JP6475839B2 - Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same - Google Patents

Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same Download PDF

Info

Publication number
JP6475839B2
JP6475839B2 JP2017532807A JP2017532807A JP6475839B2 JP 6475839 B2 JP6475839 B2 JP 6475839B2 JP 2017532807 A JP2017532807 A JP 2017532807A JP 2017532807 A JP2017532807 A JP 2017532807A JP 6475839 B2 JP6475839 B2 JP 6475839B2
Authority
JP
Japan
Prior art keywords
ferrite
slab
bar
structural
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017532807A
Other languages
Japanese (ja)
Other versions
JP2018504524A (en
Inventor
イ,ハク−チョル
ジャン,ソン−ホ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2018504524A publication Critical patent/JP2018504524A/en
Application granted granted Critical
Publication of JP6475839B2 publication Critical patent/JP6475839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、脆性亀裂伝播抵抗性に優れた構造用極厚鋼材及びその製造方法に係り、より詳しくは、Ni、Nb、Tiを含み、フェライト、ベイナイト単相組織、フェライトとベイナイト、フェライトとパーライト、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織を含む微細組織を有する脆性亀裂伝播抵抗性に優れた構造用極厚鋼材及びその製造方法に関する。 The present invention relates to a structural ultra-thick steel material excellent in brittle crack propagation resistance and a method for producing the same, and more particularly, including Ni, Nb, Ti, ferrite, bainite single phase structure, ferrite and bainite, ferrite and pearlite. Further, the present invention relates to a structural extra heavy steel material excellent in brittle crack propagation resistance having a microstructure including one structure selected from the group consisting of a composite structure of ferrite, bainite and pearlite, and a method for producing the same.

近年、国内外の船舶、海洋、建築、及び土木分野で用いられる構造物を設計するにあたり、高強度特性を有する極厚鋼の開発が求められている。
構造物の設計時に高強度鋼を用いると、構造物の軽量化が可能となるため経済的な利益が得られるだけでなく、鋼板の厚さを薄くできるため加工及び溶接作業の容易性をともに確保することができる。
一般に、高強度鋼は、極厚材の製造時に総圧下率が低下し、中心部に十分な変形を与えることができないため、中心部の組織が粗大化し、その結果、硬化能が上昇して、ベイナイトなどの低温変態相が生成される。
また、粗大化した組織によって中心部の衝撃靭性を確保することが難しくなる。
In recent years, the development of extra heavy steel having high strength characteristics has been demanded in designing structures used in the fields of ships, oceans, architecture, and civil engineering in Japan and overseas.
The use of high-strength steel when designing structures not only provides economic benefits because the weight of the structure can be reduced, but also reduces the thickness of the steel sheet, making it easier to work and weld. Can be secured.
In general, high-strength steel has a lower total rolling reduction during the production of extra-thick materials and cannot give sufficient deformation to the center, resulting in a coarse structure in the center, resulting in increased hardenability. A low temperature transformation phase such as bainite is generated.
Moreover, it becomes difficult to ensure the impact toughness of the central portion due to the coarsened structure.

特に、構造物の安定性を示す脆性亀裂伝播抵抗性の場合、船舶などの主要構造物への適用時に保証を求める事例が増加しつつあるが、中心部に低温変態相が生成されると、脆性亀裂伝播抵抗性が非常に低下する現象が起こるため、極厚高強度鋼材の脆性亀裂伝播抵抗性を向上させることは非常に難しい状況である。
一方、降伏強度350MPa以上の高強度鋼の場合、脆性亀裂伝播抵抗性を向上させるために、表層部の粒度を微細化するために仕上げ圧延時に表面冷却を適用するか、圧延時に曲げ応力を与えて粒度を調節するか、又は二相域圧延により表層を微細化するなどの多様な技術が導入されている。
In particular, in the case of brittle crack propagation resistance, which indicates the stability of the structure, there are an increasing number of cases seeking guarantees when applied to main structures such as ships, but when a low-temperature transformation phase is generated in the center, Since a phenomenon occurs in which the brittle crack propagation resistance is greatly lowered, it is very difficult to improve the brittle crack propagation resistance of the ultra-thick high-strength steel material.
On the other hand, in the case of high-strength steel with a yield strength of 350 MPa or more, in order to improve brittle crack propagation resistance, surface cooling is applied during finish rolling in order to refine the grain size of the surface layer, or bending stress is applied during rolling. Various techniques have been introduced, such as adjusting the grain size or refining the surface layer by two-phase rolling.

しかしながら、上記技術の場合、表層部の組織微細化には有利であるが、中心部の組織粗大化によって衝撃靭性が低下する問題は解決できないため、脆性亀裂伝播抵抗性への根本的な対策とは言い難い。
また、量産体制に当たって生産性が大きく低下することが予想されるため、商業的適用には無理があると言える。
さらに、靭性の向上に役立つNiなどの元素を多量添加して脆性亀裂伝播抵抗性を向上させることができるが、Niは高価な元素であるため、製造原価の面からも、商業化が難しい状況である。
However, in the case of the above technique, although it is advantageous for refining the structure of the surface layer part, the problem that the impact toughness decreases due to the coarsening of the structure of the central part cannot be solved, so a fundamental measure for brittle crack propagation resistance Is hard to say.
In addition, it can be said that the commercial application is impossible because the productivity is expected to decrease greatly in the mass production system.
Furthermore, it is possible to improve the resistance to brittle crack propagation by adding a large amount of elements such as Ni that are useful for improving toughness. However, since Ni is an expensive element, it is difficult to commercialize it in terms of manufacturing cost. It is.

韓国公開特許第2009−0069818号公報Korean Published Patent No. 2009-0069818 韓国公開特許第2002−0091844号公報Korean Published Patent No. 2002-0091844

本発明が目的とするところは、脆性亀裂伝播抵抗性に優れた構造用極厚鋼材を提供することである。
また、脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造に当たり合金組成及び微細組織を制御する製造方法を提供することである。
The object of the present invention is to provide a structural heavy steel material excellent in brittle crack propagation resistance.
Another object of the present invention is to provide a manufacturing method for controlling the alloy composition and the microstructure in manufacturing a structural heavy steel material excellent in brittle crack propagation resistance.

