができ、このとき、仕上げ圧延は750〜1000℃で行うことが好ましい。
Hot rolling The hot-rolled steel sheet can be produced by hot-rolling the reheated steel ingot, and the finish rolling is preferably performed at 750 to 1000 ° C.

仕上げ圧延の際、その温度が750℃未満では、未再結晶域圧延量が多くなりすぎて材質異方性が発生して深絞り性が低下し、また、1000℃を超えると、結晶粒が粗大となり、鋼材の物性が劣化する。   At the time of finish rolling, if the temperature is less than 750 ° C., the amount of non-recrystallized zone rolling becomes too large and material anisotropy occurs and the deep drawability deteriorates. It becomes coarse and the physical properties of the steel deteriorate.

本発明では、上述した温度範囲で仕上げ圧延を行う際、圧延パス当たりの圧延形状比を制御することが好ましい。より具体的には、下記関係式2で表される圧延パス当たりの圧延形状比が0.9〜1.5を満たすことが好ましい。本発明で圧延形状比を制御する理由は、後続する球状化熱処理後に形成される炭化物の形状比を制御するためである。上記圧延形状比が0.9未満では、結晶粒のサイズが粗大化し、また、1.5を超えると、圧延機に負荷がかかることがあるため、上記圧延形状比を0.9〜1.5に制御することが好ましい。より好ましくは、上記圧延形状比を0.95〜1.2に制御することである。   In the present invention, it is preferable to control the rolling shape ratio per rolling pass when performing finish rolling in the temperature range described above. More specifically, it is preferable that the rolling shape ratio per rolling pass represented by the following relational expression 2 satisfies 0.9 to 1.5. The reason for controlling the rolling shape ratio in the present invention is to control the shape ratio of the carbide formed after the subsequent spheroidizing heat treatment. When the rolling shape ratio is less than 0.9, the size of the crystal grains becomes coarse. When the rolling shape ratio exceeds 1.5, a load may be applied to the rolling mill. It is preferable to control to 5. More preferably, the rolling shape ratio is controlled to 0.95 to 1.2.

[関係式2]
圧延形状比=(圧延ロール半径(mm)×圧下量(mm))0.5/(鋼板の平均厚さ(mm))
(ここで、上記鋼板の平均厚さは、仕上げ圧延の入側及び出側における厚さの平均値を意味する。)
[Relational expression 2]
Rolling shape ratio = (rolling roll radius (mm) x reduction amount (mm)) 0.5 / (average thickness of steel sheet (mm))
(Here, the average thickness of the steel sheet means the average value of the thicknesses on the entry side and the exit side of finish rolling.)

焼きならし熱処理及び球状化熱処理
上記したように、熱間圧延して製造した熱延鋼板に対して焼きならし熱処理をすることで、その微細組織をフェライト、ベイナイト及びマルテンサイトの3相複合組織状に形成することができる。このとき、焼きならし条件は特に限定しない。
As normalizing heat treatment and spheroidization heat treatment above, by a normalizing heat treatment on the hot rolled hot-rolled steel sheet was produced, ferrite its microstructure, 3-phase composite structure of bainite and martensite Can be formed. At this time, the conditions sounded burn is not particularly limited.

上記焼きならし熱処理が完了したら、球状化熱処理を行うことが好ましい。これは、深絞りに必要な適切な加工性を付与するためのものである。このとき上記球状化熱処理は、Ac1〜Ac3温度で30分以上、好ましくは30〜90分間行うが、熱処理温度がAc1より低いと、球状化に長時間がかかり、Ac3より高いと、オーステナイトへの相変態が発生して球状化した炭化物が形成し難いという問題がある。 When the baked break heat treatment is completed, it is preferable to perform spheroidizing heat treatment. This is for imparting appropriate workability necessary for deep drawing. At this time, the spheroidizing heat treatment is performed at Ac1 to Ac3 temperature for 30 minutes or more, preferably 30 to 90 minutes. However, if the heat treatment temperature is lower than Ac1, it takes a long time to spheroidize. There is a problem that it is difficult to form spheroidized carbide due to phase transformation.

本発明は、上記焼きならし熱処理によって3相複合組織を有させることで、後続する球状化熱処理の時間を90分以下に短縮させることができる。これは、従来の深絞り用鋼材に必要な球状化熱処理の時間が90分超であったことを考えると、エネルギー及び費用の節減と生産性の側面で非常に重要である。 The present invention, by no three-phase composite structure by the baked break heat treatment, the time of subsequent spheroidizing heat treatment can be reduced to below 90 min. This is very important in terms of energy and cost savings and productivity, considering that the spheroidizing heat treatment time required for conventional steel for deep drawing has exceeded 90 minutes.

