KR101304822B1 - Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same - Google Patents

Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same Download PDF

Info

Publication number
KR101304822B1
KR101304822B1 KR1020090127323A KR20090127323A KR101304822B1 KR 101304822 B1 KR101304822 B1 KR 101304822B1 KR 1020090127323 A KR1020090127323 A KR 1020090127323A KR 20090127323 A KR20090127323 A KR 20090127323A KR 101304822 B1 KR101304822 B1 KR 101304822B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
fatigue crack
high strength
comparative example
Prior art date
Application number
KR1020090127323A
Other languages
Korean (ko)
Other versions
KR20110070484A (en
Inventor
조재영
박인규
유승호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090127323A priority Critical patent/KR101304822B1/en
Publication of KR20110070484A publication Critical patent/KR20110070484A/en
Application granted granted Critical
Publication of KR101304822B1 publication Critical patent/KR101304822B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 중량%로, 탄소(C): 0.02~0.10%, 실리콘(Si): 0.01~0.6%, 망간(Mn): 1.8~2.5%, 알루미늄(Al): 0.005~0.5%, 니오븀(Nb): 0.005~0.10%, 보론(B): 5~40ppm, 티타늄(Ti): 0.005~0.1%, 질소(N): 15~150ppm, 인(P): 0.02% 이하, 황(S): 0.01% 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 미세조직은 주상으로서, 베이나이트 래스간 입계 방위차가 55~65도인 Σ3 입계 분율이 20~40%인 베이니틱 페라이트를 포함하며, 항복강도가 690MPa 이상인 피로균열 진전 억제 특성이 우수한 초고강도 강판에 관한 것이다.The present invention is in weight%, carbon (C): 0.02 to 0.10%, silicon (Si): 0.01 to 0.6%, manganese (Mn): 1.8 to 2.5%, aluminum (Al): 0.005 to 0.5%, niobium (Nb) ): 0.005 to 0.10%, boron (B): 5 to 40 ppm, titanium (Ti): 0.005 to 0.1%, nitrogen (N): 15 to 150 ppm, phosphorus (P): 0.02% or less, sulfur (S): 0.01 % Or less, containing residual iron (Fe) and other unavoidable impurities, and the microstructure includes, as a columnar, bainitic ferrite having a grain boundary fraction of 20 to 40% having a grain boundary orientation difference of 55 to 65 degrees between bainite laths, and yielding. The present invention relates to an ultra-high strength steel sheet having excellent fatigue crack propagation suppression property of 690 MPa or more.

피로균열, 초고강도, 베이니틱 페라이트, Σ3 Fatigue Crack, Ultra High Strength, Bainitic Ferrite, Σ3

Description

피로균열 진전 억제 특성이 우수한 초고강도 강판 및 그 제조방법{ULTRA HIGH STRENGTH STEEL PLATE HAVING EXCELLENT FATIGUE CRACK ARRESTABILITY AND MANUFACTURING METHOD THE SAME}ULTRA HIGH STRENGTH STEEL PLATE HAVING EXCELLENT FATIGUE CRACK ARRESTABILITY AND MANUFACTURING METHOD THE SAME

본 발명은 초대형 용접 구조물에 사용되는 강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 반복되는 응력에 대한 피로균열이 발생할 때, 이러한 피로균열의 진전 속도를 저하시켜 피로균열 억제 특성이 우수한 고강도 강판 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a steel sheet used in a super large welded structure and a method of manufacturing the same, and more particularly, when fatigue cracking occurs under repeated stresses, a high strength steel sheet having excellent fatigue crack suppression characteristics by lowering the growth rate of such fatigue cracks. And to a method of manufacturing the same.

최근들어 강구조물의 경우 점점 초대형화되고 있는 추세이며, 이러한 경향에 맞추어 고강도 강재의 사용도 늘어나고 있다. 강재의 강도가 증가할수록 균열 주위에 집중되는 응력도 동시에 증가하므로 강재의 균열 전파 속도도 함께 증가하는 문제가 있다.In recent years, steel structures are becoming increasingly large in size, and the use of high-strength steels is increasing according to this trend. As the strength of the steel increases, the stress concentrated around the crack also increases, so the crack propagation speed of the steel also increases.

강재의 피로 과정은 응력 집중부에서 균열이 발생하고, 이렇게 발생된 균열이 전파되는데, 특히, 용접 구조물의 경우는 용접금속 내부에 결함부가 다수 존재 하고 있어 피로 균열의 발생을 완전하게 방지하는 것은 실제로 불가능한 일이다. 따라서 용접 구조물의 피로수명을 향상시키기 위해서는 균열 발생 그 자체를 방지하는 것 보다는 이미 존재하고 있는 상태로부터 균열 진전 속도를 늦추는 것이 중요한 일이다.In the fatigue process of steel, cracks are generated at stress concentration and cracks are propagated. Especially, in the case of welded structures, there are many defects inside the weld metal, so it is practical to completely prevent the occurrence of fatigue cracks. It is impossible. Therefore, in order to improve the fatigue life of the welded structure, it is important to slow the crack growth rate from the existing state rather than to prevent the crack generation itself.

이러한 기술로는 일본 특개 2000-17379호를 들 수 있는데, 이 기술은 강판 표면 수직 방향을 ND라고 하였을 때, 페라이트 결정의 (100)면이 ND 방향과 평행한 방향을 갖는 결정립과, 페라이트 결정의 (111)면이 ND와 평행한 방위를 갖는 결정립 사이의 경계가 균열의 진전 방향을 따라 적어도 30㎛에 1개소 이상 가로지르거나 강판 표면에 평행한 측정면에서 페라이트 (111)면 분율과 (100)면 분율의 비가 1.25~2.0가 되도록 함으로써 피로균열 진전 억제 특성이 개선된 강판에 관한 것이나, 상기 강판의 미세조직은 페라이트를 주조직으로 하여, 인장강도가 500MPa 이하 정도밖에 되지 못하여 문제가 있다. Japanese Patent Application Laid-Open No. 2000-17379 describes such a technique. When this technique is referred to as ND as the vertical direction of the steel plate surface, crystal grains in which the (100) plane of the ferrite crystal has a direction parallel to the ND direction, The boundary between grains whose (111) planes have an orientation parallel to ND is equal to the ferrite (111) plane fraction and (100) in the measurement plane that crosses at least one place at least 30 μm along the crack propagation direction or is parallel to the steel plate surface. The ratio of the ratio of the surface fraction to 1.25 to 2.0 relates to a steel sheet having improved fatigue crack propagation suppression characteristics.

본 발명은 용접 구조물에 반복 응력이 가해져서 발생하는 피로균열의 진전속도를 늦춘 피로균열 억제 특성이 우수한 초고강도 강판 및 그 제조방법을 제공하고자 한다. An object of the present invention is to provide an ultra high strength steel sheet having excellent fatigue crack suppression characteristics and a method of manufacturing the same, which slow down the growth rate of fatigue cracks generated by repeated stress applied to the weld structure.

본 발명은 일 구현례로서, 중량%로, 탄소(C): 0.02~0.10%, 실리콘(Si): 0.01~0.6%, 망간(Mn): 1.8~2.5%, 알루미늄(Al): 0.005~0.5%, 니오븀(Nb): 0.005~0.10%, 보론(B): 5~40ppm, 티타늄(Ti): 0.005~0.1%, 질소(N): 15~150ppm, 인(P): 0.02% 이하, 황(S): 0.01% 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 미세조직은 주상으로서, 베이나이트 래스간 입계 방위차가 55~65도인 Σ3 입계 분율이 20~40%인 베이니틱 페라이트를 포함하며, 항복강도가 690MPa 이상인 피로균열 진전 억제 특성이 우수한 초고강도 강판을 제공한다.In one embodiment, the present invention provides, in weight percent, carbon (C): 0.02 to 0.10%, silicon (Si): 0.01 to 0.6%, manganese (Mn): 1.8 to 2.5%, aluminum (Al): 0.005 to 0.5 %, Niobium (Nb): 0.005 to 0.10%, boron (B): 5 to 40 ppm, titanium (Ti): 0.005 to 0.1%, nitrogen (N): 15 to 150 ppm, phosphorus (P): 0.02% or less, sulfur (S): 0.01% or less, containing residual iron (Fe) and other unavoidable impurities, and the microstructure is a columnar, bainitic ferrite having a grain boundary fraction of 20 to 40% having a grain boundary orientation difference of 55 to 65 degrees between bainite laths. It includes, and provides an ultra-high strength steel sheet excellent in fatigue crack propagation suppression properties of yield strength of 690MPa or more.

상기 강판은 크롬(Cr): 0.05~1.0%, 몰리브덴(Mo): 0.01~1.0%, 니켈(Ni): 0.01~2.0%, 구리(Cu): 0.01~1.0% 및 바나듐(V): 0.005~0.3% 중 1종 또는 2종 이상을 추가적으로 포함할 수 있다.The steel sheet is chromium (Cr): 0.05 ~ 1.0%, molybdenum (Mo): 0.01 ~ 1.0%, nickel (Ni): 0.01 ~ 2.0%, copper (Cu): 0.01 ~ 1.0% and vanadium (V): 0.005 ~ It may further comprise one or two or more of 0.3%.