本発明は、質量%で、C:0.02〜0.10%、Mn:0.8〜2.5%、Ni:0.05〜1.5%、Nb:0.005〜0.1%、Ti:0.005〜0.1%を含み、残部が鉄(Fe)及びその他不可避な不純物からなり、フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織からなる微細組織を有し、
前記フェライトは、針状フェライト(acicular ferrite)又は多角形フェライト(polygonal ferrite)であり、ベイナイトはグラニュラーベイナイト(granular bainite)であり、
前記構造用極厚鋼材は、板厚の中心部において、ESBD方法で測定した15度以上の高傾角境界を有する粒度が15μm以下であり、
前記構造用極厚鋼材は、降伏強度が350MPa以上であり、中心部の衝撃遷移温度が−60℃以下であることを特徴とする。
In the present invention, by mass , C: 0.02 to 0.10%, Mn: 0.8 to 2.5%, Ni: 0.05 to 1.5%, Nb: 0.005 to 0.1 %, Ti: 0.005 to 0.1%, with the balance being iron (Fe) and other inevitable impurities, ferrite single phase structure, bainite single phase structure, ferrite and bainite composite structure, ferrite and pearlite complex structure, and the ferrite, the microstructure consisting of bainite and pearlite composite structure, one of the tissue selected from the group consisting possess,
The ferrite is an acicular ferrite or a polygonal ferrite, and the bainite is a granular bainite,
The structural ultra-thick steel material has a grain size of 15 μm or less having a high inclination boundary of 15 ° or more measured by the ESBD method at the center of the plate thickness,
The ultra-thick structural steel material has a yield strength of 350 MPa or more and an impact transition temperature at the center of −60 ° C. or less .

構造用極厚鋼材は、厚さが10〜100mmであることを特徴とする。 The structural heavy steel material has a thickness of 10 to 100 mm.

また、本発明は、質量%で、C:0.02〜0.1%、Mn:0.8〜2.5%、Ni:0.05〜1.5%、Nb:0.005〜0.10%、Ti:0.005〜0.1%を含み、残部が鉄(Fe)及びその他不可避な不純物からなるスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延する段階と、前記粗圧延されたバー(bar)をAr3以上の温度で仕上げ圧延して鋼板を得る段階と、前記鋼板を700℃以下の温度まで冷却する段階と、を含み、前記粗圧延の際の圧延前のスラブ又はバーの厚さ方向における中心部と前記スラブ又はバーの外表面との温度差を100℃以上とし、フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織からなる微細組織を有し、前記フェライトは、針状フェライト(acicular ferrite)又は多角形フェライト(polygonal ferrite)であり、ベイナイトはグラニュラーベイナイト(granular bainite)であり、前記構造用極厚鋼材は、板厚の中心部において、ESBD方法で測定した15度以上の高傾角境界を有する粒度が15μm以下であり、前記構造用極厚鋼材は、降伏強度が350MPa以上であり、中心部の衝撃遷移温度が−60℃以下である鋼材を製造することを特徴とする。 Moreover, this invention is the mass %, C: 0.02-0.1%, Mn: 0.8-2.5%, Ni: 0.05-1.5%, Nb: 0.005-0 .10%, Ti: 0.005 to 0.1%, and the remainder comprising iron (Fe) and other inevitable impurities is reheated to 950 to 1100 ° C. and then roughened at a temperature of 1100 to 900 ° C. Rolling the rough rolled bar at a temperature of Ar3 or higher to obtain a steel plate, and cooling the steel plate to a temperature of 700 ° C. or lower. The temperature difference between the central part in the thickness direction of the slab or bar before rolling and the outer surface of the slab or bar is 100 ° C. or more, and a ferrite single phase structure, a bainite single phase structure, and a composite of ferrite and bainite Structure, composite structure of ferrite and pearlite, and Ferrite, having a microstructure composed of one structure selected from the group consisting of a composite structure of bainite and pearlite, wherein the ferrite is acicular ferrite or polygonal ferrite, bainite is It is granular bainite, and the structural heavy steel material has a grain size having a high inclination boundary of 15 degrees or more measured by the ESBD method at the center of the plate thickness of 15 μm or less. The steel material is characterized by producing a steel material having a yield strength of 350 MPa or more and an impact transition temperature at the center of −60 ° C. or less .

前記スラブ又はバーの厚さ方向における中心部と前記スラブ又はバーの外表面との温度差が100〜300℃であることを特徴とする。 The temperature difference between the central portion in the thickness direction of the slab or bar and the outer surface of the slab or bar is 100 to 300 ° C.

前記スラブ又はバーの厚さ方向における中心部と前記スラブ又はバーの外表面との温度差は、粗圧延直前に実測されたスラブ又はバーの表面温度と、冷却条件及び粗圧延直前のスラブ又はバーの厚さを考慮して計算された中心部温度との差であることを特徴とする。 The temperature difference between the central portion in the thickness direction of the slab or bar and the outer surface of the slab or bar is the surface temperature of the slab or bar measured immediately before rough rolling, the cooling conditions, and the slab or bar immediately before rough rolling. It is a difference from the center temperature calculated in consideration of the thickness.

前記スラブ又はバーの厚さ方向における中心部と前記スラブ又はバーの外表面との温度差は、冷却装置を使用してスラブ又はバーを冷却することにより得られることを特徴とする。 The temperature difference between the central portion in the thickness direction of the slab or bar and the outer surface of the slab or bar is obtained by cooling the slab or bar using a cooling device.

前記冷却装置の冷却媒体は、水、空気、液相冷却剤、及び気相冷却剤のうち少なくとも1種であることを特徴とする。 The cooling medium of the cooling device is at least one of water, air, a liquid phase coolant, and a gas phase coolant.

前記粗圧延時における総累積圧下率が40%以上であることを特徴とする。 The total cumulative rolling reduction during the rough rolling is 40% or more.

前記鋼板の冷却は、2℃/s以上の中心部の冷却速度で行うことを特徴とする。 The steel sheet is cooled at a cooling rate at a central portion of 2 ° C./s or more.

前記鋼板の冷却は、3〜300℃/sの平均冷却速度で行うことを特徴とする。 The steel sheet is cooled at an average cooling rate of 3 to 300 ° C./s.

本発明によると、優れた降伏強度及び中心部の衝撃遷移温度を有する脆性亀裂伝播抵抗性に優れた構造用極厚鋼材を得ることができる。 According to the present invention, it is possible to obtain a structural extra heavy steel material having excellent brittle crack propagation resistance having excellent yield strength and impact transition temperature at the center.

本発明による鋼1の厚さ中心部を光学顕微鏡で観察した写真である。It is the photograph which observed the thickness center part of the steel 1 by this invention with the optical microscope.

本発明の発明者らは、従来の問題点を解決するとともに、従来よりも優れた降伏強度及び中心部の衝撃遷移温度を有する構造用極厚鋼材を確保するために研究を行った結果、構造用極厚鋼材の合金設計及び微細組織を適切に制御することにより、構造用極厚鋼材の脆性亀裂伝播抵抗性を向上させることができることを認識し、これに基づいて本発明を完成させた。 The inventors of the present invention have solved the conventional problems, and have conducted research in order to secure a structural ultra-thick steel material having yield strength and impact transition temperature at the center that is superior to conventional structures. It was recognized that the brittle crack propagation resistance of structural heavy-thick steel can be improved by appropriately controlling the alloy design and microstructure of the structural heavy-thick steel, and the present invention has been completed based on this.

以下、本発明の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材について詳細に説明する。
本発明の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材は、質量%で、C:0.02〜0.10%、Mn:0.8〜2.5%、Ni:0.05〜1.5%、Nb:0.005〜0.1%、Ti:0.005〜0.1%を含み、残部が鉄(Fe)及びその他不可避な不純物からなり、フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織を含む微細組織を有する。
このような構造用極厚鋼材は、10〜100mmの厚さとすることができ、好ましくは50〜100mmの厚さを有することができる。
Hereinafter, the structural heavy steel material excellent in brittle crack propagation resistance of the present invention will be described in detail.
The structural thick steel material excellent in brittle crack propagation resistance of the present invention is mass %, C: 0.02 to 0.10%, Mn: 0.8 to 2.5%, Ni: 0.05 to 1.5%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1%, and the balance is composed of iron (Fe) and other inevitable impurities. It has a microstructure including one structure selected from the group consisting of a phase structure, a composite structure of ferrite and bainite, a composite structure of ferrite and pearlite, and a composite structure of ferrite, bainite and pearlite.
Such a structural thick steel material can have a thickness of 10 to 100 mm, and preferably has a thickness of 50 to 100 mm.

以下、本発明の鋼成分及び成分範囲について説明する。
C(炭素):0.02〜0.10%(以下、各成分の含有量は、質量%を意味する。)
Cは、基本的な強度を確保するのに最も重要な元素であるため、適切な範囲内において鋼中に含有される必要があり、このような添加効果を得るためには、Cを0.02%以上添加することが好ましい。
しかしながら、Cの含有量が0.10%を超えると、島状マルテンサイトの多量生成及びフェライト自体の高い強度によって低温靭性を低下させるため、上記Cの含有量は、0.02〜0.10%に限定することが好ましい。
Hereinafter, the steel components and component ranges of the present invention will be described.
C (carbon): 0.02 to 0.10% (hereinafter, the content of each component means mass %)
Since C is the most important element for ensuring basic strength, it is necessary to be contained in the steel within an appropriate range. It is preferable to add 02% or more.
However, if the C content exceeds 0.10%, the low temperature toughness is lowered due to the large amount of island martensite and the high strength of the ferrite itself, so the C content is 0.02 to 0.10. % Is preferable.

Mn(マンガン):0.8〜2.5%
Mnは、固溶強化により強度を向上させ、低温変態相が生成されるように硬化能を向上させる有用な元素であるため、0.8%以上添加することが好ましい。
しかしながら、Mnの含有量が2.5%を超えると、硬化能が増加しすぎるようになり、上部ベイナイト(Upper bainite)及びマルテンサイトの生成を促進して衝撃靭性及び脆性亀裂伝播抵抗性を低下させるため、上記Mnの含有量は、0.8〜2.5%に限定することが好ましい。
Mn (manganese): 0.8 to 2.5%
Since Mn is a useful element that improves the strength by solid solution strengthening and improves the curability so that a low-temperature transformation phase is generated, it is preferably added in an amount of 0.8% or more.
However, if the Mn content exceeds 2.5%, the hardenability will increase too much, and the formation of upper bainite and martensite will be promoted to reduce impact toughness and brittle crack propagation resistance. Therefore, the Mn content is preferably limited to 0.8 to 2.5%.

Ni(ニッケル):0.05〜1.5%
Niは、低温で転位の交差すべり(Cross slip)を容易にして衝撃靭性及び硬化能を向上させることで強度を向上させる重要な元素であって、衝撃靭性及び脆性亀裂伝播抵抗性を向上させるためには、0.05%以上添加することが好ましい。しかしながら、上記Niが1.5%以上添加されると、硬化能が過度に上昇して低温変態相が生成され、その結果、靭性を低下させ、製造原価も上昇させる可能性があるため、上記Niの含有量の上限は1.5%に限定することが好ましい。
Ni (nickel): 0.05 to 1.5%
Ni is an important element that improves strength by facilitating cross slip of dislocations at low temperatures and improving impact toughness and hardenability, in order to improve impact toughness and brittle crack propagation resistance. It is preferable to add 0.05% or more. However, when Ni is added in an amount of 1.5% or more, the curability is excessively increased and a low-temperature transformation phase is generated. As a result, the toughness may be reduced and the manufacturing cost may be increased. The upper limit of the Ni content is preferably limited to 1.5%.

Nb(ニオビウム):0.005〜0.1%
Nbは、NbC又はNbCNの形態で析出して母材の強度を向上させる。
また、高温に再加熱する際に、固溶したNbは、圧延時にNbCの形態で極めて微細に析出し、オーステナイトの再結晶を抑制することで、組織を微細化するという効果を奏する。
したがって、Nbは0.005%以上添加することが好ましいが、過量添加すると、鋼材の角に脆性クラックを引き起こす可能性があるため、Nbの含有量の下限は、0.1%に制限することが好ましい。
Nb (Niobium): 0.005-0.1%
Nb precipitates in the form of NbC or NbCN and improves the strength of the base material.
Further, when reheated to a high temperature, the dissolved Nb precipitates very finely in the form of NbC during rolling, and has the effect of refining the structure by suppressing recrystallization of austenite.
Therefore, Nb is preferably added in an amount of 0.005% or more, but if added in excess, it may cause brittle cracks in the corners of the steel, so the lower limit of the Nb content should be limited to 0.1%. Is preferred.

Ti(チタニウム):0.005〜0.1%
Tiは、再加熱時にTiNとして析出し、母材及び溶接熱影響部の結晶粒の成長を抑制することで低温靭性を大きく向上させる成分であって、このような添加効果を得るためには、0.005%以上添加することが好ましい。
しかしながら、Tiが0.1%を超えて添加されると、連続鋳造ノズルの詰まり又は中心部の晶出によって低温靭性が減少する可能性があるため、Tiの含有量は0.005〜0.1%に限定することが好ましい。
Ti (titanium): 0.005 to 0.1%
Ti is a component that precipitates as TiN during reheating and greatly improves low-temperature toughness by suppressing the growth of crystal grains in the base material and the weld heat affected zone, and in order to obtain such an addition effect, It is preferable to add 0.005% or more.
However, if Ti is added in excess of 0.1%, the low temperature toughness may decrease due to clogging of the continuous casting nozzle or crystallization of the central portion, so the Ti content is 0.005 to 0.00. It is preferable to limit to 1%.

本発明の残部は鉄(Fe)である。
但し、通常の製造過程において、原料又は周囲環境により意図しない不純物が不可避に混入することもあるため、これを排除することはできない。
かかる不純物は、通常の技術者であれば誰でも分かるものであるため、本明細書では全ての内容について特に言及しない。
The balance of the present invention is iron (Fe).
However, in an ordinary manufacturing process, unintended impurities may be inevitably mixed depending on the raw material or the surrounding environment, and thus cannot be excluded.
Since such an impurity can be understood by any ordinary engineer, all contents are not specifically mentioned in this specification.

本発明の鋼材は、フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織を含む微細組織を有する。
前記フェライト、ベイナイトとパーライトの複合組織において、パーライトの割合は30体積%以下に限定することが好ましい。
前記フェライトは針状フェライト(acicular ferrite)が好ましく、ベイナイトはグラニュラーベイナイト(granular bainite)が好ましい。このとき、前記フェライトとしては、必要に応じて、多角形フェライト(polygonal ferrite)を使用することができる。
The steel material of the present invention has a single structure selected from the group consisting of a ferrite single phase structure, a bainite single phase structure, a composite structure of ferrite and bainite, a composite structure of ferrite and pearlite, and a composite structure of ferrite, bainite and pearlite. It has a fine structure.
In the composite structure of ferrite, bainite and pearlite, the pearlite ratio is preferably limited to 30% by volume or less.
The ferrite is preferably acicular ferrite and the bainite is preferably granular bainite. At this time, as the ferrite, polygonal ferrite can be used as necessary.

Mn及びNiの含有量が増加するほど、針状フェライト(acicular ferrite)又は多角形フェライト、及びグラニュラーベイナイト(granular bainite)の分率が増加する。これにより、強度も増加する。
前記鋼材は、板厚の中心部において、EBSD方法で測定した15度以上の高傾角境界を有する粒度が15μm以下であることが好ましい。
また、降伏強度が350MPa以上であり、中心部の衝撃遷移温度が−60℃以下であることが好ましい。
As the contents of Mn and Ni increase, the fraction of acicular ferrite or polygonal ferrite and granular bainite increases. This also increases the strength.
The steel material preferably has a particle size of 15 μm or less having a high inclination boundary of 15 degrees or more measured by the EBSD method at the center of the plate thickness.
Moreover, it is preferable that the yield strength is 350 MPa or more and the impact transition temperature at the center is −60 ° C. or less.

本発明の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法は、質量%で、C:0.02〜0.1%、Mn:0.8〜2.5%、Ni:0.05〜1.5%、Nb:0.005〜0.10%、Ti:0.005〜0.1%を含み、
残部が鉄(Fe)及びその他不可避な不純物からなるスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延する段階と、上記粗圧延されたバー(bar)をAr3以上の温度で仕上げ圧延して鋼板を得る段階と、上記鋼板を700℃以下の温度まで冷却する段階と、を含み、上記粗圧延時における圧延前のスラブ又はバーの厚さ方向における中心部と上記スラブ又はバーの外表面との温度差を100℃以上とする。
The manufacturing method of the structural ultra-thick steel material having excellent brittle crack propagation resistance according to the present invention is mass %, C: 0.02 to 0.1%, Mn: 0.8 to 2.5%, Ni: 0. 0.05 to 1.5%, Nb: 0.005 to 0.10%, Ti: 0.005 to 0.1%,
After the slab consisting of iron (Fe) and other inevitable impurities is reheated to 950 to 1100 ° C., rough rolling is performed at a temperature of 1100 to 900 ° C., and the rough rolled bar is set to Ar 3 or more. A step of obtaining a steel sheet by finish rolling at a temperature of, and a step of cooling the steel sheet to a temperature of 700 ° C. or less, the center part in the thickness direction of the slab or bar before rolling during the rough rolling and the above The temperature difference from the outer surface of the slab or bar is set to 100 ° C. or more.

スラブの再加熱温度:950〜1100℃
スラブの再加熱温度は、950℃以上とすることが好ましい。これは、鋳造中に形成されたTi及び/又はNbの炭窒化物を固溶させるためである。また、Ti及び/又はNbの炭窒化物を十分に固溶させるためには、1000℃以上に加熱することがより好ましい。但し、高すぎる温度で再加熱すると、オーステナイトが粗大化するおそれがあるため、再加熱温度の上限は1100℃であることが好ましい。
Reheating temperature of slab: 950-1100 ° C
The reheating temperature of the slab is preferably 950 ° C. or higher. This is to dissolve the Ti and / or Nb carbonitride formed during casting. Further, in order to sufficiently dissolve Ti and / or Nb carbonitride, it is more preferable to heat to 1000 ° C. or higher. However, if the reheating is performed at a temperature that is too high, the austenite may be coarsened, so the upper limit of the reheating temperature is preferably 1100 ° C.

粗圧延温度:1100〜900℃、及び粗圧延前のスラブ又はバーの厚さ方向における中心部と上記スラブ又はバーの外表面との温度差:100℃以上
再加熱されたスラブを粗圧延する粗圧延温度は、オーステナイトの再結晶が止まる温度(Tnr)以上にすることが好ましい。圧延により鋳造中に形成されたデンドライトなどの鋳造組織を破壊し、オーステナイトの大きさを小さくする効果も得られる。このような効果を得るには、粗圧延温度を1100〜900℃に制限することが好ましい。
本発明では、粗圧延時における圧延直前のスラブ又はバーの厚さ方向における中心部と上記スラブ又はバーの外表面との温度差を100℃以上とする。
Rough rolling temperature: 1100 to 900 ° C., and temperature difference between the central portion in the thickness direction of the slab or bar before rough rolling and the outer surface of the slab or bar: rough rolling of the slab reheated at 100 ° C. or more The rolling temperature is preferably equal to or higher than the temperature (Tnr) at which recrystallization of austenite stops. An effect of destroying a cast structure such as dendrite formed during casting by rolling and reducing the size of austenite can also be obtained. In order to obtain such an effect, it is preferable to limit the rough rolling temperature to 1100 to 900 ° C.
In the present invention, the temperature difference between the center portion in the thickness direction of the slab or bar immediately before rolling during rough rolling and the outer surface of the slab or bar is set to 100 ° C. or more.

このような中心部と外表面との温度差は、例えば、冷却装置を使用して加熱されたスラブ又はバーを冷却することにより得られる。冷却装置は、特に限定されず、例えば、冷却媒体としては、水、空気、液相冷却剤、及び気相冷却剤のうち少なくとも1種などが挙げられる。
このように、粗圧延時のスラブ又はバーの厚さ方向における中心部とスラブ又はバーの外表面との温度差を付与することで、スラブ又はバーの外表面が中心部よりも低い温度を維持し、このような温度差が存在する状態で圧延を行うと、相対的に温度の低い表面部よりも相対的に温度の高い中心部においてより多くの変形が生じ、中心部の粒度がさらに微細化される。中心部の平均粒度は15μm以下に維持することが好ましい。
Such a temperature difference between the central portion and the outer surface can be obtained, for example, by cooling a heated slab or bar using a cooling device. The cooling device is not particularly limited, and examples of the cooling medium include at least one of water, air, a liquid phase coolant, and a gas phase coolant.
Thus, by providing a temperature difference between the center portion in the thickness direction of the slab or bar during rough rolling and the outer surface of the slab or bar, the outer surface of the slab or bar maintains a lower temperature than the center portion. However, when rolling is performed in a state where such a temperature difference exists, more deformation occurs in the center portion having a relatively higher temperature than in the surface portion having a relatively lower temperature, and the grain size in the center portion is further finer. It becomes. The average particle size at the center is preferably maintained at 15 μm or less.

これは、相対的に温度の低い表面部が相対的に温度の高い中心部よりも高強度を有するようになり、比較的低い強度の中心部においてより多くの変形が生じる現象を活用した技術である。中心部により多くの変形を効果的に付与するためには、上記中心部と外表面との温度差が、100℃以上であることが好ましく、100〜300℃であることがより好ましい。
ここで、スラブ又はバーの厚さ方向における中心部とスラブ又はバーの外表面との温度差とは、粗圧延直前に実測されたスラブ又はバーの表面温度と、冷却条件及び粗圧延直前のスラブ又はバーの厚さを考慮して計算された中心部温度との差を意味する。
This is a technology that takes advantage of the phenomenon that the surface portion having a relatively low temperature has higher strength than the center portion having a relatively high temperature, and more deformation occurs in the center portion having a relatively low temperature. is there. In order to effectively impart more deformation to the central portion, the temperature difference between the central portion and the outer surface is preferably 100 ° C. or more, and more preferably 100 to 300 ° C.
Here, the temperature difference between the central portion in the thickness direction of the slab or bar and the outer surface of the slab or bar is the surface temperature of the slab or bar measured immediately before rough rolling, the cooling conditions, and the slab immediately before rough rolling. Or the difference with the center temperature calculated in consideration of the thickness of the bar is meant.

スラブの表面温度及び厚さの測定は、最初の粗圧延前に行われ、バーの表面温度及び厚さの測定は、2回目の粗圧延から粗圧延前までに行われる。
そして、粗圧延を2パス以上行う場合、スラブ又はバーの厚さ方向における中心部と上記スラブ又はバーの外表面との温度差とは、粗圧延における各パス(pass)の温度差を測定して全体の平均値を計算した温度差が100℃以上であることを意味する。
本発明では、粗圧延時に中心部の組織を微細化するために、粗圧延時における総累積圧下率を40%以上とすることが好ましい。
The surface temperature and thickness of the slab are measured before the first rough rolling, and the bar surface temperature and thickness are measured from the second rough rolling to before the rough rolling.
And when performing rough rolling two or more passes, the temperature difference of the center part in the thickness direction of a slab or bar and the outer surface of the said slab or bar measures the temperature difference of each pass (pass) in rough rolling. This means that the temperature difference obtained by calculating the average value of the whole is 100 ° C. or more.
In the present invention, in order to refine the structure at the center during rough rolling, the total cumulative rolling reduction during rough rolling is preferably 40% or more.

仕上げ圧延温度:Ar3(フェライト変態開始温度)以上。
粗圧延されたバーをAr3以上で仕上げ圧延して鋼板を得る。
仕上げ圧延の際に、オーステナイト組織が変形する。
圧延後の冷却:700℃以下に冷却。
仕上げ圧延の後、鋼板を700℃以下に冷却する。
冷却終了温度が700℃を超えると、微細組織が適切に形成されなくなり、降伏強度が350Mpa以下となる可能性がある。
鋼板の冷却は、2℃/s以上の中心部の冷却速度で行う。鋼板の中心部の冷却速度が2℃/s未満であると、微細組織が適切に形成されなくなり、降伏強度が350Mpa以下となる可能性がある。
また、上記鋼板の冷却は、3〜300℃/sの平均冷却速度で行う。
Finish rolling temperature: Ar3 (ferrite transformation start temperature) or higher.
The rough-rolled bar is finish-rolled with Ar3 or more to obtain a steel plate.
During finish rolling, the austenite structure is deformed.
Cooling after rolling: Cooling below 700 ° C.
After finish rolling, the steel sheet is cooled to 700 ° C. or lower.
When the cooling end temperature exceeds 700 ° C., the microstructure is not formed properly, and the yield strength may be 350 Mpa or less.
The steel sheet is cooled at a cooling rate at the center of 2 ° C./s or more. If the cooling rate of the central part of the steel sheet is less than 2 ° C./s, the fine structure is not properly formed, and the yield strength may be 350 Mpa or less.
The steel sheet is cooled at an average cooling rate of 3 to 300 ° C./s.

以下、実施例により本発明をより具体的に説明する。
表1の組成を有する鋼スラブを1070℃の温度に再加熱した後、1050℃の温度で粗圧延を行った。スラブの粗圧延時における中心部と外表面との平均温度差は表2のとおりである。また、累積圧下率は50%とした。
表2の粗圧延時における中心部と表面との平均温度差は、粗圧延直前に実測されたスラブ又はバーの表面温度と、バーに噴射された水量と、粗圧延直前のスラブの厚さを考慮して計算された中心部温度との差を示し、粗圧延における各パス(pass)の温度差を測定して全体の平均値を計算する。
粗圧延後に、780℃の仕上げ圧延温度で仕上げ圧延を行って表2の厚さを有する鋼板を得た後、5℃/secの冷却速度で700℃以下の温度に冷却した。
Hereinafter, the present invention will be described more specifically with reference to examples.
The steel slab having the composition shown in Table 1 was reheated to a temperature of 1070 ° C., and then rough rolled at a temperature of 1050 ° C. Table 2 shows the average temperature difference between the center portion and the outer surface during rough rolling of the slab. The cumulative rolling reduction was 50%.
The average temperature difference between the center and the surface during rough rolling in Table 2 is the surface temperature of the slab or bar measured immediately before rough rolling, the amount of water sprayed on the bar, and the thickness of the slab immediately before rough rolling. The difference with the center temperature calculated in consideration is shown, the temperature difference of each pass in rough rolling is measured, and the average value of the whole is calculated.
After rough rolling, finish rolling was performed at a finishing rolling temperature of 780 ° C. to obtain a steel sheet having the thickness shown in Table 2, and then cooled to a temperature of 700 ° C. or lower at a cooling rate of 5 ° C./sec.

Figure 0006475839
Figure 0006475839

Figure 0006475839
*PF:多角形フェライト(Polygonal ferrite)、P:パーライト(Pearlite)、AF:針状フェライト(Acicular ferrite)、グラニュラーベイナイト(GB:Granular bainite)、上部ベイナイト(UB:Upper bainite)ここで、製品厚さは厚物材を対象として評価したことを表す。
Figure 0006475839
* PF: Polygonal ferrite, P: Pearlite, AF: Acicular ferrite, GB (Granular bainite), Upper bainite (UB: Upper bainite) This represents that the evaluation was made on a thick material.

表2に示すように、比較鋼1及び2は、本発明で提示する粗圧延時の厚さ方向における中心部と外表面との平均温度差が100℃未満に制御されており、粗圧延時における中心部に十分な変形が伝わらず、中心部の粒度がそれぞれ25.3μm及び29.6μmであるため、中心部の衝撃遷移温度が−60℃未満を示すことが分かる。したがって、−10℃で測定されたKca値が一般的な造船用鋼材において求められる6000を超えないことが分かる。
また、比較鋼3及び5は、本発明で提示するC及びMnの上限よりも高い値を有しており、粗圧延時の冷却によって中心部のオーステナイトの粒度を微細化したにも関わらず、上部ベイナイト(upper bainite)が生成されることにより最終微細組織の粒度がそれぞれ32μm及び38μm以上であり、さらに、脆性が発生しやすい上部ベイナイトを基地組織として有することから、中心部の衝撃遷移温度が−60℃以上であることが分かる。
したがって、Kca値も−10℃で6000以下の値を有することが分かる。
As shown in Table 2, in Comparative Steels 1 and 2, the average temperature difference between the central portion and the outer surface in the thickness direction during rough rolling presented in the present invention is controlled to be less than 100 ° C. It can be seen that sufficient deformation is not transmitted to the central portion of and the particle size of the central portion is 25.3 μm and 29.6 μm, respectively, so that the impact transition temperature of the central portion is less than −60 ° C. Therefore, it can be seen that the Kca value measured at −10 ° C. does not exceed 6000, which is required in general steel for shipbuilding.
Moreover, although the comparative steels 3 and 5 have a value higher than the upper limit of C and Mn presented in the present invention, despite the refinement of the austenite grain size in the center by cooling during rough rolling, Since the upper bainite is formed, the final microstructure has a grain size of 32 μm or more and 38 μm or more, respectively. Further, since the upper bainite, which is easily brittle, is included as a base structure, the impact transition temperature in the center is It turns out that it is -60 ° C or more.
Therefore, it can be seen that the Kca value also has a value of 6000 or less at −10 ° C.

比較鋼4は、本発明で提示するNiの含有量の上限よりも高い値を有しており、高い硬化能によって母材の微細組織がグラニュラーベイナイト(granular bainite)と上部ベイナイトであることが分かる。
粗圧延時の冷却によって中心部のオーステナイトの粒度を微細化したにも関わらず、最終微細組織の粒度が26μmを示し、脆性が発生しやすい上部ベイナイトを基地組織として有することから、中心部の衝撃遷移温度が−60℃以上であることが分かる。
したがって、Kca値も−10℃で6000以下の値を有している。
The comparative steel 4 has a value higher than the upper limit of the Ni content presented in the present invention, and it can be seen that the microstructure of the base material is granular bainite and granular bainite due to high hardening ability. .
Although the grain size of the austenite at the center is refined by cooling during rough rolling, the grain size of the final microstructure is 26 μm, and the upper bainite, which tends to be brittle, is used as the base structure. It can be seen that the transition temperature is −60 ° C. or higher.
Therefore, the Kca value also has a value of 6000 or less at -10 ° C.

これに対し、本発明の成分範囲を満たし、粗圧延時における冷却によって中心部のオーステナイトの粒度が微細化された発明鋼1〜6は、降伏強度350MPa以上、中心部の粒度15μm以下を満たしており、フェライトとパーライト組織、針状フェライト単相組織、針状フェライト又は多角形フェライトとグラニュラーベイナイトの複合組織、又は針状フェライト、パーライトとグラニュラーベイナイトの複合組織を微細組織として有することが分かる。
中心部の衝撃遷移温度は60℃以下であり、Kca値も−10℃で6000以上の値を満たしている。
本発明の鋼1の厚さ中心部を光学顕微鏡で観察した写真を示す図1からも分かるように、本発明の鋼1では中心部の組織が微細化されている。
On the other hand, the inventive steels 1 to 6 satisfying the component range of the present invention and having the central austenite grain size refined by cooling during rough rolling satisfy a yield strength of 350 MPa or more and a central grain size of 15 μm or less. It can be seen that the microstructure has a ferrite and pearlite structure, a single structure of acicular ferrite, a composite structure of acicular ferrite or polygonal ferrite and granular bainite, or a composite structure of acicular ferrite, pearlite and granular bainite.
The impact transition temperature at the center is 60 ° C. or lower, and the Kca value also satisfies a value of 6000 or higher at −10 ° C.
As can be seen from FIG. 1 showing a photograph of the thickness center of the steel 1 of the present invention observed with an optical microscope, the structure of the center of the steel 1 of the present invention is refined.

以上、本発明に関する好ましい実施例を説明したが、本発明は前記実施形態に限定されるものではなく、本発明の属する技術分野を逸脱しない範囲での全ての変更が含まれる。

As mentioned above, although the preferable Example regarding this invention was described, this invention is not limited to the said embodiment, All the changes in the range which does not deviate from the technical field to which this invention belongs are included.

Claims (10)

質量%で、C:0.02〜0.10%、Mn:0.8〜2.5%、Ni:0.05〜1.5%、Nb:0.005〜0.1%、Ti:0.005〜0.1%を含み、残部が鉄(Fe)及びその他不可避な不純物からなり、フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織からなる微細組織を有し、
前記フェライトは、針状フェライト(acicular ferrite)又は多角形フェライト(polygonal ferrite)であり、ベイナイトはグラニュラーベイナイト(granular bainite)であり、
構造用極厚鋼材は、板厚の中心部において、ESBD方法で測定した15度以上の高傾角境界を有する粒度が15μm以下であり、
前記構造用極厚鋼材は、降伏強度が350MPa以上であり、中心部の衝撃遷移温度が−60℃以下であることを特徴とする脆性亀裂伝播抵抗性に優れた構造用極厚鋼材。
In mass %, C: 0.02-0.10%, Mn: 0.8-2.5%, Ni: 0.05-1.5%, Nb: 0.005-0.1%, Ti: Including 0.005 to 0.1%, the balance being iron (Fe) and other inevitable impurities, ferrite single phase structure, bainite single phase structure, ferrite and bainite composite structure, ferrite and pearlite composite structure, and ferrite, the microstructure consisting of bainite and pearlite composite structure, one of the tissue selected from the group consisting possess,
The ferrite is an acicular ferrite or a polygonal ferrite, and the bainite is a granular bainite,
The structural heavy steel material has a particle size of 15 μm or less having a high inclination boundary of 15 ° or more measured by the ESBD method at the center of the plate thickness,
The structural ultra-thick steel material has a yield strength of 350 MPa or more and an impact transition temperature at a central portion of −60 ° C. or less, and the structural ultra-thick steel material having excellent brittle crack propagation resistance.
前記構造用極厚鋼材は、厚さが10〜100mmであることを特徴とする請求項1に記載の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材。 The structural heavy steel material having excellent brittle crack propagation resistance according to claim 1, wherein the structural heavy steel material has a thickness of 10 to 100 mm. 質量%で、C:0.02〜0.1%、Mn:0.8〜2.5%、Ni:0.05〜1.5%、Nb:0.005〜0.10%、Ti:0.005〜0.1%を含み、残部が鉄(Fe)及びその他不可避な不純物からなるスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延する段階と、前記粗圧延されたバー(bar)をAr3以上の温度で仕上げ圧延して鋼板を得る段階と、前記鋼板を700℃以下の温度まで冷却する段階と、を含み、前記粗圧延の際の圧延前のスラブ又はバーの厚さ方向における中心部と前記スラブ又はバーの外表面との温度差を100℃以上とし、フェライト単相組織、ベイナイト単相組織、フェライトとベイナイトの複合組織、フェライトとパーライトの複合組織、及びフェライト、ベイナイトとパーライトの複合組織からなる群より選択された一つの組織からなる微細組織を有し、前記フェライトは、針状フェライト(acicular ferrite)又は多角形フェライト(polygonal ferrite)であり、ベイナイトはグラニュラーベイナイト(granular bainite)であり、 構造用極厚鋼材は、板厚の中心部において、ESBD方法で測定した15度以上の高傾角境界を有する粒度が15μm以下であり、前記構造用極厚鋼材は、降伏強度が350MPa以上であり、中心部の衝撃遷移温度が−60℃以下である鋼材を製造することを特徴とする脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法。 In mass %, C: 0.02-0.1%, Mn: 0.8-2.5%, Ni: 0.05-1.5%, Nb: 0.005-0.10%, Ti: A step of re-rolling a slab containing 0.005 to 0.1%, the balance of iron (Fe) and other inevitable impurities to 950 to 1100 ° C., and then roughly rolling at a temperature of 1100 to 900 ° C .; Including a step of finish rolling a roughly rolled bar at a temperature of Ar3 or higher to obtain a steel plate, and a step of cooling the steel plate to a temperature of 700 ° C. or lower, before rolling during the rough rolling. The temperature difference between the central portion in the thickness direction of the slab or bar and the outer surface of the slab or bar is 100 ° C. or more, and a ferrite single phase structure, a bainite single phase structure, a composite structure of ferrite and bainite, Composite structure, ferrite, A ferrite having a microstructure selected from the group consisting of a composite structure of knight and pearlite, wherein the ferrite is acicular ferrite or polygonal ferrite, and bainite is granular bainite. The structural thick steel material has a grain size of 15 μm or less having a high inclination boundary of 15 degrees or more measured by the ESBD method at the center of the plate thickness, and the structural heavy steel material is: A method for producing a structural thick steel having excellent brittle crack propagation resistance, characterized in that a steel having a yield strength of 350 MPa or more and an impact transition temperature at a central portion of −60 ° C. or less is produced. 前記スラブ又はバーの厚さ方向における中心部と前記スラブ又はバーの外表面との温度差が100〜300℃であることを特徴とする請求項3に記載の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法。 The structure excellent in brittle crack propagation resistance according to claim 3 , wherein the temperature difference between the central portion in the thickness direction of the slab or bar and the outer surface of the slab or bar is 100 to 300 ° C. Method for manufacturing ultra-thick steel. 前記スラブ又はバーの厚さ方向における中心部と前記スラブ又はバーの外表面との温度差は、粗圧延直前に実測されたスラブ又はバーの表面温度と、冷却条件及び粗圧延直前のスラブ又はバーの厚さを考慮して計算された中心部温度との差であることを特徴とする請求項3に記載の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法。 The temperature difference between the central portion in the thickness direction of the slab or bar and the outer surface of the slab or bar is the surface temperature of the slab or bar measured immediately before rough rolling, the cooling conditions, and the slab or bar immediately before rough rolling. The method of manufacturing a heavy steel for structural use having excellent brittle crack propagation resistance according to claim 3 , wherein the difference is a difference from the center temperature calculated in consideration of the thickness of the steel. 前記スラブ又はバーの厚さ方向における中心部と前記スラブ又はバーの外表面との温度差は、冷却装置を使用してスラブ又はバーを冷却することにより得られることを特徴とする請求項3に記載の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法。 The temperature difference between the central portion and the slab or bar of the outer surface in the thickness direction of the slab or bar, in claim 3, characterized in that it is obtained by cooling the slab or bar by using a cooling device The manufacturing method of the structural thick steel material excellent in the brittle crack propagation resistance of description. 前記冷却装置の冷却媒体は、水、空気、液相冷却剤、及び気相冷却剤のうち少なくとも1種であることを特徴とする請求項6に記載の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法。 The structural medium having excellent brittle crack propagation resistance according to claim 6 , wherein the cooling medium of the cooling device is at least one of water, air, a liquid phase coolant, and a gas phase coolant. Manufacturing method for extra heavy steel. 前記粗圧延時における総累積圧下率が40%以上であることを特徴とする請求項3に記載の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法。 The method for producing an extra heavy steel for structural use having excellent brittle crack propagation resistance according to claim 3 , wherein a total cumulative rolling reduction during the rough rolling is 40% or more. 前記鋼板の冷却は、2℃/s以上の中心部の冷却速度で行うことを特徴とする請求項3に記載の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法。 The method for producing a structural heavy steel with excellent brittle crack propagation resistance according to claim 3 , wherein the steel sheet is cooled at a cooling rate at a central portion of 2 ° C./s or more. 前記鋼板の冷却は、3〜300℃/sの平均冷却速度で行うことを特徴とする請求項3に記載の脆性亀裂伝播抵抗性に優れた構造用極厚鋼材の製造方法。 The method for producing a structural heavy steel with excellent brittle crack propagation resistance according to claim 3 , wherein the steel plate is cooled at an average cooling rate of 3 to 300 ° C./s.
JP2017532807A 2014-12-24 2015-12-11 Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same Active JP6475839B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140188465A KR101657827B1 (en) 2014-12-24 2014-12-24 Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof
KR10-2014-0188465 2014-12-24
PCT/KR2015/013557 WO2016105003A1 (en) 2014-12-24 2015-12-11 Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor

Publications (2)

Publication Number Publication Date
JP2018504524A JP2018504524A (en) 2018-02-15
JP6475839B2 true JP6475839B2 (en) 2019-02-27

Family

ID=56150967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017532807A Active JP6475839B2 (en) 2014-12-24 2015-12-11 Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same

Country Status (6)

Country Link
US (1) US20170342518A1 (en)
EP (1) EP3239329B8 (en)
JP (1) JP6475839B2 (en)
KR (1) KR101657827B1 (en)
CN (1) CN107109591A (en)
WO (1) WO2016105003A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940880B1 (en) * 2016-12-22 2019-01-21 주식회사 포스코 Sour resistance steel sheet having excellent low temperature toughness and post weld heat treatment property, and method of manufacturing the same
KR102209547B1 (en) * 2018-12-19 2021-01-28 주식회사 포스코 Ultra thick structural steel having superior brittle crack initiation resistance and method of manufacturing the same
CN115354219B (en) * 2022-07-06 2023-09-15 江阴兴澄特种钢铁有限公司 SA516Gr70 steel plate with excellent high-temperature strength at 200-400 ℃ and manufacturing method thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064903B2 (en) * 1985-04-09 1994-01-19 新日本製鐵株式会社 Steel plate with excellent brittle crack propagation arresting property and its manufacturing method
JPH04180521A (en) * 1990-11-14 1992-06-26 Kobe Steel Ltd Production of high tensile thick steel plate having high yield strength and high toughness
JP3474661B2 (en) * 1995-01-24 2003-12-08 新日本製鐵株式会社 Sour-resistant steel plate with excellent crack arrestability
BR9811051A (en) * 1997-07-28 2000-08-15 Exxonmobil Upstream Res Co Steel plate, and, process to prepare it
US6254698B1 (en) * 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
DZ2531A1 (en) * 1997-12-19 2003-02-08 Exxon Production Research Co Process for the preparation of a double phase steel sheet, this sheet and process for strengthening the resistance to crack propagation.
JP3417878B2 (en) * 1999-07-02 2003-06-16 株式会社神戸製鋼所 High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
KR100380750B1 (en) 2000-10-24 2003-05-09 주식회사 포스코 Method for high strength steel plate having superior toughness in weld heat-affected zone
US20060169368A1 (en) * 2004-10-05 2006-08-03 Tenaris Conncections A.G. (A Liechtenstein Corporation) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
JP4058097B2 (en) * 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability
JP5064150B2 (en) * 2006-12-14 2012-10-31 新日本製鐵株式会社 High strength steel plate with excellent brittle crack propagation stopping performance
KR100851176B1 (en) * 2006-12-27 2008-08-08 주식회사 포스코 Hot-rolled steel sheet for line pipe having low anisotropy of low temperature toughness and yield strength and the method for manufacturing the same
JP4309946B2 (en) * 2007-03-05 2009-08-05 新日本製鐵株式会社 Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
KR100957961B1 (en) 2007-12-26 2010-05-17 주식회사 포스코 High strength steel plate having excellent welded zone toughness for linepipe and the method for manufacturing the same
JP5337412B2 (en) * 2008-06-19 2013-11-06 株式会社神戸製鋼所 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
KR101360737B1 (en) * 2009-12-28 2014-02-07 주식회사 포스코 High strength steel plate having excellent resistance to brittle crack initiation and method for manufacturing the same
JP5425702B2 (en) * 2010-02-05 2014-02-26 株式会社神戸製鋼所 High-strength thick steel plate with excellent drop weight characteristics
JP5598485B2 (en) * 2011-02-08 2014-10-01 Jfeスチール株式会社 Thick steel plate having a thickness of 50 mm or more excellent in long and brittle crack propagation stopping characteristics and method for producing the same
KR101681491B1 (en) * 2011-12-27 2016-12-01 제이에프이 스틸 가부시키가이샤 High strength steel plate having excellent brittle crack arrestability
JP5304925B2 (en) * 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
TWI463018B (en) * 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp High strength steel plate with excellent crack arrest property
JP2013221190A (en) * 2012-04-17 2013-10-28 Nippon Steel & Sumitomo Metal Corp High-strength thick steel plate excellent in brittle crack propagation arresting capability
JP2013221189A (en) * 2012-04-17 2013-10-28 Nippon Steel & Sumitomo Metal Corp High-strength thick steel plate excellent in brittle crack propagation arresting capability
JP5811032B2 (en) * 2012-05-23 2015-11-11 新日鐵住金株式会社 Steel sheet for LPG tank
EP2963138B1 (en) * 2013-02-28 2019-04-10 JFE Steel Corporation Production method for thick steel plate
JP6086086B2 (en) * 2014-03-19 2017-03-01 Jfeスチール株式会社 Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof

Also Published As

Publication number Publication date
KR101657827B1 (en) 2016-09-20
EP3239329B8 (en) 2019-11-20
EP3239329A4 (en) 2017-11-01
WO2016105003A1 (en) 2016-06-30
US20170342518A1 (en) 2017-11-30
JP2018504524A (en) 2018-02-15
CN107109591A (en) 2017-08-29
EP3239329A1 (en) 2017-11-01
KR20160078668A (en) 2016-07-05
EP3239329B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6475836B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP6475837B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP6441939B2 (en) Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method
JP6788589B2 (en) High-strength steel with excellent brittle crack propagation resistance and its manufacturing method
JP6648270B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP6648271B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP6868092B2 (en) Extra-thick steel material with excellent brittle crack propagation resistance and its manufacturing method
JP6818146B2 (en) Extra-thick steel material with excellent surface NRL-DWT physical properties and its manufacturing method
JP6847225B2 (en) Low yield ratio steel sheet with excellent low temperature toughness and its manufacturing method
JP6475839B2 (en) Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same
JP6858858B2 (en) Surface NRL-Drop test Extra-thick steel with excellent physical properties and its manufacturing method
KR101657840B1 (en) Steel having superior brittle crack arrestability and method for manufacturing the steel
JP2019504199A (en) Low yield ratio type high strength steel and its manufacturing method
JP6718510B2 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
JP7164718B2 (en) Structural Steel Having Excellent Low Yield Ratio and Low Temperature Toughness, and Method for Producing Same
JP7332697B2 (en) Structural extra-heavy steel with excellent brittle crack initiation resistance and its manufacturing method
KR101696154B1 (en) Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof
JP7265009B2 (en) Extra-heavy steel with excellent resistance to brittle crack propagation and its manufacturing method
JP2007302978A (en) Method for manufacturing high-strength steel of tensile strength of 780 mpa class having excellent toughness of weld heat affected zone
KR20230099407A (en) Hot rolled steel sheet having low yield ratio and method of manufacturing the same
KR101543463B1 (en) Method of manufacturing thick plate having high tensile strength

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250