上記球状化熱処理まで完了すると、本発明で意図する圧力容器用鋼材、即ち、700MPa以下の引張強度を有する鋼材を製造することができ、これは、深絞り用鋼材として非常に好適に用いることができる。   When the spheroidizing heat treatment is completed, a steel material for a pressure vessel intended in the present invention, that is, a steel material having a tensile strength of 700 MPa or less can be produced, and this can be used very suitably as a steel material for deep drawing. it can.

以下、上記本発明に係る製造方法により製造された圧力容器用鋼材を用いて深絞り製品を製造する方法について詳細に説明する。   Hereinafter, a method for producing a deep drawn product using the steel material for a pressure vessel produced by the production method according to the present invention will be described in detail.

上記圧力容器用鋼材は、深絞り後の引張強度が1200MPa級でなければならない。そのためには、鋼材の内部組織をオーステナイト組織に変態させることが好ましいため、高温で一定時間保持させることが好ましい。より具体的には、高温で焼入れ後に焼戻しする工程を通じて目標の強度を有する深絞り製品を製造することができる。   The steel material for a pressure vessel must have a tensile strength after deep drawing of 1200 MPa class. For that purpose, since it is preferable to transform the internal structure of the steel material into an austenite structure, it is preferable to hold the steel material at a high temperature for a certain period of time. More specifically, a deep drawn product having a target strength can be manufactured through a process of tempering after quenching at a high temperature.

焼入れ(Quenching)
上述したように、深絞り後の鋼材の内部組織をオーステナイト組織に変態させるために850〜950℃で一定時間、好ましくは1.6t+(10〜30分)(t:mm単位で表した鋼材の厚さがtmmであるときにt分間を意味する)間保持することが好ましい。
Quenching
As described above, in order to transform the internal structure of the steel material after deep drawing into an austenite structure, a constant time at 850 to 950 ° C., preferably 1.6 t + (10 to 30 minutes) (t: mm It is preferable to hold for t minutes when the thickness is tmm.

上記保持温度が850℃未満であるか、保持時間が1.6t+10分未満では、固溶溶質元素の再固溶が難しくて強度の確保が困難になり、また、保持温度が950℃を超えるか、保持時間が1.6t+30分超では、結晶粒の成長が起こり、粗大な結晶粒が形成されるに伴って低温靭性が低下するという問題がある。   If the holding temperature is less than 850 ° C. or the holding time is less than 1.6 t + 10 minutes, it is difficult to re-dissolve the solid solution solute element, and it is difficult to ensure the strength. Also, whether the holding temperature exceeds 950 ° C. If the holding time exceeds 1.6 t + 30 minutes, crystal grains grow, and there is a problem that the low temperature toughness decreases as coarse crystal grains are formed.

上述した温度範囲で保持した後、水冷することが好ましい。   It is preferable to cool with water after being held in the temperature range described above.

焼戻し(Tempering)
上記焼入れをした鋼材は、脆性が強くなり得るため、適切な低温靭性を付与するためには、550〜625℃で焼戻しを施すことが好ましい。上記焼戻し温度が550℃未満では、焼戻しの効果が十分でないため、靭性を確保することが困難であり、また、625℃を超えると、強度を確保することが困難となる。
Tempering
Since the quenched steel material may become brittle, it is preferable to perform tempering at 550 to 625 ° C. in order to impart appropriate low temperature toughness. If the tempering temperature is less than 550 ° C., the effect of tempering is not sufficient, so that it is difficult to ensure toughness, and if it exceeds 625 ° C., it is difficult to ensure strength.

本発明により製造された深絞り用圧力容器用鋼材は、深絞りの過程では成形性に優れた低い強度を示すが、成形後には1100〜1200MPaの引張強度を有することができ、50Joules以上の−50℃の低温衝撃靭性を有するため、その活用度が広く、非常に優れた物性を示す。   The steel material for a deep drawing pressure vessel manufactured according to the present invention shows a low strength excellent in formability in the process of deep drawing, but can have a tensile strength of 1100 to 1200 MPa after forming, and is −50 Joules or more − Since it has a low temperature impact toughness of 50 ° C., its utilization is wide and exhibits very good physical properties.