상기 강판은 1㎛ 이하의 도상 마르텐사이트를 1%이하 포함할 수 있다.The steel sheet may include 1% or less of island-like martensite of 1 μm or less.

상기 강판의 피로균열 진전 속도는 2.5*10-5㎜/cycle 이하인 것이 바람직하 다.The fatigue crack growth rate of the steel sheet is preferably 2.5 * 10 -5 mm / cycle or less.

본 발명은 다른 구현례로서, 중량%로, 탄소(C): 0.02~0.10%, 실리콘(Si): 0.01~0.6%, 망간(Mn): 1.8~2.5%, 알루미늄(Al): 0.005~0.5%, 니오븀(Nb): 0.005~0.10%, 보론(B): 5~40ppm, 티타늄(Ti): 0.005~0.1%, 질소(N): 15~150ppm, 인(P): 0.02% 이하, 황(S): 0.01% 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하는 슬라브를 1050~1250℃에서 재가열하는 단계; 상기 재가열한 슬라브를 오스테나이트 재결정온도(Tnr)~1250℃에서 조압연하는 단계; 상기 조압연된 강판을 베이나이트 변태 시작온도(Bs)~Tnr 범위에서 사상압연하는 단계; 및 상기 사상압연된 강판을 5℃/s 이상의 냉각속도로 250℃~베이나이트 변태 종료온도(Bf)에서 냉각종료하는 냉각단계를 포함하는 피로균열 진전 억제 특성이 우수한 초고강도 강판의 제조방법을 제공한다.As another embodiment of the present invention, in weight%, carbon (C): 0.02 to 0.10%, silicon (Si): 0.01 to 0.6%, manganese (Mn): 1.8 to 2.5%, aluminum (Al): 0.005 to 0.5 %, Niobium (Nb): 0.005 to 0.10%, boron (B): 5 to 40 ppm, titanium (Ti): 0.005 to 0.1%, nitrogen (N): 15 to 150 ppm, phosphorus (P): 0.02% or less, sulfur (S): reheating the slab containing 0.01% or less, balance iron (Fe) and other unavoidable impurities at 1050-1250 ° C .; Roughly rolling the reheated slab at an austenite recrystallization temperature (Tnr) ˜1250 ° C .; Finishing the roughly rolled steel sheet in the range of bainite transformation start temperature (Bs) to Tnr; And a cooling step of cooling the finishing rolled steel sheet at a cooling rate of 250 ° C. to bainite transformation temperature (Bf) at a cooling rate of 5 ° C./s or more, to provide an ultra-high strength steel sheet having excellent fatigue crack growth suppression characteristics. do.

본 발명은 피로균열 진전속도가 2*10-5㎜/cycle 이하이고 항복강도는 690MPa이상이며, 인장강도는 800MPa 이상인 강판을 제공할 수 있다.The present invention may provide a steel sheet having a fatigue crack growth rate of 2 * 10 -5 mm / cycle or less, a yield strength of 690 MPa or more, and a tensile strength of 800 MPa or more.

본 발명은 강판의 성분계를 제어하고, 압연 후 냉각종료온도를 제어하여, 주 상으로서, 베이나이트 래스간 입계 방위차가 55~65도인 Σ3 입계 분율이 20~40%이상인 베이니틱 페라이트를 형성함으로서, 피로균열의 진전속도를 저하시킨 초고강도 강판이다. The present invention controls the component system of the steel sheet and controls the cooling end temperature after rolling to form bainitic ferrite having a Σ3 grain boundary fraction of 55 to 65 degrees having a grain boundary orientation difference between bainite laths as a main phase, Ultra-high strength steel sheet with reduced fatigue crack propagation speed.

베이나이트 래스 간의 입계 방위차가 60도 전후인 Σ3 입계의 경우 고경각입계이면서도 입계의 계면에너지가 낮아서 매우 안정한 입계이다. 피로균열이 진전하다 상기 입계를 만나면, 낮은 계면에너지는 저항 역할을 하게 된다. 따라서, 피로균열이 진전하기 위하여는 높은 파괴에너지가 필요하게 되며, 상기 입계를 끊고 진전하기 어렵게 된다. 상기 Σ3 입계로 이루어진 조직의 경우 반복응력에 의해서 발생하는 피로균열의 전파를 억제하는 역할을 한다.The grain boundary orientation difference between the bainite laths at around 60 degrees is a very stable grain boundary because the interfacial energy at the grain boundary is high and the grain boundary is low. Fatigue Cracks Advance When encountering the grain boundaries, low interfacial energy acts as a resistance. Therefore, in order for fatigue crack to progress, high breakdown energy is required, and it becomes difficult to break the grain boundary and progress. In the case of the Σ3 grain boundary, the tissue plays a role of suppressing the propagation of fatigue cracks caused by repeated stress.

도1에서 나타낸 것과 같이, (a)는 종래의 제조방법에 의해 제조된 래스 타입의 베이나이트의 광학현미경 사진으로서, 방위차가 5도 이내로 작은 래스들로 이루어져 있으며, 저온(-40℃)에서 샤르피 충격 시험을 행하였을 때 (b)와 같이 취성 파단을 나타낸다. 이에 반하여, (c)는 본 발명에 의해 제조된 베이니틱 페라이트 조직의 광학현미경 사진으로서, 베이나이트 래스 간의 입계 방위차가 55~65도인 Σ3 입계로 이루어지고, 저온(-40℃)에서 샤르피 충격 시험을 행하였을 때 (d)와 같이, 연성 파단을 나타내는 특성을 갖는다. 따라서, 본 발명의 베이니틱 페라이트 조직은 종래의 베이나이트 조직에 비하여 피로균열이 우수할 뿐만 아니라, 저온인성도 우수하다. As shown in FIG. 1, (a) is an optical micrograph of a bainite of a lath type manufactured by a conventional manufacturing method, and has an orientation difference of less than 5 degrees, and a charpy at low temperature (-40 ° C). When the impact test is carried out, brittle fracture is shown as in (b). On the contrary, (c) is an optical micrograph of the bainitic ferrite structure prepared according to the present invention, which is composed of Σ3 grain boundaries having a grain boundary orientation difference of 55 to 65 degrees between bainite laths, and a Charpy impact test at low temperature (-40 ° C). When (d) is carried out, it has the property of exhibiting soft fracture. Therefore, the bainitic ferrite structure of the present invention not only has excellent fatigue cracking but also low temperature toughness as compared with the conventional bainite structure.

이하, 본 발명 강판의 성분계에 대하여 설명한다.Hereinafter, the component system of the steel sheet of the present invention will be described.

탄소(C): 0.02~0.10중량%Carbon (C): 0.02 to 0.10 wt%

탄소는 본 발명에서 기지조직으로 베이니틱 페라이트를 형성시키고, 도상 마르텐사이트의 결정립 크기, 분율 등에 큰 영향을 주는 원소이다. 탄소의 함량이 0.02중량% 미만인 경우에는 침상형 베이니틱 페라이트 형성을 방해하여 강재의 강도를 저하시킨다. 그러나, 탄소의 함량이 0.10중량%를 초과하는 경우에는 저온인성을 저하시키고, 상기 도상 마르텐사이트의 분율이 1%를 초과하게 된다. Carbon is an element that forms bainitic ferrite as a matrix structure in the present invention and has a great influence on grain size, fraction, and the like of the martensite phase. If the content of carbon is less than 0.02% by weight, the formation of acicular bainitic ferrite is prevented and the strength of the steel is lowered. However, when the content of carbon exceeds 0.10% by weight, low-temperature toughness is lowered, and the fraction of the island martensite exceeds 1%.

실리콘(Si): 0.01~0.6중량%Silicon (Si): 0.01-0.6 wt%

실리콘은 탈산제로 사용되고, 강도 향상에 유용한 원소이다. 또한, 실리콘은 도상 마르텐사이트의 안정성을 증가시켜, 저탄소강에서도 도상 마르텐사이트의 형성시킬 수 있어서 강도향상에는 도움이 되나 인성저하를 초래한다. 실리콘의 함량이 0.01중량% 미만인 경우에는 이러한 효과가 미미하다. 그러나, 0.6중량%를 초과하는 경우에는 저온인성 및 용접성이 저하된다. Silicone is used as a deoxidizer and is a useful element for improving strength. In addition, silicon increases the stability of the phase martensite and can form the phase martensite even in a low carbon steel, thereby improving strength but causing toughness. This effect is insignificant when the content of silicon is less than 0.01% by weight. However, when it exceeds 0.6 weight%, low-temperature toughness and weldability will fall.

망간(Mn): 1.8~2.5중량%Manganese (Mn): 1.8-2.5 wt%

망간은 고용강화에 의해 강의 강도를 향상시킬 수 있는 원소로서, 본 발명에서 이러한 효과를 나타내기 위하여는 1.8중량% 이상 포함되는 것이 바람직하다. 그 러나, 2.5중량%를 초과하는 경우에는 경화능이 지나치게 높아져 용접부의 인성을 크게 저하시킬 수 있다. Manganese is an element capable of improving the strength of steel by solid solution strengthening, and in order to exhibit such an effect in the present invention, it is preferable to be included in an amount of 1.8 wt% or more. However, when it exceeds 2.5 weight%, hardenability may become high too much and the toughness of a weld part may fall significantly.

알루미늄(Al): 0.005~0.5중량%Aluminum (Al): 0.005 to 0.5 wt%

알루미늄은 용강의 탈산제로 사용되는 원소로서, 본 발명에서 이러한 효과를 나타내기 위하여는 0.005중량% 이상 포함되는 것이 바람직하다. 그러나, 0.5중량%를 초과하는 경우에는 연속주조시 노즐막힘이 발생할 수 있다. 다만, 고용된 알루미늄은 도상 마르텐사이트를 형성에 도움을 주므로, 상기 알루미늄 함량의 하한은 0.01중량%로 한정하는 것이 보다 바람직하다.Aluminum is an element used as a deoxidizer of molten steel, and in order to exhibit such an effect in the present invention, it is preferably included at least 0.005% by weight. However, if it exceeds 0.5% by weight, nozzle clogging may occur during continuous casting. However, since the solid solution of aluminum helps to form island martensite, the lower limit of the aluminum content is more preferably limited to 0.01% by weight.

니오븀(Nb): 0.005~0.1중량%Niobium (Nb): 0.005 to 0.1 wt%

니오븀은 TMCP강의 제조에 있어서, 가장 중요한 원소이며, NbC 또는 NbCN의 형태로 석출되어 모재 및 용접부의 강도를 크게 향상시킬 수 있는 원소이다. 또한, 고온으로 재가열시 고용된 니오븀은 오스테나이트의 재결정을 억제하고 페라이트 또는 베이나이트의 변태를 억제하여 조직을 미세하게 제어할 수 있다. 그리고, 조압연 후 슬라브가 냉각될 때 낮은 냉각 속도로도 베이나이트를 형성하게 할 수 있으며, 최종 압연후 냉각시 오스테나이트의 안정성을 크게 높여 낮은 냉각속도에서도 도상 마르텐사이트 행성을 촉진하는 역할을 할 수 있다. 니오븀의 함량이 0.005중량% 미만인 경우에는 이러한 효과가 미미하다. 반면에, 0.1중량%를 초과하는 경우에는 강재의 모서리부에 취성크랙을 야기한다. Niobium is the most important element in the production of TMCP steel, and is an element that can be precipitated in the form of NbC or NbCN to greatly improve the strength of the base metal and the welded portion. In addition, niobium dissolved in reheating at a high temperature can suppress the recrystallization of austenite and suppress the transformation of ferrite or bainite to finely control the tissue. In addition, when slab is cooled after rough rolling, bainite may be formed even at a low cooling rate, and it greatly increases the stability of austenite during cooling after the final rolling, and may play a role in promoting the martensite planet even at a low cooling rate. Can be. This effect is insignificant when the content of niobium is less than 0.005% by weight. On the other hand, when it exceeds 0.1% by weight, brittle cracks are caused at the corners of the steel.

보론(B): 5~40ppmBoron (B): 5-40 ppm

보론은 경화능 향상원소이며, 저가의 원소로서, 본 발명에서 경화능을 향상시키기 위하여 5ppm 이상 포함되는 것이 바람직하다. 그러나, 40ppm 을 초과하는 경우네는 Fe23(CB)6을 형성하여 오히려 경화능이 저하되며, 저온인성도 크게 저한된다. Boron is an element for improving hardenability and is an inexpensive element, and preferably 5 ppm or more in order to improve hardenability in the present invention. However, when it exceeds 40 ppm, yes forms Fe 23 (CB) 6 and rather curability falls, and low-temperature toughness also falls large.

티타늄(Ti): 0.005~0.1중량%Titanium (Ti): 0.005 to 0.1 wt%

티타늄은 슬라브 재가열시 결정립의 성장을 억제하며, 저온인성을 크게 향상시킬 수 있는 원소로서, 본 발명에서 이러한 효과를 나타내기 위하여는 0.005중량% 이상 포함되는 것이 바람직하다. 그러나, 0.1중량%를 초과하는 경우에는 연주시 노즐막힘이 발생하고 저온인성이 저하된다. Titanium is an element that suppresses the growth of crystal grains upon reheating the slab and greatly improves low temperature toughness. In order to exhibit such an effect in the present invention, titanium is preferably included by 0.005% by weight or more. However, when it exceeds 0.1 weight%, nozzle clogging occurs at the time of performance, and low-temperature toughness falls.

질소(N):15~150ppmNitrogen (N): 15-150ppm

질소는 강의 강도를 증가시키지만 인성을 감소시키는 원소이다. 질소의 함량이 15ppm 미만인 경우에는 제강부하를 증가시키고, 150ppm을 초과하는 경우에는 강판의 인성이 저하된다.Nitrogen is an element that increases the strength of steel but decreases its toughness. When the nitrogen content is less than 15 ppm, the steelmaking load is increased. When the nitrogen content is more than 150 ppm, the toughness of the steel sheet is lowered.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 철강제조과정에서는 원 료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remainder of the present invention is iron (Fe). However, in the normal steel manufacturing process, impurities that are not intended from raw materials or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.

다만, 그 중 인 및 황은 일반적으로 많이 언급되는 불순물이기 때문에 이에 대하여 간략히 설명하면 다음과 같다.However, since phosphorus and sulfur are generally mentioned impurities, the following briefly describes them.

인(P): 0.02중량% 이하Phosphorus (P): 0.02 wt% or less

인은 불가피하게 함유되는 불순물로써, 강 중에 포함되어 인성을 저하시키므로, 가능한 한 낮게 제어하는 것이 바람직하다. 이론상 인의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 인 함량의 상한은 0.02중량%로 한정하는 것이 바람직하다.Phosphorus is an impurity contained inevitably and is contained in steel to lower toughness. Therefore, it is preferable to control phosphorus as low as possible. In theory, the phosphorus content is advantageously limited to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the phosphorus content is preferably limited to 0.02% by weight.

황(S): 0.01중량% 이하 Sulfur (S): 0.01 wt% or less

황은 불가피하게 함유되는 불순물로써, 망간과 반응하여 MnS를 형성하여 저온인성을 저하시키므로 그 함량을 최대한 억제하는 것이 바람직하다. 이론상 황의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서 상기 황 함량의 상한은 0.01중량%로 한정하는 것이 바람직하다.Sulfur is inevitable impurity, and reacts with manganese to form MnS, which lowers the low temperature toughness. In theory, the sulfur content is advantageously limited to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, the upper limit of the sulfur content in the present invention is preferably limited to 0.01% by weight.

더불어, 본 발명의 강재는 하기 설명하는 크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 구리(Cu) 및 바나듐(V) 중 1종 또는 2종 이상의 원소를 추가적으로 첨가하는 경우 본 발명의 효과를 더욱 향상시킬 수 있다.In addition, the steel material of the present invention is added when one or two or more elements of chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu) and vanadium (V) to be described below additionally The effect can be further improved.

크롬(Cr): 0.05~1.0중량%Chromium (Cr): 0.05-1.0 wt%

크롬은 경화능을 증가시켜 강재의 강도를 증가시킬 수 있는 원소로서, 본 발명에서 이러한 효과를 나타내기 위하여는 0.05중량% 이상 포함되는 것이 바람직하다. 그러나, 1.0중량%를 초과하는 경우에는 용접성을 저하시킨다. Chromium is an element that can increase the strength of steel by increasing the hardenability, and in order to exhibit such an effect in the present invention, it is preferably included 0.05% by weight or more. However, when it exceeds 1.0 weight%, weldability will fall.

몰리브덴(Mo): 0.01~1.0중량%Molybdenum (Mo): 0.01-1.0 wt%

몰리브덴은 경화능을 크게 향상시키고, 페라이트의 생성을 억제하여 강도를 크게 향상시킬 수 있는 원소로서, 본 발명에서 이러한 효과를 나타내기 위하여는 0.01중량% 이상 포함되는 것이 바람직하다. 그러나, 1.0중량%를 초과하는 경우에는 용접부의 경도를 과도하게 증가시켜 인성을 저해한다. Molybdenum is an element capable of greatly improving the hardenability, suppressing the formation of ferrite, and greatly improving the strength. In order to exhibit such an effect in the present invention, it is preferable to include 0.01 wt% or more. However, when it exceeds 1.0 weight%, the hardness of a weld part will be excessively increased and toughness will be inhibited.

니켈(Ni): 0.01~2.0중량% Nickel (Ni): 0.01-2.0 wt%

니켈은 모재의 강도와 인성을 동시에 향상시킬 수 있는 원소로서, 본 발명에서 이러한 효과를 나타내기 위하여는 0.01중량% 이상 포함되는 것이 바람직하다. 그러나, 2.0중량%를 초과하는 경우에는 경제성 및 용접성이 저하된다.Nickel is an element capable of improving the strength and toughness of the base material at the same time. In order to exhibit such an effect in the present invention, it is preferably included 0.01 wt% or more. However, when it exceeds 2.0 weight%, economic efficiency and weldability will fall.

구리(cu): 0.01~1.0중량% Copper (cu): 0.01 ~ 1.0 wt%

구리는 모재의 인성저하를 최소화하고 동시에 강도를 향상시킬 수 있는 원소로서, 본 발명에서 이러한 효과를 나타내기 위하여는 0.01중량% 이상 포함되는 것이 바람직하다. 그러나, 1.0중량%를 초과하는 경우에는 제품표면의 품질을 크게 저하시킬 수 있다.Copper is an element capable of minimizing toughness reduction of the base metal and at the same time improving strength, and in order to exhibit such an effect in the present invention, it is preferably included 0.01 wt% or more. However, when it exceeds 1.0 weight%, the quality of a product surface can be greatly reduced.

바나듐(V): 0.005~0.3중량% Vanadium (V): 0.005-0.3 wt%

바나듐은 다른 합금원소에 비하여 고용되는 온도가 낮으며, 용접 열영향부에 석출되어 강도의 하락을 방지할 수 있는 원소로서, 본 발명에서 이러한 효과를 나타내기 위하여는 0.005중량% 이상 포함되는 것이 바람직하다. 그러나, 0.3중량%를 초과하는 경우에는 강재의 인성이 저하된다. Vanadium is a low solubility temperature compared to other alloying elements, is an element that can be deposited in the heat affected zone to prevent a drop in strength, in order to exhibit such an effect in the present invention is preferably included at least 0.005% by weight. Do. However, when it exceeds 0.3 weight%, the toughness of steel materials will fall.

상술한 성분계를 가지는 강재로서, 피로균열 진전 억제 특성이 뛰어난 강재가 되기 위한 바람직한 조건으로 강재의 미세조직에 대하여 한정할 필요가 있다. 본 발명 강재의 조직은 베이니틱 페라이트 단상이거나 도상 마르텐사이트가 일부 포함될 수 있다. 여기서 베이니틱 페라이트의 베이나이트 래스간의 입계 방위차가 55~65도인 Σ3 입계 분율이 20% 이상인 것이 바람직하다. Σ3 입계는 이론상 60도 전후의 방위차를 나타내는데, 55~65도의 범위내의 Σ3 입계는 동일한 입계특성을 나타내어 본 발명에서 유사한 균열진전 억제 특성을 나타낼 수 있다. 따라서, 본 발명에서 Σ3 입계의 방위차는 55~65도로 한정한다. 55~65도인 Σ3 입계 분율이 20% 이상인 베이니틱 페라이트를 포함하는 경우 응력을 반복적으로 받더라도 피로균열 전진 속도가 2.5*10-5㎜/cycle 이하로 제어할 수 있다. 그리고, 본 발명의 제조 공정상 Σ3 입계 분율의 상한은 40%로 한정된다. 도상 마르텐사이트가 포함되면 피로균열이 안정한 Σ3 입계를 통과하기 용이하므로, 도상 마르텐사이트가 적게 포함될수록 바람직하며, 본 발명에서 상기 도상 마르텐사이트는 면적분율로 1%이하로 포함되는 것이 바람직하다. 또한, 그 결정립 크기가 1㎛를 초과하는 경우에는 결정립이 지나치게 조대해지고, 이로 인하여 충격인성에 취약한 바운더리가 형성되므로, 그 결정립의 크기는 1㎛이하로 한정하는 것이 바람직하다.As a steel having the above-described component system, it is necessary to limit the microstructure of the steel to preferable conditions for becoming a steel having excellent fatigue crack growth suppression characteristics. The structure of the steel of the present invention may be a bainitic ferrite single phase or may contain some phase martensite. The grain boundary orientation difference between the bainitic laths of bainitic ferrite is preferably from 55% to 65 °, and the Σ3 grain boundary fraction is preferably 20% or more. The Σ3 grain boundary theoretically exhibits an orientation difference around 60 degrees, and the Σ3 grain boundary within the range of 55 to 65 degrees exhibits the same grain boundary characteristics and thus may exhibit similar crack growth suppression characteristics in the present invention. Therefore, in the present invention, the azimuth difference between Σ3 grain boundaries is limited to 55 to 65 degrees. In the case of including bainitic ferrite having a Σ3 grain boundary fraction of 55 to 65 degrees of 20% or more, the fatigue crack propagation rate can be controlled to be 2.5 * 10 -5 mm / cycle or less even under repeated stress. In addition, in the manufacturing process of this invention, the upper limit of (Sigma) 3 grain fraction is limited to 40%. When the phase martensite is included, the fatigue crack is easily passed through the Σ3 grain boundary, so that the smaller the phase martensite is included, the more preferably the phase martensite is included in an area fraction of 1% or less. In addition, when the grain size exceeds 1 µm, the grains become excessively coarse, and thus, a boundary that is vulnerable to impact toughness is formed. Therefore, the grain size is preferably limited to 1 µm or less.

또한, 도2에 나타난 바와 같이, 본 발명의 냉각종료온도에 따라 55~65도인 Σ3 입계 분율이 20~40%를 얻을 수 있고, 피로균열 진전 속도는 2.5*10-5㎜/cycle 이하로 제어할 수 있다. 또한, 본 발명의 강판은 상기와 같은 조직 특성에 의하여 항복강도 690MPa 이상, 인장강도 800MPa 이상으로 제어할 수 있다.In addition, as shown in Figure 2, depending on the cooling end temperature of the present invention can obtain a Σ3 grain boundary fraction of 20 to 40% of 55 ~ 65 degrees, fatigue crack growth rate is controlled to 2.5 * 10 -5 mm / cycle or less can do. In addition, the steel sheet of the present invention can be controlled to yield strength of 690MPa or more, tensile strength of 800MPa or more by the above structure characteristics.

상술한 바와 같은 본 발명의 목적을 충족하는 강재를 제조하기 위하여 본 발명자들에 의해 도출된 가장 바람직한 방법에 대하여 아래에서 설명한다.The most preferred method elicited by the present inventors for the production of steels meeting the objects of the present invention as described above is described below.

본 발명의 제조방법은 개략적으로는 본 발명의 강 조성을 갖는 슬라브를 가열한 후, 상기 가열된 슬라브를 오스테나이트 재결정영역에서 1회 또는 2회 이상의 다단계 압연한 후, 상기 오스테나이트 재결정온도보다 낮고 오스테나이트가 페라이트로 변태하는 온도(Ar3) 보다는 높은 온도에서 1회 또는 2회 이상의 다단계로 마무리 압연을 실시한 후 5℃/s 이상의 냉각속도로 냉각하여 250℃~베이나이트 변태 종료 온도(Bf)에서 냉각종료한다.In the manufacturing method of the present invention, after heating a slab having a steel composition of the present invention, the heated slab is subjected to one or two or more steps of multi-stage rolling in an austenite recrystallization zone, and then lower than the austenite recrystallization temperature. After finishing rolling in one or two or more multi-stages at a temperature higher than the temperature at which the nit transforms into ferrite (Ar3), it is cooled at a cooling rate of 5 ° C / s or more and cooled at 250 ° C to bainite transformation end temperature (Bf). Quit.

이하, 각 단계별 상세한 조건에 대하여 설명한다.Hereinafter, detailed conditions of each step will be described.

슬라브 재가열 온도: 1050~1250℃Slab reheating temperature: 1050 ~ 1250 ℃

본 발명의 강재의 재가열 온도는 1050℃ 이상으로 하는 것이 바람직한데, 주조중에 형성된 티타늄 및 니오븀의 탄질화물을 고용시키기 위함이다. 다만, 과다하게 높은 온도로 재가열할 경우에는 오스테나이트가 조대화될 우려가 있으므로, 상기 재가열온도는 1250℃ 이하인 것이 바람직하다.The reheating temperature of the steel of the present invention is preferably at least 1050 ° C, in order to solidify the carbonitrides of titanium and niobium formed during casting. However, when reheating excessively high temperature, austenite may coarsen, so the reheating temperature is preferably 1250 ° C or lower.

조압연: Tnr~1250℃Rough rolling: Tnr ~ 1250 ℃

상기와 같이 재가열된 슬라브는 그 형상의 조정을 위해 가열 후 조압연을 실시한다. 압연 온도는 오스테나이트의 재결정이 멈추는 온도(Tnr) 이상으로 한다. 압연에 의해 주조중에 형성된 덴드라이트 등의 주조조직을 파괴하고 오스테나이트의 크기를 작게하는 효과를 얻을 수 있다.The slab reheated as described above is subjected to rough rolling after heating to adjust its shape. The rolling temperature is at least the temperature Tnr at which recrystallization of austenite stops. By rolling, the casting structure such as dendrites formed during casting can be destroyed and the size of austenite can be reduced.

사상압연: Bs~TnrFinish rolling: Bs ~ Tnr

조압연된 강판의 오스테나이트 조직에 불균일 미세조직을 도입하기 위한 방법으로 사상 압연을 실시한다. 압연온도는 베이나이트 변태 시작온도(Bs) 이상 오스테나이트 재결정온도(Tnr)이하로 제한하는 것이 바람직하며 재결정온도를 초과하는 경우에는 오스테나이트의 크기가 조대화된다.Finish rolling is performed by a method for introducing a nonuniform microstructure into an austenite structure of a roughly rolled steel sheet. The rolling temperature is preferably limited to the bainite transformation start temperature (Bs) or more than the austenite recrystallization temperature (Tnr). When the recrystallization temperature is exceeded, the size of the austenite becomes coarse.

압연 후 냉각 조건 : 5℃/s 이상의 냉각속도로 250℃~Bf온도에서 냉각종료Cooling condition after rolling: Cooling finish at 250 ℃ ~ Bf temperature with cooling speed over 5 ℃ / s

본 발명의 냉각 조건은 본 발명의 주요한 특징 중의 하나로서, 5℃/s 이상의 냉각 속도로 250℃~Bf온도에서 냉각을 종료한다. 이러한 냉각 조건에 의하면, 강재의 미세조직은 베이니틱 페라이트가 주상으로 생성될 수 있다. Bf 온도를 초과하여 냉각이 종료되는 경우에는 베이니틱 페라이트를 주상으로 얻을 수 없고, 55~65도인 Σ3 입계 분율이 20% 미만이 된다. 현장조건상 냉각종료온도의 하한은 250℃로 한정하는 것이 바람직하다. 그리고, 냉각속도가 5℃/s 미만인 경우에도 베이니틱 페라이트를 주상으로 얻을 수 없어서 강도가 저하된다. 다만, 냉각속도의 상한은 반드시 한정되는 것은 아니지만 현장조업 조건상 그 상한이 한정될 수 있다.The cooling condition of the present invention is one of the main features of the present invention, and the cooling is terminated at a temperature of 250 ° C to Bf at a cooling rate of 5 ° C / s or more. According to these cooling conditions, the microstructure of the steel material can be produced as bainitic ferrite in the columnar phase. When cooling is complete | finished beyond Bf temperature, bainitic ferrite cannot be obtained as a main phase, and the Σ3 grain boundary fraction which is 55-65 degree | times becomes less than 20%. It is preferable to limit the lower limit of the cooling end temperature to 250 ° C on site conditions. Further, even when the cooling rate is less than 5 ° C / s, bainitic ferrite cannot be obtained as the main phase, and the strength is lowered. However, the upper limit of the cooling rate is not necessarily limited, but the upper limit may be limited due to the field operating conditions.

이를 비교할 수 있는 그래프를 도3에 도시하였고, 도3에서 본 발명의 냉각조건을 냉각곡선3으로 나타내었으며, 주상이 베이니틱 페라이트를 얻을 수 있음을 알 수 있다. 반면에, 냉각곡선2는 냉각종료온도가 Bf 이상인 경우로서, 그래뉼라 베이 나이트가 주상이고, 냉각곡선1은 냉각속도가 5℃/s미만 경우로서, 그래뉼라 베이나이트가 주상임을 알 수 있다. A graph that can be compared is shown in FIG. 3, and the cooling conditions of the present invention are shown in FIG. 3 as a cooling curve 3, and it can be seen that the main phase can obtain bainitic ferrite. On the other hand, the cooling curve 2 is the case where the cooling end temperature is Bf or more, granular bainite is the main phase, the cooling curve 1 is less than 5 ℃ / s, it can be seen that the granular bainite is columnar.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

(실시예)(Example)

하기 표1을 만족하는 성분계를 갖는 강슬라브를 하기 표2의 제조조건에 따라, 압연 및 냉각하여 항복강도, 55~65도인 Σ3 입계 분율 및 균열진전속도를 측정하여 하기 표3에 나타내었다. 또한, 발명예1의 미세조직 사진을 도4에 나타내었고, 발명예2의 미세조직 사진을 도5(a)에 나타내고, Σ3입계의 방위차에 대한 그래프를 도5(b)에 나타내었다.Steel slabs having a component system satisfying Table 1 below were rolled and cooled according to the manufacturing conditions of Table 2 below, and the yield strength, Σ3 grain boundary fraction and crack propagation rate of 55 to 65 degrees were measured and shown in Table 3 below. In addition, a microstructure photograph of Inventive Example 1 is shown in FIG. 4, a microstructure photograph of Inventive Example 2 is shown in FIG. 5 (a), and a graph of azimuth difference between? 3 grain boundaries is shown in FIG. 5 (b).

구분division CC SiSi MnMn PP SS AlAl NiNi CuCu CrCr MoMo TiTi NbNb VV BB NN 강종1Grade 1 0.0530.053 0.170.17 2.12.1 0.0130.013 0.0020.002 0.0150.015 0.420.42 0.220.22 0.320.32 0.160.16 0.0160.016 0.040.04 0.040.04 0.00160.0016 0.00420.0042 강종2Gangjong 2 0.0620.062 0.380.38 1.921.92 0.0130.013 0.0050.005 0.0320.032 0.820.82 -- -- 0.380.38 0.0130.013 0.020.02 0.040.04 0.00140.0014 0.00530.0053 강종3Gangjong 3 0.0550.055 0.160.16 2.182.18 0.0120.012 0.0020.002 0.0130.013 0.320.32 0.170.17 -- -- 0.0180.018 0.050.05 0.040.04 0.00380.0038 0.00410.0041 강종4Steel grade 4 0.0820.082 0.260.26 2.082.08 0.0130.013 0.0020.002 0.0130.013 0.230.23 -- 0.50.5 -- 0.0190.019 0.040.04 0.00070.0007 0.00430.0043 강종5Steel grade 5 0.0330.033 0.270.27 2.252.25 0.0130.013 0.0020.002 0.0130.013 -- 0.210.21 -- -- 0.0170.017 0.030.03 -- 0.00140.0014 0.00450.0045 강종6Steel grade 6 0.0820.082 0.320.32 2.122.12 0.0130.013 0.0030.003 0.0130.013 -- -- 0.220.22 -- 0.0190.019 0.060.06 -- 0.00210.0021 0.00440.0044 강종7Steel grade 7 0.0120.012 0.210.21 1.531.53 0.0140.014 0.0030.003 0.0340.034 -- -- -- -- 0.0130.013 0.030.03 -- 0.00210.0021 0.00350.0035 강종8Steel grade 8 0.180.18 0.320.32 0.850.85 0.0130.013 0.0010.001 0.0380.038 -- 0.310.31 -- -- 0.0140.014 0.040.04 -- 0.00230.0023 0.00290.0029 강종9Steel grade 9 0.0950.095 0.420.42 1.221.22 0.0130.013 0.0050.005 0.0240.024 -- -- 0.480.48 -- 0.010.01 -- -- 0.00130.0013 0.00280.0028 강종10Grade 10 0.0790.079 0.230.23 1.421.42 0.0150.015 0.0090.009 0.430.43 -- -- -- 0.070.07 0.0080.008 0.040.04 -- 0.00010.0001 0.00430.0043

상기 표1에서 각 원소의 함량 단위는 중량%이다.In Table 1, the content unit of each element is weight percent.

강종1 내지 6은 본 발명이 제한하는 성분계를 모두 만족하는 강종이다. 이에 반하여, 강종7의 탄소 함량은 본 발명이 제한하는 탄소 함량 미만이고, 강종8은 탄소 함량이 본 발명이 제한하는 탄소 함량을 초과한다. 강종9는 니오븀을 미포함하고 있으며, 강종10은 보론의 함량이 본 발명이 제한하는 함량 미만이다. Steel grades 1 to 6 are steel grades that satisfy all the component systems of the present invention. In contrast, the carbon content of steel grade 7 is less than the carbon content limited by the present invention, and the steel grade 8 has a carbon content exceeding the carbon content limited by the present invention. Steel grade 9 does not contain niobium, and steel grade 10 has a boron content less than the limit of the present invention.

