JP6475837B2 - High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof - Google Patents

High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof Download PDF

Info

Publication number
JP6475837B2
JP6475837B2 JP2017532035A JP2017532035A JP6475837B2 JP 6475837 B2 JP6475837 B2 JP 6475837B2 JP 2017532035 A JP2017532035 A JP 2017532035A JP 2017532035 A JP2017532035 A JP 2017532035A JP 6475837 B2 JP6475837 B2 JP 6475837B2
Authority
JP
Japan
Prior art keywords
steel material
less
thickness
ferrite
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017532035A
Other languages
Japanese (ja)
Other versions
JP2018504523A (en
Inventor
イ,ハク−チョル
ジャン,スン−ホ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2018504523A publication Critical patent/JP2018504523A/en
Application granted granted Critical
Publication of JP6475837B2 publication Critical patent/JP6475837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、脆性亀裂伝播抵抗性に優れた高強度鋼材及びその製造方法に関する。   The present invention relates to a high-strength steel material excellent in brittle crack propagation resistance and a method for producing the same.

近年、国内外の船舶、海洋、建築、及び土木分野で用いられる構造物を設計するにあたり、高強度特性を有する極厚物鋼の開発が求められている。
構造物の設計時に高強度鋼を用いる場合、構造物の形態を軽量化することができ、経済的な利益が得られるだけでなく、鋼板の厚さを薄くすることができるため、加工及び溶接作業の容易性を同時に確保することができる。
一般的に、高強度鋼では、極厚物材の製造時に総圧下率が低下し、薄物材に比べて十分な変形ができなくなるため、極厚物材の微細組織が粗大となり、これに伴い、結晶粒度が最も大きな影響を及ぼす低温物性が低下するようになる。
特に、構造物の安定性を示す脆性亀裂伝播抵抗性の場合、船舶などの主要構造物への適用時に保証を求める事例が増加しつつあるが、微細組織が粗大化すると、脆性亀裂伝播抵抗性が非常に低下する現象が発生するため、極厚物高強度鋼材の脆性亀裂伝播抵抗相を向上させることは非常に難しい状況である。
In recent years, in designing structures used in the domestic, foreign, marine, architectural, and civil engineering fields, development of extra heavy steel having high strength properties has been demanded.
When using high-strength steel when designing structures, the structure can be reduced in weight, not only providing economic benefits, but also reducing the thickness of the steel sheet, so that processing and welding Ease of work can be ensured at the same time.
Generally, in high-strength steel, the total rolling reduction decreases during the production of extra-thick materials, and sufficient deformation is not possible as compared with thin materials. As a result, the microstructure of extra-heavy materials becomes coarse. The low-temperature physical properties that the crystal grain size has the greatest influence are lowered.
In particular, in the case of brittle crack propagation resistance, which indicates the stability of structures, there is an increasing number of cases that require assurance when applied to main structures such as ships, but when the microstructure becomes coarse, brittle crack propagation resistance As a result, a phenomenon in which the strength of the steel is extremely lowered is extremely difficult to improve the brittle crack propagation resistance phase of the high-thickness high-strength steel material.

一方、降伏強度390MPa以上の高強度鋼であると、脆性亀裂伝播抵抗性を向上させるために、表層部の粒度微細化のための仕上げ圧延時に表面冷却の適用、及び圧延時における曲げ応力の付与による粒度調節といった多様な技術が導入された。
しかしながら、上記技術の場合、表層部の組織微細化には有利であるが、表層部を除いた残りの組織粗大化による衝撃靭性の低下は解決できないため、脆性亀裂伝播抵抗性への根本的な対策とは言い難い。
また、技術そのものを、一般的な量産体制に適用するには大きな生産性の低下が予想されるため、商業的な適用には無理のある技術と言える。
On the other hand, in the case of a high strength steel having a yield strength of 390 MPa or more, in order to improve the resistance to brittle crack propagation, surface cooling is applied during finish rolling for grain refinement of the surface layer, and bending stress is applied during rolling. Various technologies, such as particle size adjustment by, were introduced.
However, in the case of the above-described technique, although it is advantageous for refining the structure of the surface layer part, since the reduction in impact toughness due to the remaining coarse structure excluding the surface layer part cannot be solved, the fundamental to brittle crack propagation resistance It is hard to say that it is a countermeasure.
Moreover, it can be said that the technology itself is unreasonable for commercial application because it is expected that the productivity itself will greatly decrease when the technology itself is applied to a general mass production system.

本発明の一側面によれば、脆性亀裂伝播抵抗性に優れた高強度鋼材を提供することに、その目的がある。
本発明の他の面によれば、脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法を提供することに、その目的がある。
According to one aspect of the present invention, there is an object to provide a high-strength steel material excellent in brittle crack propagation resistance.
Another object of the present invention is to provide a method for producing a high-strength steel material having excellent brittle crack propagation resistance.

本発明の脆性亀裂伝播抵抗性に優れた高強度鋼材は、重量%で、C:0.05〜0.1%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、Cu:0.1〜0.5%、Si:0.1〜0.3%、P:100ppm以下、S:40ppm以下、残部Fe、及びその他の不可避な不純物を含み、フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織を含む微細組織を有し、且つ厚さが50mm以上であることを特徴とする。   The high-strength steel material excellent in brittle crack propagation resistance of the present invention is C: 0.05-0.1%, Mn: 1.5-2.2%, Ni: 0.3-1. 2%, Nb: 0.005-0.1%, Ti: 0.005-0.1%, Cu: 0.1-0.5%, Si: 0.1-0.3%, P: 100 ppm Hereinafter, S: 40 ppm or less, balance Fe, and other inevitable impurities, ferrite single phase structure, bainite single phase structure, ferrite and bainite composite structure, ferrite and pearlite composite structure, and ferrite, bainite and pearlite It has a fine structure including one structure selected from the group consisting of composite structures, and has a thickness of 50 mm or more.

Cu及びNiの含量は、Cu/Ni重量比が0.6以下、好ましくは0.5以下になるように設定されることがよい。
鋼材は、好ましくは鋼材の厚さ方向に表層部から鋼材厚さ1/4部までにおいてEBSD方法で測定した結晶方位の差が15度以上の高傾角境界を有する結晶粒の粒度が15μm(マイクロメートル)以下である。
The contents of Cu and Ni are set so that the Cu / Ni weight ratio is 0.6 or less, preferably 0.5 or less.
The steel material preferably has a grain size of 15 μm (micrometer size) having a high tilt boundary with a difference in crystal orientation measured by the EBSD method from the surface layer portion to the steel material thickness ¼ part in the thickness direction of the steel material of 15 degrees or more. M) or less.

鋼材は、鋼材の厚さ方向に表層部から鋼材厚さの1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が30%以上であることが好ましい。
鋼材は、好ましくは降伏強度が390MPa以上であり、鋼材の厚さ方向に表層部及び鋼材厚さ1/4t部におけるシャルピー破面遷移温度が−40℃以下であることがよい。
The steel material has an area ratio of (100) plane of 30% or more that forms an angle of 15 degrees or less with respect to the plane parallel to the rolling direction from the surface layer portion to ¼ part of the steel thickness in the thickness direction of the steel material. Preferably there is.
The steel material preferably has a yield strength of 390 MPa or more, and the Charpy fracture surface transition temperature at the surface layer portion and the steel material thickness 1/4 t in the thickness direction of the steel material is preferably −40 ° C. or lower.

本発明の脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法は、重量%で、C:0.05〜0.1%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、Cu:0.1〜0.5%、Si:0.1〜0.3%、P:100ppm以下、S:40ppm以下、残部Fe、及びその他の不可避な不純物を含むスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延する段階と、粗圧延されたバー(bar)をAr+30℃〜Ar−30℃の範囲の温度で仕上げ圧延して厚さ50mm以上の鋼板を得る段階と、鋼板を700℃以下の温度まで冷却する段階と、を含むことを特徴とする。 The method for producing a high-strength steel material excellent in brittle crack propagation resistance according to the present invention is, by weight, C: 0.05 to 0.1%, Mn: 1.5 to 2.2%, Ni: 0.3. -1.2%, Nb: 0.005-0.1%, Ti: 0.005-0.1%, Cu: 0.1-0.5%, Si: 0.1-0.3%, P: 100 ppm or less, S: 40 ppm or less, slab containing the remainder Fe and other inevitable impurities was reheated to 950-1100 ° C., and then roughly rolled at a temperature of 1100-900 ° C. comprising the steps of obtaining a bar (bar) to Ar 3 + 30 ℃ ~Ar 3 -30 ℃ temperature finish rolling with a thickness of 50mm or more of the steel sheet in the range, the steps of cooling the steel sheet to a temperature of 700 ° C. or less, the It is characterized by that.

粗圧延時における最終3パス(pass)に対しては、パス(pass)当たりの圧下率が5%以上、総累積圧下率が40%以上であることが好ましい。
粗圧延後、仕上げ圧延前のバーの1/4t部(ここで、t:鋼板厚)における結晶粒の大きさは150μm以下、好ましくは100μm以下、より好ましくは80μm以下であることができる。
For the final three passes during rough rolling, the rolling reduction per pass is preferably 5% or more, and the total cumulative rolling reduction is preferably 40% or more.
After rough rolling, the size of crystal grains in the 1/4 t portion (here, t: steel plate thickness) of the bar before finish rolling can be 150 μm or less, preferably 100 μm or less, more preferably 80 μm or less.

仕上げ圧延時における圧下比は、スラブ厚(mm)/仕上げ圧延後の鋼板厚(mm)の比が3.5以上、好ましくは3.8以上になるように設定されることがよい。
鋼板の冷却は、1.5℃/s以上の中心部の冷却速度で行うことが好ましい。
鋼板の冷却は、2〜300℃/sの平均冷却速度で行ってもよい。
The reduction ratio during finish rolling may be set so that the ratio of slab thickness (mm) / steel plate thickness after finish rolling (mm) is 3.5 or more, preferably 3.8 or more.
It is preferable to cool the steel sheet at a cooling rate of the central portion of 1.5 ° C./s or more.
The steel sheet may be cooled at an average cooling rate of 2 to 300 ° C./s.

さらに、上記の課題の解決手段は、本発明の特徴を全て列挙したものではない。
本発明の様々な特徴と、それによる長所及び効果は、以下の具体的な実施形態を通じてより詳細に理解することができる。
Furthermore, the means for solving the above-described problems are not all of the features of the present invention.
The various features of the present invention and the advantages and effects thereof can be understood in more detail through the following specific embodiments.

本発明によると、高い降伏強度及び優れた脆性亀裂伝播抵抗性に優れた高強度鋼材を得ることができる。   According to the present invention, a high-strength steel material excellent in high yield strength and excellent brittle crack propagation resistance can be obtained.

発明鋼6の厚さ中心部を光学顕微鏡で観察した写真である。It is the photograph which observed the thickness center part of the invention steel 6 with the optical microscope.

本発明の発明者らは、厚さが50mm以上の厚い鋼材の降伏強度及び脆性亀裂伝播抵抗性を向上させるために、研究及び実験を行い、その結果に基づいて本発明を提案するに至った。
本発明は、鋼材の鋼組成、組織、集合組織、及び製造条件を制御して、厚い鋼材の降伏強度及び脆性亀裂伝播抵抗性をさらに向上させたものである。
The inventors of the present invention have conducted research and experiments in order to improve the yield strength and brittle crack propagation resistance of thick steel materials having a thickness of 50 mm or more, and have proposed the present invention based on the results. .
The present invention further improves the yield strength and brittle crack propagation resistance of a thick steel material by controlling the steel composition, structure, texture, and manufacturing conditions of the steel material.

本発明の主要概念は、次の通りである。
1)固溶強化による強度の向上を得るために鋼組成を適切に制御したものである。特に、固溶強化のためにMn、Ni、Cu、及びSiの含量を最適化したものである。
2)硬化能向上による強度の向上を得るために鋼組成を適切に制御したものである。特に、硬化能を向上させるために、炭素含量と共に、Mn、Ni、及びCuの含量を最適化したものである。
このように硬化能を向上させることで、遅い冷却速度でも50mm以上の厚い鋼材の中心部まで微細な組織が確保される。
The main concept of the present invention is as follows.
1) The steel composition is appropriately controlled in order to improve the strength by solid solution strengthening. In particular, the contents of Mn, Ni, Cu, and Si are optimized for solid solution strengthening.
2) The steel composition is appropriately controlled in order to improve the strength by improving the hardenability. In particular, in order to improve the curing ability, the contents of Mn, Ni, and Cu are optimized together with the carbon content.
By improving the hardenability in this way, a fine structure is secured up to the center of a thick steel material of 50 mm or more even at a slow cooling rate.

3)好ましくは、強度及び脆性亀裂伝播抵抗性を向上させるために、鋼材の組織を微細化させることができる。特に、鋼材の厚さ方向に表層部から鋼材厚さ1/4部までの領域における組織を微細化させたものである。
このように鋼材の組織を微細化させることで、結晶粒強化による強度の向上と共に、亀裂の生成及び伝播が最小に抑えられ、脆性亀裂伝播抵抗性が向上する。
4)好ましくは、脆性亀裂伝播抵抗性を向上させるために、鋼材の集合組織を制御することができる。
亀裂とは、鋼材の幅方向、即ち圧延方向に垂直な方向に伝播することと、体心立方構造(BCC)の脆性破面が(100)面ということを考慮して、圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が最大となるようにしたものである。
3) Preferably, in order to improve strength and brittle crack propagation resistance, the structure of the steel material can be refined. In particular, the structure in the region from the surface layer portion to the steel material thickness ¼ part is refined in the thickness direction of the steel material.
Thus, by refine | miniaturizing the structure | tissue of steel materials, the production | generation and propagation of a crack are suppressed to the minimum with the improvement of the intensity | strength by crystal grain reinforcement | strengthening, and a brittle crack propagation resistance improves.
4) Preferably, the texture of the steel material can be controlled in order to improve the brittle crack propagation resistance.
The crack is parallel to the rolling direction in consideration of the propagation in the width direction of the steel material, that is, the direction perpendicular to the rolling direction, and the brittle fracture surface of the body-centered cubic structure (BCC) being the (100) plane. The area ratio of the (100) plane that forms an angle within 15 degrees with respect to the plane is maximized.

特に、鋼材の厚さ方向に表層部から鋼材厚さの1/4部までの領域における集合組織を制御したものである。
圧延方向に平行な面に対して15度以内の角度をなす(100)面は、亀裂の伝播を遮断する役割を果たす。
このように、鋼材の集合組織を制御することにより、たとえ亀裂が生じたとしても、亀裂の伝播が遮断され、脆性亀裂伝播抵抗性が向上する。
In particular, the texture in the region from the surface layer part to 1/4 part of the steel material thickness is controlled in the thickness direction of the steel material.
The (100) plane that forms an angle of 15 degrees or less with respect to the plane parallel to the rolling direction serves to block the propagation of cracks.
In this way, by controlling the texture of the steel material, even if a crack occurs, the propagation of the crack is interrupted, and the brittle crack propagation resistance is improved.

5)好ましくは、鋼材の組織をより微細化させるために粗圧延条件を制御することができる。
特に、粗圧延時に圧下条件を制御することで、微細な組織が確保される。
6)鋼材の組織をより微細化させるために、仕上げ圧延条件を制御したものである。特に、仕上げ圧延温度及び圧下条件を制御することで、仕上げ圧延時における変形誘起変態によって非常に微細なフェライトが結晶粒界及び結晶粒の内部に生成するようになり、鋼材の中心部まで微細な組織が確保される。
5) Preferably, rough rolling conditions can be controlled in order to further refine the structure of the steel material.
In particular, a fine structure is ensured by controlling the rolling conditions during rough rolling.
6) The finish rolling conditions are controlled in order to further refine the structure of the steel material. In particular, by controlling the finish rolling temperature and reduction conditions, very fine ferrite is generated in the grain boundaries and inside the crystal grains by deformation-induced transformation during finish rolling, and the fine center of the steel material is fine. Organization is secured.

以下、本発明の一側面である脆性亀裂伝播抵抗性に優れた高強度鋼材について詳細に説明する。
本発明の一側面である脆性亀裂伝播抵抗性に優れた高強度鋼材は、重量%で、C:0.05〜0.1%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、Cu:0.1〜0.5%、Si:0.1〜0.3%、P:100ppm以下、S:40ppm以下、残部Fe、及びその他の不可避な不純物を含み、並びにフェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織を含む微細組織を有する。
Hereinafter, the high-strength steel material excellent in brittle crack propagation resistance which is one aspect of the present invention will be described in detail.
The high-strength steel material excellent in brittle crack propagation resistance which is one aspect of the present invention is C: 0.05 to 0.1%, Mn: 1.5 to 2.2%, Ni: 0.00%. 3 to 1.2%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Cu: 0.1 to 0.5%, Si: 0.1 to 0.3% , P: 100 ppm or less, S: 40 ppm or less, remaining Fe, and other inevitable impurities, and ferrite single phase structure, bainite single phase structure, ferrite and bainite composite structure, ferrite and pearlite composite structure, and ferrite And a fine structure including one structure selected from the group consisting of a composite structure of bainite and pearlite.

以下、本発明の鋼成分及び成分範囲について説明する。
C(炭素):0.05〜0.10%(以下、各成分の含量は、重量%を意味する。)
Cは、基本的な強度を確保するのに最も重要な元素であるため、適切な範囲内において鋼中に含有される必要があり、このような添加効果を得るためには、Cを0.05%以上添加することが好ましい。
しかしながら、Cの含量が0.10%を超えると、多量の島状マルテンサイトの生成、及びフェライト自体の高い強度、並びに低温変態相の多量生成などによって低温靭性を低下させるため、Cの含量は0.05〜0.10%に限定することが好ましく、より好ましくは0.059〜0.081%であり、さらに好ましくは0.065〜0.075%である。
Hereinafter, the steel components and component ranges of the present invention will be described.
C (carbon): 0.05 to 0.10% (Hereinafter, the content of each component means% by weight.)
Since C is the most important element for ensuring basic strength, it is necessary to be contained in the steel within an appropriate range. It is preferable to add 05% or more.
However, if the C content exceeds 0.10%, the low temperature toughness is reduced due to the formation of a large amount of island martensite, the high strength of the ferrite itself, and the large amount of low temperature transformation phase. It is preferable to limit to 0.05 to 0.10%, more preferably 0.059 to 0.081%, and still more preferably 0.065 to 0.075%.

Mn(マンガン):1.5〜2.2%
Mnは、固溶強化により強度を向上させ、低温変態相が生成するように硬化能を向上させる有用な元素である。また、硬化能の向上によって遅い冷却速度でも低温変態相を生成させることができるため、極厚物材の中心部の強度を確保するのに主要な元素である。
したがって、このような効果を得るためには、1.5%以上添加されることが好ましい。
しかしながら、Mnの含量が2.2%を超えると、過度な硬化能の増加によって上部ベイナイト(Upper bainite)、及びマルテンサイトの生成を促進し、衝撃靭性及び脆性亀裂伝播抵抗性を低下させる。
したがって、Mn含量は1.5〜2.2%に限定することが好ましく、より好ましくは1.58〜2.11%であり、さらに好ましくは1.7〜2.0%である。
Mn (manganese): 1.5-2.2%
Mn is a useful element that improves strength by solid solution strengthening and improves curability so that a low-temperature transformation phase is generated. Further, since the low temperature transformation phase can be generated even at a slow cooling rate by improving the curing ability, it is a main element for securing the strength of the central part of the extra-thick material.
Therefore, in order to acquire such an effect, it is preferable to add 1.5% or more.
However, if the content of Mn exceeds 2.2%, the increase of excessive hardening ability promotes the formation of upper bainite and martensite, and lowers impact toughness and brittle crack propagation resistance.
Therefore, the Mn content is preferably limited to 1.5 to 2.2%, more preferably 1.58 to 2.11%, and even more preferably 1.7 to 2.0%.

Ni(ニッケル):0.3〜1.2%
Niは、低温で転位の交差すべり(Cross slip)を容易にして衝撃靭性を向上させ、硬化能を向上させて強度を向上させるのに重要な元素であって、このような効果を得るためには、0.3%以上添加されることが好ましい。しかしながら、Niが1.2%以上添加されると、硬化能が過度に上昇して低温変態相が生成し、靭性を低下させ、他の硬化能元素に比べてNiが高コストであるので、製造原価も上昇させることができるため、Ni含量の上限は1.2%に限定することが好ましい。
より好ましいNi含量の限定範囲は0.45〜1.02%であり、さらに好ましくは0.55〜0.95%である。
Ni (nickel): 0.3-1.2%
Ni is an important element for improving the impact toughness by facilitating cross slip of dislocations at low temperatures and improving the strength by improving the hardenability. To obtain such effects Is preferably added in an amount of 0.3% or more. However, when Ni is added in an amount of 1.2% or more, the curability is excessively increased, a low temperature transformation phase is generated, and the toughness is reduced, and Ni is more expensive than other curability elements, Since the manufacturing cost can be increased, the upper limit of the Ni content is preferably limited to 1.2%.
A more preferable range of the Ni content is 0.45 to 1.02%, and further preferably 0.55 to 0.95%.

Nb(ニオビウム):0.005〜0.1%
Nbは、NbC又はNbCNの形態で析出して母材強度を向上させる。
また、高温に再加熱時に固溶されたNbは、圧延時にNbC形態として極めて微細に析出し、オーステナイトの再結晶を抑制することで、組織を微細化させるという効果がある。
したがって、Nbは、0.005%以上添加されることが好ましいが、添加過多になると、鋼材の角に脆性クラックを引き起こす可能性があるため、Nb含量の上限は0.1%に制限することが好ましい。
より好ましいNb含量の限定範囲は0.012〜0.031%であり、さらに好ましくは0.017〜0.025%である。
Nb (Niobium): 0.005-0.1%
Nb precipitates in the form of NbC or NbCN and improves the base material strength.
In addition, Nb solid-dissolved at a high temperature during reheating precipitates very finely as an NbC form during rolling, and has the effect of refining the structure by suppressing recrystallization of austenite.
Therefore, Nb is preferably added in an amount of 0.005% or more. However, if excessively added, there is a possibility of causing brittle cracks in the corners of the steel material, so the upper limit of Nb content should be limited to 0.1%. Is preferred.
A more preferable range of the Nb content is 0.012 to 0.031%, and further preferably 0.017 to 0.025%.

Ti(チタニウム):0.005〜0.1%
Tiは、再加熱時にTiNとして析出し、母材及び溶接熱影響部の結晶粒の成長を抑制することで低温靭性を大きく向上させる成分であって、このような添加効果を得るためには、0.005%以上添加されることが好ましい。
しかしながら、Tiが0.1%を超えて添加されると、連続鋳造ノズルの詰まりや中心部の晶出によって低温靭性が減少する可能性があるため、Ti含量は0.005〜0.1%に限定することが好ましい。
より好ましいTi含量の限定範囲は0.011〜0.023%であり、さらに好ましくは0.014〜0.018%である。
Ti (titanium): 0.005 to 0.1%
Ti is a component that precipitates as TiN during reheating and greatly improves low-temperature toughness by suppressing the growth of crystal grains in the base material and the weld heat affected zone, and in order to obtain such an addition effect, It is preferable to add 0.005% or more.
However, if Ti is added in excess of 0.1%, the low temperature toughness may decrease due to clogging of the continuous casting nozzle or crystallization at the center, so the Ti content is 0.005 to 0.1%. It is preferable to limit to.
A more preferable range of Ti content is 0.011 to 0.023%, and further preferably 0.014 to 0.018%.

P:100ppm以下、S:40ppm以下
P、Sは、結晶粒界に脆性を誘発するか粗大な介在物を形成させて脆性を誘発する元素であって、脆性亀裂伝播抵抗性を向上させるためにP:100ppm以下及びS:40ppm以下に制限することが好ましい。
P: 100 ppm or less, S: 40 ppm or less P and S are elements for inducing brittleness by inducing brittleness or forming coarse inclusions at grain boundaries, and for improving brittle crack propagation resistance. P is preferably limited to 100 ppm or less and S: 40 ppm or less.

Si:0.1〜0.3%
Siは、置換型元素であって、固溶強化により鋼材の強度を向上させ、強力な脱酸効果を持ち、清浄鋼の製造に必須の元素であるため、0.1%以上添加されることが好ましい。しかし、多量に添加すると、粗大な島状マルテンサイト(MA)相を生成させて脆性亀裂伝播抵抗性を低下させることができるため、Si含量の上限は0.3%に制限することが好ましい。
より好ましいSi含量の限定範囲は0.16〜0.27%であり、さらに好ましくは0.19〜0.25%である。
Si: 0.1 to 0.3%
Si is a substitutional element that improves the strength of steel by solid solution strengthening, has a strong deoxidation effect, and is an essential element for the production of clean steel. Is preferred. However, if added in a large amount, a coarse island-like martensite (MA) phase can be generated and brittle crack propagation resistance can be lowered, so the upper limit of the Si content is preferably limited to 0.3%.
A more preferable range of the Si content is 0.16 to 0.27%, and further preferably 0.19 to 0.25%.

Cu:0.1〜0.5%
Cuは、硬化能を向上させ、固溶強化を起こして鋼材の強度を向上させる主要な元素であり、焼き戻し(tempering)への適用時、イプシロンCu析出物の生成により降伏強度を高める主要な元素であるため、0.1%以上添加されることが好ましい。しかし、多量に添加すると、製鋼工程において赤熱脆性(hot shortness)によるスラブの亀裂を発生させることがあるため、Cu含量の上限は0.5%に制限することが好ましい。
より好ましいCu含量の限定範囲は0.19〜0.42%であり、さらに好ましくは0.25〜0.35%である。
Cu及びNiの含量は、Cu/Ni重量比が0.6以下、好ましくは0.5以下になるように設定されてもよい。
上記のようにCu/Ni重量比を設定すると、表面品質が更に改善することができる。
Cu: 0.1 to 0.5%
Cu is a major element that improves the hardenability and causes solid solution strengthening to improve the strength of steel materials. When applied to tempering, Cu is a major element that increases yield strength by generating epsilon Cu precipitates. Since it is an element, it is preferable to add 0.1% or more. However, if added in a large amount, slab cracks due to hot shortness may occur in the steel making process, so the upper limit of the Cu content is preferably limited to 0.5%.
A more preferable range of the Cu content is 0.19 to 0.42%, and further preferably 0.25 to 0.35%.
The Cu and Ni contents may be set such that the Cu / Ni weight ratio is 0.6 or less, preferably 0.5 or less.
If the Cu / Ni weight ratio is set as described above, the surface quality can be further improved.