以下、実施例を挙げて本発明をより具体的に説明する。但し、下記実施例は本発明をより詳細に説明するための例示に過ぎず、本発明の権利範囲を限定するためのものではないことに留意すべきである。本発明の権利範囲は、特許請求の範囲に記載された事項とそれから合理的に推論できる事項によって決まる。   Hereinafter, the present invention will be described more specifically with reference to examples. However, it should be noted that the following examples are merely examples for explaining the present invention in more detail and are not intended to limit the scope of rights of the present invention. The scope of the right of the present invention is determined by matters described in the claims and matters that can be reasonably inferred therefrom.

(実施例)
下表1に示した成分組成を有する鋼塊を1150℃で再加熱した後、熱間仕上げ圧延してそれぞれの熱延鋼板に製造した。その後、上記熱延鋼板に焼きならし処理した後、750℃で90分間球状化熱処理を行った。次いで、深絞り処理した後、焼入れ及び焼戻しをしてそれぞれの深絞り製品を製造した。
(Example)
Steel ingots having the composition shown in Table 1 below were reheated at 1150 ° C., and then hot finish rolled to produce each hot rolled steel sheet. Thereafter, the hot-rolled steel sheet was subjected to a normalizing treatment and then subjected to a spheroidizing heat treatment at 750 ° C. for 90 minutes. Next, after deep drawing, each deep drawn product was manufactured by quenching and tempering.

このとき、熱間仕上げ圧延時の圧延温度、圧延形状比、焼入れ及び焼戻し温度は、下表2に示した条件にした。   At this time, the rolling temperature, rolling shape ratio, quenching, and tempering temperature during hot finish rolling were set to the conditions shown in Table 2 below.

Figure 0006152375
Figure 0006152375

Figure 0006152375
Figure 0006152375

Figure 0006152375
(上表3における炭化物の分率(%)は、総炭化物のうち、本発明の関係式1による球形度が2以下である炭化物の分率を示したものである。また、Bはベイナイト、Mはマルテンサイト、Fはフェライトを意味する。)
Figure 0006152375
(Carbide fraction (%) in Table 3 above indicates the fraction of carbides having a sphericity of 2 or less according to the relational expression 1 of the present invention among the total carbides. B is bainite, M stands for martensite and F stands for ferrite.)

上表3に示したように、本発明の成分組成及び製造条件を全て満たす発明材1〜6は、球形度が2以下である炭化物を50%以上含み、降伏強度が1000MPa以上、引張強度が1200MPa以上と強度に優れ、−50℃での衝撃靭性に優れることが分かる。特に、本発明に係る発明材は、SSCC破断時間が200時間以上と硫化水素応力腐食割れに対する抵抗性に非常に優れることが分かる。   As shown in Table 3 above, the inventive materials 1 to 6 that satisfy all the composition and production conditions of the present invention include 50% or more of carbides having a sphericity of 2 or less, a yield strength of 1000 MPa or more, and a tensile strength of It can be seen that the strength is excellent at 1200 MPa or more, and the impact toughness at −50 ° C. is excellent. In particular, it can be seen that the inventive material according to the present invention is extremely excellent in resistance to hydrogen sulfide stress corrosion cracking, with an SSCC fracture time of 200 hours or longer.

一方、圧延形状比が本発明で提案する範囲を満たしていない比較材1〜3は、球形度が2以下である炭化物の分率が40%未満で、SSCCに対する抵抗性が非常に劣位であることが分かる。特に、これらの比較材は、高価のNiを多量に添加しているため、製造費用が高いという短所がある。   On the other hand, the comparative materials 1 to 3 whose rolling shape ratio does not satisfy the range proposed in the present invention have a fraction of carbide having a sphericity of 2 or less and less than 40%, and the resistance to SSCC is very inferior. I understand that. In particular, these comparative materials have a disadvantage of high production costs because a large amount of expensive Ni is added.

Claims (9)

質量%で、炭素(C):0.3〜0.4%、シリコン(Si):0.15〜0.40%、マンガン(Mn):0.4〜1.0%、アルミニウム(Al):0.001〜0.05%、クロム(Cr):0.8〜1.2%、モリブデン(Mo):0.15〜0.80%、ニッケル(Ni):0.1%以下(0%を除く)、カルシウム(Ca):0.0005〜0.0020%、リン(P):0.015%以下、硫黄(S):0.015%以下、残部Fe及び不可避な不純物からなり
状化熱処理後に下記関係式1で表される球形度が2以下である炭化物を総炭化物のうち50面積%以上含む、低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材。
[関係式1]
炭化物の球形度=(炭化物の幅(nm))/(炭化物の長さ(nm))
(ここで、幅は炭化物の二次元像における最も長い径であり、長さは該幅に直行する径を意味する。)
In mass%, carbon (C): 0.3 to 0.4%, silicon (Si): 0.15 to 0.40%, manganese (Mn): 0.4 to 1.0%, aluminum (Al) : 0.001-0.05%, chromium (Cr): 0.8-1.2%, molybdenum (Mo): 0.15-0.80%, nickel (Ni): 0.1% or less (0 %), Calcium (Ca): 0.0005 to 0.0020%, phosphorus (P): 0.015% or less, sulfur (S): 0.015% or less, the balance Fe and inevitable impurities ,
Sphericity represented by the following equation 1 after the sphere Joka heat treatment including carbides is 2 or less than 50 area% of the total carbide, low-temperature toughness and hydrogen sulfide stress corrosion cracking resistance in high pressure vessel steel material.
[Relational expression 1]
Sphericality of carbide = (Carbide width (nm)) / (Carbide length (nm))
(Here, the width is the longest diameter in the two-dimensional image of the carbide, and the length means the diameter perpendicular to the width.)
前記鋼材は、モリブデン(Mo)を0.3〜0.7%さらに限定して含む、請求項1に記載の低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材。   The steel material for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance according to claim 1, wherein the steel material further contains 0.3 to 0.7% of molybdenum (Mo). 前記鋼材は、
球状化熱処理前に、フェライト、ベイナイト及びマルテンサイトの3相複合組織からなり、前記ベイナイト及びマルテンサイトを面積分率で70〜98%含み、フェライトを面積分率で2〜30%含む、請求項1または2に記載の低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材。
The steel material is
Before the spheroidizing heat treatment, it comprises a three-phase composite structure of ferrite, bainite and martensite, the bainite and martensite are included in an area fraction of 70 to 98%, and ferrite is included in an area fraction of 2 to 30%. The steel material for pressure vessels excellent in low-temperature toughness and hydrogen sulfide stress corrosion cracking resistance according to 1 or 2.
前記鋼材は、下記関係式1で表される球形度が2以下である炭化物を総炭化物の60面積%以上含む、請求項1から3の何れか1項に記載の低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材。
[関係式1]
炭化物の球形度=(炭化物の幅(nm))/(炭化物の長さ(nm))(ここで、幅は炭化物の二次元像における最も長い径であり、長さは該幅に直行する径を意味する。)
The low temperature toughness and hydrogen sulfide stress corrosion according to any one of claims 1 to 3, wherein the steel material includes a carbide having a sphericity of 2 or less represented by the following relational expression 1 in an amount of 60 area% or more of the total carbide. Steel for pressure vessels with excellent crack resistance.
[Relational expression 1]
Carbide sphericity = (Carbide width (nm)) / (Carbide length (nm)) (where the width is the longest diameter in the two-dimensional image of the carbide and the length is the diameter perpendicular to the width) Means.)
質量%で、炭素(C):0.3〜0.4%、シリコン(Si):0.15〜0.40%、マンガン(Mn):0.4〜1.0%、アルミニウム(Al):0.001〜0.05%、クロム(Cr):0.8〜1.2%、モリブデン(Mo):0.15〜0.80%、ニッケル(Ni):0.1%以下(0%を除く)、カルシウム(Ca):0.0005〜0.0020%、リン(P):0.015%以下、硫黄(S):0.015%以下、残部Fe及び不可避な不純物からなる鋼塊を1000〜1250℃で再加熱する段階と、
前記再加熱した鋼塊を750〜1000℃で仕上げ圧延して熱延鋼板に製造する段階と、
前記熱延鋼板を焼きならし処理する段階と、
前記焼きならし処理した熱延鋼板をAc1〜Ac3温度で30分以上球状化熱処理する段階と、を含み、
前記仕上げ圧延は下記関係式2で表される圧延パス当たりの圧延形状比が0.9〜1.5を満たすように行い、
球状化熱処理後に下記関係式1で表される球形度が2以下である炭化物を総炭化物のうち50面積%以上含む、低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材の製造方法。
[関係式1]
炭化物の球形度=(炭化物の幅(nm))/(炭化物の長さ(nm))(ここで、幅は炭化物の二次元像における最も長い径であり、長さは該幅に直行する径を意味する。)
[関係式2]
圧延形状比=(圧延ロール半径(mm)×圧下量(mm))0.5/(鋼板の平均厚さ(mm))
(ここで、前記鋼板の平均厚さは、仕上げ圧延の入側及び出側における厚さの平均値を意味する。)