시편
번호
Psalter
number
강종
Steel grade
재가열
추출
온도
(℃)
Reheating
extraction
Temperature
(℃)
Tnr
(℃)
Tnr
(℃)
조압연
종료
온도
(℃)
Crude rolling
End
Temperature
(℃)
Bs
(℃)
Bs
(℃)
사상압
연개시
온도
(℃)
Filamentary pressure
Initiation
Temperature
(℃)
사상압
연종료
온도
(℃)
Filamentary pressure
End of year
Temperature
(℃)
냉각
속도
(℃)
Cooling
speed
(℃)
냉각
종료
온도
(℃)
Cooling
End
Temperature
(℃)
Bf
(℃)
Bf
(℃)
비고
(본 발명 제어조건
만족 여부)
(○:만족, ×:불만족)
Remarks
(Control Conditions of the Invention
Satisfaction)
(○: satisfaction, ×: dissatisfaction)
발명예1Inventory 1 1One 10651065 988988 985985 533533 925925 878878 14.514.5 370370 413413 발명예2Inventive Example 2 1One 10801080 988988 10001000 533533 908908 868868 22.522.5 350350 413413 발명예3Inventory 3 1One 11201120 988988 10401040 533533 898898 858858 14.914.9 320320 413413 비교예1Comparative Example 1 1One 11101110 988988 10301030 533533 920920 880880 2.52.5 330330 413413 ×(냉각속도미달)× (cooling speed not) 비교예2Comparative Example 2 1One 10501050 988988 970970 533533 10581058 10181018 7.57.5 385385 413413 ×(사상압연온도초과)× (Notional rolling temperature exceeded) 비교예3Comparative Example 3 1One 10501050 988988 970970 533533 850850 810810 9.59.5 480480 413413 ×(냉각종료온도초과)× (cooling end temperature exceeded) 발명예4Honorable 4 22 10701070 834834 990990 525525 775775 735735 12.512.5 381381 405405 발명예5Inventory 5 22 10751075 834834 995995 525525 755755 715715 21.521.5 361361 405405 발명예6Inventory 6 22 11101110 834834 10301030 525525 745745 705705 13.013.0 331331 405405 비교예4Comparative Example 4 22 11051105 834834 10251025 525525 820820 780780 2.52.5 341341 405405 ×(냉각속도미달)× (cooling speed not) 비교예5Comparative Example 5 22 10601060 834834 980980 525525 905905 865865 8.58.5 396396 405405 ×(사상압연온도초과)× (Notional rolling temperature exceeded) 비교예6Comparative Example 6 22 10601060 834834 980980 525525 850850 810810 10.510.5 491491 405405 ×(냉각종료온도초과)× (cooling end temperature exceeded) 발명예7Honorable 7 33 10801080 10401040 10001000 552552 989989 949949 11.011.0 362362 432432 발명예8Inventive Example 8 33 10701070 10401040 990990 552552 969969 929929 25.525.5 382382 432432 발명예9Proposition 9 33 11201120 10401040 10401040 552552 959959 919919 15.515.5 352352 432432 비교예7Comparative Example 7 33 11001100 10401040 10201020 552552 820820 780780 3.53.5 362362 432432 ×(냉각속도미달)× (cooling speed not) 비교예8Comparative Example 8 33 10551055 10401040 975975 552552 11191119 10791079 7.57.5 377377 432432 ×(사상압연온도초과)× (Notional rolling temperature exceeded) 비교예9Comparative Example 9 33 10551055 10401040 975975 552552 850850 810810 8.08.0 512512 432432 ×(냉각종료온도초과)× (cooling end temperature exceeded) 발명예10Inventory 10 44 10801080 987987 10001000 530530 938938 898898 10.510.5 332332 410410 발명예11Exhibit 11 44 10701070 987987 990990 530530 918918 878878 15.515.5 352352 410410 발명예12Inventory 12 44 11201120 987987 10401040 530530 908908 868868 15.515.5 322322 410410 비교예10Comparative Example 10 44 11001100 987987 10201020 530530 820820 780780 3.03.0 332332 410410 ×(냉각속도미달)× (cooling speed not) 비교예11Comparative Example 11 44 11551155 987987 11051105 530530 10481048 10081008 7.57.5 367367 410410 ×(사상압연온도초과)× (Notional rolling temperature exceeded) 비교예12Comparative Example 12 44 10551055 987987 975975 530530 850850 810810 9.59.5 482482 410410 ×(냉각종료온도초과)× (cooling end temperature exceeded) 발명예13Inventory 13 55 10801080 936936 10001000 558558 867867 827827 10.510.5 359359 438438 발명예14Inventory 14 55 10701070 936936 990990 558558 847847 807807 18.518.5 384384 438438 발명예15Honorable Mention 15 55 11201120 936936 10401040 558558 837837 797797 14.514.5 364364 438438 비교예13Comparative Example 13 55 11001100 936936 10201020 558558 820820 780780 3.53.5 374374 438438 ×(냉각속도미달)× (cooling speed not) 비교예14Comparative Example 14 55 10551055 936936 10351035 558558 977977 937937 7.57.5 389389 438438 ×(사상압연온도초과)× (Notional rolling temperature exceeded) 비교예15Comparative Example 15 55 10551055 936936 975975 558558 850850 810810 9.59.5 524524 438438 ×(냉각종료온도초과)× (cooling end temperature exceeded) 발명예16Inventory 16 66 10801080 10711071 10001000 546546 10271027 987987 10.510.5 357357 426426 발명예17Inventory 17 66 10701070 10711071 990990 546546 977977 937937 17.517.5 377377 426426 발명예18Inventory 18 66 11201120 10711071 10401040 546546 997997 957957 15.515.5 347347 426426 비교예16Comparative Example 16 66 11001100 10711071 10201020 546546 820820 780780 2.52.5 357357 426426 ×(냉각속도미달)× (cooling speed not) 비교예17Comparative Example 17 66 10551055 10711071 10351035 546546 11071107 10671067 7.57.5 372372 426426 ×(사상압연온도초과)× (Notional rolling temperature exceeded) 비교예18Comparative Example 18 66 10551055 10711071 975975 546546 850850 810810 9.59.5 507507 426426 ×(냉각종료온도초과)× (cooling end temperature exceeded) 비교예19Comparative Example 19 77 10801080 925925 10001000 637637 883883 843843 10.510.5 484484 517517 ×(탄소함량초과)× (carbon content exceeded) 비교예20Comparative Example 20 77 10701070 925925 990990 637637 863863 823823 7.57.5 464464 517517 ×(탄소함량초과)× (carbon content exceeded) 비교예21Comparative Example 21 77 11201120 925925 10401040 637637 853853 813813 15.015.0 434434 517517 ×(탄소함량초과)× (carbon content exceeded) 비교예22Comparative Example 22 88 10801080 10131013 10001000 657657 971971 931931 10.010.0 500500 537537 ×(탄소함량미달)× (less than carbon content) 비교예23Comparative Example 23 88 10701070 10131013 990990 657657 951951 911911 7.57.5 480480 537537 ×(탄소함량미달)× (less than carbon content) 비교예24Comparative Example 24 88 11201120 10131013 10401040 657657 941941 901901 15.515.5 450450 537537 ×(탄소함량미달)× (less than carbon content) 비교예25Comparative Example 25 99 10801080 804804 10001000 712712 749749 709709 10.010.0 561561 592592 ×(니오븀미포함)× (not including niobium) 비교예26Comparative Example 26 99 10701070 804804 990990 712712 729729 689689 7.57.5 541541 592592 ×(니오븀미포함)× (not including niobium) 비교예27Comparative Example 27 99 11201120 804804 10401040 712712 719719 679679 15.015.0 511511 592592 ×(니오븀미포함)× (not including niobium) 비교예28Comparative Example 28 1010 10801080 10051005 10001000 619619 948948 908908 10.510.5 470470 499499 ×(보론함량미달)× (boron content under) 비교예29Comparative Example 29 1010 10701070 10051005 990990 619619 928928 888888 7.07.0 450450 499499 ×(보론함량미달)× (boron content under) 비교예30Comparative Example 30 1010 11201120 10051005 10401040 619619 918918 878878 15.515.5 420420 499499 ×(보론함량미달)× (boron content under)

시편Psalter YS(MPa)YS (MPa) 55~65도인 Σ3 분율(%)Σ3 fraction (%) which is 55-65 degrees 균열진전속도Crack Growth Rate 발명예1Inventory 1 719719 2929 1.981.98 발명예2Inventive Example 2 769769 3232 1.81.8 발명예3Inventory 3 751751 3737 1.531.53 비교예1Comparative Example 1 686686 3535 1.621.62 비교예2Comparative Example 2 673673 2727 2.122.12 비교예3Comparative Example 3 608608 1818 2.972.97 발명예4Honorable 4 704704 2828 2.082.08 발명예5Inventory 5 753753 3030 1.91.9 발명예6Inventory 6 740740 3535 1.631.63 비교예4Comparative Example 4 680680 3333 1.721.72 비교예5Comparative Example 5 670670 2626 2.212.21 비교예6Comparative Example 6 609609 1717 3.073.07 발명예7Honorable 7 702702 3030 1.911.91 발명예8Inventive Example 8 757757 2727 2.092.09 발명예9Proposition 9 731731 3232 1.821.82 비교예7Comparative Example 7 671671 3030 1.911.91 비교예8Comparative Example 8 679679 2828 2.042.04 비교예9Comparative Example 9 580580 1616 3.263.26 발명예10Inventory 10 721721 3535 1.641.64 발명예11Exhibit 11 731731 3232 1.821.82 발명예12Inventory 12 750750 3636 1.551.55 비교예10Comparative Example 10 687687 3535 1.641.64 비교예11Comparative Example 11 686686 2929 1.951.95 비교예12Comparative Example 12 607607 1818 2.992.99 발명예13Inventory 13 705705 3131 1.881.88 발명예14Inventory 14 722722 2626 2.192.19 발명예15Honorable Mention 15 724724 3030 1.921.92 비교예13Comparative Example 13 663663 2929 2.012.01 비교예14Comparative Example 14 671671 2727 2.152.15 비교예15Comparative Example 15 570570 1515 3.363.36 발명예16Inventory 16 706706 3131 1.861.86 발명예17Inventory 17 724724 2828 2.042.04 발명예18Inventory 18 735735 3232 1.771.77 비교예16Comparative Example 16 670670 3131 1.861.86 비교예17Comparative Example 17 682682 2929 1.991.99 비교예18Comparative Example 18 585585 1616 3.213.21 비교예19Comparative Example 19 610610 1717 3.013.01 비교예20Comparative Example 20 613613 1919 2.832.83 비교예21Comparative Example 21 673673 1919 2.662.66 비교예22Comparative Example 22 596596 1616 3.153.15 비교예23Comparative Example 23 600600 1818 2.972.97 비교예24Comparative Example 24 661661 1919 2.72.7 비교예25Comparative Example 25 538538 1414 3.73.7 비교예26Comparative Example 26 544544 1515 3.523.52 비교예27Comparative Example 27 609609 1616 3.253.25 비교예28Comparative Example 28 622622 1818 2.882.88 비교예29Comparative Example 29 625625 1919 2.72.7 비교예30Comparative Example 30 684684 1919 2.652.65

상기 표3에서 균열진전속도의 단위는 10-5㎜/cycle 이다.In Table 3, the unit of crack propagation rate is 10 −5 mm / cycle.

상기 표2 및 표3에 나타난 바와 같이, 비교예1, 4, 7, 10, 13 및 16은 냉각속도가 5℃/s 미만으로서, 주조직이 그래뉼라 베이나이트가 되어 항복강도가 690MPa 이상을 얻지 못하였다. 비교예2, 5, 8, 11, 14 및 17은 사상압연온도가 Tnr을 초과하여 항복강도가 690MPa 이상을 얻지 못하였다. 그리고, 비교예3, 6, 9, 12, 15, 18은 냉각종료온도가 Bf를 초과하여 55~65도인 Σ3 입계 분율이 20% 미만이며, 균열진전 속도가 2.5*10-5㎜/cycle를 초과하였다. 비교예19 내지 30은 제조조건은 본 발명이 제한하는 범위를 만족하나 성분계를 만족하지 못하여 항복강도는 690MPa 미만이고, 55~65도인 Σ3 입계 분율은 20% 미만이며 균열진전 속도는 2.5*10-5㎜/cycle를 초과하였다As shown in Table 2 and Table 3, Comparative Examples 1, 4, 7, 10, 13 and 16, the cooling rate is less than 5 ℃ / s, the main tissue is granular bainite yield strength is more than 690MPa I didn't get it. In Comparative Examples 2, 5, 8, 11, 14, and 17, the finishing rolling temperature exceeded Tnr, and thus yield strength was not more than 690 MPa. In Comparative Examples 3, 6, 9, 12, 15, and 18, the cooling end temperature exceeded Bf, and the Σ3 grain boundary fraction of 55 to 65 degrees was less than 20%, and the crack growth rate was 2.5 * 10 -5 mm / cycle. Exceeded. In Comparative Examples 19 to 30, the manufacturing conditions were within the limits of the present invention, but did not satisfy the component system. The yield strength was less than 690 MPa, the Σ3 grain boundary fraction of 55 to 65 degrees was less than 20%, and the crack growth rate was 2.5 * 10- . Exceeded 5 mm / cycle

이에 반하여, 발명예1 내지 18은 항복강도가 690MPa 이상이고, 인장강도가 800MPa 이상이며, 55~65도인 Σ3 입계 분율이 20~40%이고, 균열진전속도는 2.5*10-5㎜/cycle 이하여서, 우수한 피로 균열 억제 특성과 강도를 확보할 수 있음을 확인할 수 있다. 또한, 도4에 나타난 바와 같이, 기지조직은 베이니틱 페라이틱이였으며, 도5에 나타난 바와 같이, 방위차가 60도 전후임을 확인할 수 있다.On the other hand, Inventive Examples 1 to 18 have a yield strength of 690 MPa or more, a tensile strength of 800 MPa or more, a Σ3 grain boundary of 20 to 40% having a 55 to 65 degree, and a crack propagation rate of 2.5 * 10 -5 mm / cycle or less. Thus, it can be confirmed that excellent fatigue crack suppression characteristics and strength can be secured. In addition, as shown in Figure 4, the base tissue was a bainitic ferritic, as shown in Figure 5, it can be confirmed that the bearing difference is around 60 degrees.

도1(a)는 종래기술에 의해 제조된 강판의 미세조직(베이나이트)의 광학현미경 사진이다.Figure 1 (a) is an optical micrograph of the microstructure (bainite) of the steel sheet produced by the prior art.

도1(b)는 도1(a)에 나타낸 강판을 샤르피 충격 실험(-40℃)을 실시한 후 파단면을 주사전사현미경을 통하여 관찰한 사진이다.FIG. 1 (b) is a photograph of the steel sheet shown in FIG.

도1(c)는 본 발명에 의해 제조된 강판의 미세조직(베이나이트)의 광학현미경 사진이다.Figure 1 (c) is an optical micrograph of the microstructure (bainite) of the steel sheet produced by the present invention.

도1(d)는 도1(c)에 나타낸 강판을 샤르피 충격 실험(-40℃)을 실시한 후 파단면을 주사전사현미경을 통하여 관찰한 사진이다.Figure 1 (d) is a photograph of the steel plate shown in Figure 1 (c) after the Charpy impact test (-40 ℃) observed the fracture surface through the scanning transfer microscope.

도2는 냉각종료온도에 따른 Σ3의 분율과 균열 진전속도의 상관관계를 나타내는 그래프이다.2 is a graph showing the correlation between the fraction of Σ3 and the crack growth rate according to the cooling end temperature.

도3은 본 발명의 냉각조건과 종래의 냉각조건을 비교할 수 있는 도면이다.3 is a view that can compare the cooling conditions of the present invention and the conventional cooling conditions.

도4는 발명예1의 미세조직사진이다.4 is a microstructure photograph of Inventive Example 1. FIG.

도5는 발명예2의 미세조직사진과 베이나이트 조직의 래스간 방위차를 나타내는 그래프이다.FIG. 5 is a graph showing the orientation difference between the microstructured photograph of Example 2 and the lath of bainite structure. FIG.

Claims (6)

