KR20170076912A - High strength steel having low yield ratio method for manufacturing the same - Google Patents

High strength steel having low yield ratio method for manufacturing the same Download PDF

Info

Publication number
KR20170076912A
KR20170076912A KR1020150186522A KR20150186522A KR20170076912A KR 20170076912 A KR20170076912 A KR 20170076912A KR 1020150186522 A KR1020150186522 A KR 1020150186522A KR 20150186522 A KR20150186522 A KR 20150186522A KR 20170076912 A KR20170076912 A KR 20170076912A
Authority
KR
South Korea
Prior art keywords
weight
ppm
steel
less
strength
Prior art date
Application number
KR1020150186522A
Other languages
Korean (ko)
Other versions
KR102348539B1 (en
Inventor
유승호
정문영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020150186522A priority Critical patent/KR102348539B1/en
Priority to US16/063,985 priority patent/US20180371590A1/en
Priority to PCT/KR2016/014135 priority patent/WO2017111345A1/en
Priority to JP2018532049A priority patent/JP6845855B2/en
Priority to CN201680075889.7A priority patent/CN108474090B/en
Priority to EP16879212.5A priority patent/EP3395997B1/en
Publication of KR20170076912A publication Critical patent/KR20170076912A/en
Application granted granted Critical
Publication of KR102348539B1 publication Critical patent/KR102348539B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

본 발명의 일 측면은 탄소(C): 0.02~0.11중량%, 실리콘(Si): 0.1~0.5중량%, 망간(Mn): 1.5~2.5중량%, 알루미늄(Al): 0.01~0.06중량%, 니켈(Ni): 0.1~0.6중량%, 티타늄(Ti): 0.01~0.03중량%, 니오븀(Nb): 0.005~0.08중량%, 크롬(Cr): 0.1~0.5중량%, 인(P): 0.01중량% 이하(0중량%는 제외), 황(S): 0.01중량% 이하(0중량%는 제외), 보론(B): 5~30중량ppm, 질소(N): 20~70중량ppm, 칼슘(Ca): 50중량ppm 이하(0중량ppm은 제외), 주석(Sn): 5~50중량ppm 이하(0중량ppm은 제외), 나머지 철(Fe) 및 기타 불가피한 불순물을 포함하는 저항복비형 고강도 강재에 관한 것이다.One aspect of the present invention is a method of manufacturing a semiconductor device, comprising: 0.02 to 0.11 wt% of carbon; 0.1 to 0.5 wt% of silicon; 1.5 to 2.5 wt% of manganese; 0.01 to 0.06 wt% of aluminum; 0.1 to 0.6 wt% of nickel (Ni), 0.01 to 0.03 wt% of titanium (Ti), 0.005 to 0.08 wt% of niobium (Nb), 0.1 to 0.5 wt% of chromium (Cr) (S): not more than 0.01 wt% (excluding 0 wt%), boron (B): 5 to 30 wt ppm, nitrogen (N): 20 to 70 wt ppm, (Fe), and other unavoidable impurities, such as calcium (Ca): not more than 50 ppm by weight (excluding 0 ppm by weight), tin (Sn): not more than 5 to 50 ppm by weight Type high-strength steel.

Description

저항복비형 고강도 강재 및 그 제조방법{HIGH STRENGTH STEEL HAVING LOW YIELD RATIO METHOD FOR MANUFACTURING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-

본 발명은 저항복비형 고강도 강재 및 그 제조방법에 관한 것이다. 보다 상세하게는 낮은 항복비 및 높은 인장강도를 가져 건설용 강재로 바람직하게 사용할 수 있는 저항복비형 고강도 강재 및 그 제조방법에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a high-strength steel material having a low resistance and a method of manufacturing the same. More particularly, to a low-yielding high-strength steel having a low yield ratio and a high tensile strength, which can be suitably used as a steel for construction, and a method for producing the same.

최근 국내외 빌딩, 교량 등과 같은 구조물은 초고층화, 장스팬화 추세가 진행됨에 따라 극후, 고강도 강재의 개발이 요구되고 있다. 고강도 강을 사용하게 되면 높은 허용응력을 가지기 때문에 건축 및 교량 구조를 합리화, 경량화할 수 있어 경제적인 건설이 가능할 뿐만 아니라, 판 두께를 얇게 할 수 있기 때문에 절단이나 천공 등 기계가공과 용접 작업이 용이해진다.
Recently, the development of superstructures and high strength steels has been demanded as domestic and overseas buildings, bridges, and other structures are progressing into superstructure and long span. The use of high-strength steel has a high permissible stress, which makes it possible to rationalize and lighten the construction and the bridge structure, making economical construction possible, as well as being able to thin the plate thickness, facilitating machining and welding operations such as cutting and drilling It becomes.

한편, 강재의 강도를 높일 경우 인장강도와 항복강도의 비율인 항복비(항복강도/인장강도)가 상승하는 경우가 많은데, 항복비가 상승할 경우에는 소성변형이 일어나는 시점(항복점)에서 파괴가 일어나는 시점까지의 응력차가 크지 않기 때문에, 건축물이 변형에 의해 에너지를 흡수하여 파괴를 방지할 수 있는 여유가 많지 않아, 지진등과 같은 거대 외력이 작용하였을 때 안전성을 담보하기가 어렵다는 문제점이 있다. 따라서, 구조용 강재는 고강도 및 저항복비를 모두 만족해야 할 필요가 있다.
On the other hand, when increasing the strength of the steel, the yield ratio (yield strength / tensile strength), which is the ratio of the tensile strength to the yield strength, often increases. When the yield ratio increases, destruction occurs at the point of plastic deformation (yield point) Since the stress difference up to the starting point is not large, the building absorbs energy by deformation, and there is not a sufficient margin to prevent destruction. Therefore, there is a problem that it is difficult to secure safety when a large external force such as an earthquake acts. Therefore, the structural steel needs to satisfy both high strength and low resistance.

한편, 일반적으로 강재의 항복비는 강재의 금속조직을 페라이트 (ferrite)와 같은 연질상(軟質相, soft phase)을 주조직으로 하고, 베이나이트(bainite)나 마르텐사이트(martensite) 등의 경질상(硬質相, hard phase)이 적당하게 분산된 조직을 구현함으로써 낮출 수 있는 것으로 알려져 있다.
On the other hand, in general, the yield ratio of the steel material is such that the metal structure of the steel is made of a soft phase such as ferrite as a main structure and a hard phase such as bainite or martensite (Hard phase) can be lowered by implementing a suitably dispersed structure.

상기와 같은 연질상 기반의 미세조직에 경질상이 적당히 분산된 조직을 얻기 위해, 특허문헌 1에는 페라이트와 오스테나이트(austenite)의 2상 영역(dual phase region)에서 적절한 담금질(quenching)과 템퍼링(tempering)을 통하여 항복비를 낮출 수 있는 방법이 개시되어 있다. 그러나 상기 방법은 압연 제조 공정 이외에 열처리 공정수가 추가되기 때문에, 생산성 저하는 물론 제조단가의 증가가 불가피한 문제점이 있다.
In order to obtain a structure in which a hard phase is appropriately dispersed in the soft phase-based microstructure described above, Patent Document 1 discloses a method of quenching and tempering in a dual phase region of ferrite and austenite, ) In order to reduce the yield ratio. However, the above method has a problem in that it is inevitable to lower the productivity as well as to increase the manufacturing cost because a heat treatment process is added in addition to the rolling manufacturing process.

따라서, 생산성의 저하와 제조단가의 상승 등의 문제를 모두 해결하면서도, 초고강도 및 저항복비를 확보할 수 있는 저항복비형 고강도 강재 및 그 제조방법에 대한 개발이 요구되고 있는 실정이다.
Therefore, there is a need to develop a high-strength, high-strength steel having a high strength and a low resistance, and a manufacturing method thereof, while solving problems such as lowering of productivity and increase in manufacturing cost.

특허문헌 1: 일본 특개소 55-97425호Patent Document 1: Japanese Patent Application Laid-Open No. 55-97425

본 발명의 일 측면은 저항복비형 고강도 강재 및 그 제조방법을 제공하기 위함이다. 보다 상세하게는 생산성 저하와 제조단가 상승 없이 초고강도 및 저항복비를 확보할 수 있는 저항복비형 고강도 강재 및 그 제조방법을 제공하기 위함이다.
An aspect of the present invention is to provide a low-resistance high-strength steel material and a method of manufacturing the same. And more particularly, to provide a high strength steel having a high strength and a low resistance without a decrease in productivity and a manufacturing cost, and a manufacturing method thereof.

한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
On the other hand, the object of the present invention is not limited to the above description. It will be understood by those of ordinary skill in the art that there is no difficulty in understanding the additional problems of the present invention.