In mass%, carbon (C): 0.3 to 0.4%, silicon (Si): 0.15 to 0.40%, manganese (Mn): 0.4 to 1.0%, aluminum (Al) : 0.001-0.05%, chromium (Cr): 0.8-1.2%, molybdenum (Mo): 0.15-0.80%, nickel (Ni): 0.1% or less (0 %), Calcium (Ca): 0.0005 to 0.0020%, phosphorus (P): 0.015% or less, sulfur (S): 0.015% or less, the balance Fe and steel made of inevitable impurities Reheating the mass at 1000-1250 ° C .;
Finishing and rolling the reheated steel ingot at 750 to 1000 ° C. to produce a hot-rolled steel sheet;
Normalizing the hot-rolled steel sheet;
Subjecting the normalized hot-rolled steel sheet to spheroidizing heat treatment at Ac1 to Ac3 temperature for 30 minutes or more,
The finish rolling is performed so that the rolling shape ratio per rolling pass represented by the following relational expression 2 satisfies 0.9 to 1.5,
Manufacture of steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, containing 50% by area or more of the total carbide of carbides having a sphericity of 2 or less represented by the following relational expression 1 after spheroidizing heat treatment Method.
[Relational expression 1]
Carbide sphericity = (Carbide width (nm)) / (Carbide length (nm)) (where the width is the longest diameter in the two-dimensional image of the carbide and the length is the diameter perpendicular to the width) Means.)
[Relational expression 2]
Rolling shape ratio = (rolling roll radius (mm) x reduction amount (mm)) 0.5 / (average thickness of steel sheet (mm))
(Here, the average thickness of the steel sheet means the average value of the thicknesses on the entry side and the exit side of finish rolling.)
前記鋼塊はモリブデン(Mo)を0.3〜0.7%さらに限定して含む、請求項5に記載の低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材の製造方法。   The said steel ingot is a manufacturing method of the steel material for pressure vessels excellent in the low temperature toughness and hydrogen sulfide stress corrosion cracking resistance of Claim 5 which contains molybdenum (Mo) 0.3-0.7% further limiting. 前記仕上げ圧延は圧延形状比が0.95〜1.2を満たすように行う、請求項5または6に記載の低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材の製造方法。   The method for producing a steel material for a pressure vessel excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance according to claim 5 or 6, wherein the finish rolling is performed so that a rolling shape ratio satisfies 0.95 to 1.2. 前記焼きならし後、フェライト、ベイナイト及びマルテンサイトの3相複合組織を有する、請求項5から7の何れか1項に記載の低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材の製造方法。   The steel material for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance according to any one of claims 5 to 7, which has a three-phase composite structure of ferrite, bainite and martensite after the normalization. Manufacturing method. 請求項1から4の何れか1項の圧力容器用鋼材を深絞りする段階と、
前記深絞り後、850〜950℃で{1.6t+(10〜30)}分(t:mm単位で表した鋼材の厚さ)間保持した後、焼入れ(Quenching)する段階と、
前記焼入れ後、550〜625℃で焼戻し(Tempering)する段階と、
を含む、深絞り製品の製造方法。
Deep drawing the pressure vessel steel according to any one of claims 1 to 4,
After the deep drawing, hold for {1.6t + (10-30)} minutes (t: the thickness of the steel material expressed in mm) at 850 to 950 ° C., and then quenching.
Tempering at 550 to 625 ° C. after the quenching;
A method for manufacturing deep-drawn products.
JP2014260539A 2013-12-25 2014-12-24 Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method Expired - Fee Related JP6152375B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0163344 2013-12-25
KR1020130163344A KR101536478B1 (en) 2013-12-25 2013-12-25 Pressure vessel steel with excellent low temperature toughness and sulfide stress corrosion cracking, manufacturing method thereof and manufacturing method of deep drawing article