중량기준으로, 탄소(C): 0.02~0.10%, 실리콘(Si): 0.01~0.6%, 망간(Mn): 1.8~2.5%, 알루미늄(Al): 0.005~0.5%, 니오븀(Nb): 0.005~0.10%, 보론(B): 5~40ppm, 티타늄(Ti): 0.005~0.1%, 질소(N): 15~150ppm, 인(P): 0.02% 이하, 황(S): 0.01% 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 미세조직은 주상으로서, 베이나이트 래스간 입계 방위차가 55~65도인 Σ3 입계 분율이 20~40%인 베이니틱 페라이트를 포함하며, 항복강도가 690MPa 이상인 피로균열 진전 억제 특성이 우수한 초고강도 강판.By weight, carbon (C): 0.02 to 0.10%, silicon (Si): 0.01 to 0.6%, manganese (Mn): 1.8 to 2.5%, aluminum (Al): 0.005 to 0.5%, niobium (Nb): 0.005 0.10%, boron (B): 5-40 ppm, titanium (Ti): 0.005-0.1%, nitrogen (N): 15-150 ppm, phosphorus (P): 0.02% or less, sulfur (S): 0.01% or less, It contains residual iron (Fe) and other unavoidable impurities, and the microstructure is a columnar phase and contains bainitic ferrite having a Σ3 grain boundary fraction of 20 to 40% having a grain boundary orientation difference of 55 to 65 degrees between bainite laths, and a yield strength of 690 MPa. Ultra-high strength steel sheet with excellent fatigue crack growth suppression characteristics. 제1항에 있어서, 상기 강판은 크롬(Cr): 0.05~1.0%, 몰리브덴(Mo): 0.01~1.0%, 니켈(Ni): 0.01~2.0%, 구리(Cu): 0.01~1.0% 및 바나듐(V): 0.005~0.3% 중 1종 또는 2종 이상을 추가적으로 포함하는 피로균열 진전 억제 특성이 우수한 초고강도 강판.The method of claim 1, wherein the steel sheet is chromium (Cr): 0.05 ~ 1.0%, molybdenum (Mo): 0.01 ~ 1.0%, nickel (Ni): 0.01 ~ 2.0%, copper (Cu): 0.01 ~ 1.0% and vanadium (V): Ultra high strength steel sheet excellent in fatigue crack propagation suppression properties further comprising one or two or more of 0.005 ~ 0.3%. 제1항에 있어서, 상기 강판은 1㎛ 이하의 도상 마르텐사이트를 1%이하 포함하는 피로균열 진전 억제 특성이 우수한 초고강도 강판.The ultra-high strength steel sheet according to claim 1, wherein the steel sheet is excellent in fatigue crack propagation suppression property including 1% or less of phase martensite of 1 µm or less. 제1항에 있어서, 상기 강판의 피로균열 진전 속도는 2.5*10-5㎜/cycle 이하인 것을 특징으로 하는 피로균열 진전 억제 특성이 우수한 초고강도 강판.The ultra-high strength steel sheet having excellent fatigue crack growth suppression characteristics according to claim 1, wherein the fatigue crack growth rate of the steel sheet is 2.5 * 10 -5 mm / cycle or less. 중량기준으로, 탄소(C): 0.02~0.10%, 실리콘(Si): 0.01~0.6%, 망간(Mn): 1.8~2.5%, 알루미늄(Al): 0.005~0.5%, 니오븀(Nb): 0.005~0.10%, 보론(B): 5~40ppm, 티타늄(Ti): 0.005~0.1%, 질소(N): 15~150ppm, 인(P): 0.02% 이하, 황(S): 0.01% 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하는 슬라브를 1050~1250℃에서 재가열하는 단계;By weight, carbon (C): 0.02 to 0.10%, silicon (Si): 0.01 to 0.6%, manganese (Mn): 1.8 to 2.5%, aluminum (Al): 0.005 to 0.5%, niobium (Nb): 0.005 0.10%, boron (B): 5-40 ppm, titanium (Ti): 0.005-0.1%, nitrogen (N): 15-150 ppm, phosphorus (P): 0.02% or less, sulfur (S): 0.01% or less, Reheating the slab comprising residual iron (Fe) and other unavoidable impurities at 1050-1250 ° C .; 상기 재가열한 슬라브를 오스테나이트 재결정온도(Tnr)~1250℃에서 조압연하는 단계;Roughly rolling the reheated slab at an austenite recrystallization temperature (Tnr) ˜1250 ° C .; 상기 조압연된 강판을 베이나이트 변태 시작온도(Bs)~Tnr 범위에서 사상압연하는 단계; 및Finishing the roughly rolled steel sheet in the range of bainite transformation start temperature (Bs) to Tnr; And 상기 사상압연된 강판을 5℃/s 이상의 냉각속도로 250℃~베이나이트 변태 종료온도(Bf)에서 냉각종료하는 냉각단계를 포함하는 피로균열 진전 억제 특성이 우수한 초고강도 강판의 제조방법.A method of manufacturing an ultra-high strength steel sheet having excellent fatigue crack propagation suppression characteristics, including a cooling step of cooling the finishing rolled steel sheet at a cooling rate of 5 ° C./s or more at 250 ° C. to bainite transformation end temperature (Bf). 제5항에 있어서, 상기 강판은 크롬(Cr): 0.05~1.0%, 몰리브덴(Mo): 0.01~1.0%, 니켈(Ni): 0.01~2.0%, 구리(Cu): 0.01~1.0% 및 바나듐(V): 0.005~0.3% 중 1종 또는 2종 이상을 추가적으로 포함하는 피로균열 진전 억제 특성이 우수한 초고강도 강판의 제조방법.The steel sheet is chromium (Cr): 0.05 ~ 1.0%, molybdenum (Mo): 0.01 ~ 1.0%, nickel (Ni): 0.01 ~ 2.0%, copper (Cu): 0.01 ~ 1.0% and vanadium (V): A method for producing an ultra high strength steel sheet having excellent fatigue crack propagation suppression characteristics, including one or two or more of 0.005 to 0.3%.
KR1020090127323A 2009-12-18 2009-12-18 Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same KR101304822B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090127323A KR101304822B1 (en) 2009-12-18 2009-12-18 Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090127323A KR101304822B1 (en) 2009-12-18 2009-12-18 Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same

Publications (2)

Publication Number Publication Date
KR20110070484A KR20110070484A (en) 2011-06-24
KR101304822B1 true KR101304822B1 (en) 2013-09-05

Family

ID=44401984

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090127323A KR101304822B1 (en) 2009-12-18 2009-12-18 Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same

Country Status (1)

Country Link
KR (1) KR101304822B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200127577A (en) * 2019-05-03 2020-11-11 주식회사 포스코 Ultra-high strength steel sheet having shear workability excellent and method for manufacturing thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406600B1 (en) * 2012-05-14 2014-06-11 주식회사 포스코 ULTRA-HIGH STRENGTH STEEL SHEET OF 1000MPa GRADE HAVING EXCELLENT WELDED ZONE TOUGHNESS AND METHOD FOR MANUFACTURING THE SAME
KR101424889B1 (en) * 2012-11-29 2014-08-04 현대제철 주식회사 Steel and method of manufacturing the same
JP7330862B2 (en) * 2019-11-01 2023-08-22 株式会社神戸製鋼所 High-strength steel sheet with excellent low-temperature toughness of base material and joint, and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092647A (en) * 2006-03-09 2007-09-13 가부시키가이샤 고베 세이코쇼 High yield ratio and high tension steel sheet excellent in control of fatigue crack growth and toughness of weld heat-affected zone
KR20090066639A (en) * 2007-12-20 2009-06-24 주식회사 포스코 High strength steel for construction having excellent low temperature toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092647A (en) * 2006-03-09 2007-09-13 가부시키가이샤 고베 세이코쇼 High yield ratio and high tension steel sheet excellent in control of fatigue crack growth and toughness of weld heat-affected zone
KR20090066639A (en) * 2007-12-20 2009-06-24 주식회사 포스코 High strength steel for construction having excellent low temperature toughness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200127577A (en) * 2019-05-03 2020-11-11 주식회사 포스코 Ultra-high strength steel sheet having shear workability excellent and method for manufacturing thereof
WO2020226301A1 (en) * 2019-05-03 2020-11-12 주식회사 포스코 Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
KR102221452B1 (en) 2019-05-03 2021-03-02 주식회사 포스코 Ultra-high strength steel sheet having shear workability excellent and method for manufacturing thereof

Also Published As

Publication number Publication date
KR20110070484A (en) 2011-06-24

Similar Documents

Publication Publication Date Title
KR101271974B1 (en) High-strength steel having excellent cryogenic toughness and method for production thereof
KR101018131B1 (en) High strength and low yield ratio steel for structure having excellent low temperature toughness
KR100973923B1 (en) High strength steel for construction having excellent low temperature toughness
KR101490567B1 (en) High manganese wear resistance steel having excellent weldability and method for manufacturing the same
KR101205144B1 (en) H-steel for building structure and method for producing the same
KR101879082B1 (en) Ultra high strength steel having low yield ratio method for manufacturing the same
KR20160078669A (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
KR101676143B1 (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101585724B1 (en) A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same
CN110100027B (en) Low yield ratio steel plate having excellent low temperature toughness and method for manufacturing same
KR101271792B1 (en) Steel having excellent strength and impact toughness and method for manufacturing the same
CN111542633B (en) Structural high-strength steel material having excellent fatigue crack growth inhibition properties and method for producing same
KR101304822B1 (en) Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same
KR101070132B1 (en) Steel with Excellent Low-Temperature Toughness for Construction and Manufacturing Method Thereof
KR20170076912A (en) High strength steel having low yield ratio method for manufacturing the same
KR101317275B1 (en) Steel sheet having good low temperature toughness
KR101758528B1 (en) Steel sheet for pipe having low deviation of mechanical property, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR101143029B1 (en) High strength, toughness and deformability steel plate for pipeline and manufacturing metod of the same
KR101304644B1 (en) High strength steel plate having excellent fatigue crack arrestability and manufacturing method the same
KR101382906B1 (en) METHOD FOR PRODUCING THICK STEEL PLATE HAVING EXCELLENT WELDED ZONE TOUGHNESS AND DUCTiLITY AND WELD STRUCTURE USING THE SAME MATHOD
KR20160078849A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101795882B1 (en) Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR20180073207A (en) High strength steel sheet havig good low temperature toughness and resistance of stress corrosion cracking, and manufacturing method thereof
KR20170075867A (en) The steel sheet having high-strength and excellent heat affected zone toughness and method for manufacturing the same
KR101647230B1 (en) High strength and low yield ratio steel sheet having excellent low temperature toughness and mathod for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190828

Year of fee payment: 7