本発明の残りの成分は鉄(Fe)である。
但し、通常の製造過程では、原料又は周囲環境から意図しない不純物が不可避に混入されることがあり、これを排除することはできない。
これらの不純物は、通常の技術者にとって周知であるため、本明細書では全ての内容について特に言及しない。
The remaining component of the present invention is iron (Fe).
However, in a normal manufacturing process, unintended impurities may be inevitably mixed from the raw material or the surrounding environment, and this cannot be excluded.
Since these impurities are well known to those skilled in the art, the entire contents are not specifically mentioned herein.

本発明の鋼材は、フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織を含む微細組織を有する。
フェライトは多角形フェライト(Polygonal ferrite)若しくは針状フェライト(acicular ferrite)が好ましく、ベイナイトはグラニュラーベイナイト(granular bainite)が好ましい。
例えば、Mn及びNi含量が増加するほど、針状フェライト(acicular ferrite)、及びグラニュラーベイナイト(granular bainite)の分率が増加し、これに伴って、強度も増加する。
The steel material of the present invention has a single structure selected from the group consisting of a ferrite single phase structure, a bainite single phase structure, a composite structure of ferrite and bainite, a composite structure of ferrite and pearlite, and a composite structure of ferrite, bainite and pearlite. It has a fine structure.
The ferrite is preferably polygonal ferrite or acicular ferrite, and the bainite is preferably granular bainite.
For example, as the content of Mn and Ni increases, the fraction of acicular ferrite and granular bainite increases, and the strength increases accordingly.

鋼材の微細組織がパーライトを含む複合組織であると、パーライトの分率は20%以下に限定することが好ましい。
鋼材は、好ましくは鋼材の厚さ方向に表層部から鋼材厚さ1/4部までにおいてEBSD方法で測定した結晶方位の差が15度以上の高傾角境界を有する結晶粒の粒度が15μm(マイクロメートル)以下であってもよい。
このように、鋼材の厚さ方向に表層部から鋼材厚さ1/4部までにおいてEBSD方法で測定した結晶方位の差が15度以上の高傾角境界を有する結晶粒の粒度を15μm(マイクロメートル)以下と微細化させることで、結晶粒強化による強度の向上と共に、亀裂の生成及び伝播が最小に抑えられ、脆性亀裂伝播抵抗性が向上する。
When the microstructure of the steel material is a composite structure containing pearlite, the pearlite fraction is preferably limited to 20% or less.
The steel material preferably has a grain size of 15 μm (micrometer size) having a high tilt boundary with a difference in crystal orientation measured by the EBSD method from the surface layer portion to the steel material thickness ¼ part in the thickness direction of the steel material of 15 degrees or more. Meter) or less.
Thus, in the thickness direction of the steel material, the grain size of the crystal grains having a high tilt boundary where the difference in crystal orientation measured by the EBSD method from the surface layer part to 1/4 part of the steel material is 15 degrees or more is 15 μm (micrometer). ) By miniaturizing as follows, strength is improved by strengthening the crystal grains, crack generation and propagation are minimized, and brittle crack propagation resistance is improved.

鋼材は、好ましくは鋼材の厚さ方向に表層部から板厚の1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が30%以上であってもよい。
上記のように集合組織を制御した主な理由は、次の通りである。
亀裂(crack)は鋼材の幅方向、即ち圧延方向に垂直な方向に伝播され、体心立方構造(BCC)の脆性破面は(100)面である。
そこで、本発明は、圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が最大となるようにしたものである。
特に、鋼材の厚さ方向に表層部から鋼材厚さの1/4部までの領域における集合組織を制御したものである。
圧延方向に平行な面に対して15度以内の角度をなす(100)面は、亀裂の伝播を遮断する役割を果たす。
このように、鋼材の集合組織、特に、鋼材の厚さ方向に表層部から板厚の1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率を30%以上に制御することで、たとえ亀裂が生じたとしても、亀裂の伝播が遮断され、脆性亀裂伝播抵抗性が向上する。
鋼材は、好ましくは降伏強度が390MPa以上である。
鋼材は、50mm以上の厚さを有し、好ましくは50〜100mmの厚さを有することができ、より好ましくは80〜100mmの厚さを有することができる。
The steel material preferably has an area ratio of (100) plane of 30% or more that forms an angle of 15 degrees or less with respect to the plane parallel to the rolling direction from the surface layer portion to ¼ part of the plate thickness in the thickness direction of the steel material. It may be.
The main reason for controlling the texture as described above is as follows.
The crack is propagated in the width direction of the steel material, that is, the direction perpendicular to the rolling direction, and the brittle fracture surface of the body-centered cubic structure (BCC) is the (100) plane.
Therefore, the present invention is such that the area ratio of the (100) plane that forms an angle of 15 degrees or less with respect to the plane parallel to the rolling direction is maximized.
In particular, the texture in the region from the surface layer part to 1/4 part of the steel material thickness is controlled in the thickness direction of the steel material.
The (100) plane that forms an angle of 15 degrees or less with respect to the plane parallel to the rolling direction serves to block the propagation of cracks.
In this way, the texture of the steel material, in particular, the (100) surface forming an angle of 15 degrees or less with respect to the surface parallel to the rolling direction from the surface layer part to ¼ part of the plate thickness in the thickness direction of the steel material. By controlling the area ratio to 30% or more, even if a crack occurs, the propagation of the crack is blocked, and the brittle crack propagation resistance is improved.
The steel material preferably has a yield strength of 390 MPa or more.
The steel material has a thickness of 50 mm or more, preferably a thickness of 50 to 100 mm, more preferably a thickness of 80 to 100 mm.

以下、本発明の他の側面である脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法について詳細に説明する。
本発明の他の側面である脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法は、C:0.05〜0.1%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、Cu:0.1〜0.5%、Si:0.1〜0.3%、P:100ppm以下、S:40ppm以下、残部Fe、及びその他の不可避な不純物を含むスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延する段階と、粗圧延されたバー(bar)をAr+30℃〜Ar−30℃の間の温度で仕上げ圧延して鋼板を得る段階と、鋼板を700℃以下の温度まで冷却する段階と、を含む。
Hereinafter, a method for producing a high-strength steel material excellent in brittle crack propagation resistance, which is another aspect of the present invention, will be described in detail.
The manufacturing method of the high strength steel material excellent in the brittle crack propagation resistance which is another aspect of the present invention is as follows: C: 0.05 to 0.1%, Mn: 1.5 to 2.2%, Ni: 0.00. 3 to 1.2%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Cu: 0.1 to 0.5%, Si: 0.1 to 0.3% , P: 100 ppm or less, S: 40 ppm or less, the remainder Fe, and a slab containing other inevitable impurities is reheated to 950 to 1100 ° C., and then roughly rolled at a temperature of 1100 to 900 ° C. And finishing and rolling the bar at a temperature between Ar 3 + 30 ° C. and Ar 3 -30 ° C. to obtain a steel plate, and cooling the steel plate to a temperature of 700 ° C. or lower.

スラブ再加熱
粗圧延の前工程として、スラブを再加熱する。
スラブの再加熱温度は、950℃以上とすることが好ましいが、これは、鋳造中に形成されたTi及び/又はNbの炭窒化物を固溶させるためである。また、Ti及び/又はNbの炭窒化物を十分に固溶させるためには、1000℃以上に加熱することがより好ましい。但し、過度に高い温度に再加熱すると、オーステナイトが粗大化する恐れがあるため、再加熱温度の上限は1100℃であることが好ましい。
Slab reheating As a pre-process of rough rolling, the slab is reheated.
The reheating temperature of the slab is preferably 950 ° C. or higher, which is for dissolving the Ti and / or Nb carbonitride formed during casting. Further, in order to sufficiently dissolve Ti and / or Nb carbonitride, it is more preferable to heat to 1000 ° C. or higher. However, if reheating to an excessively high temperature, austenite may be coarsened, so the upper limit of the reheating temperature is preferably 1100 ° C.

粗圧延
再加熱されたスラブを粗圧延する。
粗圧延温度は、オーステナイトの再結晶が止まる温度(Tnr)以上にすることが好ましい。圧延により鋳造中に形成されたデンドライトなどの鋳造組織が破壊され、さらに、オーステナイトの大きさを小さくする効果も得られる。このような効果を得るには、粗圧延温度は1100〜900℃に制限することが好ましい。
本発明では、粗圧延時に中心部の組織を微細化するために、粗圧延時における最終3パスに対しては、パス当たりの圧下率が5%以上、総累積圧下率が40%以上であることが好ましい。
粗圧延時における初期圧延により再結晶された組織は、高い温度によって結晶粒成長が起こるが、最終3パスを行う際には、圧延待機中にバーが空冷されることによって結晶粒成長速度が遅くなり、これに伴って、粗圧延時における最終3パスの圧下率が最終微細組織の粒度に最も大きな影響を及ぼすようになる。
また、粗圧延のパス当たりの圧下率が低くなると、中心部に十分な変形が伝わらず、中心部の粗大化による靭性の低下が発生する恐れがある。したがって、最終3パスのパス当たりの圧下率を5%以上に制限することが好ましい。
一方、中心部の組織を微細化するために、粗圧延時における総累積圧下率は40%以上に設定することが好ましい。
Rough rolling Roughly rolling the reheated slab.
The rough rolling temperature is preferably equal to or higher than the temperature (Tnr) at which recrystallization of austenite stops. A cast structure such as dendrite formed during casting is destroyed by rolling, and an effect of reducing the size of austenite can be obtained. In order to obtain such an effect, the rough rolling temperature is preferably limited to 1100 to 900 ° C.
In the present invention, in order to refine the structure at the center during rough rolling, the rolling reduction per pass is 5% or more and the total cumulative rolling reduction is 40% or more for the final three passes during rough rolling. It is preferable.
In the structure recrystallized by the initial rolling during the rough rolling, crystal growth occurs at a high temperature. However, when performing the final three passes, the bar is air-cooled while waiting for rolling to slow the crystal growth rate. Accordingly, the rolling reduction ratio of the final three passes during rough rolling has the greatest influence on the grain size of the final microstructure.
Further, when the rolling reduction per pass of the rough rolling is lowered, sufficient deformation is not transmitted to the central portion, and there is a possibility that the toughness is reduced due to the coarsening of the central portion. Therefore, it is preferable to limit the rolling reduction per pass in the final three passes to 5% or more.
On the other hand, in order to refine the structure of the central portion, the total cumulative rolling reduction during rough rolling is preferably set to 40% or more.

仕上げ圧延
粗圧延されたバーをAr(フェライト変態開始温度)+30℃〜Ar−30℃で仕上げ圧延して鋼板を得る。
これは、より微細化された微細組織を得るためであり、Ar温度の直上若しくは直下で圧延を行うと、変形誘起変態によって非常に微細なフェライトが結晶粒界及び結晶粒の内部に生成するようになり、結晶粒単位を小さくする効果を得ることができる。
また、変形誘起変態を効果的に生じさせるためには、仕上げ圧延時における累積圧下率を40%以上に保持し、最終形状を平らにする圧延を除いたパス当たりの圧下率を8%以上に保持することが好ましい。
Finish rolling The rough-rolled bar is finish-rolled at Ar 3 (ferrite transformation start temperature) + 30 ° C. to Ar 3 −30 ° C. to obtain a steel plate.
This is in order to obtain a more refined microstructure. When rolling is performed immediately above or below the Ar 3 temperature, very fine ferrite is generated inside the grain boundaries and inside the crystal grains by deformation-induced transformation. Thus, the effect of reducing the crystal grain unit can be obtained.
In order to effectively cause deformation-induced transformation, the cumulative rolling reduction during finish rolling is maintained at 40% or higher, and the rolling reduction per pass excluding rolling to flatten the final shape is set to 8% or higher. It is preferable to hold.

本発明で提示する条件に従って、仕上げ圧延時に板厚方向に表層部から板厚1/4部までにおいてEBSD方法で測定した結晶方位の差が15度以上の高傾角境界を有する結晶粒の粒度が15μm(マイクロメートル)以下である微細組織を得ることができる。
仕上げ圧延温度をAr−30℃以下に下げると、粗大なフェライトが圧延前に生成し、圧延中に長く延伸されるようになり、かえって衝撃靭性を低下させるようになり、Ar+30℃以上で仕上げ圧延すると、粒度微細化に効果的ではないため、仕上げ圧延温度をAr+30℃〜Ar−30℃の範囲で行うことが好ましい。
粗圧延後、仕上げ圧延前のバーの1/4t部(ここで、t:鋼板厚)における結晶粒の大きさは150μm以下、好ましくは100μm以下、より好ましくは80μm以下にすることができる。
粗圧延後、仕上げ圧延前のバーの1/4t部における結晶粒の大きさは粗圧延条件などによって制御されることができる。
In accordance with the conditions presented in the present invention, the grain size of the crystal grains having a high tilt boundary where the difference in crystal orientation measured by the EBSD method in the thickness direction from the surface layer portion to the thickness of the ¼ portion is 15 degrees or more during finish rolling. A microstructure that is 15 μm (micrometers) or less can be obtained.
When the finish rolling temperature is lowered to Ar 3 -30 ° C. or less, coarse ferrite is generated before rolling, and it is elongated for a long time during rolling, and on the contrary, impact toughness is lowered, and Ar 3 + 30 ° C. or more. When finish rolling is not effective in reducing the grain size, the finish rolling temperature is preferably in the range of Ar 3 + 30 ° C to Ar 3 -30 ° C.
After rough rolling, the size of crystal grains in the 1/4 t portion (here, t: steel plate thickness) of the bar before finish rolling can be 150 μm or less, preferably 100 μm or less, more preferably 80 μm or less.
After the rough rolling, the size of the crystal grains in the 1/4 t portion of the bar before the finish rolling can be controlled by the rough rolling conditions and the like.

上記のように、粗圧延後、仕上げ圧延前のバーの1/4t部における結晶粒の大きさを制御すると、オーステナイト結晶粒の微細化によって最終微細組織が微細化され、低温衝撃靭性の向上をもたらすことができる。
仕上げ圧延時における圧下比は、スラブ厚(mm)/仕上げ圧延後の鋼板厚(mm)の比が3.5以上、好ましくは3.8以上になるように設定されることがもよい。
上記のように圧下比を制御すると、粗圧延及び仕上げ圧延時に圧下量が増加するに伴い、最終微細組織の微細化による降伏/引張強度の上昇及び低温靭性の向上をもたらすことができ、さらに、厚さ中心部の粒度減少による中心部の靭性の向上をもたらすことができる。
仕上げ圧延の後、鋼板は、50mm以上の厚さを有し、好ましくは50〜100mmの厚さを有することができ、より好ましくは80〜100mmの厚さを有することができる。
As described above, controlling the grain size in the 1 / 4t part of the bar before rough rolling after rough rolling will refine the final microstructure due to the refinement of austenite crystal grains, improving the low temperature impact toughness. Can bring.
The reduction ratio at the time of finish rolling may be set so that the ratio of slab thickness (mm) / steel plate thickness after finish rolling (mm) is 3.5 or more, preferably 3.8 or more.
Controlling the reduction ratio as described above can increase yield / tensile strength and improve low temperature toughness due to refinement of the final microstructure as the amount of reduction increases during rough rolling and finish rolling. The toughness of the central part can be improved by reducing the particle size at the central part of the thickness.
After the finish rolling, the steel sheet has a thickness of 50 mm or more, preferably can have a thickness of 50 to 100 mm, and more preferably has a thickness of 80 to 100 mm.

冷却
仕上げ圧延の後、鋼板を700℃以下に冷却させる。
冷却終了温度が700℃を超えると、微細組織が適切に形成されなくなり、降伏強度が390Mpa以下になる可能性がある。
鋼板の冷却は、1.5℃/s以上の中心部の冷却速度で行うことができ、鋼板の中心部の冷却速度が1.5℃/s未満であると、微細組織が適切に形成されなくなり、降伏強度が390Mpa以下になる可能性がある。
また、鋼板の冷却は、2〜300℃/sの平均冷却速度で行ってもよい。
Cooling After finish rolling, the steel sheet is cooled to 700 ° C. or lower.
When the cooling end temperature exceeds 700 ° C., the microstructure is not properly formed, and the yield strength may be 390 Mpa or less.
The steel sheet can be cooled at a cooling rate at the center of 1.5 ° C./s or more. When the cooling rate at the center of the steel sheet is less than 1.5 ° C./s, a fine structure is appropriately formed. There is a possibility that the yield strength becomes 390 Mpa or less.
Further, the steel sheet may be cooled at an average cooling rate of 2 to 300 ° C./s.

以下では、実施例を挙げて本発明をより具体的に説明する。
但し、後述する実施例は本発明をより詳細に説明するための例示であり、本発明の権利範囲を限定するためのものではないことに留意すべきである。
本発明の権利範囲が、特許請求の範囲に記載の事項と、これから合理的に類推される事項により決定されるためである。
Below, an Example is given and this invention is demonstrated more concretely.
However, it should be noted that the examples described later are examples for explaining the present invention in more detail and are not intended to limit the scope of rights of the present invention.
This is because the scope of rights of the present invention is determined by the matters described in the claims and the matters reasonably inferred.

〔実施例1〕
下記表1の組成を有する400mmの鋼スラブを1045℃の温度に再加熱した後、1015℃の温度で粗圧延を実施してバーを製造した。粗圧延時における累積圧下率は、50%として同様に適用した。
粗圧延されたバーの厚さは、180mmであり、粗圧延後、仕上げ圧延前の1/4t部における結晶粒の大きさは95μmであった。
粗圧延の後、表2に示した仕上げ圧延温度とAr温度との温度差で仕上げ圧延を行って下記表2の厚さを有する鋼板を得た後、4℃/secの冷却速度で700℃以下の温度に冷却した。
上記のように製造された鋼板に対して、微細組織、降伏強度、厚さ1/4t部の平均粒度、板厚方向に表層部から板厚の1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率、Kca値(脆性亀裂伝播抵抗性係数)を調査し、その結果を表2に示した。
表2のKca値は、鋼板に対してESSO testを実施して評価した値である。
[Example 1]
A 400 mm steel slab having the composition shown in Table 1 below was reheated to a temperature of 1045 ° C., and then rough rolled at a temperature of 1015 ° C. to produce a bar. The cumulative rolling reduction during rough rolling was similarly applied as 50%.
The thickness of the coarsely rolled bar was 180 mm, and the size of the crystal grains in the 1/4 t portion after the rough rolling and before the finish rolling was 95 μm.
After rough rolling, finish rolling is performed at a temperature difference between the finish rolling temperature shown in Table 2 and the Ar 3 temperature to obtain a steel sheet having the thickness shown in Table 2 below, and then 700 ° C. at a cooling rate of 4 ° C./sec. Cooled to a temperature below ℃.
For the steel plate produced as described above, the microstructure, yield strength, average grain size of 1/4 t thickness, surface parallel to the rolling direction from the surface layer portion to 1/4 part of the plate thickness in the plate thickness direction The area ratio and the Kca value (brittle crack propagation resistance coefficient) of the (100) plane forming an angle of 15 degrees or less with respect to the results are shown in Table 2.
The Kca values in Table 2 are values evaluated by performing ESSO test on steel sheets.

Figure 0006475837
Figure 0006475837

Figure 0006475837
Figure 0006475837

表2に示したとおり、比較鋼1では、本発明で提示する仕上げ圧延時に仕上げ圧延温度−Arの温度差が50℃以上に制御されており、十分な圧下が加わっていないため、1/4t部の粒度が29.1μmであり、板厚方向に表層部から板厚の1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が30%以下であり、また、衝撃遷移温度が−40℃以上であり、−10℃で測定されたKca値が一般的な造船用鋼材において求められる6000を超えていないことが分かる。
比較鋼2では、Cの含量が本発明のC含量の上限よりも高い値を有しており、粗圧延時の冷却によって中心部のオーステナイトの粒度を微細化したにも関わらず、上部ベイナイト(upper bainite)が生成することにより最終微細組織の粒度が33.2μmであり、表層部から板厚の1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が30%以下であり、さらに、脆性が発生しやすい上部ベイナイトを基地組織として有することから、衝撃遷移温度が−40℃以上であり、Kca値も−10℃で6000以下の値を有することが分かる。
As shown in Table 2, in the comparative steel 1, the temperature difference of the finish rolling temperature -Ar 3 is controlled to 50 ° C. or more during the finish rolling presented in the present invention, and sufficient reduction is not applied. The grain ratio of 4t part is 29.1 μm, and the area ratio of the (100) plane that forms an angle of 15 degrees or less with respect to the plane parallel to the rolling direction from the surface layer portion to ¼ part of the plate thickness in the plate thickness direction. Is 30% or less, the impact transition temperature is −40 ° C. or higher, and the Kca value measured at −10 ° C. does not exceed 6000 required for general steel for shipbuilding.
In comparative steel 2, the C content has a value higher than the upper limit of the C content of the present invention, and despite the fact that the austenite grain size in the center is refined by cooling during rough rolling, the upper bainite ( The upper microstructure has a final fine grain size of 33.2 μm and forms an angle of 15 degrees or less with respect to a plane parallel to the rolling direction from the surface layer portion to ¼ portion of the plate thickness (100 ) The area ratio of the surface is 30% or less, and further, the upper bainite, which is easily brittle, is included as the base structure. It can be seen that it has a value.

比較鋼3では、Siの含量が本発明のSi含量の上限よりも高い値を有しており、粗圧延時の冷却によって中心部のオーステナイトの粒度を微細化したにも関わらず、中心部において上部ベイナイト(upper bainite)が一部生成し、さらに、Siが多量添加されることにより、MA組織が粗大に多量生成されることから、Kca値も−10℃で6000以下の値を有することが分かる。
比較鋼4では、Mn含量が本発明のMn含量の上限よりも高い値を有しており、高い硬化能によって母材の微細組織が上部ベイナイトであり、粗圧延時の冷却によって中心部のオーステナイトの粒度を微細化したにも関わらず、最終微細組織の粒度が32.2μmを示し、表層部から板厚の1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が30%以下であり、また、衝撃遷移温度が−40℃以上であり、Kca値も−10℃で6000以下の値を有することが分かる。
比較鋼5では、Ni含量が本発明のNi含量の上限よりも高い値を有しており、高い硬化能によって母材の微細組織がグラニュラーベイナイト(granular bainite)と上部ベイナイトであり、粗圧延時の冷却によって中心部のオーステナイトの粒度を微細化したにも関わらず、最終微細組織の粒度が28.7μmを示し、また、衝撃遷移温度が−40℃以上であり、Kca値も−10℃で6000以下の値を有することが分かる。
In the comparative steel 3, the Si content has a value higher than the upper limit of the Si content of the present invention, and the grain size of the austenite at the center is refined by cooling during rough rolling. A part of upper bainite is formed, and a large amount of Si is added to form a large amount of MA structure. Therefore, the Kca value may have a value of 6000 or less at −10 ° C. I understand.
In the comparative steel 4, the Mn content has a value higher than the upper limit of the Mn content of the present invention, the fine structure of the base material is upper bainite due to the high hardenability, and the austenite at the center by cooling during rough rolling In spite of the refinement of the grain size, the final microstructure has a grain size of 32.2 μm, and an angle of 15 degrees or less with respect to the plane parallel to the rolling direction from the surface layer part to ¼ part of the plate thickness. It can be seen that the area ratio of the eggplant (100) plane is 30% or less, the impact transition temperature is −40 ° C. or higher, and the Kca value is 6,000 ° C. or lower at −10 ° C.
In the comparative steel 5, the Ni content has a value higher than the upper limit of the Ni content of the present invention, and the microstructure of the base material is granular bainite and upper bainite due to high hardenability. Although the grain size of the austenite at the center is refined by cooling, the grain size of the final microstructure is 28.7 μm, the impact transition temperature is −40 ° C. or higher, and the Kca value is −10 ° C. It can be seen that it has a value of 6000 or less.

比較鋼6では、P、Sの含量が本発明のP、S含量の上限よりも高い値を有しており、他の条件が全て本発明で提示する条件を満たしているにも関わらず、高いP、Sによって脆性が発生し、Kca値が−10℃で6000以下の値を有することが分かる。
これに対し、本発明の成分範囲と製造範囲を満たす発明鋼1〜6では、降伏強度390MPa以上、1/4t部の粒度15μm以下を満たしており、フェライトとパーライト組織又は針状フェライト単相組織、若しくは針状フェライトとグラニュラーベイナイトの複合組織、針状フェライト、パーライトとグラニュラーベイナイトの複合組織を微細組織にして有することが分かる。
また、板厚の表層部から板厚の1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が30%以上であり、衝撃遷移温度が−40℃以上であり、Kca値も−10℃で6000以上の値を満たしていることが分かる。
図1には発明鋼6の厚さ中心部を光学顕微鏡で観察した写真を示したが、図1からも分かるとおり、厚さ中心部の組織が微細化されている。
In the comparative steel 6, the P and S contents have a value higher than the upper limit of the P and S contents of the present invention, and all other conditions satisfy the conditions presented in the present invention. It can be seen that brittleness occurs due to high P and S, and the Kca value has a value of 6000 or less at -10 ° C.
On the other hand, the invention steels 1 to 6 satisfying the component range and production range of the present invention satisfy the yield strength of 390 MPa or more and the particle size of 1/4 t part of 15 μm or less, and ferrite and pearlite structure or acicular ferrite single phase structure It can also be seen that the composite structure of acicular ferrite and granular bainite, and the composite structure of acicular ferrite and pearlite and granular bainite are fine structures.
Further, the area ratio of the (100) plane that forms an angle of 15 degrees or less with respect to the plane parallel to the rolling direction from the surface layer portion to ¼ portion of the plate thickness is 30% or more, and the impact transition temperature Is −40 ° C. or higher, and the Kca value also satisfies a value of 6000 or higher at −10 ° C.
Although the photograph which observed the thickness center part of the invention steel 6 with the optical microscope was shown in FIG. 1, the structure | tissue of thickness center part is refined | miniaturized so that FIG. 1 may also show.

〔実施例2〕
鋼スラブのCu/Ni重量比を表3に示すように変化させたこと以外は、実施例1の発明鋼2と同様の組成及び製造条件で鋼板を製造し、製造された鋼板の表面特性を調査し、その結果を表3に示した。
表3において、鋼板の表面特性とは、Hot shortnessによる表面部のスタークラックの発生有無を測定したことをいう。

Figure 0006475837
表3に示したとおり、Cu/Ni重量比を適切に制御することで、鋼板の表面特性が改善されることが分かる。 [Example 2]
Except for changing the Cu / Ni weight ratio of the steel slab as shown in Table 3, a steel plate was produced with the same composition and production conditions as the inventive steel 2 of Example 1, and the surface properties of the produced steel plate were changed. The results are shown in Table 3.
In Table 3, the surface property of the steel sheet means that the presence or absence of star cracks on the surface portion due to hot shortness was measured.
Figure 0006475837
As shown in Table 3, it can be seen that the surface properties of the steel sheet are improved by appropriately controlling the Cu / Ni weight ratio.

〔実施例3〕
粗圧延後、仕上げ圧延前の結晶粒の大きさ(μm)を表4に示すとおり変化させたこと以外は、実施例1の発明鋼1と同一の組成及び製造条件で鋼板を製造し、製造された鋼板の1/4t部の衝撃遷移温度特性を調査し、その結果を表4に示した。

Figure 0006475837
表4に示したとおり、粗圧延後のバー状態の1/4tにおける結晶粒の大きさが減少するほど、衝撃遷移温度が減少することが分かり、これによって、脆性亀裂伝播抵抗性が向上することが予想できる。 Example 3
A steel plate was produced with the same composition and production conditions as invented steel 1 of Example 1 except that the grain size (μm) before rough rolling was changed as shown in Table 4 after rough rolling. The impact transition temperature characteristics of the 1/4 t part of the obtained steel sheet were investigated, and the results are shown in Table 4.
Figure 0006475837
As shown in Table 4, it can be seen that the impact transition temperature decreases as the crystal grain size at 1 / 4t of the bar state after rough rolling decreases, and this improves brittle crack propagation resistance. Can be expected.

以上、実施例を参照して説明したが、当該技術分野の熟練された当業者は、下記の特許請求の範囲に記載された本発明の思想及び領域から外れない範囲内で本発明を多様に修正及び変更できるということが理解できるだろう。   Although the present invention has been described with reference to the embodiments, those skilled in the art can make various modifications to the present invention without departing from the spirit and scope of the present invention described in the claims below. It will be understood that modifications and changes can be made.

Claims (8)

質量%で、C:0.05〜0.1%、Mn:1.58〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、Cu:0.1〜0.5%、Si:0.1〜0.3%、P:100ppm以下、S:40ppm以下、残部Fe、及びその他の不可避な不純物からなり
フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織からなる微細組織を有し、
前記フェライトは針状フェライト(acicular ferrite)又は多角形フェライト(polygonal ferrite)であり、前記ベイナイトはグラニュラーベイナイト(granular bainite)であり、
鋼材は、前記鋼材の厚さ方向に表層部から板厚1/4部までにおいてEBSD方法で測定した結晶方位の差が15度以上の高傾角境界を有する結晶粒の粒度が15μm以下であり、
前記鋼材の厚さの1/4部までにおける圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が30%以上であり、
前記鋼材は、降伏強度が390MPa以上であり、並びに前記鋼材の厚さ方向に表層部及び鋼材厚さ1/4t部におけるシャルピー破面遷移温度が−40℃以下であり、
且つ厚さが50mm以上であることを特徴とする脆性亀裂伝播抵抗性に優れた高強度鋼材。
In mass% , C: 0.05 to 0.1%, Mn: 1.58 to 2.2%, Ni: 0.3 to 1.2%, Nb: 0.005 to 0.1%, Ti: 0.005-0.1%, Cu: 0.1-0.5%, Si: 0.1-0.3%, P: 100 ppm or less, S: 40 ppm or less, remaining Fe, and other inevitable impurities Consists of
Ferrite single-phase structure, bainite single-phase structure, ferrite and bainite composite structure, ferrite and pearlite composite structure, and a microstructure consisting of one structure selected from the group consisting of ferrite, bainite and pearlite composite structure ,
The ferrite is an acicular ferrite or a polygonal ferrite, and the bainite is a granular bainite,
The steel material has a crystal grain size of 15 μm or less having a high tilt boundary where the difference in crystal orientation measured by the EBSD method in the thickness direction of the steel material from the surface layer portion to the plate thickness ¼ portion is 15 degrees or more,
The area ratio of the (100) plane forming an angle within 15 degrees with respect to the plane parallel to the rolling direction up to 1/4 part of the thickness of the steel material is 30% or more,
The steel material has a yield strength of 390 MPa or more, and a Charpy fracture surface transition temperature at a surface layer portion and a steel material thickness of 1/4 t in the thickness direction of the steel material is −40 ° C. or less,
A high-strength steel material excellent in brittle crack propagation resistance characterized by having a thickness of 50 mm or more.
前記Cu及びNiの含量は、Cu/Ni重量比が0.6以下になるように設定されることを特徴とする請求項1に記載の脆性亀裂伝播抵抗性に優れた高強度鋼材。   The high-strength steel material excellent in brittle crack propagation resistance according to claim 1, wherein the Cu and Ni contents are set such that the Cu / Ni weight ratio is 0.6 or less. 前記鋼材の微細組織がパーライトを含む複合組織であると、パーライトの分率は20%以下であることを特徴とする請求項1に記載の脆性亀裂伝播抵抗性に優れた高強度鋼材。   The high-strength steel material excellent in brittle crack propagation resistance according to claim 1, wherein the fine structure of the steel material is a composite structure containing pearlite, and the fraction of pearlite is 20% or less. 前記鋼材厚さが80〜100mmであることを特徴とする請求項1に記載の脆性亀裂伝播抵抗性に優れた高強度鋼材。   The high-strength steel material excellent in brittle crack propagation resistance according to claim 1, wherein the steel material thickness is 80 to 100 mm. 質量%で、C:0.05〜0.1%、Mn:1.58〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、Cu:0.1〜0.5%、Si:0.1〜0.3%、P:100ppm以下、S:40ppm以下、残部Fe、及びその他の不可避な不純物からなるスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延する段階と、前記粗圧延されたバー(bar)をAr+30℃〜Ar−30℃の間の温度で仕上げ圧延して厚さ50mm以上の鋼板を得る段階と、前記鋼板を700℃以下の温度まで冷却する段階と、を含み、
前記粗圧延時の最終3パスに対しては、パス当たりの圧下率が5%以上であり、累積圧下率が40%以上であり、
前記粗圧延後、仕上げ圧延前のバーの1/4t部(ここで、t:鋼板厚)における結晶粒の大きさは、150μm以下であり、
前記仕上げ圧延時における圧下比は、スラブ厚(mm)/仕上げ圧延後の鋼板厚(mm)の比が3.5以上になるように設定され
フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織を含む微細組織を有し、前記フェライトは針状フェライト(acicular ferrite)又は多角形フェライト(polygonal ferrite)であり、並びにベイナイトはグラニュラーベイナイト(granular bainite)であり、鋼材の厚さ方向に表層部から板厚1/4部までEBSD方法で測定した結晶方位の差が15度以上の高傾角境界を有する結晶粒の粒度が15μm以下であり、前記鋼材の厚さの1/4部までの圧延方向に平行な面に対して15度以内の角度をなす(100)面の面積率が30%以上であり、降伏強度が390MPa以上であり、並びに前記鋼材の厚さ方向に表層部及び鋼材厚さ1/4t部におけるシャルピー破面遷移温度が−40℃以下である鋼材を製造することを特徴とする脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法。
In mass% , C: 0.05 to 0.1%, Mn: 1.58 to 2.2%, Ni: 0.3 to 1.2%, Nb: 0.005 to 0.1%, Ti: 0.005-0.1%, Cu: 0.1-0.5%, Si: 0.1-0.3%, P: 100 ppm or less, S: 40 ppm or less, remaining Fe, and other inevitable impurities A slab made of 950 to 1100 ° C. and then roughly rolled at a temperature of 1100 to 900 ° C., and the roughly rolled bar between Ar 3 + 30 ° C. and Ar 3 -30 ° C. It is seen containing a step of obtaining a finish rolled to a thickness of 50mm or more of the steel sheet at a temperature, comprising the steps of cooling the steel sheet to a temperature of 700 ° C. or less, and
For the final three passes during the rough rolling, the rolling reduction per pass is 5% or more, the cumulative rolling reduction is 40% or more,
After the rough rolling, the size of the crystal grains in a 1/4 t portion (here, t: steel plate thickness) of the bar before finish rolling is 150 μm or less,
The reduction ratio during the finish rolling is set so that the ratio of slab thickness (mm) / steel plate thickness after finish rolling (mm) is 3.5 or more ,
Ferrite single phase structure, bainite single phase structure, ferrite and bainite composite structure, ferrite and pearlite composite structure, and a microstructure including one structure selected from the group consisting of ferrite, bainite and pearlite composite structure The ferrite is acicular ferrite or polygonal ferrite, and the bainite is granular bainite, from the surface layer to the thickness of 1/4 part in the thickness direction of the steel material. With respect to a plane parallel to the rolling direction up to 1/4 part of the thickness of the steel material, the grain size of the crystal grains having a high tilt boundary with a difference in crystal orientation measured by the EBSD method being 15 degrees or more is 15 μm or less. The area ratio of the (100) plane forming an angle within 15 degrees is And 0% or more, the yield strength is at least 390 MPa, as well as to manufacture a steel Charpy fracture appearance transition temperature in the surface layer and the steel material thickness 1 / 4t part is -40 ℃ less in the thickness direction of the steel A method for producing a high-strength steel material excellent in brittle crack propagation resistance.
前記Cu及びNiの含量は、Cu/Ni重量比が0.6以下になるように設定されることを特徴とする請求項に記載の脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法。 The method for producing a high-strength steel material having excellent brittle crack propagation resistance according to claim 5 , wherein the Cu and Ni contents are set such that the Cu / Ni weight ratio is 0.6 or less. . 前記鋼板の冷却は、1.5℃/s以上の中心部の冷却速度で行うことを特徴とする請求項に記載の脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法。 The method for producing a high-strength steel material having excellent brittle crack propagation resistance according to claim 5 , wherein the steel sheet is cooled at a cooling rate at a central portion of 1.5 ° C./s or more. 前記鋼板の冷却は、2〜300℃/sの平均冷却速度で行うことを特徴とする請求項に記載の脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法。

The method for producing a high-strength steel material having excellent brittle crack propagation resistance according to claim 5 , wherein the steel sheet is cooled at an average cooling rate of 2 to 300 ° C./s.

JP2017532035A 2014-12-24 2015-12-21 High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof Active JP6475837B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20140189128 2014-12-24
KR10-2014-0189128 2014-12-24
PCT/KR2015/014059 WO2016105064A1 (en) 2014-12-24 2015-12-21 High-strength steel having excellent resistance to brittle crack propagation, and production method therefor

Publications (2)

Publication Number Publication Date
JP2018504523A JP2018504523A (en) 2018-02-15
JP6475837B2 true JP6475837B2 (en) 2019-02-27

Family

ID=56151010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017532035A Active JP6475837B2 (en) 2014-12-24 2015-12-21 High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof

Country Status (6)

Country Link
US (1) US10883159B2 (en)
EP (1) EP3239332B1 (en)
JP (1) JP6475837B2 (en)
KR (1) KR101747000B1 (en)
CN (1) CN107109592A (en)
WO (1) WO2016105064A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109597B (en) * 2014-12-24 2020-01-31 Posco公司 High-strength steel material having excellent brittle crack growth resistance and method for producing same
US10822671B2 (en) 2014-12-24 2020-11-03 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
KR101819356B1 (en) * 2016-08-08 2018-01-17 주식회사 포스코 Ultra thick steel having superior brittle crack arrestability and method for manufacturing the steel
KR101917456B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Extremely thick steel having excellent surface part naval research laboratory-drop weight test property
KR101940880B1 (en) * 2016-12-22 2019-01-21 주식회사 포스코 Sour resistance steel sheet having excellent low temperature toughness and post weld heat treatment property, and method of manufacturing the same
KR101917455B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Extremely thick steel having excellent surface part naval research laboratory-drop weight test property
KR102209561B1 (en) * 2018-11-30 2021-01-28 주식회사 포스코 Ultra thick steel excellent in brittle crack arrestability and manufacturing method for the same
KR102209547B1 (en) * 2018-12-19 2021-01-28 주식회사 포스코 Ultra thick structural steel having superior brittle crack initiation resistance and method of manufacturing the same
KR102237486B1 (en) * 2019-10-01 2021-04-08 주식회사 포스코 High strength ultra thick steel plate having excellent very low temperature strain aging impact toughness at the center of thickness and method of manufacturing the same
KR102255822B1 (en) * 2019-12-06 2021-05-25 주식회사 포스코 Normalling heat treatable steel sheet having godd low impact toughness and method for the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180521A (en) 1990-11-14 1992-06-26 Kobe Steel Ltd Production of high tensile thick steel plate having high yield strength and high toughness
EP0709480B1 (en) * 1994-03-29 2001-06-13 Nippon Steel Corporation Steel plate excellent in prevention of brittle crack propagation and low-temperature toughness and process for producing the plate
JPH083636A (en) 1994-06-17 1996-01-09 Sumitomo Metal Ind Ltd Production of low yield ratio high toughness steel
JP3039862B1 (en) * 1998-11-10 2000-05-08 川崎製鉄株式会社 Hot-rolled steel sheet for processing with ultra-fine grains
JP4830330B2 (en) 2005-03-25 2011-12-07 Jfeスチール株式会社 Manufacturing method of thick-walled low yield ratio high-tensile steel sheet
KR100660230B1 (en) * 2005-12-26 2006-12-21 주식회사 포스코 Thick steel plate for welded structure having high strength and excellent toughness at the center of thickness and method of producing the same
JP4058097B2 (en) * 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability
JP4605117B2 (en) 2006-07-25 2011-01-05 住友金属工業株式会社 Steel used for tanks for LPG / ammonia carrier
JP5064150B2 (en) 2006-12-14 2012-10-31 新日本製鐵株式会社 High strength steel plate with excellent brittle crack propagation stopping performance
JP4309946B2 (en) 2007-03-05 2009-08-05 新日本製鐵株式会社 Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
KR101120351B1 (en) * 2008-09-04 2012-03-13 가부시키가이샤 고베 세이코쇼 Steel plate
KR101360737B1 (en) 2009-12-28 2014-02-07 주식회사 포스코 High strength steel plate having excellent resistance to brittle crack initiation and method for manufacturing the same
KR20120075274A (en) * 2010-12-28 2012-07-06 주식회사 포스코 High strength steel sheet having ultra low temperature toughness and method for manufacturing the same
JP5304925B2 (en) 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5733425B2 (en) 2011-12-27 2015-06-10 Jfeスチール株式会社 High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
TWI463018B (en) 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp High strength steel plate with excellent crack arrest property
JP2013221189A (en) 2012-04-17 2013-10-28 Nippon Steel & Sumitomo Metal Corp High-strength thick steel plate excellent in brittle crack propagation arresting capability
JP2013221190A (en) 2012-04-17 2013-10-28 Nippon Steel & Sumitomo Metal Corp High-strength thick steel plate excellent in brittle crack propagation arresting capability
KR20130134333A (en) * 2012-05-30 2013-12-10 현대제철 주식회사 High strength steel sheet and method of manufacturing the same
KR20140098900A (en) * 2013-01-31 2014-08-11 현대제철 주식회사 High strength thick steel plate and method for manufacturing the same
US10822671B2 (en) 2014-12-24 2020-11-03 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
CN107109597B (en) 2014-12-24 2020-01-31 Posco公司 High-strength steel material having excellent brittle crack growth resistance and method for producing same

Also Published As

Publication number Publication date
WO2016105064A1 (en) 2016-06-30
KR20160078927A (en) 2016-07-05
US10883159B2 (en) 2021-01-05
US20190093204A1 (en) 2019-03-28
CN107109592A (en) 2017-08-29
EP3239332B1 (en) 2019-11-20
EP3239332A4 (en) 2017-11-22
EP3239332A1 (en) 2017-11-01
WO2016105064A8 (en) 2016-11-24
JP2018504523A (en) 2018-02-15
KR101747000B1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6475837B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP6475836B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP6648270B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP6648271B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
KR101205144B1 (en) H-steel for building structure and method for producing the same
JP6788589B2 (en) High-strength steel with excellent brittle crack propagation resistance and its manufacturing method
JP6700400B2 (en) Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same
KR101439685B1 (en) Steel plate for line pipe having superior uniform elongation ratio and low-temperature toughness
JP6847225B2 (en) Low yield ratio steel sheet with excellent low temperature toughness and its manufacturing method
KR101657840B1 (en) Steel having superior brittle crack arrestability and method for manufacturing the steel
JP6858858B2 (en) Surface NRL-Drop test Extra-thick steel with excellent physical properties and its manufacturing method
JP2021509144A (en) Structural high-strength steel with excellent fatigue crack propagation suppression characteristics and its manufacturing method
JP2009280902A (en) Copper-containing composite bainitic steel, and method for producing the same
JP6475839B2 (en) Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same
KR101507943B1 (en) Line-pipe steel sheet and method for manufacturing the same
JP7439241B2 (en) Steel material with excellent strength and low-temperature impact toughness and its manufacturing method
JP2015214724A (en) Highly efficient production method of steel plate with excellent collision resistance
KR20160077379A (en) High strength steel having excellent resistance to brittle crack initiation of welding zone and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250