본 발명의 일 측면은 탄소(C): 0.02~0.11중량%, 실리콘(Si): 0.1~0.5중량%, 망간(Mn): 1.5~2.5중량%, 알루미늄(Al): 0.01~0.06중량%, 니켈(Ni): 0.1~0.6중량%, 티타늄(Ti): 0.01~0.03중량%, 니오븀(Nb): 0.005~0.08중량%, 크롬(Cr): 0.1~0.5중량%, 인(P): 0.01중량% 이하(0중량%는 제외), 황(S): 0.01중량% 이하(0중량%는 제외), 보론(B): 5~30중량ppm, 질소(N): 20~70중량ppm, 칼슘(Ca): 50중량ppm 이하(0중량ppm은 제외), 주석(Sn): 5~50중량ppm 이하(0중량ppm은 제외), 나머지 철(Fe) 및 기타 불가피한 불순물을 포함하는 저항복비형 고강도 강재에 관한 것이다.
One aspect of the present invention is a method of manufacturing a semiconductor device, comprising: 0.02 to 0.11 wt% of carbon; 0.1 to 0.5 wt% of silicon; 1.5 to 2.5 wt% of manganese; 0.01 to 0.06 wt% of aluminum; 0.1 to 0.6 wt% of nickel (Ni), 0.01 to 0.03 wt% of titanium (Ti), 0.005 to 0.08 wt% of niobium (Nb), 0.1 to 0.5 wt% of chromium (Cr) (S): not more than 0.01 wt% (excluding 0 wt%), boron (B): 5 to 30 wt ppm, nitrogen (N): 20 to 70 wt ppm, (Fe), and other unavoidable impurities, such as calcium (Ca): not more than 50 ppm by weight (excluding 0 ppm by weight), tin (Sn): not more than 5 to 50 ppm by weight Type high-strength steel.

또한, 본 발명의 다른 일 측면은 탄소(C): 0.02~0.11중량%, 실리콘(Si): 0.1~0.5중량%, 망간(Mn): 1.5~2.5중량%, 알루미늄(Al): 0.01~0.06중량%, 니켈(Ni): 0.1~0.6중량%, 티타늄(Ti): 0.01~0.03중량%, 니오븀(Nb): 0.005~0.08중량%, 크롬(Cr): 0.1~0.5중량%, 인(P): 0.01중량% 이하(0중량%는 제외), 황(S): 0.01중량% 이하(0중량%는 제외), 보론(B): 5~30중량ppm, 질소(N): 20~70중량ppm, 칼슘(Ca): 50중량ppm 이하(0중량ppm은 제외), 주석(Sn): 5~50중량ppm 이하(0중량ppm은 제외), 나머지 철(Fe) 및 기타 불가피한 불순물을 포함하는 슬라브를 1050~1250℃로 가열하는 단계; In another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: 0.02 to 0.11 wt% of carbon; 0.1 to 0.5 wt% of silicon; 1.5 to 2.5 wt% of manganese; 0.1 to 0.6% by weight of nickel (Ni), 0.01 to 0.03% by weight of titanium (Ti), 0.005 to 0.08% by weight of niobium (Nb), 0.1 to 0.5% by weight of chromium (Cr) ): Not more than 0.01 wt% (excluding 0 wt%), sulfur (S): not more than 0.01 wt% (excluding 0 wt%), boron (B) (Ca): not more than 50 ppm by weight (excluding 0 ppm by weight), tin (Sn): not more than 5 to 50 ppm by weight (excluding 0 ppm by weight), the balance of Fe and other unavoidable impurities Heating the slab to 1050 to 1250 캜;

상기 가열된 슬라브를 950~1150℃에서 조압연하여 바(Bar)를 얻는 단계; Subjecting the heated slab to rough rolling at 950 to 1150 ° C to obtain a bar;

상기 바(Bar)를 마무리압연온도 700~950 ℃로 열간압연하여 열연강판을 얻는 단계; 및 Hot rolling the bar at a finish rolling temperature of 700 to 950 占 폚 to obtain a hot rolled steel sheet; And

상기 열연강판을 25~50℃/s의 냉각속도로 Bs 온도 이하의 냉각종료온도까지 냉각하는 단계; 를 포함하는 저항복비형 고강도 강재의 제조방법에 관한 것이다.
Cooling the hot-rolled steel sheet at a cooling rate of 25 to 50 占 폚 / s to a cooling end temperature not higher than the Bs temperature; Resistant high-strength steel material.

덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.
In addition, the solution of the above-mentioned problems does not list all the features of the present invention. The various features of the present invention and the advantages and effects thereof can be understood in more detail with reference to the following specific embodiments.

본 발명에 의하면, 생산성 저하와 제조단가 상승 없이 초고강도 및 저항복비를 확보할 수 있는 저항복비형 고강도 강재 및 그 제조방법을 제공할 수 있는 효과가 있다.
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a high-strength, high-strength steel material with high ultrahigh strength and low frictional resistance without lowering productivity and manufacturing cost, and a manufacturing method thereof.

이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Further, the embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art.

이하, 본 발명의 일 측면에 따른 저항복비형 고강도 강재에 대하여 상세히 설명한다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the appended drawings.

본 발명의 일 측면에 따른 저항복비형 고강도 강재는 탄소(C): 0.02~0.11중량%, 실리콘(Si): 0.1~0.5중량%, 망간(Mn): 1.5~2.5중량%, 알루미늄(Al): 0.01~0.06중량%, 니켈(Ni): 0.1~0.6중량%, 티타늄(Ti): 0.01~0.03중량%, 니오븀(Nb): 0.005~0.08중량%, 크롬(Cr): 0.1~0.5중량%, 인(P): 0.01중량% 이하(0중량%는 제외), 황(S): 0.01중량% 이하(0중량%는 제외), 보론(B): 5~30중량ppm, 질소(N): 20~70중량ppm, 칼슘(Ca): 50중량ppm 이하(0중량ppm은 제외), 주석(Sn): 5~50중량ppm 이하(0중량ppm은 제외), 나머지 철(Fe) 및 기타 불가피한 불순물을 포함한다.
According to an aspect of the present invention, there is provided a high strength steel material having a high resistance to rebound, comprising 0.02 to 0.11 weight% of carbon, 0.1 to 0.5 weight% of silicon, 1.5 to 2.5 weight% of manganese (Mn) : 0.01 to 0.06% by weight of nickel, 0.1 to 0.6% by weight of nickel, 0.01 to 0.03% by weight of titanium, 0.005 to 0.08% by weight of niobium, 0.1 to 0.5% , Phosphorus (P): not more than 0.01 wt% (excluding 0 wt%), S: not more than 0.01 wt% (excluding 0 wt%), boron (B) (Ca): 50 ppm by weight or less (excluding 0 ppm by weight), tin (Sn): 5 to 50 ppm by weight (excluding 0 ppm by weight), remaining iron (Fe) Includes unavoidable impurities.

탄소(C): 0.02~0.11 중량%Carbon (C): 0.02 to 0.11 wt%

C는 베이나이트 또는 마르텐사이트를 형성시키고, 형성되는 베이나이트 또는 마르텐사이트의 크기 및 분율을 결정하는 중요한 원소이다. C is an important element for forming bainite or martensite and determining the size and fraction of bainite or martensite to be formed.

C 함량이 0.11 중량% 초과인 경우에는 저온인성을 저하시키며, C 함량이 0.02 중량% 미만인 경우에는 베이나이트 또는 마르텐사이트의 형성을 방해하여 강도의 하락을 초래한다. 따라서, C 함량은 0.02~0.11중량%인 것이 바람직하다. If the C content is more than 0.11% by weight, the low-temperature toughness is lowered. If the C content is less than 0.02% by weight, the formation of bainite or martensite is inhibited and the strength is lowered. Therefore, the C content is preferably 0.02 to 0.11% by weight.

한편, 용접용 강구조물로 사용되는 판재의 경우에는 더 나은 용접성을 위해 C 함량의 상한을 0.08 중량%로 하는 것이 보다 바람직하다.
On the other hand, in the case of a plate used as a steel structure for welding, the upper limit of the C content is more preferably 0.08% by weight for better weldability.

실리콘(Si): 0.1~0.5중량%Silicon (Si): 0.1 to 0.5 wt%

Si는 탈산제로 사용되며, 강도 및 인성을 향상시키는 원소이다. Si is used as a deoxidizing agent and is an element for improving strength and toughness.

Si 함량이 0.5중량% 초과인 경우에는 저온인성 및 용접성이 저하될 뿐만 아니라 판재 표면에 스케일이 두껍게 형성되어 가스 절단성 불량 및 기타 표면 크랙 등을 유발할 수 있다. 반면에, Si 함량이 0.1중량% 미만인 경우에는 탈산 효과가 불충분할 수 있다. 따라서, Si 함량은 0.1~0.5중량%이다. 보다 바람직하게는 0.15~0.35 중량%일 수 있다.
When the Si content is more than 0.5% by weight, not only the low temperature toughness and weldability are deteriorated but also the scale is formed thick on the surface of the plate material, which may lead to gas cutting property defects and other surface cracks. On the other hand, if the Si content is less than 0.1% by weight, the deoxidation effect may be insufficient. Therefore, the Si content is 0.1 to 0.5% by weight. And more preferably 0.15 to 0.35% by weight.

망간(Mn): 1.5~2.5중량%Manganese (Mn): 1.5 to 2.5 wt%

Mn은 고용강화에 의해 강도를 향상시키는 유용한 원소이므로 1.5중량% 이상 첨가될 필요가 있다. 그러나, Mn 함량이 2.5중량% 초과인 경우에는 과도한 경화능의 증가로 인해 용접부의 인성이 크게 저하될 수 있다. 따라서, Mn의 함량은 1.5~2.5중량%인 것이 바람직하다.
Since Mn is a useful element for improving the strength by solid solution strengthening, it is necessary to add at least 1.5% by weight. However, if the Mn content exceeds 2.5% by weight, the toughness of the welded portion may be greatly lowered due to an increase in the hardenability. Therefore, the content of Mn is preferably 1.5 to 2.5% by weight.

알루미늄(Al): 0.01~0.06중량%Aluminum (Al): 0.01 to 0.06 wt%

Al은 용강을 저렴하게 탈산할 수 있고, 또한 페라이트를 안정화하는 원소이다. Al 함량이 0.01중량% 미만인 경우에는 상술한 효과가 불충분하다. 반면에, Al 함량이 0.06중량% 초과인 경우에는 연속 주조시 노즐 막힘이 발생할 수 있다. 따라서, Al 함량은 0.01~0.06중량%인 것이 바람직하다.
Al is an element capable of deoxidizing molten steel at low cost and stabilizing ferrite. When the Al content is less than 0.01% by weight, the above-mentioned effect is insufficient. On the other hand, when the Al content exceeds 0.06% by weight, nozzle clogging may occur during continuous casting. Therefore, the Al content is preferably 0.01 to 0.06% by weight.

니켈(Ni): 0.1~0.6중량%Nickel (Ni): 0.1 to 0.6 wt%

Ni 은 모재의 강도와 인성을 동시에 향상시킬 수 있는 원소이다. 본 발명에서 상술한 효과를 충분히 나타내기 위해서는 0.1중량% 이상 첨가하는 것이 바람직하다. 그러나, Ni은 고가의 원소이므로 0.6중량%를 초과하는 양의 첨가는 경제성이 저하되며 용접성이 저하될 수 있다. 따라서, Ni 함량은 0.1~0.6%인 것이 바람직하다.
Ni is an element capable of simultaneously improving the strength and toughness of a base material. In order to sufficiently exhibit the above-described effects in the present invention, it is preferable to add 0.1 wt% or more. However, since Ni is an expensive element, the addition of an amount exceeding 0.6% by weight may reduce the economical efficiency and deteriorate the weldability. Therefore, the Ni content is preferably 0.1 to 0.6%.

티타늄(Ti): 0.01~0.03중량%Titanium (Ti): 0.01 to 0.03 wt%

Ti는 재가열시 결정립의 성장을 억제하여 저온인성을 크게 향상시켜주므로 0.01중량% 이상 첨가하는 것이 바람직하다. 그러나, Ti 함량이 0.03중량% 초과인 경우에는 연주 노즐의 막힘이나 중심부 정출에 의한 저온인성 감소와 같은 문제점을 발생시킬 수 있다. 따라서, Ti 함량은 0.01~0.03중량%인 것이 바람직하다.
Since Ti improves the low-temperature toughness by suppressing the growth of crystal grains during reheating, it is preferable to add Ti by 0.01 wt% or more. However, when the Ti content is more than 0.03% by weight, problems such as clogging of the performance nozzle and reduction in low temperature toughness due to centering can occur. Therefore, the Ti content is preferably 0.01 to 0.03% by weight.

니오븀(Nb): 0.005~0.08중량%Niobium (Nb): 0.005 to 0.08 wt%

Nb는 TMCP 강의 제조에 있어서 중요한 원소이고, NbC 또는 NbCN의 형태로 석출하여 모재 및 용접부의 강도를 크게 향상시킨다. 또한, 고온으로 재가열시에 고용된 Nb는 오스테나이트의 재결정 및 페라이트 또는 베이나이트의 변태를 억제하여 조직이 미세화되는 효과를 나타낸다. 나아가 본 발명에서는 조압연 후 슬라브가 냉각될 때 낮은 냉각 속도로도 베이나이트를 형성시킬 뿐만 아니라, 최종 압연 후의 냉각시에도 오스테나이트의 안정성을 높여 낮은 속도의 냉각에서도 마르텐사이트 생성을 촉진시켜주는 역할도 한다. Nb is an important element in the production of TMCP steel and precipitates in the form of NbC or NbCN, which greatly improves the strength of the base material and the weld. In addition, Nb dissolved at the time of reheating at a high temperature suppresses recrystallization of austenite and transformation of ferrite or bainite, thereby exhibiting an effect of making the structure finer. Further, in the present invention, not only bainite is formed at a low cooling rate when the slab is cooled after rough rolling, but also promotes the formation of martensite even at low speed cooling by increasing the stability of austenite even after cooling after final rolling Also.

상술한 효과를 충분히 얻기 위해서는 Nb 함량이 0.005중량% 이상인 것이 바람직하다. 그러나, Nb 함량이 0.08중량% 초과인 경우에는 강재의 모서리에 취성 크랙이 나타날 수 있다. 따라서, Nb 함량은 0.005~0.08중량%인 것이 바람직하다.
In order to sufficiently obtain the above-mentioned effect, it is preferable that the Nb content is 0.005 wt% or more. However, if the Nb content exceeds 0.08 wt%, a brittle crack may appear at the edge of the steel. Therefore, the Nb content is preferably 0.005 to 0.08% by weight.

크롬(Cr): 0.1~0.5중량%Cr (Cr): 0.1 to 0.5 wt%

Cr은 강도를 확보하기 위해 첨가되는 원소로써 담금질성을 증가시키는 역할도 한다. 상술한 효과를 충분히 얻기 위해서는 0.1% 이상 첨가할 필요가 있다. 그러나, Cr 함량이 0.5% 초과인 경우에는 용접부의 경도를 과도하게 증가시키고 인성을 저해할 수 있다. 따라서, Cr 함량은 0.1~0.5%인 것이 바람직하다.
Cr is an element added to secure the strength, which also serves to increase the hardenability. In order to sufficiently obtain the above-mentioned effect, it is necessary to add it by 0.1% or more. However, when the Cr content exceeds 0.5%, the hardness of the welded portion can be excessively increased and the toughness can be inhibited. Therefore, the Cr content is preferably 0.1 to 0.5%.

인(P): 0.01중량% 이하Phosphorus (P): not more than 0.01% by weight

P는 강도향상 및 내식성에 유리한 원소이지만, 충격인성을 크게 저해할 수 있으므로 가능한 낮게 유지하는 것이 유리한 바, 그 상한을 0.01중량%로 하는 것이 바람직하다.
P is an element favoring strength improvement and corrosion resistance, but it is advantageous to keep the impact toughness as low as possible, and it is preferable to set the upper limit to 0.01 wt%.

황(S): 0.01중량% 이하Sulfur (S): not more than 0.01% by weight

S는 MnS 등을 형성하여 충격인성을 크게 저해하는 원소이므로 가능한 낮게 유지하는 것이 유리한 바, 그 상한을 0.01중량%로 하는 것이 바람직하다.
Since S is an element that significantly inhibits impact toughness by forming MnS or the like, it is advantageous to keep it as low as possible, and the upper limit is preferably 0.01 wt%.

보론(B): 5~30중량ppmBoron (B): 5 to 30 ppm by weight

B은 아주 저가의 첨가원소로 강력한 경화능을 나타내며, 조압연 후의 냉각에서 저속냉각에서도 베이나이트의 형성에 크게 기여하는 유익한 원소이다. B is a very low cost additive element and exhibits a strong curing ability and is a beneficial element contributing greatly to the formation of bainite even in the cooling after the rough rolling and at the low cooling rate.

소량의 첨가만으로도 강도를 크게 향상시킬 수 있으므로 5중량ppm 이상 첨가할 수 있다. 그러나, B 함량이 30중량ppm 초과인 경우에는 Fe23(CB)6를 형성하여 오히려 경화능을 저하시키고, 저온인성도 크게 저하시킬 수 있다. 따라서, B 함량은 5~30중량ppm 인 것이 바람직하다
Since the strength can be greatly improved by only adding a small amount, it is possible to add 5 ppm by weight or more. However, when the B content is more than 30 ppm by weight, Fe 23 (CB) 6 is formed and the hardenability is lowered, and the low temperature toughness can be largely lowered. Therefore, the B content is preferably 5 to 30 ppm by weight

질소(N): 20~70중량ppmNitrogen (N): 20 to 70 ppm by weight

N은 강도를 증가시키는 반면 인성을 크게 감소시키기 때문에 70중량ppm 이하로 제어하는 것이 바람직하다. 다만, N 함량을 20중량ppm 미만으로 제어하는 것은 제강부하를 증가시키기 때문에 상기 N 함량의 하한은 20중량ppm인 것이 바람직하다.
N is preferably controlled to be 70 ppm by weight or less because N increases the strength while greatly reduces toughness. However, since controlling the N content to less than 20 ppm by weight increases the steelmaking load, the lower limit of the N content is preferably 20 ppm by weight.

칼슘(Ca): 60중량ppm이하(0은 제외)Calcium (Ca): 60 ppm by weight or less (excluding 0)

Ca는 주로 MnS의 비금속개재물을 억제하고, 저온인성을 향상시키는 원소로 사용된다. 그러나 과도한 Ca첨가는 강중에 함유된 산소와 반응하여 비금속개재물인 CaO를 생성하므로 그 상한치는 60중량ppm인 것이 바람직하다.
Ca is mainly used as an element for suppressing non-metallic inclusions of MnS and improving low-temperature toughness. However, excessive Ca addition reacts with oxygen contained in the steel to produce CaO, which is a nonmetallic inclusion. Therefore, the upper limit of the Ca content is preferably 60 ppm by weight.

주석(Sn): 5~50중량ppmTin (Sn): 5 to 50 ppm by weight

Sn은 내식성을 확보하는데 유용한 원소이다. Sn is a useful element for securing corrosion resistance.

내식성 확보 측면에서 5ppm 이상 첨가하는 것이 바람직하다. 그러나, Sn 함량이 50ppm 중량% 초과인 경우에는 내식성 향상에 대한 기여 효과보다는 강재 표면에 수포처럼 스케일이 부풀거나 터지는 형태의 결함이 다량 발생하는 문제점을 발생시킬 수 있다. 또한, Sn은 강의 강도를 증가시킬 수 있으나 연신율과 저온 충격인성을 떨어뜨리므로 그 상한은 50중량ppm인 것이 바람직하다.
It is preferable to add 5 ppm or more from the viewpoint of ensuring corrosion resistance. However, when the Sn content exceeds 50 ppm by weight, defects such as swollen or popping scale may occur on the surface of the steel material rather than the contribution to the improvement of corrosion resistance. Further, Sn can increase the strength of the steel but deteriorates the elongation and low-temperature impact toughness, so that the upper limit is preferably 50 ppm by weight.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
The remainder of the present invention is iron (Fe). However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.

상술한 본 발명의 유리한 강 조성을 가지는 강재는 상술한 함량범위의 합금원소를 포함하는 것만으로도 충분한 효과를 얻을 수 있으나, 구리(Cu): 0.1~0.5중량%, 몰리브덴(Mo): 0.15~0.3중량% 및 바나듐(V): 0.005~0.3중량% 중 1 이상을 추가로 포함함으로써 강재의 강도, 인성, 용접열영향부의 인성, 용접성 등과 같은 특성을 보다 향상시킬 수 있다.
The steel having the advantageous steel composition of the present invention can obtain a sufficient effect even if it contains the alloying element in the above-mentioned content range. However, the steel having 0.1 to 0.5 wt% of copper (Cu) and 0.15 to 0.3 mol of molybdenum (V): 0.005 to 0.3% by weight, it is possible to further improve properties such as strength, toughness, toughness of weld heat affected zone, weldability and the like.

구리(Cu): 0.1~0.5중량% Copper (Cu): 0.1 to 0.5 wt%

Cu는 모재의 인성 저하를 최소화시키면서 동시에 강도를 높일 수 있는 원소이이다. 상술한 효과를 충분히 얻기 위해서는 0.1중량% 이상을 첨가하는 것이 바람직하다. 그러나, Cu 함량이 0.5중량% 초과인 경우에는 제품 표면 품질을 크게 저해할 수 있다. 따라서, Cu 함량은 0.1~ 0.5중량%인 것이 바람직하다.
Cu is an element capable of minimizing the toughness of the base material and simultaneously increasing its strength. In order to sufficiently obtain the above-mentioned effect, it is preferable to add 0.1 wt% or more. However, when the Cu content exceeds 0.5% by weight, the product surface quality can be greatly deteriorated. Therefore, the Cu content is preferably 0.1 to 0.5 wt%.

몰리브덴(Mo): 0.15~0.3중량%Molybdenum (Mo): 0.15 to 0.3 wt%

Mo는 소량의 첨가만으로도 경화능을 크게 향상시키는 효과가 있어서 강도를 크게 향상시킬 수 있기 때문에 0.15중량% 이상의 첨가가 필요하나, 0.3중량%을 초과하여 첨가하는 경우 용접부의 경도를 과도하게 증가시키고 인성을 저해할 수 있다. 따라서, Mo 함량은 0.15~0.3중량%인 것이 바람직하다.
Since Mo has a large effect of improving the hardenability by only adding a small amount of Mo, it is required to add 0.15% by weight or more of Mo because it can greatly improve the strength. However, when Mo is added in an amount exceeding 0.3% by weight, . ≪ / RTI > Therefore, the Mo content is preferably 0.15 to 0.3% by weight.

바나듐(V): 0.005~0.3중량%Vanadium (V): 0.005-0.3 wt%

V 은 다른 미세합금에 비해 고용되는 온도가 낮으며, 용접열영향부에 석출하여 강도의 하락을 방지하는 효과가 있다. 상술한 효과를 충분히 얻기 위해서는 0.005중량% 이상 첨가하는 것이 바람직하다. 그러나, V 함량이 0.3중량% 초과인 경우에는 인성을 오히려 저하시킬 수 있다. 따라서, V 함량은 0.005~0.3중량%인 것이 바람직하다.
V has a low temperature to be employed as compared with other fine alloys and has an effect of preventing precipitation of the welded heat affected portion and lowering of the strength. In order to sufficiently obtain the above-mentioned effect, it is preferable to add 0.005 wt% or more. However, if the V content is more than 0.3% by weight, the toughness may be lowered. Therefore, the V content is preferably 0.005 to 0.3% by weight.

또한, 본 발명의 강재의 미세조직은 베이니틱 페라이트와 그래뉼러 베이나이트를 주상으로 포함하고, M-A(도상 마르텐사이트)를 이차상으로 포함할 수 있다. In addition, the microstructure of the steel material of the present invention may include bainitic ferrite and granular bainite as main phases, and may include M-A (malleous martensite) as a secondary phase.

베이니틱 페라이트는 초기 오스테나이트 결정립계를 유지하면서 입내에 많은 고경각입계를 포함하고 있기 때문에 결정립 미세화 효과에 따른 강도와 충격인성 향상에 유용하다. Since bainitic ferrite contains many high-hardness grain boundaries in the mouth while maintaining the initial austenite grain boundaries, it is useful for improving strength and impact toughness due to grain refinement effect.

그래뉼러 베이나이트는 베이니틱 페라이트와 마찬가지로 초기 오스테나이트 결정립을 유지하고 있으나 입내 또는 입계에 M-A와 같은 이차상이 존재하게 된다. 입내에 고경각입계가 존재하고 있지 않아 충격인성에 다소 불리하나, 입내 전위와 같은 저경각입계가 다량 존재함으로써 강도는 다소 증가된다.
Granular bainite retains the initial austenite grains as bainitic ferrite, but there is a secondary phase such as MA in the grain or grain boundary. Since there is no high-rigid intrinsic system in the mouth, the impact toughness is somewhat disadvantageous, but the strength is somewhat increased by the presence of a large amount of low-rigidity grain boundaries such as the grain potential.

베이니틱 페라이트와 그래뉼러 베이나이트를 주상으로 포함함으로써 저항복비와 고강도를 확보할 수 있다.
By including bainitic ferrite and granular bainite as the main phase, it is possible to secure a low resistance and a high strength.

이때, 면적분율로 상기 베이니틱 페라이트는 80~95%이고, 상기 그래뉼러 베이나이트는 5~20%이며, 상기 M-A는 3% 이하(0% 포함)일 수 있다. At this time, the bainitic ferrite is 80 to 95%, the granular bainite is 5 to 20%, and the M-A is 3% or less (including 0%) in an area fraction.

베이니틱 페라이트의 면적분율이 80% 미만인 경우에는 높은 인장강도를 확보하기 어렵고, 95% 초과인 경우에는 항복비가 증가되는 문제점이 있다. When the area fraction of the bainitic ferrite is less than 80%, it is difficult to secure a high tensile strength. When the area fraction exceeds 95%, the yield ratio increases.

그래뉼라 베이나이트의 면적분율이 5% 미만인 경우에는 인장강도뿐만 아니라 항복강도 역시 증가하게 되어 낮은 항복비를 확보할 수 없고, 20% 초과인 경우에는 조대한 초기 오스테나이트 결정립을 효과적으로 미세화시키지 못해 인장강도가 열위해질 수 있다. When the area fraction of granular bainite is less than 5%, not only the tensile strength but also the yield strength are increased, so that a low yield ratio can not be secured. When the area fraction is more than 20%, the coarse initial austenite grains can not be effectively refined, Strength can become dull.

M-A와 같은 이차상은 저항복비 구현에 유용한 미세조직으로서 3% 이하의 면적분율을 갖는 것이 바람직하다. M-A의 면적분율이 3% 초과인 경우에는 항복비는 감소할 수 있으나, 상대적으로 외부 응력에 대한 크랙(crack) 시발점으로 작용할 수도 있기 때문에 인장강도를 높게 확보하는데 불리하게 작용하게 된다.
The secondary phase, such as MA, is preferably a microstructure useful for low resistivity implementation and preferably has an area fraction of less than 3%. When the area fraction of MA is more than 3%, the yield ratio may decrease, but it may act as a crack initiation point for external stress relatively, which is disadvantageous in securing a high tensile strength.

한편, 본 발명에 따른 강재는 PImax.(111)/PImax.(100)가 1.0 이상 1.8 이하일 수 있다. 상기 PImax.(111)은 X-선 회절 또는 전자후방산란회절 등의 방법으로부터 얻어진 (111) 결정면의 극점 강도(pole intensity, PImax.)이며, 상기 PImax.(100)은 (100) 결정면의 극점 강도이다. On the other hand, the steel according to the present invention may have a PImax (111) / PImax (100) of 1.0 or more and 1.8 or less. (111) is a pole intensity (PImax.) Of a (111) crystal plane obtained by a method such as X-ray diffraction or electron backscattering diffraction, and the PImax (100) It is strength.

상기 결정면의 극점 강도는 본 발명의 일 측면에 따른 강재의 최종 미세조직에 의해 결정된다. 베이니틱 페라이트와 그래뉼러 베이나이트를 주상으로 할 때, 베이니틱 페라이트의 분율이 높을수록 PImax.(111)의 값이 커지게 되며, 그래뉼러 베이나이트의 분율이 높을수록 PImax.(100)의 값이 커지게 된다. 본 발명의 일 측면에 따른 강재의 최종 미세조직은 베이니틱 페라이트가 그래뉼러 베이나이트 보다 면적 분율이 높으며 PImax.(111)/PImax.(100)가 1.8 이하일 때 저항복비형 고강도 강재 제조가 가능하다. PImax.(111)/PImax.(100)가 1.8을 초과할 경우, 저항복비를 만족시킬 수 없으므로 그 상한치를 1.8 이하로 하는 것이 바람직하다. 보다 바람직한 PImax.(111)/PImax.(100)는 1.6 이하이다. The pole strength of the crystal face is determined by the final microstructure of the steel according to one aspect of the present invention. When the bainitic ferrite and granular bainite are used as the main phase, the value of PImax (111) increases as the fraction of bainitic ferrite increases, while the value of PImax. (100) increases as the fraction of granular bainite increases. . According to one aspect of the present invention, the final microstructure of the steel is capable of producing a high strength steel having a high area fraction of bainitic ferrite than granular bainite and having a PImax (111) / PImax (100) of less than 1.8 . When the ratio of PImax. (111) / PImax. (100) is more than 1.8, the resistance ratio can not be satisfied, so that the upper limit is preferably 1.8 or less. More preferable PImax (111) / PImax (100) is 1.6 or less.

PImax.(111)/PImax.(100)가 1.0 미만일 경우에는 그래뉼러 베이나이트의 분율이 20% 초과로 높아지게 되어 고강도를 확보하기 어려운 문제점이 있다. 따라서, PImax.(111)/PImax.(100)의 하한치는 1.0 이상으로 하는 것이 바람직하며, 보다 바람직한 하한치는 1.2 이상이다.
When the ratio of PImax. (111) / PImax. (100) is less than 1.0, the fraction of granular bainite increases to more than 20%, which makes it difficult to secure high strength. Therefore, the lower limit value of PImax. (111) / PImax. (100) is preferably 1.0 or more, and more preferably 1.2 or more.

또한, 본 발명에 따른 강재는 항복비가 0.85 이하이고, 인장강도가 800MPa 이상을 확보할 수 있어, 건설용 강재 등으로 바람직하게 사용할 수 있다.
Further, the steel material according to the present invention can have a yield ratio of 0.85 or less, a tensile strength of 800 MPa or more, and can be suitably used as a steel material for construction.

또한, 본 발명에 따른 강재의 두께는 60mm 이하일 수 있다. Further, the thickness of the steel material according to the present invention may be 60 mm or less.

본 발명에 따른 강재는 고강도 및 저항복비를 확보할 수 있으므로, 판 두께를 60mm 이하로 얇게 할 수 있기 때문에 절단이나 천공 등 기계가공과 용접 작업이 용이해진다. 따라서, 강재의 두께는 60mm 이하인 것이 바람직하다. 보다 바람직하게는 40mm이하, 보다 더 바람직하게는 30mm이하이다. Since the steel material according to the present invention can secure a high strength and low resistance, the plate thickness can be reduced to 60 mm or less, which facilitates machining and welding work such as cutting and drilling. Therefore, the thickness of the steel material is preferably 60 mm or less. More preferably not more than 40 mm, even more preferably not more than 30 mm.

하한은 특별히 한정할 필요는 없으나, 건설 구조용 강재로 사용하기 위해서는 15mm이상일 수 있다.
The lower limit is not particularly limited, but it may be more than 15 mm for use as a steel for constructional construction.

이하, 본 발명의 다른 일 측면인 저항복비형 고강도 강재의 제조방법에 대하여 상세히 설명한다.
Hereinafter, a method for manufacturing a high-strength steel material having a low-resistance type, which is another aspect of the present invention, will be described in detail.

본 발명의 다른 일 측면인 저항복비형 고강도 강재의 제조방법은 상술한 합금조성을 갖는 슬라브를 1050~1250℃로 가열하는 단계; 상기 가열된 슬라브를 950~1150℃에서 조압연하여 바(Bar)를 얻는 단계; 상기 바(Bar)를 마무리압연온도 700~950 ℃로 열간압연하여 열연강판을 얻는 단계; 및 상기 열연강판을 25~50℃/s의 냉각속도로 Bs 온도 이하의 냉각종료온도까지 냉각하는 단계; 를 포함한다.
According to another aspect of the present invention, there is provided a method of manufacturing a high-strength steel material having a low resistance, comprising the steps of: heating a slab having the above-described alloy composition at 1050 to 1250 占 폚; Subjecting the heated slab to rough rolling at 950 to 1150 ° C to obtain a bar; Hot rolling the bar at a finish rolling temperature of 700 to 950 占 폚 to obtain a hot rolled steel sheet; And cooling the hot-rolled steel sheet to a cooling end temperature not higher than a Bs temperature at a cooling rate of 25 to 50 ° C / s; .

슬라브 가열 단계Slab heating step

상술한 합금조성을 갖는 슬라브를 1050~1250℃로 가열한다.
The slab having the above-described alloy composition is heated to 1050 to 1250 占 폚.

조압연Rough rolling 단계 step

상기 가열된 슬라브를 950~1050℃에서 조압연하여 바(Bar)를 얻는다. The heated slab is rough-rolled at 950 to 1050 ° C to obtain a bar.

상기 조압연 온도가 950℃ 미만인 경우에는 재결정이 일어나지 않은 상태로 오스테나이트가 변형됨에 따라 입자가 조대화 될 우려가 있고, 1050℃를 초과하는 경우에는 재결정이 일어남과 동시에 입자가 성장하여 역시 오스테나이트 입자가 조대해질 우려가 있다.
If the rough rolling temperature is lower than 950 ° C, the austenite may be deformed in a state in which recrystallization does not occur. In this case, when the temperature exceeds 1050 ° C, recrystallization occurs, There is a fear that the particles become coarse.

열간압연 단계Hot rolling step

상기 바(Bar)를 마무리압연온도 700~950 ℃로 열간압연하여 열연강판을 얻는다. The hot rolled steel sheet is obtained by hot rolling the bar at a finishing rolling temperature of 700 to 950 占 폚.

상기 마무리압연온도가 700 ℃ 미만인 경우에는 판재의 온도가 낮아 압연기에 부하가 발생하여 최종 두께까지 압연을 하지 못할 우려가 있고, 950 ℃를 초과하는 경우에는 압연 중 재결정이 일어날 우려가 있다.
If the finishing rolling temperature is lower than 700 캜, the temperature of the plate material is low, and a load may be generated in the rolling mill, which may result in failure of rolling to the final thickness, and if it exceeds 950 캜, recrystallization may occur during rolling.

이때, 상기 열간압연의 압하율은 50~80%일 수 있다. At this time, the reduction ratio of the hot rolling may be 50 to 80%.

상기 마무리압연 압하율이 50% 미만인 경우에는 압연 중 소재에 작용하는 하중이 증가하게 되어 설비 사고의 위험이 있고, 80%를 초과하는 경우에는 압연 패스 수가 증가하게 되어 압연종료온도까지 최종 두께를 확보하지 못할 우려가 있다.
If the finish rolling reduction ratio is less than 50%, there is a risk of equipment accidents due to an increase in the load acting on the material during rolling. If the finish rolling reduction ratio exceeds 80%, the rolling pass number increases, There is a fear that it will not be able to do.

냉각 단계Cooling step

상기 열연강판을 25~50℃/s의 냉각속도로 Bs 온도 이하의 냉각종료온도까지 냉각한다. The hot-rolled steel sheet is cooled at a cooling rate of 25 to 50 DEG C / s to a cooling termination temperature below the Bs temperature.

상기 열연강판을 Bs 온도 초과의 온도에서 냉각종료하게 되면 베이니틱 페라이트 및 그래뉼라 베이나이트가 충분히 상변태 되지 못해 강도를 확보할 수 없다. 냉각속도의 경우 판재의 두께에 따라 물리적인 제약이 있으나, 25℃/s 미만의 냉각속도에서는 연질의 페라이트들이 생성됨에 따라 인장강도 800 MPa 이상을 만족시키기 어렵다. 또한, 50℃/s 초과의 냉각속도에서는 저온변태조직인 마르텐사이트가 생성될 확률이 높아짐에 따라 인장강도뿐만 아니라 항복강도 역시 증가하게 되어 항복비 0.85 이하를 만족시키기 어렵다.
When the hot-rolled steel sheet is cooled at a temperature exceeding the Bs temperature, the bainitic ferrite and the granulobenite are not sufficiently transformed into phase, and the strength can not be secured. The cooling rate is physically limited depending on the thickness of the plate, but it is difficult to satisfy the tensile strength of 800 MPa or more as soft ferrite is generated at a cooling rate of less than 25 ° C / s. In addition, at a cooling rate exceeding 50 ° C / s, the probability of producing martensite, which is a low temperature transformation structure, increases, so that not only the tensile strength but also the yield strength is increased, and it is difficult to satisfy the yield ratio of 0.85 or less.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate the invention in more detail and not to limit the scope of the invention. The scope of the present invention is determined by the matters set forth in the claims and the matters reasonably inferred therefrom.

(( 실시예Example ))

하기 표 1에 나타난 성분계를 만족하는 슬라브를 1160℃로 가열하고, 1000℃에서 조압연한 후, 하기 표 2에 나타난 제조조건에 부합되도록 열간압연 및 냉각하여 강재를 얻었다. 상기 강재의 항복강도, 인장강도, 항복비 및 미세조직을 측정하여 하기 표 3에 나타내었다. The slabs satisfying the composition shown in Table 1 were heated to 1160 DEG C and subjected to rough rolling at 1000 DEG C, followed by hot rolling and cooling in accordance with the production conditions shown in Table 2 below to obtain a steel material. The yield strength, tensile strength, yield ratio and microstructure of the steel were measured and are shown in Table 3 below.

또한, 상기 강재의 (100), (110) 결정면의 극점강도를 측정하여 PImax.(111)/PImax.(100) 값을 하기 표 3에 나타내었다.
Further, the pole strengths of the (100) and (110) crystal faces of the steel material were measured and the values of PImax. (111) / PImax. (100) were shown in Table 3 below.

항복강도 및 인장강도는 만능인장실험기를 이용하여 측정하였다. Yield strength and tensile strength were measured using universal tensile testing machine.

미세조직은 강재를 경면 연마한 후 화학적 부식시킨 후 광학현미경으로 관찰하였다. The microstructures were observed by optical microscopy after steel abrasion after chemical polishing.

극점강도 및 집합조직 강도는 X선 회절기 및 전자후방산란회절기를 통해 측정하였다
The pole strength and texture intensity were measured via an X-ray diffractometer and an electron backscattering diffractometer

하기 표 1에서 각 원소함량의 단위는 중량%이다.
In the following Table 1, the unit of each element content is% by weight.

강종Steel grade CC SiSi MnMn PP SS AlAl CrCr NiNi TiTi NbNb BB NN CaCa SnSn 발명강AInventive Steel A 0.0450.045 0.170.17 2.122.12 0.0070.007 0.0020.002 0.0290.029 0.320.32 0.400.40 0.0180.018 0.040.04 0.00160.0016 0.00370.0037 0.00100.0010 0.00080.0008 발명강BInvention steel B 0.0520.052 0.150.15 2.482.48 0.0080.008 0.0010.001 0.0260.026 0.300.30 0.150.15 0.0160.016 0.040.04 0.00150.0015 0.00350.0035 0.00070.0007 0.00420.0042 발명강CInventive Steel C 0.0650.065 0.160.16 1.751.75 0.0110.011 0.0010.001 0.0300.030 0.290.29 0.290.29 0.0190.019 0.040.04 0.00140.0014 0.00290.0029 0.00120.0012 0.00210.0021 발명강DInventive Steel D 0.0540.054 0.250.25 2.292.29 0.0070.007 0.0020.002 0.0300.030 0.310.31 0.500.50 0.0110.011 0.030.03 0.00130.0013 0.00420.0042 0.00050.0005 0.00340.0034 비교강EComparative Steel E 0.0450.045 0.110.11 1.911.91 0.0050.005 0.0030.003 0.0060.006 0.040.04 1.521.52 0.0080.008 0.010.01 0.00010.0001 0.00400.0040 0.00110.0011 0.00040.0004 비교강FComparative Steel F 0.0490.049 0.150.15 2.852.85 0.0090.009 0.0020.002 0.0290.029 0.280.28 0.410.41 0.0180.018 0.030.03 0.00150.0015 0.00400.0040 0.00140.0014 0.00030.0003

강종Steel grade 구분division 열간마무리압연Hot finish rolling 냉각Cooling Bs 온도
(℃)
Bs temperature
(° C)
온도
(℃)
Temperature
(° C)
압하율
(%)
Reduction rate
(%)
냉각속도
(℃/s)
Cooling rate
(° C / s)
종료온도
(℃)
Termination temperature
(° C)
발명강AInventive Steel A 발명예1Inventory 1 844844 7575 46.646.6 523523 589589 발명예2Inventory 2 860860 7070 41.141.1 537537 발명예3Inventory 3 892892 6060 40.640.6 492492 발명강BInvention steel B 발명예4Honorable 4 873873 7070 41.241.2 536536 565565 발명예5Inventory 5 890890 6060 37.737.7 506506 발명예6Inventory 6 901901 6060 26.226.2 441441 발명강CInventive Steel C 발명예7Honorable 7 899899 6060 25.825.8 451451 623623 발명예8Honors 8 890890 6060 26.326.3 447447 발명예9Proposition 9 859859 7070 41.441.4 528528 발명강DInventive Steel D 비교예1Comparative Example 1 852852 7575 51.451.4 534534 568568 비교예2Comparative Example 2 863863 7575 57.757.7 507507 비교예3Comparative Example 3 904904 4545 6.46.4 182182 비교강EComparative Steel E 비교예4Comparative Example 4 870870 7272 34.134.1 350350 574574 비교예5Comparative Example 5 871871 6666 24.124.1 356356 비교예6Comparative Example 6 869869 5252 20.220.2 357357 비교강FComparative Steel F 비교예7Comparative Example 7 864864 7878 48.548.5 505505 526526 비교예8Comparative Example 8 877877 6565 31.431.4 502502 비교예9Comparative Example 9 835835 5555 20.420.4 496496

강종Steel grade 구분division 중심부 미세조직Central microstructure 항복강도
(MPa)
Yield strength
(MPa)
인장강도
(MPa)
The tensile strength
(MPa)
항복비Yield ratio PImax.(111)/PImax.(100)PImax (111) / PImax (100)
BFBF GBGB M.AM.A. 발명강AInventive Steel A 발명예1Inventory 1 8686 1212 22 677677 843843 0.800.80 1.141.14 발명예2Inventory 2 8989 1010 1One 703703 872872 0.810.81 1.251.25 발명예3Inventory 3 9191 88 1One 717717 909909 0.790.79 1.501.50 발명강BInvention steel B 발명예4Honorable 4 8787 1010 33 697697 866866 0.800.80 1.161.16 발명예5Inventory 5 9292 66 22 736736 898898 0.820.82 1.641.64 발명예6Inventory 6 8888 1111 1One 707707 871871 0.810.81 1.271.27 발명강CInventive Steel C 발명예7Honorable 7 9292 77 1One 761761 919919 0.830.83 1.521.52 발명예8Honors 8 9393 77 00 786786 926926 0.850.85 1.711.71 발명예9Proposition 9 8383 1515 22 686686 860860 0.800.80 1.101.10 발명강DInventive Steel D 비교예1Comparative Example 1 9797 33 00 797797 931931 0.860.86 1.981.98 비교예2Comparative Example 2 9898 22 00 893893 981981 0.910.91 1.961.96 비교예3Comparative Example 3 7171 2424 55 613613 780780 0.790.79 0.870.87 비교강EComparative Steel E 비교예4Comparative Example 4 AF: 72, B: 28, AF: 72, B: 28, 562562 694694 0.810.81 1.081.08 비교예5Comparative Example 5 AF: 79, B: 21, AF: 79, B: 21, 530530 643643 0.820.82 1.051.05 비교예6Comparative Example 6 AF: 74, B: 26, AF: 74, B: 26, 504504 612612 0.820.82 1.071.07 비교강FComparative Steel F 비교예7Comparative Example 7 BF: 97, GB: 3
MA: 0
BF: 97, GB: 3
MA: 0
876876 984984 0.890.89 1.971.97
비교예8Comparative Example 8 BF: 72, GB: 24
MA: 4
BF: 72, GB: 24
MA: 4
725725 841841 0.860.86 0.850.85
비교예9Comparative Example 9 BF: 66, GB: 31
MA: 3
BF: 66, GB: 31
MA: 3
660660 776776 0.850.85 0.820.82

상기 표 3에서, BF: 베이니틱 페라이트, GB: 그레뉼러 베이나이트, MA: 도상 마르텐사이트, AF: 애시큘러 페라이트, B: 베이나이트를 의미하며, 단위는 면적%이다.
In Table 3, BF: bainitic ferrite, GB: granular bainite, MA: amorphous martensite, AF: ascicular ferrite, and B: bainite.

본 발명의 합금조성 및 제조조건을 만족하는 발명예 1 내지 9는 0.85 이하의 저항복비 및 800MPa 이상의 인장강도를 확보할 수 있는 것을 알 수 있다.
It can be seen that Inventive Examples 1 to 9 satisfying the alloy composition and the manufacturing conditions of the present invention can secure a tensile strength of not less than 0.85 and a tensile strength of not less than 800 MPa.

반면에, 비교예 1 내지 3은 본 발명의 합금조성은 만족하였으나, 제조조건을 만족하지 못하여 저항복비를 확보할 수 없거나 인장강도가 열위한 것을 확인할 수 있다.
On the other hand, in Comparative Examples 1 to 3, the alloy composition of the present invention was satisfied, but the manufacturing conditions were not satisfied and it was confirmed that the resistance ratio could not be secured or the tensile strength was increased.

또한, 비교예 4, 7 및 8은 본 발명의 제조조건은 만족하였으나, 합금조성을 만족하지 못하여 저항복비를 확보할 수 없음을 확인할 수 있다.
In Comparative Examples 4, 7 and 8, the production conditions of the present invention were satisfied, but the alloy composition was not satisfied and it was confirmed that the resistance ratio could not be secured.

이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. It will be possible.

Claims (10)

탄소(C): 0.02~0.11중량%, 실리콘(Si): 0.1~0.5중량%, 망간(Mn): 1.5~2.5중량%, 알루미늄(Al): 0.01~0.06중량%, 니켈(Ni): 0.1~0.6중량%, 티타늄(Ti): 0.01~0.03중량%, 니오븀(Nb): 0.005~0.08중량%, 크롬(Cr): 0.1~0.5중량%, 인(P): 0.01중량% 이하, 황(S): 0.01중량% 이하, 보론(B): 5~30중량ppm, 질소(N): 20~70중량ppm, 칼슘(Ca): 50중량ppm 이하(0은 제외), 주석(Sn): 5~50중량ppm 이하, 나머지 철(Fe) 및 기타 불가피한 불순물을 포함하는 저항복비형 고강도 강재.
(Al): 0.01 to 0.06 wt.%, Nickel (Ni): 0.1 wt.%, Carbon (C): 0.02 to 0.11 wt.%, Silicon (Si): 0.1 to 0.5 wt.%, Manganese 0.005 to 0.08% by weight of niobium (Nb), 0.1 to 0.5% by weight of chromium (Cr), 0.01% by weight or less of phosphorus (P) S: not more than 0.01 wt%, boron (B): 5 to 30 wt ppm, nitrogen (N): 20 to 70 wt ppm, calcium (Ca) 5 to 50 ppm by weight, the balance of Fe (Fe) and other unavoidable impurities.
제1항에 있어서,
상기 강재는 구리(Cu): 0.1~0.5중량%, 몰리브덴(Mo): 0.15~0.3중량% 및 바나듐(V): 0.005~0.3중량% 중 1 이상을 추가로 포함하는 것을 특징으로 하는 저항복비형 고강도 강재.
The method according to claim 1,
Wherein the steel material further comprises at least one of copper (Cu): 0.1 to 0.5 wt%, molybdenum (Mo): 0.15 to 0.3 wt%, and vanadium (V): 0.005 to 0.3 wt% High strength steel.
제1항에 있어서,
상기 강재의 미세조직은 베이니틱 페라이트와 그래뉼러 베이나이트를 주상으로 포함하고, M-A를 이차상으로 포함하는 것을 특징으로 하는 저항복비형 고강도 강재.
The method according to claim 1,
Characterized in that the microstructure of the steel contains bainitic ferrite and granular bainite as a main phase and MA as a secondary phase.
제3항에 있어서,
면적분율로 상기 베이니틱 페라이트는 80~95%이고, 상기 그래뉼러 베이나이트는 5~20%이며, 상기 M-A는 3% 이하(0% 포함)인 것을 특징으로 하는 저항복비형 고강도 강재.
The method of claim 3,
Characterized in that the bainitic ferrite is 80 to 95%, the granular bainite is 5 to 20%, and the MA is 3% or less (including 0%) in an area fraction.
제1항에 있어서,
상기 강재의 (100) 및 (111) 결정면의 극점 강도 (pole intensity, PImax.) 비인 PImax.(111)/PImax.(100)는 1.0 이상 1.8 이하인 것을 특징으로 하는 저항복비형 고강도 강재.
(단, 상기 PImax.(111)은 (111) 결정면의 극점 강도이며, 상기 PImax.(100)은 (100) 결정면의 극점 강도이다.)
The method according to claim 1,
(111) / PImax (100) which is the pole intensity (PImax.) Ratio of the (100) and (111) crystal faces of the steel is 1.0 or more and 1.8 or less.
(111) is the pole intensity at the (111) crystal face, and PImax (100) is the pole intensity at the (100) crystal face.
제1항에 있어서,
상기 강재는 항복비가 0.85 이하이고, 인장강도가 800MPa 이상인 것을 특징으로 하는 저항복비형 고강도 강재.
The method according to claim 1,
Wherein the steel has a yield ratio of 0.85 or less and a tensile strength of 800 MPa or more.
제1항에 있어서,
상기 강재의 두께는 60mm 이하인 것을 특징으로 하는 저항복비형 고강도 강재.
The method according to claim 1,
Wherein the thickness of the steel material is 60 mm or less.
탄소(C): 0.02~0.11중량%, 실리콘(Si): 0.1~0.5중량%, 망간(Mn): 1.5~2.5중량%, 알루미늄(Al): 0.01~0.06중량%, 니켈(Ni): 0.1~0.6중량%, 티타늄(Ti): 0.01~0.03중량%, 니오븀(Nb): 0.005~0.08중량%, 크롬(Cr): 0.1~0.5중량%, 인(P): 0.01중량% 이하, 황(S): 0.01중량% 이하, 보론(B): 5~30중량ppm, 질소(N): 20~70중량ppm, 칼슘(Ca): 50중량ppm 이하(0은 제외), 주석(Sn): 5~50중량ppm 이하, 나머지 철(Fe) 및 기타 불가피한 불순물을 포함하는 슬라브를 1050~1250℃로 가열하는 단계;
상기 가열된 슬라브를 950~1050℃에서 조압연하여 바(Bar)를 얻는 단계;
상기 바(Bar)를 마무리압연온도 700~950 ℃로 열간압연하여 열연강판을 얻는 단계; 및
상기 열연강판을 25~50℃/s의 냉각속도로 Bs 온도 이하의 냉각종료온도까지 냉각하는 단계; 를 포함하는 저항복비형 고강도 강재의 제조방법.
(Al): 0.01 to 0.06 wt.%, Nickel (Ni): 0.1 wt.%, Carbon (C): 0.02 to 0.11 wt.%, Silicon (Si): 0.1 to 0.5 wt.%, Manganese 0.005 to 0.08% by weight of niobium (Nb), 0.1 to 0.5% by weight of chromium (Cr), 0.01% by weight or less of phosphorus (P) S: not more than 0.01 wt%, boron (B): 5 to 30 wt ppm, nitrogen (N): 20 to 70 wt ppm, calcium (Ca) Heating the slab containing 5 to 50 wt. Ppm or less, remaining iron (Fe), and other unavoidable impurities to 1050 to 1250 캜;
Subjecting the heated slab to rough rolling at 950 to 1050 ° C to obtain a bar;
Hot rolling the bar at a finish rolling temperature of 700 to 950 占 폚 to obtain a hot rolled steel sheet; And
Cooling the hot-rolled steel sheet at a cooling rate of 25 to 50 占 폚 / s to a cooling end temperature not higher than the Bs temperature; Resistant high-strength steel material.
제8항에 있어서,
상기 슬라브는 구리(Cu): 0.1~0.5중량%, 몰리브덴(Mo): 0.15~0.3중량% 및 바나듐(V): 0.005~0.3중량% 중 1 이상을 추가로 포함하는 것을 특징으로 하는 저항복비형 고강도 강재의 제조방법.
9. The method of claim 8,
Wherein the slab further comprises at least one of copper (Cu) in an amount of 0.1 to 0.5 wt%, molybdenum (Mo) in an amount of 0.15 to 0.3 wt%, and vanadium (V) in an amount of 0.005 to 0.3 wt% Method of manufacturing high strength steels.
제8항에 있어서,
상기 열간압연은 압하율은 50~80%로 행하는 것을 특징으로 하는 저항복비형 고강도 강재의 제조방법.
9. The method of claim 8,
Wherein the hot rolling is carried out at a reduction ratio of 50 to 80%.
KR1020150186522A 2015-12-24 2015-12-24 High strength steel having low yield ratio method for manufacturing the same KR102348539B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020150186522A KR102348539B1 (en) 2015-12-24 2015-12-24 High strength steel having low yield ratio method for manufacturing the same
US16/063,985 US20180371590A1 (en) 2015-12-24 2016-12-02 Low-yield-ratio type high-strength steel, and manufacturing method therefor
PCT/KR2016/014135 WO2017111345A1 (en) 2015-12-24 2016-12-02 Low-yield-ratio type high-strength steel, and manufacturing method therefor
JP2018532049A JP6845855B2 (en) 2015-12-24 2016-12-02 Low yield ratio type high strength steel and its manufacturing method
CN201680075889.7A CN108474090B (en) 2015-12-24 2016-12-02 Low yield ratio high strength steel material and method for producing same
EP16879212.5A EP3395997B1 (en) 2015-12-24 2016-12-02 Low-yield-ratio type high-strength steel, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150186522A KR102348539B1 (en) 2015-12-24 2015-12-24 High strength steel having low yield ratio method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20170076912A true KR20170076912A (en) 2017-07-05
KR102348539B1 KR102348539B1 (en) 2022-01-07

Family

ID=59090793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150186522A KR102348539B1 (en) 2015-12-24 2015-12-24 High strength steel having low yield ratio method for manufacturing the same

Country Status (6)

Country Link
US (1) US20180371590A1 (en)
EP (1) EP3395997B1 (en)
JP (1) JP6845855B2 (en)
KR (1) KR102348539B1 (en)
CN (1) CN108474090B (en)
WO (1) WO2017111345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200047080A (en) * 2018-10-26 2020-05-07 주식회사 포스코 Steel plate having low yield ratio and excellent heat affected zone toughness and method for manufacturing thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879082B1 (en) * 2016-12-21 2018-07-16 주식회사 포스코 Ultra high strength steel having low yield ratio method for manufacturing the same
KR102255818B1 (en) * 2019-06-24 2021-05-25 주식회사 포스코 High strength steel for a structure having excellent corrosion resistance and manufacturing method for the same
KR102307903B1 (en) * 2019-11-04 2021-09-30 주식회사 포스코 Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597425A (en) 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy
KR20090052950A (en) * 2007-11-22 2009-05-27 주식회사 포스코 High strength and low yield ratio steel for structure having excellent low temperature toughness
KR20090103801A (en) * 2008-03-27 2009-10-01 가부시키가이샤 고베 세이코쇼 780MPa CLASS LOW YIELD RATIO CIRCULAR STEEL FOR CONSTRUCTION STRUCTURE EXCELLENT IN EARTHQUAKE-PROOF PERFORMANCE, AND PROCESS FOR PRODUCING THE SAME
KR20100070639A (en) * 2008-12-18 2010-06-28 주식회사 포스코 Steel with excellent low-temperature toughness for construction and manufacturing method thereof
KR20140005370A (en) * 2007-03-01 2014-01-14 신닛테츠스미킨 카부시키카이샤 High-strength hot-rolled steel plate for line pipes excellent in low-temperature toughness and process for production of the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551694A (en) * 1991-08-20 1993-03-02 Nkk Corp High tensile strength steel with low yield ratio and its production
KR100851189B1 (en) * 2006-11-02 2008-08-08 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
JP4972451B2 (en) * 2007-04-20 2012-07-11 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP5162382B2 (en) * 2008-09-03 2013-03-13 株式会社神戸製鋼所 Low yield ratio high toughness steel plate
JP5776398B2 (en) * 2011-02-24 2015-09-09 Jfeスチール株式会社 Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
PL2700728T3 (en) * 2011-04-21 2018-03-30 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet with highly uniform stretchabilty and excellent hole expansibility, and process for producing same
KR101546124B1 (en) * 2013-03-28 2015-08-20 현대제철 주식회사 Hot-rolled steel and method of manufacturing the same
JP5679091B1 (en) * 2013-04-04 2015-03-04 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
MX2015014436A (en) * 2013-04-15 2016-02-03 Jfe Steel Corp High-strength hot-rolled steel sheet and method for manufacturing same.
KR101505299B1 (en) * 2013-06-27 2015-03-24 현대제철 주식회사 Steel and method of manufacturing the same
JP5783229B2 (en) * 2013-11-28 2015-09-24 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
KR101560943B1 (en) * 2013-12-24 2015-10-15 주식회사 포스코 Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same
WO2015098556A1 (en) * 2013-12-25 2015-07-02 新日鐵住金株式会社 Electric resistance welded steel pipe for oil well

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597425A (en) 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy
KR20140005370A (en) * 2007-03-01 2014-01-14 신닛테츠스미킨 카부시키카이샤 High-strength hot-rolled steel plate for line pipes excellent in low-temperature toughness and process for production of the same
KR20090052950A (en) * 2007-11-22 2009-05-27 주식회사 포스코 High strength and low yield ratio steel for structure having excellent low temperature toughness
KR20090103801A (en) * 2008-03-27 2009-10-01 가부시키가이샤 고베 세이코쇼 780MPa CLASS LOW YIELD RATIO CIRCULAR STEEL FOR CONSTRUCTION STRUCTURE EXCELLENT IN EARTHQUAKE-PROOF PERFORMANCE, AND PROCESS FOR PRODUCING THE SAME
KR20100070639A (en) * 2008-12-18 2010-06-28 주식회사 포스코 Steel with excellent low-temperature toughness for construction and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200047080A (en) * 2018-10-26 2020-05-07 주식회사 포스코 Steel plate having low yield ratio and excellent heat affected zone toughness and method for manufacturing thereof

Also Published As

Publication number Publication date
EP3395997A4 (en) 2018-11-07
CN108474090B (en) 2021-02-12
KR102348539B1 (en) 2022-01-07
JP2019504199A (en) 2019-02-14
WO2017111345A1 (en) 2017-06-29
EP3395997B1 (en) 2020-09-02
US20180371590A1 (en) 2018-12-27
EP3395997A1 (en) 2018-10-31
CN108474090A (en) 2018-08-31
JP6845855B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
KR101879082B1 (en) Ultra high strength steel having low yield ratio method for manufacturing the same
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
KR101726082B1 (en) Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR101676143B1 (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101899687B1 (en) Wear resistant steel having high hardness and method for manufacturing same
KR102175570B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
JP6845855B2 (en) Low yield ratio type high strength steel and its manufacturing method
JP7096338B2 (en) Structural high-strength steel with excellent fatigue crack propagation suppression characteristics and its manufacturing method
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR101899682B1 (en) Steel having high strength and low-temperature impact toughness and method for manufacturing the same
KR101304822B1 (en) Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same
KR20160078849A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101795882B1 (en) Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR20190076762A (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
JP7096337B2 (en) High-strength steel plate and its manufacturing method
KR102209547B1 (en) Ultra thick structural steel having superior brittle crack initiation resistance and method of manufacturing the same
KR20160078625A (en) Hot rolled steel sheet for steel pipe having excellent strength and method for manufacturing the same
KR20200061921A (en) Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same
KR20160078772A (en) The steel sheet having excellent heat affected zone toughness and method for manufacturing the same
KR101647230B1 (en) High strength and low yield ratio steel sheet having excellent low temperature toughness and mathod for manufacturing the same
KR101482341B1 (en) Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
KR101568514B1 (en) High strength structural steel having low yield ratio and preparing method for the same
KR101715485B1 (en) Steel plate with high strength and method of manufacturing the same
KR20230023945A (en) High strength steel plate having low yield ratio and method of manufacturing the same
KR20230090416A (en) Steel plate having excellent hydrogen induced craking resistance and low-temperature impact toughness, and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant