EP3239329A1 - Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor - Google Patents

Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor Download PDF

Info

Publication number
EP3239329A1
EP3239329A1 EP15873530.8A EP15873530A EP3239329A1 EP 3239329 A1 EP3239329 A1 EP 3239329A1 EP 15873530 A EP15873530 A EP 15873530A EP 3239329 A1 EP3239329 A1 EP 3239329A1
Authority
EP
European Patent Office
Prior art keywords
slab
bar
central portion
ferrite
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15873530.8A
Other languages
German (de)
French (fr)
Other versions
EP3239329B8 (en
EP3239329A4 (en
EP3239329B1 (en
Inventor
Hak-Cheol Lee
Sung-Ho Jang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of EP3239329A4 publication Critical patent/EP3239329A4/en
Publication of EP3239329A1 publication Critical patent/EP3239329A1/en
Application granted granted Critical
Publication of EP3239329B1 publication Critical patent/EP3239329B1/en
Publication of EP3239329B8 publication Critical patent/EP3239329B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present disclosure relates to structural ultra-thick steel having excellent resistance to brittle crack propagation, and a production method therefor.
  • structures When using high-strength steel to design structures, structures may be lightened in terms of the weight thereof, while obtaining an economic advantage through the thickness of a steel sheet, thus simultaneously achieving ease in machining and welding.
  • coarsened structures may cause difficulties in securing impact toughness in the central portion.
  • the technologies themselves may be expected to cause significant reductions in productivity when being employed in common mass production systems; thus, it may be difficult to commercialize such technologies.
  • Ni nickel
  • the resistance thereof to brittle crack propagation may be improved.
  • a Ni element is relatively expensive, it may be difficult to apply the Ni element commercially in terms of manufacturing costs.
  • An aspect of the present disclosure may provide structural ultra-thick steel having excellent resistance to brittle crack propagation.
  • Another aspect of the present disclosure may provide a method of producing structural ultra-thick steel having excellent resistance to brittle crack propagation by controlling alloy compositions and microstructures.
  • structural ultra-thick steel having excellent resistance to brittle crack propagation may include: 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities, the structural ultra-thick steel having microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite.
  • the structural ultra-thick steel may have a grain size of 15 ⁇ m or less, the grain size having a high-angle grain boundary of 15° or higher, measured in an ESBD manner in a central portion of the steel in a plate thickness direction thereof.
  • the structural ultra-thick steel may have a yield strength of 350 MPa or more, and an impact transition temperature of -60°C or lower in a central portion thereof.
  • a method of producing structural ultra-thick steel having excellent resistance to brittle crack propagation may include: reheating a slab or a bar including 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities to 950-1, 100°C and then rough rolling the reheated slab or bar at 900-1, 100°C; obtaining a steel sheet by finish rolling the rough rolled slab or bar at an Ar3 transformation point or higher; and cooling the steel sheet to 700°C or lower, in which a temperature difference between a central portion of the slab or the bar in a thickness direction and an external surface of the slab or the bar before rough rolling may be 100°C or higher.
  • a total cumulative reduction ratio at the time of rough rolling may be 40% or higher.
  • the cooling of the steel sheet may be performed at a central portion cooling rate of 2 °C/s.
  • the cooling of the steel sheet may be performed at an average cooling rate of 3-300 °C/s.
  • structural ultra-thick steel having excellent resistance to brittle crack propagation, excellent yield strength and an excellent impact transition temperature in a central portion thereof, may be obtained.
  • FIG. 1 is an image obtained by observing a central portion of Inventive Steel 1 in a plate thickness direction thereof with an optical microscope.
  • the inventors of the present disclosure have conducted research to secure structural ultra-thick steel having excellent yield strength and an excellent impact transition temperature in a central portion thereof, compared to that in the related art, while solving conventional problems, to appropriately control alloy design and microstructures of the structural ultra-thick steel, thus recognizing that resistance of the structural ultra-thick steel to brittle crack propagation may be improved. Based on this, the inventors have completed the present invention.
  • structural ultra-thick steel having excellent resistance to brittle crack propagation may include: 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities, the structural ultra-thick steel having microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite.
  • Such structural ultra-thick steel may have a thickness of 10-100 mm, more preferably 50-100 mm.
  • C Since C is the most important element in securing basic strength, C may be required to be contained in steel within an appropriate range. It may be preferable to add 0.02% or more of C in order to obtain such an addition effect.
  • Mn is an element useful in improving strength by solid solution strengthening and to enhance hardenability so as to generate a low temperature transformation phase, it may be preferable to add 0.8% or more of Mn.
  • Ni is an important element to facilitate cross slip of potentials at low temperatures to improve impact toughness and hardenability, increasing strength, it may be preferable to add 0.05% or more of Ni in order to improve impact toughness and resistance to brittle crack propagation.
  • 0.05% or more of Ni when 1.5% or more of Ni is added, hardenability may be excessively increased to generate a low temperature transformation phase, degrading toughness and increasing manufacturing costs, and it may thus be preferable to restrict an upper limit of the content of Ni to 1.5%.
  • Nb may be precipitated in the form of NbC or NbCN to increase strength of a base material.
  • Nb dissolved when reheated to a high temperature, may be precipitated very finely in the form of NbC at the time of rolling to suppress recrystallization of austenite, thus miniaturizing a structure.
  • Nb may be added 0.005% or more of Nb.
  • an excessive amount of Nb may cause brittle cracking in an edge of the steel, and it may thus be preferable to restrict a lower limit of the content of Nb to 0.1%.
  • Ti is precipitated as TiN when reheated and is an element that may significantly improve low temperature toughness by suppressing the growth of crystal grains of the base material and a weld heat affected zone. It may be preferable to add 0.005% or more of Ti in order to obtain such an addition effect.
  • the remainder thereof may be iron (Fe).
  • Fe iron
  • impurities of raw materials or steel manufacturing environments may be inevitably included in the steel, and such impurities may not be removed from the steel.
  • the steel according to an embodiment may have microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite.
  • the ferrite be acicular ferrite and the bainite be granular bainite.
  • polygonal ferrite may be used as the ferrite, if necessary.
  • fractions of acicular ferrite or polygonal ferrite and granular bainite may increase. Accordingly, strength may also increase.
  • the steel may preferably have a grain size of 15 ⁇ m or less, which may have a high-angle grain boundary of 15° or higher measured in the central portion in a plate thickness direction of the steel in an electron backscatter diffraction (ESBD) manner.
  • ESBD electron backscatter diffraction
  • the steel may preferably have a yield strength of 350 MPa or more, and an impact transition temperature of -60°C or lower in the central portion thereof.
  • a method of producing structural ultra-thick steel having excellent resistance to brittle crack propagation may include: reheating a slab or a bar including 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities to 950-1,100°C and then rough rolling the reheated slab or bar at 900-1, 100°C; obtaining a steel sheet by finish rolling the rough rolled slab or bar at an Ar3 transformation point or higher; and cooling the steel sheet to 700°C or lower, in which a temperature difference between a central portion of the slab or the bar in a thickness direction thereof and an external surface of the slab or the bar before rough rolling may be 100°C or higher.
  • a slab reheating temperature may be restricted to 950°C or higher, which is performed to dissolve a carbonitride of Ti and/or Nb formed during casting. Further, it may be more preferable to reheat the slab to 1, 000 °C or higher in order to sufficiently dissolve the carbonitride of Ti and/or Nb.
  • an upper limit of the slab reheating temperature may be 1,100°C.
  • Rough Rolling Temperature 900-1,100°C and Temperature Difference between Central Portion of Slab or Bar in Thickness Direction and External Surface of Slab or Bar before Rough Rolling: 100°C or Higher
  • the reheated slab may be rough rolled. It may be preferable that a rough rolling temperature be a temperature (Tnr) or higher at which recrystallization of austenite stops. Effects of destroying a cast structure, such as a dendrite or the like, formed during casting by rolling, and of reducing a size of austenite may also be obtained. It may be preferable to restrict the rough rolling temperature to 900-1,100°C in order to obtain such an effect.
  • the temperature difference between the central portion of the slab or the bar in the thickness direction thereof and the external surface of the slab or the bar immediately before rolling at the time of rough rolling may be 100°C or higher.
  • Such a temperature difference between the central portion and the external surface may be obtained by, for example, cooling a heated slab or bar with a cooling device.
  • the cooling device is not particularly limited and, for example, at least one of water, air, a liquid coolant, and a vapor coolant may be used as a cooling medium.
  • the temperature difference between the central portion of the slab or the bar in the thickness direction thereof and the external surface of the slab or the bar may be given at the time of rough rolling to maintain a surface portion of the slab or the bar at a temperature lower than that of the central portion.
  • the central portion having a temperature relatively higher than that of the surface portion may be further deformed, and a grain size of the central portion may thus become finer.
  • an average grain size of the central portion may be maintained at 15 ⁇ m or less.
  • the temperature difference between the central portion of the slab or the bar in the thickness direction thereof and the external surface of the slab or the bar may refer to a difference between a surface temperature of the slab or the bar measured immediately before rough rolling and a temperature of the central portion calculated by considering cooling conditions and a thickness of the slab or the bar immediately before rough rolling.
  • the measurements of the surface temperature and the thickness of the slab may be taken before initial rough rolling, and the measurements of the surface temperature and the thickness of the bar may be taken before initial rough rolling after two rough rolling processes.
  • the temperature difference between the central portion of the slab or the bar in the thickness direction thereof and the external surface of the slab or the bar may refer to the fact that a temperature difference, obtained by measuring temperature differences in the respective passes during rough rolling and calculating a total average value, is 100°C or higher.
  • a total cumulative reduction ratio at the time of rough rolling be 40% or more in order to miniaturize the structure of the central portion at the time of rough rolling.
  • a steel sheet may be obtained by finish rolling the rough rolled bar at an Ar3 transformation point or higher.
  • an austenite structure may be transformed.
  • Cooling after Rolling Cooling to 700°C or Lower
  • the steel sheet After finish rolling, the steel sheet may be cooled to 700°C or lower.
  • a cooling termination temperature exceeds 700°C, a microstructure may not be properly formed, and there may thus be a possibility that the yield strength is 350 MPa or less.
  • the cooling of the steel sheet may be performed at a central portion cooling rate of 2 °C/s or more.
  • the central portion cooling rate of the steel sheet is less than 2 °C/s, the microstructure may not be properly formed, and there may thus be a possibility that the yield strength is 350 MPa or less.
  • the cooling of the steel sheet may be performed at an average cooling rate of 3-300°C/s.
  • a steel slab having a composition illustrated in Table 1 below was reheated to 1,070°C, and rough rolled at a temperature of 1,050°C.
  • An average temperature difference between an external surface and a central portion of the steel slab at the time of rough rolling of the steel slab may be shown in Table 2 below, and a cumulative reduction ratio was 50%.
  • the average temperature difference between the external surface and the central portion at the time of rough rolling as illustrated in Table 2 may represent a difference between a surface temperature of a slab or a bar measured immediately before rough rolling and a temperature of the central portion calculated by considering an amount of water injected to the slab or the bar and a thickness of the slab or the bar immediately before rough rolling, and the average temperature difference may be a result obtained by measuring temperature differences in respective passes during rough rolling and calculating a total average value.
  • a steel sheet having a thickness illustrated in Table 2 below was obtained by finish rolling the steel slab at a finish rolling temperature of 780°C, and was cooled to a temperature of 700°C or lower at a cooling rate of 5 °C/s.
  • the Kca value illustrated in Table 2 may be an estimate value obtained by performing an ESSO test.
  • the average temperature difference between the central portion in the thickness direction and the external surface at the time of rough rolling presented in an embodiment is controlled to less than 100°C, that since a sufficient degree of deformation is not given to the central portion at the time of rough rolling, grain sizes of the central portion are 25.3 ⁇ m and 29.6 ⁇ m, respectively; thus, an impact transition temperature of the central portion is less than -60°C.
  • the Kca value measured at -10°C does not exceed 6,000, required in a common steel for shipbuilding.
  • Comparative Steels 3 and 5 have values greater than the upper limits of the contents of C and Mn proposed in an embodiment, that even though a grain size of austenite in the central portion is miniaturized through cooling at the time of rough rolling, grain sizes of final microstructures are 32 ⁇ m or more and 38 ⁇ m or more, respectively, due to the generation of upper bainite, and that since Comparative Steels 3 and 5 have the upper bainite, in which brittleness may easily occur, as a base structure; thus, an impact transition temperature of the central portion is -60°C or higher.
  • a Kca value is 6, 000 or less at -10°C.
  • Comparative Steel 4 has a value greater than the upper limit of the content of Ni proposed in an embodiment, and that, in terms of high hardenability, microstructures of a base metal are granular bainite and upper bainite.
  • a grain size of austenite in the central portion is miniaturized through cooling at the time of rough rolling, a grain size of the final microstructure is 26 ⁇ m, that the upper bainite, in which brittleness may easily occur, is a base structure; thus, an impact transition temperature of the central portion is -60°C or higher.
  • a Kca value is 6,000 or less at -10°C.
  • Inventive Steels 1 to 6 which satisfy the composition range in an embodiment and in which the grain size of austenite in the central portion is miniaturized through cooling at the time of rough rolling, it can be seen that Inventive Steels 1 to 6 satisfy a yield strength of 350 MPa or more, and a grain size of 15 ⁇ m or less in central portions thereof, and have, as microstructures, ferrite and pearlite structures, a single-phase structure of acicular ferrite, or a complex-phase structure of acicular ferrite or polygonal ferrite and granular bainite, and a complex-phase structure of acicular ferrite, pearlite, and granular bainite. Accordingly, it can be seen that an impact transition temperature of the central portion is -60°C or lower and that a Kca value satisfies 6,000 or more at -10°C.
  • FIG. 1 depicting an image obtained by observing the central portion of Inventive Steel 1 in a thickness direction thereof with an optical microscope, in the case of Inventive Steel 1, it can be seen that a structure of the central portion is fine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention provides structural ultra-thick steel having excellent resistance to brittle crack propagation and a production method therefor. Provided according to the present invention are: structural ultra-thick steel, which has excellent resistance to brittle crack propagation, comprises 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0. 1 wt % of Nb, and 0.005-0. 1 wt % of Ti with the remainder being Fe and other inevitable impurities, and has microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite; and a production method therefor. According to one aspect of the present invention, ultra-thick structural steel, which has excellent resistance to brittle crack propagation and has excellent yield strength and an excellent impact transition temperature in the center, can be obtained.

Description

    [Technical Field]
  • The present disclosure relates to structural ultra-thick steel having excellent resistance to brittle crack propagation, and a production method therefor.
  • [Background Art]
  • In recent years, the development of ultra-thick steel having high-strength characteristics has been required in designing structures that have been used in fields such as domestic and overseas shipbuilding, maritime construction, architecture, and civil engineering.
  • When using high-strength steel to design structures, structures may be lightened in terms of the weight thereof, while obtaining an economic advantage through the thickness of a steel sheet, thus simultaneously achieving ease in machining and welding.
  • In general, in the case of high-strength steel, since a central portion thereof may not be sufficiently transformed, depending on a reduction in the total reduction ratio, during the manufacturing of ultra-thick steel, the structure of the central portion may be coarse. Hence, the hardenability of the high-strength steel may be increased, to thus generate a low temperature transformation phase, such as bainite or the like.
  • In addition, coarsened structures may cause difficulties in securing impact toughness in the central portion.
  • When resistance to brittle crack propagation representing the stability of structures is applied to primary structures, such as a ship and the like, the number of cases requiring guarantees is increasing. However, when a low temperature transformation phase is generated in the central portion, the resistance to brittle crack propagation may be significantly reduced. Thus, it may be very difficult to improve the resistance of an ultra-thick high-strength steel to brittle crack propagation.
  • Meanwhile, in order to improve the resistance of high-strength steel, having a yield strength of 350 MPa or more, to brittle crack propagation, various technologies have been implemented, such as the adjustment of gain size through the application of surface cooling during finish rolling and through the application of bending stress during rolling, surface refinement through reverse rolling, and the like, in order to miniaturize the grain size of surface layers of high-strength steel.
  • However, such technologies help to miniaturize the structure of surface layers, but cannot solve the problem of a reduction in impact toughness caused by structural coarsening of the central portion, so may not become fundamental measures to the resistance to brittle crack propagation.
  • Furthermore, the technologies themselves may be expected to cause significant reductions in productivity when being employed in common mass production systems; thus, it may be difficult to commercialize such technologies.
  • Moreover, when a large amount of an element, such as nickel (Ni) or the like, helping to improve toughness, is added to high-strength steel, the resistance thereof to brittle crack propagation may be improved. However, since a Ni element is relatively expensive, it may be difficult to apply the Ni element commercially in terms of manufacturing costs.
  • Related Art Documents:
    • Patent Document 1: Korean Patent Publication No. 2009-0069818
    • Patent Document 2: Korean Patent Publication No. 2002-0091844
    [Disclosure] [Technical Problem]
  • An aspect of the present disclosure may provide structural ultra-thick steel having excellent resistance to brittle crack propagation.
  • Another aspect of the present disclosure may provide a method of producing structural ultra-thick steel having excellent resistance to brittle crack propagation by controlling alloy compositions and microstructures.
  • [Technical Solution]
  • According to an aspect of the present disclosure, structural ultra-thick steel having excellent resistance to brittle crack propagation may include: 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities, the structural ultra-thick steel having microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite.
  • The structural ultra-thick steel may have a grain size of 15 µm or less, the grain size having a high-angle grain boundary of 15° or higher, measured in an ESBD manner in a central portion of the steel in a plate thickness direction thereof.
  • The structural ultra-thick steel may have a yield strength of 350 MPa or more, and an impact transition temperature of -60°C or lower in a central portion thereof.
  • According to another aspect of the present disclosure, a method of producing structural ultra-thick steel having excellent resistance to brittle crack propagation may include: reheating a slab or a bar including 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities to 950-1, 100°C and then rough rolling the reheated slab or bar at 900-1, 100°C; obtaining a steel sheet by finish rolling the rough rolled slab or bar at an Ar3 transformation point or higher; and cooling the steel sheet to 700°C or lower, in which a temperature difference between a central portion of the slab or the bar in a thickness direction and an external surface of the slab or the bar before rough rolling may be 100°C or higher.
  • A total cumulative reduction ratio at the time of rough rolling may be 40% or higher.
  • The cooling of the steel sheet may be performed at a central portion cooling rate of 2 °C/s.
  • The cooling of the steel sheet may be performed at an average cooling rate of 3-300 °C/s.
  • The foregoing technical solutions to the above-mentioned problems do not fully enumerate all of the features of the present disclosure.
  • Various features of the present disclosure and the resulting advantages and effects will be understood in more detail with reference to the following detailed examples.
  • [Advantageous Effects]
  • According to an aspect of the present disclosure, structural ultra-thick steel having excellent resistance to brittle crack propagation, excellent yield strength and an excellent impact transition temperature in a central portion thereof, may be obtained.
  • [Description of Drawings]
  • FIG. 1 is an image obtained by observing a central portion of Inventive Steel 1 in a plate thickness direction thereof with an optical microscope.
  • [Best Mode for Invention]
  • The inventors of the present disclosure have conducted research to secure structural ultra-thick steel having excellent yield strength and an excellent impact transition temperature in a central portion thereof, compared to that in the related art, while solving conventional problems, to appropriately control alloy design and microstructures of the structural ultra-thick steel, thus recognizing that resistance of the structural ultra-thick steel to brittle crack propagation may be improved. Based on this, the inventors have completed the present invention.
  • Hereinafter, structural ultra-thick steel having excellent resistance to brittle crack propagation according to an aspect of the present disclosure will be described in detail.
  • According to an aspect of the present disclosure, structural ultra-thick steel having excellent resistance to brittle crack propagation may include: 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities, the structural ultra-thick steel having microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite.
  • Such structural ultra-thick steel may have a thickness of 10-100 mm, more preferably 50-100 mm.
  • Hereinafter, steel compositions and composition ranges in an embodiment will be described.
  • Carbon (C): 0.02-0.1% (hereinafter, a content of each composition may refer to wt %).
  • Since C is the most important element in securing basic strength, C may be required to be contained in steel within an appropriate range. It may be preferable to add 0.02% or more of C in order to obtain such an addition effect.
  • However, when the content of C exceeds 0.1%, low temperature toughness may be degraded due to generation of a large amount of martensite-austenite (M/A) constituents and high strength of ferrite itself, and it may thus be preferable to restrict the content of C to 0.02-0.1%.
  • Manganese (Mn): 0.8-2.5%
  • Since Mn is an element useful in improving strength by solid solution strengthening and to enhance hardenability so as to generate a low temperature transformation phase, it may be preferable to add 0.8% or more of Mn.
  • However, when a content of Mn exceeds 2.5%, an excessive increase in hardenability may promote generation of upper bainite and martensite to degrade impact toughness and resistance to brittle crack propagation, and it may thus be preferable to restrict the content of Mn to 0.8-2.5%.
  • Nickel (Ni): 0.05-1.5%
  • Since Ni is an important element to facilitate cross slip of potentials at low temperatures to improve impact toughness and hardenability, increasing strength, it may be preferable to add 0.05% or more of Ni in order to improve impact toughness and resistance to brittle crack propagation. However, when 1.5% or more of Ni is added, hardenability may be excessively increased to generate a low temperature transformation phase, degrading toughness and increasing manufacturing costs, and it may thus be preferable to restrict an upper limit of the content of Ni to 1.5%.
  • Niobium (Nb): 0.005-0.1%
  • Nb may be precipitated in the form of NbC or NbCN to increase strength of a base material.
  • Further, Nb, dissolved when reheated to a high temperature, may be precipitated very finely in the form of NbC at the time of rolling to suppress recrystallization of austenite, thus miniaturizing a structure.
  • Thus, it may be preferable to add 0.005% or more of Nb. However, an excessive amount of Nb may cause brittle cracking in an edge of the steel, and it may thus be preferable to restrict a lower limit of the content of Nb to 0.1%.
  • Titanium (Ti): 0.005-0.1%
  • Ti is precipitated as TiN when reheated and is an element that may significantly improve low temperature toughness by suppressing the growth of crystal grains of the base material and a weld heat affected zone. It may be preferable to add 0.005% or more of Ti in order to obtain such an addition effect.
  • However, when greater than 0.1% of Ti is added, low temperature toughness may be reduced due to clogging of a continuous casting nozzle or crystallization of the central portion, and it may thus be preferable to restrict a content of Ti to 0.005-0.1%.
  • In an embodiment, the remainder thereof may be iron (Fe). However, in a common manufacturing process, impurities of raw materials or steel manufacturing environments may be inevitably included in the steel, and such impurities may not be removed from the steel.
  • These impurities are commonly known to a person skilled in the art, and are thus not specifically mentioned in this specification.
  • The steel according to an embodiment may have microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite.
  • It may be preferable to restrict a ratio of pearlite to 30 vol% or less in the complex-phase structure of ferrite, bainite, and pearlite.
  • It may be preferable that the ferrite be acicular ferrite and the bainite be granular bainite. At this time, polygonal ferrite may be used as the ferrite, if necessary.
  • For example, as the contents of Mn and Ni increase, fractions of acicular ferrite or polygonal ferrite and granular bainite may increase. Accordingly, strength may also increase.
  • The steel may preferably have a grain size of 15 µm or less, which may have a high-angle grain boundary of 15° or higher measured in the central portion in a plate thickness direction of the steel in an electron backscatter diffraction (ESBD) manner.
  • The steel may preferably have a yield strength of 350 MPa or more, and an impact transition temperature of -60°C or lower in the central portion thereof.
  • According to another aspect of the present disclosure, a method of producing structural ultra-thick steel having excellent resistance to brittle crack propagation may include: reheating a slab or a bar including 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities to 950-1,100°C and then rough rolling the reheated slab or bar at 900-1, 100°C; obtaining a steel sheet by finish rolling the rough rolled slab or bar at an Ar3 transformation point or higher; and cooling the steel sheet to 700°C or lower, in which a temperature difference between a central portion of the slab or the bar in a thickness direction thereof and an external surface of the slab or the bar before rough rolling may be 100°C or higher.
  • Slab Reheating Temperature: 950-1,100°C
  • It may be preferable to restrict a slab reheating temperature to 950°C or higher, which is performed to dissolve a carbonitride of Ti and/or Nb formed during casting. Further, it may be more preferable to reheat the slab to 1, 000 °C or higher in order to sufficiently dissolve the carbonitride of Ti and/or Nb. However, when the slab is reheated to an excessively high temperature, there may be concerns that austenite is coarsened, and it may thus be preferable that an upper limit of the slab reheating temperature be 1,100°C.
  • Rough Rolling Temperature: 900-1,100°C and Temperature Difference between Central Portion of Slab or Bar in Thickness Direction and External Surface of Slab or Bar before Rough Rolling: 100°C or Higher
  • The reheated slab may be rough rolled. It may be preferable that a rough rolling temperature be a temperature (Tnr) or higher at which recrystallization of austenite stops. Effects of destroying a cast structure, such as a dendrite or the like, formed during casting by rolling, and of reducing a size of austenite may also be obtained. It may be preferable to restrict the rough rolling temperature to 900-1,100°C in order to obtain such an effect.
  • In an embodiment, the temperature difference between the central portion of the slab or the bar in the thickness direction thereof and the external surface of the slab or the bar immediately before rolling at the time of rough rolling may be 100°C or higher.
  • Such a temperature difference between the central portion and the external surface may be obtained by, for example, cooling a heated slab or bar with a cooling device. The cooling device is not particularly limited and, for example, at least one of water, air, a liquid coolant, and a vapor coolant may be used as a cooling medium.
  • As described above, the temperature difference between the central portion of the slab or the bar in the thickness direction thereof and the external surface of the slab or the bar may be given at the time of rough rolling to maintain a surface portion of the slab or the bar at a temperature lower than that of the central portion. When rolling is performed in a state in which such a temperature difference exists, the central portion having a temperature relatively higher than that of the surface portion may be further deformed, and a grain size of the central portion may thus become finer. Preferably, an average grain size of the central portion may be maintained at 15 µm or less.
  • This is a technology utilizing a phenomenon in which since the surface portion having a relatively low temperature has strength higher than that of the central portion having a relatively high temperature, the central portion having relatively low strength may be further deformed. It may be preferable that the temperature difference between the central portion and the external surface be 100°C or higher in order to effectively provide further deformation to the central portion, and a more preferable temperature difference may be from 100-300°C.
  • Here, the temperature difference between the central portion of the slab or the bar in the thickness direction thereof and the external surface of the slab or the bar may refer to a difference between a surface temperature of the slab or the bar measured immediately before rough rolling and a temperature of the central portion calculated by considering cooling conditions and a thickness of the slab or the bar immediately before rough rolling.
  • The measurements of the surface temperature and the thickness of the slab may be taken before initial rough rolling, and the measurements of the surface temperature and the thickness of the bar may be taken before initial rough rolling after two rough rolling processes.
  • When rough rolling is performed in two or more passes, the temperature difference between the central portion of the slab or the bar in the thickness direction thereof and the external surface of the slab or the bar may refer to the fact that a temperature difference, obtained by measuring temperature differences in the respective passes during rough rolling and calculating a total average value, is 100°C or higher.
  • In an embodiment, it may be preferable that a total cumulative reduction ratio at the time of rough rolling be 40% or more in order to miniaturize the structure of the central portion at the time of rough rolling.
  • Finish Rolling Temperature: Ar3 (a ferrite transformation initiation temperature) or higher
  • A steel sheet may be obtained by finish rolling the rough rolled bar at an Ar3 transformation point or higher.
  • At the time of finish rolling, an austenite structure may be transformed.
  • Cooling after Rolling: Cooling to 700°C or Lower
  • After finish rolling, the steel sheet may be cooled to 700°C or lower.
  • When a cooling termination temperature exceeds 700°C, a microstructure may not be properly formed, and there may thus be a possibility that the yield strength is 350 MPa or less.
  • The cooling of the steel sheet may be performed at a central portion cooling rate of 2 °C/s or more. When the central portion cooling rate of the steel sheet is less than 2 °C/s, the microstructure may not be properly formed, and there may thus be a possibility that the yield strength is 350 MPa or less.
  • Further, the cooling of the steel sheet may be performed at an average cooling rate of 3-300°C/s.
  • Hereinafter, the present disclosure will be described in more detail through embodiments.
  • It should be noted, however, that the following embodiments are intended to illustrate the present disclosure by way of illustration and not to limit the scope of the present disclosure.
  • The scope of the present invention is determined by the matters described in the claims and those reasonably inferred therefrom.
  • [Mode for Invention]
  • A steel slab having a composition illustrated in Table 1 below was reheated to 1,070°C, and rough rolled at a temperature of 1,050°C. An average temperature difference between an external surface and a central portion of the steel slab at the time of rough rolling of the steel slab may be shown in Table 2 below, and a cumulative reduction ratio was 50%.
  • The average temperature difference between the external surface and the central portion at the time of rough rolling as illustrated in Table 2 may represent a difference between a surface temperature of a slab or a bar measured immediately before rough rolling and a temperature of the central portion calculated by considering an amount of water injected to the slab or the bar and a thickness of the slab or the bar immediately before rough rolling, and the average temperature difference may be a result obtained by measuring temperature differences in respective passes during rough rolling and calculating a total average value.
  • After rough rolling, a steel sheet having a thickness illustrated in Table 2 below was obtained by finish rolling the steel slab at a finish rolling temperature of 780°C, and was cooled to a temperature of 700°C or lower at a cooling rate of 5 °C/s.
  • With respect to the steel sheet manufactured as described above, microstructures, yield strength, an average grain size of the central portion, an impact transition temperature of the central portion, and a Kca value (a brittle crack propagation resistance coefficient) were measured, and the results are illustrated in Table 2 below.
  • The Kca value illustrated in Table 2 may be an estimate value obtained by performing an ESSO test. [Table 1]
    CLASSIFICATION C (wt%) Mn (wt%) Ni (wt%) Ti (wt%) Nb (wt%)
    INVENTIVE STEEL 1 0.032 2.05 0.12 0.018 0.019
    INVENTIVE STEEL 2 0.067 1.77 0.35 0.023 0.012
    INVENTIVE STEEL 3 0.074 1.25 0.95 0.021 0.023
    INVENTIVE STEEL 4 0.063 1.63 0.75 0.015 0.015
    INVENTIVE STEEL 5 0.053 1.74 1.02 0.018 0.021
    INVENTIVE STEEL 6 0.091 1.21 0.43 0.023 0.029
    COMPARATIVE STEEL 1 0.082 0.92 0.65 0.012 0.018
    COMPARATIVE STEEL 2 0.061 1.65 0.37 0.017 0.012
    COMPARATIVE STEEL 3 0.12 1.59 0.23 0.021 0.011
    COMPARATIVE STEEL 4 0.076 2.05 2.25 0.015 0.019
    COMPARATIVE STEEL 5 0.071 2.65 0.45 0.017 0.022
    [Table 2]
    CLASSIFICATION AVERAGE CENTRAL PORTION-SURFACE TEMPERATURE DIFFERENCE DURING ROUGH ROLLING (°C) PRODUCT THICKNESS (mm) * MICROSTRUCTURE, PHASE FRACTION (%) YIELD STRENGTH (MPa) AVERAGE GRAIN SIZE OF CENTRAL PORTION (µm) IMPACT TRANSITION TEMPERATURE OF CENTRAL PORTION (°C) Kca (N/mm1.5, @-10°C)
    INVENTIVE STEEL 1 256 85 AF+GB (26%) 506 11.3 -96 9314
    INVENTIVE STEEL 2 165 95 AF 455 12.5 -86 8655
    INVENTIVE STEEL 3 137 100 PF+P (23%) 395 13.1 -79 7956
    INVENTIVE STEEL 4 259 90 AF+GB (28%) 486 9.7 -86 8165
    INVENTIVE STEEL 5 215 95 AF+GB (31%) 512 10.1 -91 8964
    INVENTIVE STEEL 6 189 100 PF+P (22%) 407 12.6 -77 7103
    COMPARATIVE STEEL 1 23 90 PF+P (18%) 371 25.3 -53 5166
    COMPARATIVE STEEL 2 35 85 AF+UB (21%) 495 29.6 -49 4931
    COMPARATIVE STEEL 3 129 80 UB 578 32 -35 3655
    COMPARATIVE STEEL 4 212 100 GB, UB (34%) 566 26 -50 3984
    COMPARATIVE STEEL 5 155 85 UB 613 38 -20. 2850
    *PF: Polygonal Ferrite, P: Pearlite AF: Acicular Ferrite, GB: Granular Bainite, and UB: Upper Bainite. Here, the product thicknesses show that they were evaluated for thick steels.
  • As illustrated in Table 2, in the case of Comparative Steels 1 and 2, it can be seen that the average temperature difference between the central portion in the thickness direction and the external surface at the time of rough rolling presented in an embodiment is controlled to less than 100°C, that since a sufficient degree of deformation is not given to the central portion at the time of rough rolling, grain sizes of the central portion are 25.3 µm and 29.6 µm, respectively; thus, an impact transition temperature of the central portion is less than -60°C. Further, it can also be seen that the Kca value measured at -10°C does not exceed 6,000, required in a common steel for shipbuilding.
  • In the case of Comparative Steels 3 and 5, it can be seen that Comparative Steels 3 and 5 have values greater than the upper limits of the contents of C and Mn proposed in an embodiment, that even though a grain size of austenite in the central portion is miniaturized through cooling at the time of rough rolling, grain sizes of final microstructures are 32 µm or more and 38 µm or more, respectively, due to the generation of upper bainite, and that since Comparative Steels 3 and 5 have the upper bainite, in which brittleness may easily occur, as a base structure; thus, an impact transition temperature of the central portion is -60°C or higher.
  • Accordingly, it can also be seen that a Kca value is 6, 000 or less at -10°C.
  • In the case of Comparative Steel 4, it can be seen that Comparative Steel 4 has a value greater than the upper limit of the content of Ni proposed in an embodiment, and that, in terms of high hardenability, microstructures of a base metal are granular bainite and upper bainite.
  • Thus, it can be seen that, even though the grain size of austenite in the central portion is miniaturized through cooling at the time of rough rolling, a grain size of the final microstructure is 26 µm, that the upper bainite, in which brittleness may easily occur, is a base structure; thus, an impact transition temperature of the central portion is -60°C or higher.
  • Further, it can also be seen that a Kca value is 6,000 or less at -10°C.
  • In contrast, in the case of Inventive Steels 1 to 6, which satisfy the composition range in an embodiment and in which the grain size of austenite in the central portion is miniaturized through cooling at the time of rough rolling, it can be seen that Inventive Steels 1 to 6 satisfy a yield strength of 350 MPa or more, and a grain size of 15 µm or less in central portions thereof, and have, as microstructures, ferrite and pearlite structures, a single-phase structure of acicular ferrite, or a complex-phase structure of acicular ferrite or polygonal ferrite and granular bainite, and a complex-phase structure of acicular ferrite, pearlite, and granular bainite. Accordingly, it can be seen that an impact transition temperature of the central portion is -60°C or lower and that a Kca value satisfies 6,000 or more at -10°C.
  • As illustrated in FIG. 1, depicting an image obtained by observing the central portion of Inventive Steel 1 in a thickness direction thereof with an optical microscope, in the case of Inventive Steel 1, it can be seen that a structure of the central portion is fine.

Claims (14)

  1. A structural ultra-thick steel having excellent resistance to brittle crack propagation, the structural ultra-thick steel comprising:
    0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, and the remainder of Fe and other inevitable impurities, the structural ultra-thick steel having microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite.
  2. The structural ultra-thick steel of claim 1, wherein the ferrite is acicular ferrite or polygonal ferrite, and the bainite is granular bainite.
  3. The structural ultra-thick steel of claim 1, having a grain size of 15 µm or less, the grain size having a high-angle grain boundary of 15° or higher measured in an ESBD manner in a central portion in a plate thickness direction.
  4. The structural ultra-thick steel of claim 1, having a yield strength of 350 MPa or more, and an impact transition temperature of -60 °C or lower in of a central portion thereof.
  5. The structural ultra-thick steel of claim 1, having a thickness of 10-100 mm.
  6. A method of producing a structural ultra-thick steel having excellent resistance to brittle crack propagation, the method comprising:
    reheating a slab or a bar including 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0 .1 wt % of Ti, and the remainder of Fe and other inevitable impurities to 950-1,100°C and then rough rolling the reheated slab or bar at 900-1,100°C;
    obtaining a steel sheet by finish rolling the rough rolled slab or bar at an Ar3 transformation point or higher; and
    cooling the steel sheet to 700°C or lower,
    wherein a temperature difference between a central portion of the slab or the bar in a thickness direction thereof and an external surface of the slab or the bar before rolling at the time of rough rolling is 100°C or higher.
  7. The method of claim 6, wherein the temperature difference between the central portion of the slab or the bar in the thickness direction and the external surface of the slab or the bar is from 100-300°C.
  8. The method of claim 6, wherein the temperature difference between the central portion of the slab or the bar in the thickness direction and the external surface of the slab or the bar is a difference between a surface temperature of the slab or the bar measured immediately before rough rolling and a temperature of the central portion calculated by considering cooling conditions and a thickness of the slab or the bar immediately before rough rolling.
  9. The method of claim 6, wherein the rough rolling is performed in two passes or more, and the temperature difference between the central portion of the slab or the bar in the thickness direction and the external surface of the slab or the bar is a temperature difference obtained by measuring temperature differences in the respective passes during the rough rolling and calculating a total average value.
  10. The method of claim 6, wherein the temperature difference between the central portion of the slab or the bar in the thickness direction and the external surface of the slab or the bar is obtained by cooling the slab or the bar with a cooling device.
  11. The method of claim 10, wherein a cooling medium of the cooling device is at least one of water, air, a liquid coolant, and a vapor coolant.
  12. The method of claim 6, wherein a total cumulative reduction ratio at the time of rough rolling is 40% or higher.
  13. The method of claim 6, wherein the cooling the steel sheet is performed at a central portion cooling rate of 2 °C/s or more.
  14. The method of claim 6, wherein the cooling the steel sheet is performed at an average cooling rate of 3-300 °C/s.
EP15873530.8A 2014-12-24 2015-12-11 Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor Active EP3239329B8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140188465A KR101657827B1 (en) 2014-12-24 2014-12-24 Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof
PCT/KR2015/013557 WO2016105003A1 (en) 2014-12-24 2015-12-11 Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor

Publications (4)

Publication Number Publication Date
EP3239329A4 EP3239329A4 (en) 2017-11-01
EP3239329A1 true EP3239329A1 (en) 2017-11-01
EP3239329B1 EP3239329B1 (en) 2019-10-09
EP3239329B8 EP3239329B8 (en) 2019-11-20

Family

ID=56150967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15873530.8A Active EP3239329B8 (en) 2014-12-24 2015-12-11 Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor

Country Status (6)

Country Link
US (1) US20170342518A1 (en)
EP (1) EP3239329B8 (en)
JP (1) JP6475839B2 (en)
KR (1) KR101657827B1 (en)
CN (1) CN107109591A (en)
WO (1) WO2016105003A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940880B1 (en) * 2016-12-22 2019-01-21 주식회사 포스코 Sour resistance steel sheet having excellent low temperature toughness and post weld heat treatment property, and method of manufacturing the same
KR102209547B1 (en) * 2018-12-19 2021-01-28 주식회사 포스코 Ultra thick structural steel having superior brittle crack initiation resistance and method of manufacturing the same
CN115354219B (en) * 2022-07-06 2023-09-15 江阴兴澄特种钢铁有限公司 SA516Gr70 steel plate with excellent high-temperature strength at 200-400 ℃ and manufacturing method thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064903B2 (en) * 1985-04-09 1994-01-19 新日本製鐵株式会社 Steel plate with excellent brittle crack propagation arresting property and its manufacturing method
JPH04180521A (en) * 1990-11-14 1992-06-26 Kobe Steel Ltd Production of high tensile thick steel plate having high yield strength and high toughness
JP3474661B2 (en) * 1995-01-24 2003-12-08 新日本製鐵株式会社 Sour-resistant steel plate with excellent crack arrestability
BR9811051A (en) * 1997-07-28 2000-08-15 Exxonmobil Upstream Res Co Steel plate, and, process to prepare it
US6254698B1 (en) * 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
DZ2531A1 (en) * 1997-12-19 2003-02-08 Exxon Production Research Co Process for the preparation of a double phase steel sheet, this sheet and process for strengthening the resistance to crack propagation.
JP3417878B2 (en) * 1999-07-02 2003-06-16 株式会社神戸製鋼所 High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
KR100380750B1 (en) 2000-10-24 2003-05-09 주식회사 포스코 Method for high strength steel plate having superior toughness in weld heat-affected zone
US20060169368A1 (en) * 2004-10-05 2006-08-03 Tenaris Conncections A.G. (A Liechtenstein Corporation) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
JP4058097B2 (en) * 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability
JP5064150B2 (en) * 2006-12-14 2012-10-31 新日本製鐵株式会社 High strength steel plate with excellent brittle crack propagation stopping performance
KR100851176B1 (en) * 2006-12-27 2008-08-08 주식회사 포스코 Hot-rolled steel sheet for line pipe having low anisotropy of low temperature toughness and yield strength and the method for manufacturing the same
JP4309946B2 (en) * 2007-03-05 2009-08-05 新日本製鐵株式会社 Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
KR100957961B1 (en) 2007-12-26 2010-05-17 주식회사 포스코 High strength steel plate having excellent welded zone toughness for linepipe and the method for manufacturing the same
JP5337412B2 (en) * 2008-06-19 2013-11-06 株式会社神戸製鋼所 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
KR101360737B1 (en) * 2009-12-28 2014-02-07 주식회사 포스코 High strength steel plate having excellent resistance to brittle crack initiation and method for manufacturing the same
JP5425702B2 (en) * 2010-02-05 2014-02-26 株式会社神戸製鋼所 High-strength thick steel plate with excellent drop weight characteristics
JP5598485B2 (en) * 2011-02-08 2014-10-01 Jfeスチール株式会社 Thick steel plate having a thickness of 50 mm or more excellent in long and brittle crack propagation stopping characteristics and method for producing the same
KR101681491B1 (en) * 2011-12-27 2016-12-01 제이에프이 스틸 가부시키가이샤 High strength steel plate having excellent brittle crack arrestability
JP5304925B2 (en) * 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
TWI463018B (en) * 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp High strength steel plate with excellent crack arrest property
JP2013221190A (en) * 2012-04-17 2013-10-28 Nippon Steel & Sumitomo Metal Corp High-strength thick steel plate excellent in brittle crack propagation arresting capability
JP2013221189A (en) * 2012-04-17 2013-10-28 Nippon Steel & Sumitomo Metal Corp High-strength thick steel plate excellent in brittle crack propagation arresting capability
JP5811032B2 (en) * 2012-05-23 2015-11-11 新日鐵住金株式会社 Steel sheet for LPG tank
EP2963138B1 (en) * 2013-02-28 2019-04-10 JFE Steel Corporation Production method for thick steel plate
JP6086086B2 (en) * 2014-03-19 2017-03-01 Jfeスチール株式会社 Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof

Also Published As

Publication number Publication date
KR101657827B1 (en) 2016-09-20
EP3239329B8 (en) 2019-11-20
JP6475839B2 (en) 2019-02-27
EP3239329A4 (en) 2017-11-01
WO2016105003A1 (en) 2016-06-30
US20170342518A1 (en) 2017-11-30
JP2018504524A (en) 2018-02-15
CN107109591A (en) 2017-08-29
KR20160078668A (en) 2016-07-05
EP3239329B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6661537B2 (en) High hardness hot rolled steel product and method of manufacturing the same
EP3239330B1 (en) High-strength steel having superior brittle crack arrestability, and production method therefor
EP3239332B1 (en) High-strength steel having superior brittle crack arrestability, and production method therefor
EP3219820B1 (en) Nickel-base alloy-clad steel plate and method for producing the same
EP3385401B1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
EP2520684B1 (en) Austenite steel material having superior ductility
EP3561111B1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
EP3239331B1 (en) High-strength steel having superior brittle crack arrestability, and production method therefor
EP3385402A1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
EP3239329B1 (en) Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor
CN112912527A (en) Steel sheet for pressure vessel having excellent low-temperature toughness and excellent ductility, and method for producing same
KR101657840B1 (en) Steel having superior brittle crack arrestability and method for manufacturing the steel
EP3395988B1 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
EP3231886B1 (en) Complex-phase steel sheet with excellent formability and manufacturing method therefor
JP2020164950A (en) Clad steel plate and method of producing the same
KR101696154B1 (en) Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof
KR102031453B1 (en) Hot-rolled steel sheet and method for manufacturing the same
EP4079897A1 (en) High-strength steel having superior ductility, and manufacturing method therefor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170620

A4 Supplementary search report drawn up and despatched

Effective date: 20170915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POSCO

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180727

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190429

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/04 20060101AFI20190415BHEP

Ipc: C22C 38/08 20060101ALI20190415BHEP

Ipc: C22C 38/00 20060101ALI20190415BHEP

Ipc: C21D 6/00 20060101ALI20190415BHEP

Ipc: C22C 38/12 20060101ALI20190415BHEP

Ipc: C21D 8/02 20060101ALI20190415BHEP

Ipc: C22C 38/14 20060101ALI20190415BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POSCO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015039706

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: POSCO

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1188900

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1188900

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015039706

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015039706

Country of ref document: DE

Owner name: POSCO CO., LTD, POHANG-SI, KR

Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015039706

Country of ref document: DE

Owner name: POSCO CO., LTD, POHANG- SI, KR

Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015039706

Country of ref document: DE

Owner name: POSCO HOLDINGS INC., KR

Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015039706

Country of ref document: DE

Owner name: POSCO CO., LTD, POHANG-SI, KR

Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015039706

Country of ref document: DE

Owner name: POSCO CO., LTD, POHANG- SI, KR

Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 9

Ref country code: DE

Payment date: 20231120

Year of fee payment: 9