Publications (2)

Publication Number Publication Date
JP2015124442A JP2015124442A (en) 2015-07-06
JP6152375B2 true JP6152375B2 (en) 2017-06-21

Family

ID=53535373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260539A Expired - Fee Related JP6152375B2 (en) 2013-12-25 2014-12-24 Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method

Country Status (3)

Country Link
JP (1) JP6152375B2 (en)
KR (1) KR101536478B1 (en)
CN (1) CN104745952B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101889187B1 (en) 2015-12-23 2018-08-16 주식회사 포스코 Nonmagnetic steel having superior hot workability and method for manufacturing the same
KR101867701B1 (en) 2016-11-11 2018-06-15 주식회사 포스코 Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
CN108977731B (en) * 2018-08-10 2020-12-11 宝武集团鄂城钢铁有限公司 High-performance corrosion-resistant steel plate for movable pressure container and manufacturing method thereof
CN109136763A (en) * 2018-09-25 2019-01-04 首钢集团有限公司 One kind homogenizes 485MPa rank stretch-proof stress SSCC performance steel plate and its production method
CN110735080A (en) * 2019-10-10 2020-01-31 南京钢铁股份有限公司 Production method of steel multi-stage special container steel blank
CN115852242B (en) * 2021-09-24 2024-03-08 宝山钢铁股份有限公司 High-temperature high-pressure hydrogen corrosion-resistant thick steel plate and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161118A (en) * 1986-12-24 1988-07-04 Kobe Steel Ltd Production of steel products having excellent sulfide stress corrosion cracking resistance
KR100951248B1 (en) * 2002-12-09 2010-04-05 주식회사 포스코 High tensile-strength steels with 1100MPa grade for deep drawing and method for manufacturing low-temperature and high-pressure vessel using the same
KR100967030B1 (en) * 2007-11-07 2010-06-30 주식회사 포스코 High Tensile Steel for Deep Drawing and Manufacturing Method Thereof
KR101091446B1 (en) * 2008-12-26 2011-12-07 주식회사 포스코 High Strength Steel Plate with Excellent Resistance of Cyclic Pressure for Low-Temperature Pressure Vessel, Manufacturing Method Thereof and Manufacturing Method of Deep Drawing Article
CA2837052C (en) * 2011-05-25 2015-09-15 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
JP2013129879A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp High-strength seamless steel tube for oil well with superior sulfide stress cracking resistance, and method for producing the same
KR101359109B1 (en) * 2011-12-28 2014-02-06 주식회사 포스코 Pressure vessel steel with excellent sulfide stress cracking resistance and low temperature toughness and manufacturing method thereof

Also Published As

Publication number Publication date
KR20150075297A (en) 2015-07-03
CN104745952A (en) 2015-07-01
JP2015124442A (en) 2015-07-06
CN104745952B (en) 2017-04-12
KR101536478B1 (en) 2015-07-13

Similar Documents

Publication Publication Date Title
JP6691219B2 (en) Steel for pressure vessel having excellent hydrogen induced cracking (HIC) resistance and method for producing the same
CA2962472C (en) High-toughness hot-rolled high-strength steel with yield strength of grade 800 mpa and preparation method thereof
CN109957712B (en) Low-hardness X70M pipeline steel hot-rolled plate coil and manufacturing method thereof
JP6152375B2 (en) Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method
JP2021526587A (en) Hot-rolled H-shaped steel with a thick gauge having a yield strength of 500 MPa grade and its manufacturing method
JP5657026B2 (en) High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof
JP2016534230A (en) High hardness hot rolled steel product and method for producing the same
KR101417231B1 (en) Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same
WO2012067474A2 (en) High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
CN113166897B (en) Ultra-high strength steel having excellent cold workability and SSC resistance and method for manufacturing the same
EP3733904A1 (en) Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
CN111218620A (en) High-yield-ratio cold-rolled dual-phase steel and manufacturing method thereof
JP5372944B2 (en) Deep drawing high strength steel and manufacturing method thereof
JP2022510212A (en) High-strength steel with excellent ductility and low-temperature toughness and its manufacturing method
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
KR102164107B1 (en) High strength steel plate having superior elongation percentage and excellent low-temperature toughness, and manufacturing method for the same
KR101568504B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
KR101858857B1 (en) High-strength hot-rolled steel plate having high dwtt toughness at low temperature, and method for manufacturing the same
KR20150074968A (en) Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same
KR102131536B1 (en) Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same
JP2023508314A (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
JP7395750B2 (en) Structural steel materials and their manufacturing method
CN110114490A (en) Thick steel sheet and its manufacturing method with 450MPa grades of tensile strength and excellent hydrogen-induced cracking resistance
KR101185359B1 (en) High strength api hot-rolled steel sheet with low yield ratio and method for manufacturing the api hot-rolled steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6152375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees