JP2019504199A - Low yield ratio type high strength steel and its manufacturing method - Google Patents

Low yield ratio type high strength steel and its manufacturing method Download PDF

Info

Publication number
JP2019504199A
JP2019504199A JP2018532049A JP2018532049A JP2019504199A JP 2019504199 A JP2019504199 A JP 2019504199A JP 2018532049 A JP2018532049 A JP 2018532049A JP 2018532049 A JP2018532049 A JP 2018532049A JP 2019504199 A JP2019504199 A JP 2019504199A
Authority
JP
Japan
Prior art keywords
ppm
yield ratio
steel material
strength steel
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018532049A
Other languages
Japanese (ja)
Other versions
JP6845855B2 (en
Inventor
ホ ユ,スン
ホ ユ,スン
ヨン ジョン,ムン
ヨン ジョン,ムン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019504199A publication Critical patent/JP2019504199A/en
Application granted granted Critical
Publication of JP6845855B2 publication Critical patent/JP6845855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

本発明は、炭素(C)を0.02重量%〜0.11重量%、シリコン(Si)を0.1重量%〜0.5重量%、マンガン(Mn)を1.5重量%〜2.5重量%、アルミニウム(Al)を0.01重量%〜0.06重量%、ニッケル(Ni)を0.1重量%〜0.6重量%、チタン(Ti)を0.01重量%〜0.03重量%、ニオブ(Nb)を0.005重量%〜0.08重量%、クロム(Cr)を0.1重量%〜0.5重量%、リン(P)を0.01重量%以下(0重量%は除く)、硫黄(S)を0.01重量%以下(0重量%は除く)、ボロン(B)を5重量ppm〜30重量ppm、窒素(N)を20重量ppm〜70重量ppm、カルシウム(Ca)を50重量ppm以下(0重量ppmは除く)、スズ(Sn)を5重量ppm〜50重量ppm含み、残りは鉄(Fe)及びその他の不可避不純物からなる低降伏比型高強度鋼材に関する。
In the present invention, carbon (C) is 0.02 wt% to 0.11 wt%, silicon (Si) is 0.1 wt% to 0.5 wt%, and manganese (Mn) is 1.5 wt% to 2 wt%. 0.5 wt%, aluminum (Al) 0.01 wt% to 0.06 wt%, nickel (Ni) 0.1 wt% to 0.6 wt%, titanium (Ti) 0.01 wt% 0.03 wt%, niobium (Nb) 0.005 wt% to 0.08 wt%, chromium (Cr) 0.1 wt% to 0.5 wt%, phosphorus (P) 0.01 wt% Or less (excluding 0 wt%), sulfur (S) 0.01 wt% or less (excluding 0 wt%), boron (B) 5 wtppm to 30 wtppm, and nitrogen (N) 20 wtppm 70 ppm by weight, calcium (Ca) 50 ppm by weight or less (excluding 0 ppm by weight), tin (Sn) 5 ppm by weight It comprises 0 wt ppm, the remainder to low yield ratio high-strength steel consisting of iron (Fe) and other unavoidable impurities.

Description

本発明は、低降伏比型高強度鋼材及びその製造方法に関し、より詳しくは、低い降伏比及び高い引張強度を有し、建設用鋼材として好適に用いることができる低降伏比型高強度鋼材及びその製造方法に関する。   The present invention relates to a low yield ratio type high strength steel material and a method for producing the same, and more specifically, a low yield ratio type high strength steel material that has a low yield ratio and high tensile strength and can be suitably used as a construction steel material, and It relates to the manufacturing method.

最近、国内外のビルや橋梁などの構造物は、超高層化、長スパン化が進むにつれて、極厚・高強度鋼材の開発が求められている。高強度鋼を用いると、高い許容応力を有するため、建築及び橋梁構造を合理化、軽量化することができ、経済的な建設が可能であるのみならず、板厚を薄くすることができるため、切断や穿孔などの機械加工と溶接作業が容易になる。   Recently, the construction of ultra-thick and high-strength steel materials has been demanded for structures such as buildings and bridges in Japan and overseas as super-high-rise and long-span progress. When high strength steel is used, because it has high allowable stress, it is possible to rationalize and reduce the weight of buildings and bridge structures, and not only allows economic construction, but also can reduce the plate thickness. Machining and welding operations such as cutting and drilling are facilitated.

一方、鋼材の強度を高くすると、引張強度と降伏強度との比である降伏比(降伏強度/引張強度)が上昇する場合が多いが、降伏比が上昇すると、塑性変形が起こる時点(降伏点)から破壊が起こる時点までの応力差が大きくないため、建築物が変形によってエネルギーを吸収して破壊を防止するのが困難になり、地震などの巨大な外力が作用したときに安全性を担保するのが困難であるという問題がある。したがって、構造用鋼材は高強度及び低降伏比をいずれも満たさなければならない。   On the other hand, when the strength of steel is increased, the yield ratio (yield strength / tensile strength), which is the ratio between tensile strength and yield strength, often increases, but when the yield ratio increases, the point at which plastic deformation occurs (yield point) ) Until the point of failure is not large, it becomes difficult for the building to absorb the energy by deformation and prevent destruction, ensuring safety when a huge external force such as an earthquake acts There is a problem that it is difficult to do. Therefore, the structural steel material must satisfy both high strength and low yield ratio.

一般に鋼材の降伏比は、鋼材の金属組織においてフェライト(ferrite)のような軟質相(soft phase)を主組織とし、ベイナイト(bainite)やマルテンサイト(martensite)などの硬質相(hard phase)が適度に分散した組織を実現することにより低くすることが知られている。   In general, the yield ratio of a steel material is such that a soft phase such as ferrite is the main structure in the metal structure of the steel material, and a hard phase such as bainite and martensite is moderate. It is known to lower by realizing a dispersed structure.

このような軟質相ベースの微細組織に硬質相が適度に分散した組織を得るため、特許文献1には、フェライトとオーステナイト(austenite)の2相域(dual phase region)で適切な焼き入れ(quenching)と焼き戻し(tempering)とによって降伏比を低くする方法が開示されている。しかし、上記の方法は圧延製造工程以外に熱処理工程数が追加されるため、生産性の低下はもちろん製造単価の増加も不可避であるという問題がある。   In order to obtain a structure in which a hard phase is moderately dispersed in such a soft phase-based fine structure, Patent Document 1 discloses appropriate quenching in a dual phase region of ferrite and austenite. ) And tempering to lower the yield ratio. However, since the number of heat treatment steps is added in addition to the rolling manufacturing step, the above method has a problem that it is inevitable to increase the manufacturing unit price as well as the productivity.

したがって、生産性の低下と製造単価の上昇などの問題をすべて解決し、かつ超高強度及び低降伏比が確保される低降伏比型高強度鋼材及びその製造方法の開発が求められている。   Accordingly, there is a need for the development of a low yield ratio type high strength steel material and a method for manufacturing the same that can solve all the problems such as a decrease in productivity and an increase in the manufacturing unit price, and can ensure an ultra high strength and a low yield ratio.

特開昭55−97425号公報JP-A-55-97425

本発明は、上記従来の問題点に鑑みてなされたものであって、本発明の目的は、低降伏比型高強度鋼材及びその製造方法を提供することにある。より詳細には、生産性の低下や製造単価の上昇なしに、超高強度及び低降伏比が確保された低降伏比型高強度鋼材及びその製造方法を提供することにある。   This invention is made | formed in view of the said conventional problem, Comprising: The objective of this invention is providing the low yield ratio type | mold high strength steel material and its manufacturing method. More specifically, an object of the present invention is to provide a low-yield-ratio type high-strength steel material in which ultra-high strength and a low yield ratio are ensured without lowering productivity and increasing manufacturing cost, and a method for manufacturing the same.

上記目的を達成するためになされた本発明の一態様による低降伏比型高強度鋼材は、炭素(C)を0.02重量%〜0.11重量%、シリコン(Si)を0.1重量%〜0.5重量%、マンガン(Mn)を1.5重量%〜2.5重量%、アルミニウム(Al)を0.01重量%〜0.06重量%、ニッケル(Ni)を0.1重量%〜0.6重量%、チタン(Ti)を0.01重量%〜0.03重量%、ニオブ(Nb)を0.005重量%〜0.08重量%、クロム(Cr)を0.1重量%〜0.5重量%、リン(P)を0.01重量%以下(0重量%は除く)、硫黄(S)を0.01重量%以下(0重量%は除く)、ボロン(B)を5重量ppm〜30重量ppm、窒素(N)を20重量ppm〜70重量ppm、カルシウム(Ca)を50重量ppm以下(0重量ppmは除く)、スズ(Sn)を5重量ppm〜50重量ppm含み、残りは鉄(Fe)及びその他の不可避不純物からなることを特徴とする。   The low yield ratio type high strength steel material according to one aspect of the present invention, which has been made to achieve the above object, comprises 0.02 wt% to 0.11 wt% carbon (C) and 0.1 wt% silicon (Si). % To 0.5% by weight, manganese (Mn) 1.5% to 2.5% by weight, aluminum (Al) 0.01% to 0.06% by weight, nickel (Ni) 0.1% % By weight to 0.6% by weight, 0.01% to 0.03% by weight of titanium (Ti), 0.005% to 0.08% by weight of niobium (Nb), and 0.05% by weight of chromium (Cr). 1% by weight to 0.5% by weight, phosphorus (P) 0.01% by weight or less (excluding 0% by weight), sulfur (S) 0.01% by weight or less (excluding 0% by weight), boron ( B) 5 ppm to 30 ppm, nitrogen (N) 20 ppm to 70 ppm, calcium (Ca) 50 The amount ppm or less (0 wt ppm is excluded), tin (Sn) containing 5 wt ppm~50 ppm by weight, the remainder is characterized by consisting of iron (Fe) and other unavoidable impurities.

上記目的を達成するためになされた本発明の一態様による低降伏比型高強度鋼材の製造方法は、炭素(C)を0.02重量%〜0.11重量%、シリコン(Si)を0.1重量%〜0.5重量%、マンガン(Mn)を1.5重量%〜2.5重量%、アルミニウム(Al)を0.01重量%〜0.06重量%、ニッケル(Ni)を0.1重量%〜0.6重量%、チタン(Ti)を0.01重量%〜0.03重量%、ニオブ(Nb)を0.005重量%〜0.08重量%、クロム(Cr)を0.1重量%〜0.5重量%、リン(P)を0.01重量%以下(0重量%は除く)、硫黄(S)を0.01重量%以下(0重量%は除く)、ボロン(B)を5重量ppm〜30重量ppm、窒素(N)を20重量ppm〜70重量ppm、カルシウム(Ca)を50重量ppm以下(0重量ppmは除く)、スズ(Sn)を5重量ppm〜50重量ppm含み、残りは鉄(Fe)及びその他の不可避不純物からなるスラブを1050℃〜1250℃に加熱する段階と、前記加熱されたスラブを950℃〜1150℃で粗圧延してバー(Bar)を得る段階と、前記バー(Bar)を仕上げ圧延温度700℃〜950℃で熱間圧延して熱延鋼板を得る段階と、前記熱延鋼板を25℃/s〜50℃/sの冷却速度でBs温度以下の冷却終了温度まで冷却する段階と、を有することを特徴とする。   In order to achieve the above object, a method for producing a low yield ratio type high strength steel material according to an embodiment of the present invention is as follows: carbon (C) is 0.02 wt% to 0.11 wt%, and silicon (Si) is 0 0.1 wt% to 0.5 wt%, manganese (Mn) 1.5 wt% to 2.5 wt%, aluminum (Al) 0.01 wt% to 0.06 wt%, nickel (Ni) 0.1% to 0.6% by weight, 0.01% to 0.03% by weight of titanium (Ti), 0.005% to 0.08% by weight of niobium (Nb), chromium (Cr) 0.1 wt% to 0.5 wt%, phosphorus (P) 0.01 wt% or less (excluding 0 wt%), sulfur (S) 0.01 wt% or less (excluding 0 wt%) Boron (B) 5 ppm to 30 ppm, Nitrogen (N) 20 ppm to 70 ppm, Calcium (C ) 50 wt ppm or less (excluding 0 wt ppm), tin (Sn) 5 wt ppm to 50 wt ppm, and the remainder is heated to 1050 ° C. to 1250 ° C. with a slab composed of iron (Fe) and other inevitable impurities A step of roughly rolling the heated slab at 950 ° C. to 1150 ° C. to obtain a bar, and hot rolling the bar (Bar) at a finish rolling temperature of 700 ° C. to 950 ° C. A step of obtaining a rolled steel sheet, and a step of cooling the hot-rolled steel sheet to a cooling end temperature equal to or lower than the Bs temperature at a cooling rate of 25 ° C./s to 50 ° C./s.

本発明によれば、生産性の低下や製造単価の上昇なしに超高強度及び低降伏比が確保された低降伏比型高強度鋼材及びその製造方法を提供することができる。   According to the present invention, it is possible to provide a low-yield ratio type high-strength steel material in which an ultra-high strength and a low yield ratio are ensured without lowering productivity and increasing manufacturing cost, and a method for manufacturing the same.

以下では、本発明の好ましい実施形態を説明する。しかし、本発明の実施形態は多様に変形実施することが可能であり、本発明の技術範囲は以下で説明する実施形態に限定されない。また、本発明の実施形態は、当該技術分野における通常の知識を有する者に本発明をより完全に説明するために提供されるものである。   In the following, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified in various ways, and the technical scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more fully explain the present invention to those having ordinary knowledge in the art.

以下、本発明の一実施形態による低降伏比型高強度鋼材について詳細に説明する。   Hereinafter, a low yield ratio type high strength steel material according to an embodiment of the present invention will be described in detail.

本発明の一実施形態による低降伏比型高強度鋼材は、炭素(C)を0.02重量%〜0.11重量%、シリコン(Si)を0.1重量%〜0.5重量%、マンガン(Mn)を1.5重量%〜2.5重量%、アルミニウム(Al)を0.01重量%〜0.06重量%、ニッケル(Ni)を0.1重量%〜0.6重量%、チタン(Ti)を0.01重量%〜0.03重量%、ニオブ(Nb)を0.005重量%〜0.08重量%、クロム(Cr)を0.1重量%〜0.5重量%、リン(P)を0.01重量%以下(0重量%は除く)、硫黄(S)を0.01重量%以下(0重量%は除く)、ボロン(B)を5重量ppm〜30重量ppm、窒素(N)を20重量ppm〜70重量ppm、カルシウム(Ca)を50重量ppm以下(0重量ppmは除く)、スズ(Sn)を5重量ppm〜50重量ppm含み、残りは鉄(Fe)及びその他の不可避不純物からなる。   The low yield ratio type high strength steel according to an embodiment of the present invention includes carbon (C) 0.02 wt% to 0.11 wt%, silicon (Si) 0.1 wt% to 0.5 wt%, Manganese (Mn) 1.5 wt% to 2.5 wt%, Aluminum (Al) 0.01 wt% to 0.06 wt%, Nickel (Ni) 0.1 wt% to 0.6 wt% , 0.01% to 0.03% by weight of titanium (Ti), 0.005% to 0.08% by weight of niobium (Nb), 0.1% to 0.5% by weight of chromium (Cr) %, Phosphorus (P) 0.01 wt% or less (excluding 0 wt%), sulfur (S) 0.01 wt% or less (excluding 0 wt%), boron (B) 5 wt ppm-30 Weight ppm, nitrogen (N) 20 ppm to 70 ppm, calcium (Ca) 50 ppm or less (0 ppm) Excluded), tin (Sn) containing 5 wt ppm~50 wt ppm, the remainder consisting of iron (Fe) and other unavoidable impurities.

炭素(C):0.02重量%〜0.11重量%
Cは、ベイナイト又はマルテンサイトを形成し、このベイナイト又はマルテンサイトの大きさ及び分率を決定する重要な元素である。
Carbon (C): 0.02% by weight to 0.11% by weight
C is an important element that forms bainite or martensite and determines the size and fraction of the bainite or martensite.

C含有量が0.11重量%を超えると、低温靱性を低下させ、C含有量が0.02重量%未満の場合、ベイナイト又はマルテンサイトの形成を妨げ、強度の低下をもたらす。したがって、C含有量は0.02重量%〜0.11重量%であることが好ましい。   When the C content exceeds 0.11% by weight, the low-temperature toughness is reduced, and when the C content is less than 0.02% by weight, the formation of bainite or martensite is hindered and the strength is reduced. Therefore, the C content is preferably 0.02% by weight to 0.11% by weight.

一方、溶接用鋼構造物として用いられる板材の場合には、より良い溶接性のためにC含有量の上限を0.08重量%とすることが好ましい。   On the other hand, in the case of a plate material used as a steel structure for welding, the upper limit of the C content is preferably 0.08% by weight for better weldability.

シリコン(Si):0.1重量%〜0.5重量%
Siは、脱酸剤として用いられ、強度及び靱性を向上させる元素である。
Silicon (Si): 0.1 wt% to 0.5 wt%
Si is an element that is used as a deoxidizer and improves strength and toughness.

Si含有量が0.5重量%を超えると、低温靱性及び溶接性が低下するのみならず、板材の表面にスケールが厚く形成され、ガス切断性不良及びその他の表面クラックなどを誘発する可能性がある。これに対し、Si含有量が0.1重量%未満の場合、脱酸効果が十分でない。したがって、Si含有量は0.1重量%〜0.5重量%である。より好ましくは0.15重量%〜0.35重量%である。   If the Si content exceeds 0.5% by weight, not only the low-temperature toughness and weldability will deteriorate, but also the scale will be thickly formed on the surface of the plate material, which may cause poor gas cutting properties and other surface cracks. There is. On the other hand, when the Si content is less than 0.1% by weight, the deoxidation effect is not sufficient. Accordingly, the Si content is 0.1% to 0.5% by weight. More preferably, it is 0.15 weight%-0.35 weight%.

マンガン(Mn):1.5重量%〜2.5重量%
Mnは、固溶強化によって強度を向上させる有用な元素であるため、1.5重量%以上添加される必要がある。しかし、Mn含有量が2.5重量%を超えると、過度な硬化能の増加によって溶接部の靱性が大きく低下する。したがって、Mnの含有量は1.5重量%〜2.5重量%であることが好ましい。
Manganese (Mn): 1.5% to 2.5% by weight
Since Mn is a useful element that improves the strength by solid solution strengthening, it is necessary to add 1.5% by weight or more. However, if the Mn content exceeds 2.5% by weight, the toughness of the welded portion is greatly lowered due to an excessive increase in the hardenability. Therefore, the Mn content is preferably 1.5% by weight to 2.5% by weight.

アルミニウム(Al):0.01重量%〜0.06重量%
Alは、溶鋼を安価に脱酸することができ、また、フェライトを安定化する元素である。Al含有量が0.01重量%未満の場合、上述の効果が十分でない。これに対し、Al含有量が0.06重量%を超えると、連続鋳造時にノズル詰まりが発生する。したがって、Al含有量は0.01重量%〜0.06重量%であることが好ましい。
Aluminum (Al): 0.01% to 0.06% by weight
Al is an element that can deoxidize molten steel at low cost and stabilize ferrite. When the Al content is less than 0.01% by weight, the above effects are not sufficient. On the other hand, when the Al content exceeds 0.06% by weight, nozzle clogging occurs during continuous casting. Therefore, the Al content is preferably 0.01% by weight to 0.06% by weight.

ニッケル(Ni):0.1重量%〜0.6重量%
Niは、母材の強度と靱性を同時に向上させる元素である。上述の効果を十分に奏するためには0.1重量%以上添加することが好ましい。しかし、Niは高価な元素であるため、添加量が0.6重量%を超えると、経済性が低下し、また溶接性が低下する。したがって、Ni含有量は0.1重量%〜0.6重量%であることが好ましい。
Nickel (Ni): 0.1% to 0.6% by weight
Ni is an element that simultaneously improves the strength and toughness of the base material. In order to sufficiently exhibit the above effects, it is preferable to add 0.1% by weight or more. However, since Ni is an expensive element, if the addition amount exceeds 0.6% by weight, the economic efficiency is lowered and the weldability is also lowered. Therefore, the Ni content is preferably 0.1% by weight to 0.6% by weight.

チタン(Ti):0.01重量%〜0.03重量%
Tiは、再加熱時の結晶粒の成長を抑制し、低温靱性を大きく向上させるため、0.01重量%以上添加することが好ましい。しかし、Ti含有量が0.03重量%を超えると、連続鋳造ノズルの詰まりや中心部の晶出による低温靱性の減少などの問題を発生させる。したがって、Ti含有量は0.01重量%〜0.03重量%であることが好ましい。
Titanium (Ti): 0.01% by weight to 0.03% by weight
Ti is preferably added in an amount of 0.01% by weight or more in order to suppress the growth of crystal grains during reheating and greatly improve the low temperature toughness. However, if the Ti content exceeds 0.03% by weight, problems such as clogging of a continuous casting nozzle and a decrease in low-temperature toughness due to crystallization of the central portion occur. Therefore, the Ti content is preferably 0.01% by weight to 0.03% by weight.

ニオブ(Nb):0.005重量%〜0.08重量%
Nbは、TMCP鋼の製造において重要な元素であり、NbC又はNbCNの形で析出し、母材及び溶接部の強度を大きく向上させる。また、高温に再加熱される時、固溶したNbはオーステナイトの再結晶及びフェライト又はベイナイトの変態を抑制して組織が微細化する効果を奏する。さらに、粗圧延後スラブが冷却される時、低い冷却速度でもベイナイトを形成させるのみならず、最終圧延後の冷却時にもオーステナイトの安定性を高め、低速の冷却でもマルテンサイトの生成を促進させる役割も果たす。
Niobium (Nb): 0.005 wt% to 0.08 wt%
Nb is an important element in the production of TMCP steel, and precipitates in the form of NbC or NbCN, greatly improving the strength of the base metal and the weld. In addition, when reheated to a high temperature, the dissolved Nb has the effect of suppressing the recrystallization of austenite and the transformation of ferrite or bainite and making the structure finer. Furthermore, when the slab is cooled after rough rolling, it not only forms bainite even at a low cooling rate, but also enhances austenite stability during cooling after final rolling, and promotes the formation of martensite even at low cooling. Also fulfills.

上述の効果を十分に得るためにはNb含有量が0.005重量%以上であることが好ましい。しかし、Nb含有量が0.08重量%を超えると、鋼材のエッジに脆性クラックが発生する。したがって、Nb含有量は0.005重量%〜0.08重量%であることが好ましい。   In order to sufficiently obtain the above effects, the Nb content is preferably 0.005% by weight or more. However, when the Nb content exceeds 0.08% by weight, brittle cracks occur at the edge of the steel material. Therefore, the Nb content is preferably 0.005 wt% to 0.08 wt%.

クロム(Cr):0.1重量%〜0.5重量%
Crは、強度を確保するために添加される元素であり、焼き入れ性を増加させる役割も果たす。上述の効果を十分に得るためには0.1重量%以上添加する必要がある。しかし、Cr含有量が0.5重量%を超えると、溶接部の硬度を過度に増加させ、靱性を阻害する。したがって、Cr含有量は0.1重量%〜0.5重量%であることが好ましい。
Chromium (Cr): 0.1% to 0.5% by weight
Cr is an element added to ensure strength, and also plays a role of increasing hardenability. In order to sufficiently obtain the above effects, it is necessary to add 0.1% by weight or more. However, if the Cr content exceeds 0.5% by weight, the hardness of the welded portion is excessively increased and the toughness is hindered. Therefore, the Cr content is preferably 0.1% by weight to 0.5% by weight.

リン(P):0.01重量%以下
Pは、強度向上及び耐食性に有利な元素であるが、衝撃靱性を大きく阻害するため、できる限り低く維持するのがよい。したがって、その上限を0.01重量%とすることが好ましい。
Phosphorus (P): 0.01% by weight or less P is an element advantageous for strength improvement and corrosion resistance. However, since it significantly impairs impact toughness, P should be kept as low as possible. Therefore, the upper limit is preferably 0.01% by weight.

硫黄(S):0.01重量%以下
Sは、MnSなどを形成して衝撃靱性を大きく阻害する元素であるため、できる限り低く維持するのがよい。したがって、その上限を0.01重量%とすることが好ましい。
Sulfur (S): 0.01 wt% or less Since S is an element that forms MnS or the like and greatly impairs impact toughness, it should be kept as low as possible. Therefore, the upper limit is preferably 0.01% by weight.

ボロン(B):5重量ppm〜30重量ppm
Bは、非常に安価な添加元素であり、強力な硬化能を示し、粗圧延後の冷却において低速冷却でもベイナイトの形成に大きく寄与する有益な元素である。
Boron (B): 5 ppm to 30 ppm by weight
B is a very inexpensive additive element, is a useful element that exhibits a strong hardening ability and contributes greatly to the formation of bainite even during low-speed cooling in cooling after rough rolling.

少量の添加のみでも強度を大きく向上させることができるため、5重量ppm以上添加する。しかし、B含有量が30重量ppmを超えると、Fe23(CB)を形成し、逆に硬化能を低下させ、低温靱性も大きく低下させる。したがって、B含有量は5重量ppm〜30重量ppmであることが好ましい。 Since the strength can be greatly improved by adding only a small amount, 5 ppm by weight or more is added. However, when the B content exceeds 30 ppm by weight, Fe 23 (CB) 6 is formed, conversely, the curability is lowered and the low temperature toughness is also greatly lowered. Therefore, the B content is preferably 5 ppm to 30 ppm by weight.

窒素(N):20重量ppm〜70重量ppm
Nは、強度を増加させるが、靱性を大きく減少させるため、70重量ppm以下に制御することが好ましい。但し、N含有量を20重量ppm未満に制御することは製鋼負荷を増加させるため、N含有量の下限は20重量ppmであることが好ましい。
Nitrogen (N): 20 ppm by weight to 70 ppm by weight
N increases strength but greatly reduces toughness, so it is preferable to control N to 70 ppm by weight or less. However, controlling the N content to less than 20 ppm by weight increases the steelmaking load, so the lower limit of the N content is preferably 20 ppm by weight.

カルシウム(Ca):50重量ppm以下(0重量ppmは除く)
Caは、主にMnSの非金属介在物を抑制し、低温靱性を向上させる元素として用いられる。しかし、Caを過剰に添加すると、鋼中に含有された酸素と反応し、非金属介在物であるCaOを生成するため、その上限値は50重量ppmであることが好ましい。
Calcium (Ca): 50 ppm by weight or less (excluding 0 ppm by weight)
Ca is mainly used as an element that suppresses non-metallic inclusions of MnS and improves low-temperature toughness. However, when Ca is added excessively, it reacts with oxygen contained in the steel to produce CaO which is a nonmetallic inclusion, and therefore the upper limit is preferably 50 ppm by weight.

スズ(Sn):5重量ppm〜50重量ppm
Snは、耐食性を確保するのに有用な元素である。
Tin (Sn): 5 ppm to 50 ppm by weight
Sn is an element useful for ensuring corrosion resistance.

耐食性確保の面で5ppm以上添加することが好ましい。しかし、Sn含有量が50ppm重量%を超えると、耐食性向上に対する寄与効果よりも鋼材の表面に水泡のようにスケールが膨れたり割れたりする形の欠陥が多量に発生する。また、Snは鋼の強度を増加させるが、延伸率と低温衝撃靱性を低下させるため、その上限は50重量ppmであることが好ましい。   It is preferable to add 5 ppm or more in terms of ensuring corrosion resistance. However, if the Sn content exceeds 50 ppm by weight, a larger amount of defects in the form of swelling or cracking of the surface of the steel material, such as water bubbles, occurs than the effect of contributing to the corrosion resistance improvement. Further, Sn increases the strength of the steel, but the upper limit is preferably 50 ppm by weight because it lowers the stretch ratio and the low temperature impact toughness.

本発明の低降伏比型高強度鋼材において、残りの成分は鉄(Fe)である。但し、通常の製造工程では原料又は周囲環境から意図しない不純物が不可避的に混入し、これを排除することはできない。これらの不純物は、当該技術分野における通常の知識を有する技術者であれば容易に理解されるものであるため、本明細書ではその全ての内容を詳細には説明しない。   In the low yield ratio type high strength steel material of the present invention, the remaining component is iron (Fe). However, in a normal manufacturing process, unintended impurities are inevitably mixed from the raw material or the surrounding environment, and this cannot be excluded. These impurities can be easily understood by engineers having ordinary knowledge in the technical field, and therefore, the entire contents thereof are not described in detail in this specification.

本発明による有利な鋼組成を有する低降伏比型高強度鋼材は、上述した含有量範囲の合金元素を含むだけでも十分な効果が得られるが、0.1重量%〜0.5重量%の銅(Cu)、0.15重量%〜0.3重量%のモリブデン(Mo)、及び0.005重量%〜0.3重量%のバナジウム(V)のうちの一つ以上をさらに含むことにより鋼材の強度、靱性、溶接熱影響部の靱性、溶接性などの特性をより向上させることができる。   The low yield ratio type high-strength steel material having an advantageous steel composition according to the present invention can provide a sufficient effect even if it contains the alloy elements in the above-described content range, but it is 0.1 wt% to 0.5 wt%. By further including one or more of copper (Cu), 0.15 wt% to 0.3 wt% molybdenum (Mo), and 0.005 wt% to 0.3 wt% vanadium (V) Properties such as the strength, toughness of the steel material, the toughness of the weld heat affected zone, and the weldability can be further improved.

銅(Cu):0.1重量%〜0.5重量%
Cuは、母材の靱性低下を最小化させるとともに強度を高める元素である。上述の効果を十分に得るためには0.1重量%以上添加することが好ましい。しかし、Cu含有量が0.5重量%を超えると、製品の表面品質を大きく阻害する。したがって、Cu含有量は0.1重量%〜0.5重量%であることが好ましい。
Copper (Cu): 0.1% to 0.5% by weight
Cu is an element that minimizes the toughness reduction of the base material and increases the strength. In order to sufficiently obtain the above effects, it is preferable to add 0.1% by weight or more. However, if the Cu content exceeds 0.5% by weight, the surface quality of the product is greatly impaired. Therefore, the Cu content is preferably 0.1% by weight to 0.5% by weight.

モリブデン(Mo):0.15重量%〜0.3重量%
Moは、少量の添加のみでも硬化能を大きく向上させる効果があり、強度を大きく向上させるため、0.15重量%以上添加する必要があるが、0.3重量%を超えて添加すると、溶接部の硬度を過度に増加させ、靱性を阻害する。したがって、Mo含有量は0.15重量%〜0.3重量%であることが好ましい。
Molybdenum (Mo): 0.15 wt% to 0.3 wt%
Mo has the effect of greatly improving the curability even when added in a small amount, and in order to greatly improve the strength, it is necessary to add 0.15 wt% or more, but if added over 0.3 wt%, welding Increases the hardness of the part excessively and inhibits toughness. Therefore, the Mo content is preferably 0.15 wt% to 0.3 wt%.

バナジウム(V):0.005重量%〜0.3重量%
Vは、他の微細合金に比べて固溶する温度が低く、溶接熱影響部に析出して強度の低下を防止する効果がある。上述の効果を十分に得るためには0.005重量%以上添加することが好ましい。しかし、V含有量が0.3重量%を超えると、逆に靱性を低下させる。したがって、V含有量は0.005重量%〜0.3重量%であることが好ましい。
Vanadium (V): 0.005% to 0.3% by weight
V has a lower solid solution temperature than other fine alloys, and has an effect of precipitating in the weld heat affected zone and preventing a decrease in strength. In order to sufficiently obtain the above effects, it is preferable to add 0.005% by weight or more. However, if the V content exceeds 0.3% by weight, the toughness is reduced. Therefore, the V content is preferably 0.005 wt% to 0.3 wt%.

また、本発明の低降伏比型高強度鋼材の微細組織は、ベイニティックフェライト及びグラニュラーベイナイトを主相として含み、M−A(島状マルテンサイト)を二次相として含む。   Further, the microstructure of the low yield ratio type high strength steel material of the present invention includes bainitic ferrite and granular bainite as main phases and MA (island martensite) as secondary phases.

ベイニティックフェライトは、初期オーステナイト結晶粒界を維持しながら粒内に多くの高傾角粒界を含んでいるため、結晶粒の微細化の効果による強度と衝撃靱性の向上に有用である。   Bainitic ferrite contains many high-angle grain boundaries within the grain while maintaining the initial austenite grain boundary, and is useful for improving strength and impact toughness due to the effect of crystal grain refinement.

グラニュラーベイナイトは、ベイニティックフェライトと同様に初期オーステナイト結晶粒を維持しているが、粒内又は粒界にM−Aのような二次相が存在する。粒内に高傾角粒界が存在しておらず、衝撃靱性に多少不利な影響を及ぼすが、粒内転位のような低傾角粒界が多量に存在することにより強度は多少増加する。   Granular bainite maintains the initial austenite crystal grains like bainitic ferrite, but a secondary phase such as MA exists in the grains or at grain boundaries. There are no high-angle grain boundaries in the grains, which has a somewhat adverse effect on impact toughness, but the strength increases somewhat due to the presence of a large amount of low-angle grain boundaries such as intragranular dislocations.

ベイニティックフェライト及びグラニュラーベイナイトを主相として含むことにより低降伏比と高強度を確保することができる。   By including bainitic ferrite and granular bainite as main phases, a low yield ratio and high strength can be ensured.

この際、面積分率で、ベイニティックフェライトは80%〜95%であり、グラニュラーベイナイトは5%〜20%であり、M−Aは3%以下(0%を含む)である。   At this time, bainitic ferrite is 80% to 95% in area fraction, granular bainite is 5% to 20%, and M-A is 3% or less (including 0%).

ベイニティックフェライトの面積分率が80%未満の場合、高い引張強度を確保するのが困難であり、95%を超えると、降伏比が増加するという問題がある。   When the area fraction of bainitic ferrite is less than 80%, it is difficult to ensure high tensile strength, and when it exceeds 95%, the yield ratio increases.

グラニュラーベイナイトの面積分率が5%未満の場合、引張強度のみならず降伏強度も増加して、低い降伏比を確保することができず、20%を超えると、粗大な初期オーステナイト結晶粒を効果的に微細化させることができず、引張強度が劣る。   When the area fraction of granular bainite is less than 5%, not only the tensile strength but also the yield strength increases, and a low yield ratio cannot be secured. If it exceeds 20%, coarse initial austenite grains are effective. Cannot be made fine and the tensile strength is poor.

M−Aのような二次相は、低降伏比の実現に有用な微細組織として3%以下の面積分率を有することが好ましい。M−Aの面積分率が3%を超えると、降伏比は減少するが、相対的に外部応力に対するクラック(crack)の起点として作用するため、引張強度を高く確保するのが困難になる。   The secondary phase such as M-A preferably has an area fraction of 3% or less as a microstructure useful for realizing a low yield ratio. When the area fraction of M-A exceeds 3%, the yield ratio decreases, but since it acts as a starting point for cracks against external stress, it is difficult to ensure high tensile strength.

一方、本発明による低降伏比型高強度鋼材は、PImax.(111)/PImax.(100)が1.0以上1.8以下である。PImax.(111)はX線回折又は電子後方散乱回折などの方法で得られた(111)結晶面の極点強度(pole intensity、PImax.)であり、PImax.(100)は(100)結晶面の極点強度である。   On the other hand, the low yield ratio type high strength steel material according to the present invention has PImax. (111) / PImax. (100) is 1.0 or more and 1.8 or less. PImax. (111) is the pole intensity (pole intensity, PImax.) Of the (111) crystal plane obtained by a method such as X-ray diffraction or electron backscattering diffraction. (100) is the pole strength of the (100) crystal plane.

結晶面の極点強度は、本発明の一実施形態による低降伏比型高強度鋼材の最終微細組織によって決定される。ベイニティックフェライト及びグラニュラーベイナイトを主相とする場合、ベイニティックフェライトの分率が高いほどPImax.(111)の値が大きくなり、グラニュラーベイナイトの分率が高いほどPImax.(100)の値が大きくなる。本実施形態による低降伏比型高強度鋼材の最終微細組織は、ベイニティックフェライトがグラニュラーベイナイトよりも面積分率が高くPImax.(111)/PImax.(100)が1.8以下の場合、低降伏比型高強度鋼材の製造が可能である。PImax.(111)/PImax.(100)が1.8を超えると、低降伏比を満たすことができないため、その上限値を1.8以下とすることが好ましい。より好ましいPImax.(111)/PImax.(100)は1.6以下である。   The pole strength of the crystal plane is determined by the final microstructure of the low yield ratio type high strength steel according to an embodiment of the present invention. When the main phase is bainitic ferrite and granular bainite, the higher the bainitic ferrite fraction, the higher the PImax. As the value of (111) increases and the fraction of granular bainite increases, PImax. The value of (100) increases. The final microstructure of the low-yield ratio type high-strength steel material according to the present embodiment shows that bainitic ferrite has a higher area fraction than granular bainite and PImax. (111) / PImax. When (100) is 1.8 or less, it is possible to produce a low yield ratio type high strength steel material. PImax. (111) / PImax. If (100) exceeds 1.8, the low yield ratio cannot be satisfied, so the upper limit is preferably 1.8 or less. More preferable PImax. (111) / PImax. (100) is 1.6 or less.

PImax.(111)/PImax.(100)が1.0未満の場合にはグラニュラーベイナイトの分率が20%超と高くなり、高強度を確保するのが困難であるという問題がある。したがって、PImax.(111)/PImax.(100)の下限値は1.0以上とすることが好ましく、より好ましい下限値は1.2以上である。   PImax. (111) / PImax. When (100) is less than 1.0, the fraction of granular bainite is as high as more than 20%, and there is a problem that it is difficult to ensure high strength. Therefore, PImax. (111) / PImax. The lower limit of (100) is preferably 1.0 or more, and more preferably 1.2 or more.

本発明による低降伏比型高強度鋼材は、降伏比が0.85以下であり、引張強度800MPa以上を確保することで、建設用鋼材などとして好適に用いることができる。   The low-yield ratio type high-strength steel material according to the present invention has a yield ratio of 0.85 or less and can be suitably used as a steel material for construction by ensuring a tensile strength of 800 MPa or more.

また、本発明による鋼材の厚さは60mm以下である。   Moreover, the thickness of the steel material by this invention is 60 mm or less.

本発明による低降伏比型高強度鋼材は、高強度及び低降伏比を確保することができ、板厚を60mm以下と薄くすることができるため、切断や穿孔などの機械加工と溶接作業が容易になる。したがって、鋼材の厚さは60mm以下であることが好ましい。より好ましくは40mm以下、さらに好ましくは30mm以下である。   The low-yield ratio type high-strength steel material according to the present invention can ensure high strength and low yield ratio, and can reduce the plate thickness to 60 mm or less, so that machining and welding operations such as cutting and drilling are easy. become. Therefore, the thickness of the steel material is preferably 60 mm or less. More preferably, it is 40 mm or less, More preferably, it is 30 mm or less.

下限は特に限定する必要はないが、建設構造用鋼材として用いるためには15mm以上であればよい。   The lower limit is not particularly limited, but may be 15 mm or more in order to be used as a steel material for construction structures.

以下、本発明の一実施形態による低降伏比型高強度鋼材の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the low yield ratio type high strength steel material by one Embodiment of this invention is demonstrated in detail.

本発明の一実施形態による低降伏比型高強度鋼材の製造方法は、上述の合金組成を有するスラブを1050℃〜1250℃に加熱する段階と、加熱されたスラブを950℃〜1150℃で粗圧延してバー(Bar)を得る段階と、バー(Bar)を仕上げ圧延温度700℃〜950℃で熱間圧延して熱延鋼板を得る段階と、熱延鋼板を25℃/s〜50℃/sの冷却速度でBs温度以下の冷却終了温度まで冷却する段階と、を有する。   According to an embodiment of the present invention, a method of manufacturing a low yield ratio type high strength steel material includes a step of heating a slab having the above-described alloy composition to 1050 ° C. to 1250 ° C., and a rough heating of the heated slab at 950 ° C. to 1150 ° C. Rolling to obtain a bar, hot rolling the bar at a finish rolling temperature of 700 ° C. to 950 ° C. to obtain a hot rolled steel plate, and heating the hot rolled steel plate to 25 ° C./s to 50 ° C. Cooling to a cooling end temperature below the Bs temperature at a cooling rate of / s.

<スラブ加熱段階>
上述の合金組成を有するスラブを1050℃〜1250℃に加熱する。
<Slab heating stage>
A slab having the above alloy composition is heated to 1050 ° C to 1250 ° C.

<粗圧延段階>
加熱されたスラブを950℃〜1050℃で粗圧延してバー(Bar)を得る。
<Rough rolling stage>
The heated slab is roughly rolled at 950 ° C. to 1050 ° C. to obtain a bar.

粗圧延温度が950℃未満の場合、再結晶が起こらない状態でオーステナイトが変形するため、粒子が粗大化し、1050℃を超えると、再結晶が起こると同時に粒子が成長し、同様に、オーステナイト粒子が粗大になる。   When the rough rolling temperature is less than 950 ° C., the austenite is deformed in a state where recrystallization does not occur. Therefore, the particles are coarsened. When the temperature exceeds 1050 ° C., the recrystallization occurs and the particles grow at the same time. Becomes coarse.

<熱間圧延段階>
バー(Bar)を仕上げ圧延温度700℃〜950℃で熱間圧延して熱延鋼板を得る。
<Hot rolling stage>
A bar is hot-rolled at a finish rolling temperature of 700 to 950 ° C. to obtain a hot-rolled steel sheet.

仕上げ圧延温度が700℃未満の場合、板材の温度が低く、圧延機に負荷が発生し、最終厚さまで圧延を行うことができず、950℃を超えると、圧延中に再結晶が起こる。   When the finish rolling temperature is less than 700 ° C., the temperature of the plate material is low, a load is generated on the rolling mill, and the rolling cannot be performed to the final thickness, and when it exceeds 950 ° C., recrystallization occurs during rolling.

この際、熱間圧延の圧下率は50%〜80%であればよい。   At this time, the rolling reduction of the hot rolling may be 50% to 80%.

仕上げ圧延の圧下率が50%未満の場合、圧延中に素材に作用する荷重が増加して、設備事故の危険があり、80%を超えると、圧延パス数が増加して、圧延終了温度まで最終厚さを確保することができない。   If the rolling reduction of finish rolling is less than 50%, the load acting on the material increases during rolling, and there is a risk of equipment accidents. If it exceeds 80%, the number of rolling passes increases to the rolling end temperature. The final thickness cannot be ensured.

<冷却段階>
熱延鋼板を25℃/s〜50℃/sの冷却速度でBs温度以下の冷却終了温度まで冷却する。
<Cooling stage>
The hot-rolled steel sheet is cooled to a cooling end temperature below the Bs temperature at a cooling rate of 25 ° C./s to 50 ° C./s.

熱延鋼板の冷却がBs温度を超える温度で終了すると、ベイニティックフェライト及びグラニュラーベイナイトが十分に相変態することができず、強度を確保することができない。冷却速度の場合、板材の厚さによって物理的な制約があるが、25℃/s未満の冷却速度では軟質のフェライトが生成されることにより引張強度800MPa以上を満たすのが困難である。また、50℃/sを超える冷却速度では低温変態組織であるマルテンサイトが生成される確率が高くなるにつれ、引張強度のみならず降伏強度も増加し、降伏比0.85以下を満たすのが困難である。   When the cooling of the hot-rolled steel sheet is completed at a temperature exceeding the Bs temperature, bainitic ferrite and granular bainite cannot sufficiently undergo phase transformation, and the strength cannot be ensured. In the case of the cooling rate, there are physical restrictions depending on the thickness of the plate material, but at a cooling rate of less than 25 ° C./s, it is difficult to satisfy a tensile strength of 800 MPa or more by generating soft ferrite. Further, at a cooling rate exceeding 50 ° C./s, as the probability that martensite, which is a low temperature transformation structure, is increased, not only the tensile strength but also the yield strength increases, and it is difficult to satisfy the yield ratio of 0.85 or less. It is.

以下、実施例を挙げて本発明をより具体的に説明する。但し、下記の実施例は本発明の一例を具体的に示すものに過ぎず、本発明の技術範囲を限定するものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the following examples are merely specific examples of the present invention and do not limit the technical scope of the present invention.

下記の表1に示す成分系を満たすスラブを1160℃に加熱し、1000℃で粗圧延した後、表2に示す製造条件に合うように熱間圧延及び冷却して鋼材を得た。この鋼材の降伏強度、引張強度、降伏比、及び微細組織を測定して表3に示す。   A slab satisfying the component system shown in Table 1 below was heated to 1160 ° C., roughly rolled at 1000 ° C., and then hot-rolled and cooled to meet the production conditions shown in Table 2 to obtain a steel material. The yield strength, tensile strength, yield ratio, and microstructure of this steel are measured and shown in Table 3.

また、鋼材の(100)結晶面、(110)結晶面の極点強度を測定し、PImax.(111)/PImax.(100)値を表3に示す。   Further, the pole strength of the (100) crystal plane and (110) crystal plane of the steel material was measured, and PImax. (111) / PImax. The (100) values are shown in Table 3.

降伏強度及び引張強度は万能引張実験機を用いて測定した。   Yield strength and tensile strength were measured using a universal tensile tester.

微細組織は、鋼材を鏡面研磨して、化学的に腐食させた後、光学顕微鏡で観察した。   The fine structure was observed with an optical microscope after the steel material was mirror-polished and chemically corroded.

極点強度及び集合組織強度は、X線回折器及び電子後方散乱回折器を用いて測定した。   The pole strength and texture strength were measured using an X-ray diffractometer and an electron backscatter diffractometer.

表1において各元素含有量の単位は重量%である。   In Table 1, the unit of each element content is wt%.

Figure 2019504199
Figure 2019504199

Figure 2019504199
Figure 2019504199

Figure 2019504199
Figure 2019504199

上記の表3において、BFはベイニティックフェライト、GBはグラニュラーベイナイト、MAは島状マルテンサイト、AFはアシキュラーフェライト、Bはベイナイトを意味し、単位は面積%である。   In Table 3 above, BF means bainitic ferrite, GB means granular bainite, MA means island martensite, AF means acicular ferrite, B means bainite, and the unit is area%.

本発明の合金組成及び製造条件を満たす発明例1〜9は、0.85以下の低降伏比及び800MPa以上の引張強度を確保することが分かる。   It can be seen that Invention Examples 1 to 9 satisfying the alloy composition and production conditions of the present invention ensure a low yield ratio of 0.85 or less and a tensile strength of 800 MPa or more.

これに対し、比較例1〜3は、本発明の合金組成は満たしているが、製造条件を満たしておらず、低降伏比を確保することができなかったり引張強度が劣ったりすることが確認できる。   On the other hand, although Comparative Examples 1-3 satisfy | fills the alloy composition of this invention, it does not satisfy | fill manufacturing conditions and it is confirmed that a low yield ratio cannot be ensured or tensile strength is inferior. it can.

また、比較例4、7、及び8は、本発明の製造条件は満たしているが、合金組成を満たしておらず、低降伏比を確保することができないことが確認できる。   Moreover, although the comparative examples 4, 7, and 8 satisfy | fill the manufacturing conditions of this invention, it can confirm that the alloy composition is not satisfy | filled and a low yield ratio cannot be ensured.

以上、実施例を参照しながら説明したが、当該技術分野に熟練した当業者であれば本発明の技術範囲から逸脱しない範囲内で本発明を多様に変形実施することができる。   Although the above has been described with reference to the embodiments, those skilled in the art can make various modifications of the present invention without departing from the technical scope of the present invention.

Claims (10)

低降伏比型高強度鋼材であって、
炭素(C)を0.02重量%〜0.11重量%、シリコン(Si)を0.1重量%〜0.5重量%、マンガン(Mn)を1.5重量%〜2.5重量%、アルミニウム(Al)を0.01重量%〜0.06重量%、ニッケル(Ni)を0.1重量%〜0.6重量%、チタン(Ti)を0.01重量%〜0.03重量%、ニオブ(Nb)を0.005重量%〜0.08重量%、クロム(Cr)を0.1重量%〜0.5重量%、リン(P)を0.01重量%以下(0重量%は除く)、硫黄(S)を0.01重量%以下、ボロン(B)を5重量ppm〜30重量ppm、窒素(N)を20重量ppm〜70重量ppm、カルシウム(Ca)を50重量ppm以下(0重量ppmは除く)、スズ(Sn)を5重量ppm〜50重量ppm含み、残りは鉄(Fe)及びその他の不可避不純物からなることを特徴とする低降伏比型高強度鋼材。
Low yield ratio type high strength steel material,
Carbon (C) 0.02 wt% to 0.11 wt%, silicon (Si) 0.1 wt% to 0.5 wt%, manganese (Mn) 1.5 wt% to 2.5 wt% Aluminum (Al) 0.01 wt% to 0.06 wt%, Nickel (Ni) 0.1 wt% to 0.6 wt%, Titanium (Ti) 0.01 wt% to 0.03 wt% %, Niobium (Nb) 0.005 wt% to 0.08 wt%, chromium (Cr) 0.1 wt% to 0.5 wt%, phosphorus (P) 0.01 wt% or less (0 wt%) %), Sulfur (S) 0.01 wt% or less, boron (B) 5 ppm to 30 ppm, nitrogen (N) 20 ppm to 70 ppm, calcium (Ca) 50 wt. ppm or less (excluding 0 ppm by weight), tin (Sn) 5 ppm to 50 ppm by weight, the rest being iron Fe) and low yield ratio high-strength steel material, characterized in that it consists of other unavoidable impurities.
前記低降伏比型高強度鋼材は、0.1重量%〜0.5重量%の銅(Cu)、0.15重量%〜0.3重量%のモリブデン(Mo)、及び0.005重量%〜0.3重量%のバナジウム(V)のうちの一つ以上をさらに含むことを特徴とする請求項1に記載の低降伏比型高強度鋼材。   The low-yield ratio type high-strength steel material is 0.1 wt% to 0.5 wt% copper (Cu), 0.15 wt% to 0.3 wt% molybdenum (Mo), and 0.005 wt%. The low yield ratio type high-strength steel material according to claim 1, further comprising at least one of ˜0.3 wt% vanadium (V). 前記低降伏比型高強度鋼材の微細組織は、ベイニティックフェライト及びグラニュラーベイナイトを主相として含み、M−A(島状マルテンサイト)を二次相として含むことを特徴とする請求項1に記載の低降伏比型高強度鋼材。   The microstructure of the low yield ratio type high-strength steel material includes bainitic ferrite and granular bainite as main phases and MA (island martensite) as a secondary phase. The low yield ratio type high strength steel described. 面積分率で、前記ベイニティックフェライトは80%〜95%であり、前記グラニュラーベイナイトは5%〜20%であり、前記M−Aは3%以下(0%を含む)であることを特徴とする請求項3に記載の低降伏比型高強度鋼材。   In terms of area fraction, the bainitic ferrite is 80% to 95%, the granular bainite is 5% to 20%, and the M-A is 3% or less (including 0%). The low yield ratio type high strength steel material according to claim 3. 前記低降伏比型高強度鋼材の(100)結晶面と(111)結晶面との極点強度(pole intensity:PImax.)の比であるPImax.(111)/PImax.(100)は、1.0以上1.8以下であることを特徴とする請求項1に記載の低降伏比型高強度鋼材。
(ここで、前記PImax.(111)は(111)結晶面の極点強度であり、前記PImax.(100)は(100)結晶面の極点強度である。)
PImax. Is the ratio of the pole strength (PI intensity) between the (100) crystal face and the (111) crystal face of the low yield ratio type high strength steel material. (111) / PImax. (100) is 1.0 or more and 1.8 or less, The low yield ratio type | mold high-strength steel material of Claim 1 characterized by the above-mentioned.
(Here, the PImax. (111) is the pole intensity of the (111) crystal plane, and the PImax. (100) is the pole intensity of the (100) crystal plane.)
前記低降伏比型高強度鋼材は、降伏比が0.85以下であり、引張強度が800MPa以上であることを特徴とする請求項1に記載の低降伏比型高強度鋼材。   The low yield ratio type high strength steel material according to claim 1, wherein the low yield ratio type high strength steel material has a yield ratio of 0.85 or less and a tensile strength of 800 MPa or more. 前記低降伏比型高強度鋼材の厚さは、60mm以下であることを特徴とする請求項1に記載の低降伏比型高強度鋼材。   The low yield ratio type high strength steel material according to claim 1, wherein a thickness of the low yield ratio type high strength steel material is 60 mm or less. 炭素(C)を0.02重量%〜0.11重量%、シリコン(Si)を0.1重量%〜0.5重量%、マンガン(Mn)を1.5重量%〜2.5重量%、アルミニウム(Al)を0.01重量%〜0.06重量%、ニッケル(Ni)を0.1重量%〜0.6重量%、チタン(Ti)を0.01重量%〜0.03重量%、ニオブ(Nb)を0.005重量%〜0.08重量%、クロム(Cr)を0.1重量%〜0.5重量%、リン(P)を0.01重量%以下(0重量%は除く)、硫黄(S)を0.01重量%以下、ボロン(B)を5重量ppm〜30重量ppm、窒素(N)を20重量ppm〜70重量ppm、カルシウム(Ca)を50重量ppm以下(0重量ppmは除く)、スズ(Sn)を5重量ppm〜50重量ppm含み、残りは鉄(Fe)及びその他の不可避不純物からなるスラブを1050℃〜1250℃に加熱する段階と、
前記加熱されたスラブを950℃〜1050℃で粗圧延してバー(Bar)を得る段階と、
前記バー(Bar)を仕上げ圧延温度700℃〜950℃で熱間圧延して熱延鋼板を得る段階と、
前記熱延鋼板を25℃/s〜50℃/sの冷却速度でBs温度以下の冷却終了温度まで冷却する段階と、
を有することを特徴とする低降伏比型高強度鋼材の製造方法。
Carbon (C) 0.02 wt% to 0.11 wt%, silicon (Si) 0.1 wt% to 0.5 wt%, manganese (Mn) 1.5 wt% to 2.5 wt% Aluminum (Al) 0.01 wt% to 0.06 wt%, Nickel (Ni) 0.1 wt% to 0.6 wt%, Titanium (Ti) 0.01 wt% to 0.03 wt% %, Niobium (Nb) 0.005 wt% to 0.08 wt%, chromium (Cr) 0.1 wt% to 0.5 wt%, phosphorus (P) 0.01 wt% or less (0 wt%) %), Sulfur (S) 0.01 wt% or less, boron (B) 5 ppm to 30 ppm, nitrogen (N) 20 ppm to 70 ppm, calcium (Ca) 50 wt. ppm or less (excluding 0 ppm by weight), tin (Sn) 5 ppm to 50 ppm by weight, the rest being iron A step of heating Fe) and slabs made of other inevitable impurities 1050 ° C. to 1250 ° C.,
Rough-rolling the heated slab at 950 ° C. to 1050 ° C. to obtain a bar;
Hot rolling the bar at a finish rolling temperature of 700 ° C. to 950 ° C. to obtain a hot rolled steel sheet;
Cooling the hot-rolled steel sheet to a cooling end temperature below the Bs temperature at a cooling rate of 25 ° C./s to 50 ° C./s;
A method for producing a low yield ratio type high strength steel material, characterized by comprising:
前記スラブは、0.1重量%〜0.5重量%の銅(Cu)、0.15重量%〜0.3重量%のモリブデン(Mo)、及び0.005重量%〜0.3重量%のバナジウム(V)のうちの一つ以上をさらに含むことを特徴とする請求項8に記載の低降伏比型高強度鋼材の製造方法。   The slab comprises 0.1 wt% to 0.5 wt% copper (Cu), 0.15 wt% to 0.3 wt% molybdenum (Mo), and 0.005 wt% to 0.3 wt% The method for producing a low yield ratio type high strength steel material according to claim 8, further comprising at least one of vanadium (V). 前記熱間圧延は、圧下率50%〜80%で行うことを特徴とする請求項8に記載の低降伏比型高強度鋼材の製造方法。   The method for producing a low yield ratio type high strength steel material according to claim 8, wherein the hot rolling is performed at a reduction rate of 50% to 80%.
JP2018532049A 2015-12-24 2016-12-02 Low yield ratio type high strength steel and its manufacturing method Active JP6845855B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0186522 2015-12-24
KR1020150186522A KR102348539B1 (en) 2015-12-24 2015-12-24 High strength steel having low yield ratio method for manufacturing the same
PCT/KR2016/014135 WO2017111345A1 (en) 2015-12-24 2016-12-02 Low-yield-ratio type high-strength steel, and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2019504199A true JP2019504199A (en) 2019-02-14
JP6845855B2 JP6845855B2 (en) 2021-03-24

Family

ID=59090793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018532049A Active JP6845855B2 (en) 2015-12-24 2016-12-02 Low yield ratio type high strength steel and its manufacturing method

Country Status (6)

Country Link
US (1) US20180371590A1 (en)
EP (1) EP3395997B1 (en)
JP (1) JP6845855B2 (en)
KR (1) KR102348539B1 (en)
CN (1) CN108474090B (en)
WO (1) WO2017111345A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879082B1 (en) * 2016-12-21 2018-07-16 주식회사 포스코 Ultra high strength steel having low yield ratio method for manufacturing the same
KR102109277B1 (en) * 2018-10-26 2020-05-11 주식회사 포스코 Steel plate having low yield ratio and excellent heat affected zone toughness and method for manufacturing thereof
KR102255818B1 (en) * 2019-06-24 2021-05-25 주식회사 포스코 High strength steel for a structure having excellent corrosion resistance and manufacturing method for the same
KR102307903B1 (en) * 2019-11-04 2021-09-30 주식회사 포스코 Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509494A (en) * 2006-11-02 2010-03-25 ポスコ Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same
JP2012188731A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Low yield ratio and high strength hot-rolled steel sheet excellent in low-temperature toughness, and production method therefor
WO2015098556A1 (en) * 2013-12-25 2015-07-02 新日鐵住金株式会社 Electric resistance welded steel pipe for oil well

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597425A (en) 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy
JPH0551694A (en) * 1991-08-20 1993-03-02 Nkk Corp High tensile strength steel with low yield ratio and its production
JP5223375B2 (en) * 2007-03-01 2013-06-26 新日鐵住金株式会社 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and method for producing the same
JP4972451B2 (en) * 2007-04-20 2012-07-11 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
KR101018131B1 (en) * 2007-11-22 2011-02-25 주식회사 포스코 High strength and low yield ratio steel for structure having excellent low temperature toughness
KR101096992B1 (en) * 2008-03-27 2011-12-20 가부시키가이샤 고베 세이코쇼 780MPa CLASS LOW YIELD RATIO CIRCULAR STEEL FOR CONSTRUCTION STRUCTURE EXCELLENT IN EARTHQUAKE-PROOF PERFORMANCE, AND PROCESS FOR PRODUCING THE SAME
JP5162382B2 (en) * 2008-09-03 2013-03-13 株式会社神戸製鋼所 Low yield ratio high toughness steel plate
KR101070132B1 (en) * 2008-12-18 2011-10-05 주식회사 포스코 Steel with Excellent Low-Temperature Toughness for Construction and Manufacturing Method Thereof
CA2832176C (en) * 2011-04-21 2016-06-14 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet having excellent uniform elongation and hole expandability and manufacturing method thereof
KR101546124B1 (en) * 2013-03-28 2015-08-20 현대제철 주식회사 Hot-rolled steel and method of manufacturing the same
CN105121684B (en) * 2013-04-04 2017-03-15 杰富意钢铁株式会社 Hot rolled steel plate and its manufacture method
EP3358033B1 (en) * 2013-04-15 2020-07-15 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing same
KR101505299B1 (en) * 2013-06-27 2015-03-24 현대제철 주식회사 Steel and method of manufacturing the same
JP5783229B2 (en) * 2013-11-28 2015-09-24 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
KR101560943B1 (en) * 2013-12-24 2015-10-15 주식회사 포스코 Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509494A (en) * 2006-11-02 2010-03-25 ポスコ Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same
JP2012188731A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Low yield ratio and high strength hot-rolled steel sheet excellent in low-temperature toughness, and production method therefor
WO2015098556A1 (en) * 2013-12-25 2015-07-02 新日鐵住金株式会社 Electric resistance welded steel pipe for oil well

Also Published As

Publication number Publication date
JP6845855B2 (en) 2021-03-24
CN108474090B (en) 2021-02-12
US20180371590A1 (en) 2018-12-27
CN108474090A (en) 2018-08-31
WO2017111345A1 (en) 2017-06-29
KR20170076912A (en) 2017-07-05
EP3395997A4 (en) 2018-11-07
EP3395997A1 (en) 2018-10-31
EP3395997B1 (en) 2020-09-02
KR102348539B1 (en) 2022-01-07

Similar Documents

Publication Publication Date Title
JP6829765B2 (en) Low yield ratio type ultra-high strength steel and its manufacturing method
JP6648270B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP6475837B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP6648271B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP2017504722A (en) Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method
KR101676143B1 (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
JP6788589B2 (en) High-strength steel with excellent brittle crack propagation resistance and its manufacturing method
JP6845855B2 (en) Low yield ratio type high strength steel and its manufacturing method
JP6616002B2 (en) High-strength steel material with excellent low-temperature strain aging impact characteristics and method for producing the same
JP2020509165A (en) Extra-thick steel material excellent in surface portion NRL-DWT physical properties and method for producing the same
JP7096338B2 (en) Structural high-strength steel with excellent fatigue crack propagation suppression characteristics and its manufacturing method
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
JP6858858B2 (en) Surface NRL-Drop test Extra-thick steel with excellent physical properties and its manufacturing method
JP2021508776A (en) Structural steel with excellent brittle crack propagation resistance and its manufacturing method
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
KR20160078849A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101786258B1 (en) The steel sheet having high-strength and excellent heat affected zone toughness and method for manufacturing the same
JP7332697B2 (en) Structural extra-heavy steel with excellent brittle crack initiation resistance and its manufacturing method
JP7096337B2 (en) High-strength steel plate and its manufacturing method
KR20160078772A (en) The steel sheet having excellent heat affected zone toughness and method for manufacturing the same
KR101647230B1 (en) High strength and low yield ratio steel sheet having excellent low temperature toughness and mathod for manufacturing the same
KR20200061921A (en) Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same
KR101568514B1 (en) High strength structural steel having low yield ratio and preparing method for the same
KR20150049658A (en) Shape steel and method of manufacturing the same
JP2022550795A (en) High-strength heavy-gauge steel material with excellent cryogenic deformation aging impact toughness in the central part and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210226

R150 Certificate of patent or registration of utility model

Ref document number: 6845855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250