JP5337412B2 - Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same - Google Patents

Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same Download PDF

Info

Publication number
JP5337412B2
JP5337412B2 JP2008160617A JP2008160617A JP5337412B2 JP 5337412 B2 JP5337412 B2 JP 5337412B2 JP 2008160617 A JP2008160617 A JP 2008160617A JP 2008160617 A JP2008160617 A JP 2008160617A JP 5337412 B2 JP5337412 B2 JP 5337412B2
Authority
JP
Japan
Prior art keywords
temperature
transformation point
rolling
steel sheet
brittle crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008160617A
Other languages
Japanese (ja)
Other versions
JP2010001520A (en
Inventor
徹雄 山口
栄一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008160617A priority Critical patent/JP5337412B2/en
Priority to CN2009101475308A priority patent/CN101608283B/en
Priority to KR1020090054162A priority patent/KR101056336B1/en
Publication of JP2010001520A publication Critical patent/JP2010001520A/en
Application granted granted Critical
Publication of JP5337412B2 publication Critical patent/JP5337412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、主として船舶や橋梁の構造材料の素材として用いられる厚鋼板に関するものであり、特に発生した脆性亀裂の伝播を停止する特性を改善した厚鋼板、およびこうした厚鋼板を製造するための有用な方法に関するものである。   The present invention relates to a thick steel plate mainly used as a material for structural materials of ships and bridges, and particularly useful for producing such a thick steel plate with improved properties for stopping the propagation of a generated brittle crack. It is about the method.

船舶、建築物、タンク、海洋構造物、ラインパイプ等の構造物に用いられる鋼板には、構造物の脆性破壊を抑制するために、脆性亀裂の伝播による破壊を抑制する能力であるアレスト特性(以下、「脆性亀裂伝播停止特性」と呼ぶことがある)が求められることになる。近年、構造物の大型化に伴い、降伏応力が390MPa以上、板厚が50mm以上の高強度厚鋼板を使用するケースが多くなっている。しかしながら、上記のような脆性亀裂伝播停止特性は、一般に鋼板は高強度・厚肉化になるにつれてそれを確保することが困難になる。   Steel sheets used in structures such as ships, buildings, tanks, offshore structures, line pipes, etc., have arrest properties that are the ability to suppress breakage due to the propagation of brittle cracks in order to suppress brittle fracture of structures ( Hereinafter, it may be referred to as “brittle crack propagation stop characteristic”). In recent years, with the increase in size of structures, there are increasing cases of using high-strength thick steel plates having a yield stress of 390 MPa or more and a plate thickness of 50 mm or more. However, it is generally difficult to secure the brittle crack propagation stop characteristics as described above as the steel sheet becomes stronger and thicker.

一方、コンテナ船においても効率化のために大型化が進んでおり、それに伴って厚肉・高強度の鋼板が使用されるようになっている。船体の破壊安全性を考えると、脆性破壊を発生させないことは第一に重要であるが、仮に脆性破壊が発生した場合であっても、船体の全崩壊を避けるために、亀裂の伝播を停止させるように船体に脆性亀裂伝播停止特性を具備させることが重要である。このような背景から、ハッチコーミング部から発生した脆性亀裂をアッパーデッキ部にて停止させることが求められてきており、高強度厚鋼板において上記脆性亀裂伝播停止特性を付与させる技術が望まれている。   On the other hand, container ships are also increasing in size for efficiency, and accordingly, thick-walled and high-strength steel sheets are used. Considering the safety of ship hulls, it is first important not to generate brittle fractures, but even if brittle fractures occur, the propagation of cracks is stopped to avoid total collapse of the hull. It is important to provide the hull with brittle crack propagation stopping characteristics. From such a background, it has been demanded to stop the brittle cracks generated from the hatch combing portion at the upper deck portion, and a technique for imparting the above-mentioned brittle crack propagation stop property in a high-strength thick steel plate is desired. .

脆性亀裂伝播停止特性を向上させる方法としては、(a)合金元素を添加する方法、(b)結晶粒径を微細化する方法、等が知られている。このうち合金元素を添加する方法としては、例えば特許文献1のような技術が提案されている。この技術では、合金元素としてNiを含有させ、冷却過程での冷却速度を制御することによって、ベイナイトの粒径を微細化して脆性亀裂伝播停止特性を向上させている。   As a method for improving the brittle crack propagation stop characteristics, (a) a method of adding an alloy element, (b) a method of refining the crystal grain size, and the like are known. Among these, as a method of adding an alloy element, for example, a technique such as Patent Document 1 has been proposed. In this technique, Ni is contained as an alloy element and the cooling rate in the cooling process is controlled to refine the grain size of bainite and improve the brittle crack propagation stop characteristics.

しかしながら、このような技術では、炭素当量Ceqが高くなりやすく、溶接性の観点から好ましくないものとなる。また、板厚:80mmという厚肉では、表層部(例えば、表面から板厚の10%深さまでの部分)の微細化が達成されたとしても、脆性亀裂の伝播を停止させる能力が十分に発揮できるとは限らず、良好な脆性亀裂伝播停止特性が確保できるとは限らないものである。しかも、合金元素を添加することは、鋼板のコスト増大を招くことにもなる。   However, such a technique tends to increase the carbon equivalent Ceq, which is not preferable from the viewpoint of weldability. In addition, when the plate thickness is 80 mm, the ability to stop the propagation of brittle cracks is sufficiently exerted even if the surface layer portion (for example, the portion from the surface to a depth of 10% of the plate thickness) is achieved. This is not always possible, and good brittle crack propagation stopping properties cannot always be secured. In addition, the addition of alloy elements also leads to an increase in the cost of the steel sheet.

一方、結晶粒径を微細化することによって脆性亀裂伝播停止特性を向上させる方法としては、例えば特許文献2、3のような技術が知られている。これらの技術では、フェライトを母相とし、このフェライトの粒径を微細化することによって良好な脆性亀裂伝播停止特性を確保するものである。しかしながら、これらの技術では軟質のフェライトを母相としているので、高強度で厚い鋼板への適用は困難である。
特開2007−302993号公報 特許第3845113号公報 特開2002−256374号公報
On the other hand, as a method for improving the brittle crack propagation stop characteristic by reducing the crystal grain size, techniques such as Patent Documents 2 and 3 are known. In these techniques, ferrite is used as a parent phase, and fine brittle crack propagation stop characteristics are ensured by reducing the particle size of the ferrite. However, since these techniques use soft ferrite as a matrix, application to high-strength and thick steel sheets is difficult.
JP 2007-302993 A Japanese Patent No. 3845113 JP 2002-256374 A

本発明は前記の様な事情に着目してなされたものであって、その目的は、板厚方向における所定の位置において、ベイナイトを主体とすると共に、結晶粒径の微細化を実現することによって脆性破壊伝播停止特性に優れた厚鋼板、およびこうした厚鋼板を製造するための有用な方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and the object thereof is to realize a refinement of crystal grain size while mainly using bainite at a predetermined position in the plate thickness direction. It is an object of the present invention to provide a thick steel plate having excellent brittle fracture propagation stopping characteristics and a useful method for producing such a thick steel plate.

前記目的を達成することのできた本発明の厚鋼板とは、C:0.05〜0.12%(質量%の意味、化学成分組成について以下同じ)、Si:0.05〜0.30%、Mn:1.00〜1.80%、P:0.025%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.06%、Ti:0.005〜0.03%、Nb:0.005〜0.05%、B:0.0005〜0.003%およびN:0.0020〜0.0090%を夫々含有し、残部が鉄および不可避不純物であり、
表面から深さt/8〜t/4(tは板厚を表す、以下同じ)の位置において、ベイナイトを主体とする組織からなり、且つ隣り合う2つの結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、当該結晶粒の平均円相当径が8μm以下である点に要旨を有するものである。尚、本発明において、「ベイナイトを主体とする」とは、ベイナイトが組織中に95面積%以上を占める状態を意味する。また隣り合う2つの結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたときの当該結晶粒の平均円相当径を、以下、「大角粒界径」と略称することがある。
The thick steel plate of the present invention that has achieved the above-mentioned object is C: 0.05 to 0.12% (meaning of mass%, the same applies to the chemical composition), Si: 0.05 to 0.30% , Mn: 1.00-1.80%, P: 0.025% or less (excluding 0%), S: 0.01% or less (not including 0%), Al: 0.01-0. 06%, Ti: 0.005 to 0.03%, Nb: 0.005 to 0.05%, B: 0.0005 to 0.003%, and N: 0.0020 to 0.0090%, respectively. The balance is iron and inevitable impurities,
A large angle having a structure mainly composed of bainite and having an orientation difference between two adjacent crystals of 15 ° or more at a position of depth t / 8 to t / 4 (t represents the plate thickness, hereinafter the same) from the surface. When the region surrounded by the grain boundary is a crystal grain, the gist is that the average equivalent circle diameter of the crystal grain is 8 μm or less. In the present invention, “mainly composed of bainite” means a state in which bainite occupies 95% by area or more in the structure. In addition, the average equivalent circle diameter of a crystal grain when a region surrounded by a large-angle grain boundary having an orientation difference of 15 ° or more between two adjacent crystals is defined as a “large-angle grain boundary diameter” is hereinafter abbreviated. Sometimes.

上記のような本発明の厚鋼板を製造するに当たっては、スラブを1050〜1150℃の温度に加熱し、圧延途中で鋼板表面温度が(Ar3変態点−90℃)〜(Ar3変態点−20℃)までを平均冷却速度:1℃/秒以上で水冷し、(Ar3変態点+10℃)〜(Ar3変態点+80℃)まで復熱を完了した後、累積圧下率が60%以上となる圧延を行い、その後(Ar3変態点−120℃)以上の温度から平均冷却速度:5℃/秒以上で400〜500℃の温度範囲まで加速冷却をするようにすれば良い。 In producing the thick steel plate of the present invention as described above, the slab is heated to a temperature of 1050 to 1150 ° C., and the surface temperature of the steel plate is (Ar 3 transformation point −90 ° C.) to (Ar 3 transformation point −) during rolling. Up to 20 ° C.) after water cooling at an average cooling rate of 1 ° C./second or more and completion of reheating from (Ar 3 transformation point + 10 ° C.) to (Ar 3 transformation point + 80 ° C.), the cumulative rolling reduction is 60% or more. Then, it is sufficient to perform accelerated cooling to a temperature range of 400 to 500 ° C. at an average cooling rate of 5 ° C./second or more from a temperature higher than (Ar 3 transformation point −120 ° C.).

本発明の鋼板においては、板厚方向における所定位置において、ベイナイトを主体とする組織とすると共に、特定の結晶方位を有する結晶粒の微細化を図ることによって、脆性亀裂伝播停止特性に優れた厚鋼板が実現でき、こうした鋼板は、船舶、建築物を始めとする各種大型構造物の素材として有用である。   In the steel sheet of the present invention, at a predetermined position in the sheet thickness direction, the thickness is excellent in brittle crack propagation stopping characteristics by making the structure mainly composed of bainite and by refining crystal grains having a specific crystal orientation. A steel plate can be realized, and such a steel plate is useful as a material for various large structures such as ships and buildings.

本発明者らは、ベイナイト組織である厚鋼板に着目し、その鋼板における脆性亀裂伝播停止特性を良好にするための手段について様々な角度から検討した。その結果、ベイナイト組織ではオーステナイトに対して、何通りかの方位関係を持って生成することになるのであるが、鋼板の化学成分組成、組織の生成温度、その他の条件等によって選択される各結晶格子の方位関係が変化することになり、鋼板の厚さ方向の所定の位置において、特定の結晶方位差を有する結晶粒を微細化すれば、脆性亀裂伝播停止特性が良好になることを見出し、本発明を完成した。   The present inventors paid attention to a thick steel plate having a bainite structure, and studied means for improving the brittle crack propagation stopping property of the steel plate from various angles. As a result, in the bainite structure, the austenite is generated with some orientation relationship, but each crystal selected by the chemical composition of the steel sheet, the formation temperature of the structure, other conditions, etc. The orientation relation of the lattice will change, and at a predetermined position in the thickness direction of the steel sheet, if the crystal grains having a specific crystal orientation difference are refined, the brittle crack propagation stop characteristic will be improved, The present invention has been completed.

本発明の鋼板は、少なくとも板厚方向における所定位置において、ベイナイトを主体とする組織(ベイナイト相が組織中に95面積%以上)からなるものであるが、これは高価な合金元素を添加しなくても板厚が50mm以上の厚鋼板において、高強度を確保するためであり、例えばフェライトが母相では厚肉と高強度の両立は困難になる。   The steel sheet of the present invention is composed of a structure mainly composed of bainite (a bainite phase is 95 area% or more in the structure) at least at a predetermined position in the sheet thickness direction, but this does not add an expensive alloy element. However, in a thick steel plate having a plate thickness of 50 mm or more, high strength is ensured. For example, when ferrite is a matrix, it is difficult to achieve both thick and high strength.

一般的に、脆性亀裂伝播停止特性に対しては、表層から形成される延性破壊領域(シアリップ)によるエネルギー損失が影響するものと考えられる。そこで、本発明者らは、脆性亀裂進展中のエネルギーバランスの観点から、脆性亀裂伝播停止特性を向上させるための要件について更に検討した。その結果、脆性亀裂はシアリップが鋼板表面から深さt/8〜t/4(t:板厚)の位置(以下、単に「t/8〜t/4部」と呼ぶことがある)まで広がることによって停止することが判明したのである。   In general, it is considered that the energy loss due to the ductile fracture region (shear lip) formed from the surface layer affects the brittle crack propagation stop characteristic. Therefore, the present inventors further examined the requirements for improving the brittle crack propagation stop characteristic from the viewpoint of energy balance during the progress of the brittle crack. As a result, the brittle crack spreads from the steel plate surface to the position where the shear lip has a depth t / 8 to t / 4 (t: plate thickness) (hereinafter sometimes simply referred to as “t / 8 to t / 4 part”). It was found that it stopped.

従って、表面から板厚の10%の深さまでの表層部における靭性を高めるのではなく、上記t/8〜t/4部における靭性を高めることによって、脆性亀裂伝播停止特性が良好になり得るとの知見が得られたのである。そして、t/8〜t/4部での組織サイズ(大角粒界径)と脆性亀裂伝播停止特性との関係について、更に検討を重ねた。   Therefore, when the toughness in the surface layer portion from the surface to a depth of 10% of the plate thickness is not increased, but the toughness in the t / 8 to t / 4 portion is increased, the brittle crack propagation stopping characteristic can be improved. This knowledge was obtained. Further, the relationship between the structure size (large-angle grain boundary diameter) at t / 8 to t / 4 part and brittle crack propagation stopping characteristics was further studied.

ベイナイト相を主体とするような単相組織では、粒界が脆性亀裂の伝播の障害となるものと考えられるが、亀裂進展の際に粒界と亀裂が衝突する頻度を高めれば、亀裂の伝播が抑制できるものと考えられる。即ち、結晶粒の微細化を図って粒界を細かくすることによって、亀裂との衝突頻度を高めれば良いとの知見が得られた。但し、粒界を形成する両端の方位差が小さい(例えば、15°未満の)小角粒界(小傾角境界)では、粒界エネルギーが小さくなってその効果が小さいので、前記方位差が15°以上の大角粒界(大傾角境界)を対象とする必要がある。   In a single phase structure mainly composed of bainite phase, it is considered that the grain boundary becomes an obstacle to the propagation of brittle cracks. Can be suppressed. That is, it was found that the frequency of collision with cracks should be increased by reducing the grain size by making the crystal grains finer. However, in a small-angle grain boundary (small tilt boundary) where the orientation difference between both ends forming the grain boundary is small (for example, less than 15 °), the grain boundary energy is small and the effect is small, so the orientation difference is 15 °. It is necessary to target the above large-angle grain boundaries (large tilt boundaries).

即ち、隣り合う2つの結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、上記t/8〜t/4部における当該結晶粒の平均円相当径(大角粒界径)を8μm以下に制御すれば、優れた脆性亀裂伝播停止特性が発揮されたのである。   That is, when a region surrounded by a large-angle grain boundary in which two adjacent crystals have an orientation difference of 15 ° or more is defined as a crystal grain, the average equivalent circle diameter (large-angle) of the crystal grain in the t / 8 to t / 4 portion. When the grain boundary diameter was controlled to 8 μm or less, excellent brittle crack propagation stopping characteristics were exhibited.

尚、前記「方位差」は、「ずれ角」若しくは「傾角」とも呼ばれているものであり、以下では「結晶方位差」と呼ぶことがある。またこうした結晶方位差を測定するには、後述する実施例で示すように、EBSP法(Electron Backscattering Pattern法)を採用すれば良い。   The “orientation difference” is also referred to as “shift angle” or “inclination angle”, and may be hereinafter referred to as “crystal orientation difference”. Further, in order to measure such a crystal orientation difference, an EBSP method (Electron Backscattering Pattern method) may be employed as shown in Examples described later.

図1は、上記t/8〜t/4部における大角粒界径をd(μm)としたときのd-1/2と、脆性亀裂伝播停止特性を表す−10℃でのKca(測定方法は後述する)との関係を示すグラフである。この結果から、明らかなように、d-1/2≧0.35(即ち、d≦8μm)のときに、上記Kca:7000N/mm3/2以上を確保できることが分かる。 FIG. 1 shows d −1/2 when the large-angle grain boundary diameter at t / 8 to t / 4 is d (μm), and Kca (measurement method) at −10 ° C. representing brittle crack propagation stop characteristics. Is a graph showing the relationship with (described later). From this result, it is clear that the above Kca: 7000 N / mm 3/2 or more can be secured when d −1/2 ≧ 0.35 (ie, d ≦ 8 μm).

本発明の鋼板は、化学成分組成が適正に調整されていることも特徴の1つとする。以下では、化学成分の範囲限定理由を説明する。   One feature of the steel sheet of the present invention is that the chemical composition is appropriately adjusted. Below, the reason for limiting the range of chemical components will be described.

[C:0.05〜0.12%]
Cは、鋼板の強度確保のために必要な元素である。高強度、引張強さTSで510MPa程度を得るためには、0.05%以上含有させることが必要である。しかし、0.12%を超えて過剰に含有させると溶接性が劣化すると共に、母材靭性低下する。こうしたことから、C含有量は0.05〜0.12%とした。尚、C含有量の好ましい上限は0.10%である。
[C: 0.05 to 0.12%]
C is an element necessary for ensuring the strength of the steel sheet. In order to obtain about 510 MPa with high strength and tensile strength TS, it is necessary to contain 0.05% or more. However, if the content exceeds 0.12%, the weldability deteriorates and the base metal toughness decreases. For these reasons, the C content is set to 0.05 to 0.12%. In addition, the preferable upper limit of C content is 0.10%.

[Si:0.05〜0.30%]
Siは脱酸と強度確保のために必要な元素であり、そのためには0.05%以上含有させる必要がある。しかしながら、0.30%を超えて過剰に含有させると溶接性が劣化する。尚、Si含有量の好ましい上限は0.15%である。
[Si: 0.05-0.30%]
Si is an element necessary for deoxidation and ensuring strength, and for that purpose, it is necessary to contain 0.05% or more. However, if the content exceeds 0.30%, the weldability deteriorates. In addition, the upper limit with preferable Si content is 0.15%.

[Mn:1.00〜1.80%]
Mnは鋼板の強度上昇のために有効な元素であり、こうした効果を発揮させるためには1.00%以上含有させる必要がある。しかしながら、過剰に含有させると、溶接性が劣化するので1.80%以下とする必要がある。尚、Mn含有量の好ましい下限は1.40%であり、好ましい上限は1.60%である。
[Mn: 1.00-1.80%]
Mn is an effective element for increasing the strength of the steel sheet, and in order to exert such an effect, it is necessary to contain 1.00% or more. However, if it is excessively contained, weldability deteriorates, so it is necessary to make it 1.80% or less. In addition, the minimum with preferable Mn content is 1.40%, and a preferable upper limit is 1.60%.

[P:0.025%以下(0%を含まない)]
Pは結晶粒に偏析し、延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましいのであるが、実用鋼の清浄度の程度を考慮して0.025%以下に抑制するのが良い。尚、Pは鋼に不可避的に含まれる不純物であり、その量を0%とすることは、工業生産上、困難である。
[P: 0.025% or less (excluding 0%)]
P is an impurity that segregates in crystal grains and adversely affects ductility and toughness. Therefore, it is preferable that P be as small as possible. However, considering the degree of cleanliness of practical steel, it is suppressed to 0.025% or less. Is good. In addition, P is an impurity inevitably contained in steel, and it is difficult to make the amount 0% in industrial production.

[S:0.01%以下(0%を含まない)]
Sは、鋼板中の合金元素と化合して種々の介在物を形成し、鋼板の延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましいのであるが、実用鋼の清浄度の程度を考慮して0.01%以下に抑制するのが良い。尚、Sは鋼に不可避的に含まれる不純物であり、その量を0%とすることは、工業生産上、困難である。
[S: 0.01% or less (excluding 0%)]
S is an impurity that combines with alloy elements in the steel sheet to form various inclusions and adversely affects the ductility and toughness of the steel sheet, so it is preferable that it be as small as possible. Considering the degree, it is preferable to suppress it to 0.01% or less. In addition, S is an impurity inevitably contained in steel, and it is difficult to make the amount 0% in industrial production.

[Al:0.01〜0.06%]
Alは脱酸のために有用な元素であり、またAlNを形成して結晶粒の微細化に有効な元素である。こうした効果を発揮させるためには、Al含有量は0.01%以上とする必要がある。しかしながら、Al含有量が過剰になると、母材靭性および溶接部の靭性を劣化させるので、0.06%以下とする必要がある。尚、Al含有量の好ましい上限は0.04%である。
[Al: 0.01 to 0.06%]
Al is an element useful for deoxidation, and is an element effective for forming crystal grains and forming AlN. In order to exert such effects, the Al content needs to be 0.01% or more. However, when the Al content is excessive, the base metal toughness and the toughness of the welded portion are deteriorated, so that it is necessary to be 0.06% or less. In addition, the preferable upper limit of Al content is 0.04%.

[Ti:0.005〜0.03%]
Tiは、鋼中にTiNを微細分散させて加熱中のオーステナイト粒の粗大化を防止すると共に、オーステナイトの再結晶を抑制する効果があるため、オーステナイト粒を微細化し、変態後の組織を微細化する効果を発揮する。またTiNは溶接時における熱影響部(HAZ)のオーステナイト粒の粗大化を防止すると共に、オーステナイトの再結晶を抑制する効果があるため、オーステナイト粒を微細化し、HAZ靭性改善に有効である。こうした効果を発揮させるためには、Tiは0.005%以上(好ましくは0.01%以上)含有させる必要がある。しかしながら、Tiの含有量が過剰になると溶接性が損なわれるので、0.03%以下(好ましくは0.02%以下)とする必要がある。
[Ti: 0.005 to 0.03%]
Ti has the effect of finely dispersing TiN in the steel to prevent coarsening of the austenite grains during heating and suppressing recrystallization of the austenite. Therefore, the austenite grains are refined and the structure after transformation is refined. Demonstrate the effect. Further, TiN has an effect of preventing the austenite grains from being coarsened in the heat-affected zone (HAZ) during welding and suppressing recrystallization of austenite. Therefore, the austenite grains are refined and effective in improving the HAZ toughness. In order to exert such an effect, it is necessary to contain Ti 0.005% or more (preferably 0.01% or more). However, if the Ti content is excessive, weldability is impaired, so it is necessary to make it 0.03% or less (preferably 0.02% or less).

[Nb:0.005〜0.05%]
Nbは、Tiと同様に、オーステナイトの再結晶を抑制する効果があるため、オーステナイト粒を微細化し、変態後の組織を微細化する効果を発揮する。こうした効果を発揮させるためには、Nbを0.005%以上(好ましくは0.01%以上)の量で含有させる必要がある。しかしながら、Nbが過剰に含有されると溶接性を損なわれるので、Nb含有量は0.05%以下(好ましくは0.025%以下)とするのが良い。
[Nb: 0.005 to 0.05%]
Nb, like Ti, has the effect of suppressing recrystallization of austenite, and thus exhibits the effect of refining austenite grains and refining the structure after transformation. In order to exert such effects, it is necessary to contain Nb in an amount of 0.005% or more (preferably 0.01% or more). However, if Nb is excessively contained, weldability is impaired, so the Nb content is preferably 0.05% or less (preferably 0.025% or less).

[B:0.0005〜0.003%]
Bは、Nと窒化物を形成して溶接時におけるHAZのオーステナイト粒内組織を微細化し、HAZ靭性改善に有効であると共に、フリーBは焼入れ性を高めて母材強度を向上させる元素である。こうした効果を発揮させるためには、Bは0.0005%以上(好ましくは0.0010%以上)含有させる必要がある。しかしながら、B含有量が過剰になると溶接性が損なわれので、0.003%以下(好ましくは0.002%以下)とした。
[B: 0.0005 to 0.003%]
B is an element that forms nitrides with N to refine the austenite grain structure of HAZ during welding and is effective in improving HAZ toughness, and free B increases the hardenability and improves the strength of the base metal. . In order to exert such an effect, B needs to be contained in an amount of 0.0005% or more (preferably 0.0010% or more). However, if the B content is excessive, weldability is impaired, so the content was made 0.003% or less (preferably 0.002% or less).

[N:0.0020〜0.0090%]
Nは、Al,Ti,Nb,B等の元素と結合し、窒化物を形成して母材組織を微細化させる元素である。こうした効果を発揮させるためには、Nは0.0020%以上(好ましくは0.004%以上)含有させる必要がある。しかしながら、固溶Nは、HAZの靭性を劣化させる原因となる。全窒素量の増加により、前述の窒化物は増加するが固溶Nも過剰となり、有害となるため、N含有量は0.0090%以下(好ましくは0.007%以下)とする。
[N: 0.0020 to 0.0090%]
N is an element that combines with elements such as Al, Ti, Nb, and B to form a nitride to refine the matrix structure. In order to exert such an effect, N needs to be contained in an amount of 0.0020% or more (preferably 0.004% or more). However, the solid solution N causes the HAZ toughness to deteriorate. As the total nitrogen amount increases, the above-mentioned nitrides increase, but the solid solution N also becomes excessive and harmful. Therefore, the N content is set to 0.0090% or less (preferably 0.007% or less).

本発明の鋼板における基本成分は前記の通りであり、残部は鉄および不可避不純物(例えばO等)からなるものである。   The basic components in the steel sheet of the present invention are as described above, and the balance consists of iron and inevitable impurities (for example, O).

本発明の鋼板は、板厚方向の所定の位置において、ベイナイトを主体とする組織からなるものであるが、オーステナイト状態で加速冷却を行うことによって、過冷状態となり、ベイナイト組織とすることができる。本発明の厚鋼板では、t/8〜t/4部においてその組織をベイナイト組織とすると共に、大角粒界径の微細化を図ることを特徴とするものであるが、次に、こうした厚鋼板を製造するための方法について説明する。   The steel sheet of the present invention is composed of a structure mainly composed of bainite at a predetermined position in the sheet thickness direction. However, by performing accelerated cooling in the austenite state, the steel sheet becomes a supercooled state and can have a bainite structure. . The thick steel plate of the present invention is characterized in that the structure is a bainite structure at t / 8 to t / 4, and the large-angle grain boundary diameter is refined. The method for manufacturing the will be described.

本発明の厚鋼板を製造するに当たっては、前記の化学成分組成の要件を満たすスラブを1050〜1150℃の温度に加熱し、圧延途中で鋼板表面温度が(Ar3変態点−90℃)〜(Ar3変態点−20℃)までを平均冷却速度:1℃/秒以上で水冷し、(Ar3変態点+10℃)〜(Ar3変態点+80℃)まで復熱を完了した後、累積圧下率が60%以上となる圧延を行い、その後(Ar3変態点−120℃)以上の温度から平均冷却速度:5℃/秒以上で400〜500℃の温度範囲まで加速冷却すればよい。 In producing the thick steel plate of the present invention, a slab satisfying the above-mentioned chemical component composition is heated to a temperature of 1050 to 1150 ° C., and the steel plate surface temperature during the rolling is (Ar 3 transformation point −90 ° C.) to ( Up to (Ar 3 transformation point−20 ° C.) with an average cooling rate of 1 ° C./second or more, and after completion of reheating from (Ar 3 transformation point + 10 ° C.) to (Ar 3 transformation point + 80 ° C.), cumulative reduction The rolling may be performed at a rate of 60% or more, and then accelerated cooling from a temperature higher than (Ar 3 transformation point −120 ° C.) to a temperature range of 400 to 500 ° C. at an average cooling rate of 5 ° C./second or higher.

本発明の鋼板では、鋼板のt/8〜t/4部での組織を微細化することによって、脆性亀裂伝播停止特性を優れたものとするものである。こうした鋼板を得るために、上記製造方法では、当該板厚位置(t/8〜t/4部)を適切な温度域に制御して圧延を行い、オーステナイト低温側再結晶温度域(以下、単に「再結晶温度域」と呼ぶことがある)での圧延によるオーステナイト粒の微細化と、オーステナイト未再結晶温度域(以下、単に「未再結晶温度域」と呼ぶことがある)での圧延による変形歪の導入による変態時の核生成サイトを増加させることによって当該板厚位置での組織を微細化させるものである。以下、各要件について順を追って説明する。   The steel sheet of the present invention has excellent brittle crack propagation stopping characteristics by refining the structure at t / 8 to t / 4 part of the steel sheet. In order to obtain such a steel sheet, in the production method described above, the sheet thickness position (t / 8 to t / 4 part) is controlled to an appropriate temperature range for rolling, and the austenite low-temperature-side recrystallization temperature range (hereinafter simply referred to as “reducing temperature range”) By refining austenite grains by rolling in “recrystallization temperature range” and rolling in austenite non-recrystallization temperature range (hereinafter sometimes simply referred to as “non-recrystallization temperature range”) The structure at the plate thickness position is refined by increasing the number of nucleation sites at the time of transformation due to the introduction of deformation strain. Hereinafter, each requirement will be described in order.

まずスラブの加熱温度を1050〜1150℃とする。この加熱温度を1000℃以上とするのは、材質の均質化とNb固溶による強度の確保に必要なためである。しかしながら、加熱温度が1150℃を超えると、加熱中のオーステナイト粒の粗大化により微細組織が得られなくなるので、1150℃以下とする必要がある。   First, the heating temperature of a slab shall be 1050-1150 degreeC. The reason why the heating temperature is set to 1000 ° C. or more is that it is necessary to ensure the strength by homogenizing the material and dissolving Nb. However, if the heating temperature exceeds 1150 ° C., a microstructure cannot be obtained due to the coarsening of the austenite grains during heating.

上記温度範囲に加熱した後は、圧延途中で鋼板表面温度が(Ar3変態点−90℃)〜(Ar3変態点−20℃)までを平均冷却速度:1℃/秒以上で水冷する。本発明の鋼板の成分系において再結晶温度について検討したところ、鋼板のt/8〜t/4部での温度が(Ar3変態点+110℃)〜(Ar3変態点+180℃)を再結晶温度域、(Ar3変態点+110℃)未満を未再結晶温度域と定義し、上記t/8〜t/4(t:板厚)の位置での温度が再結晶温度域まで冷却した後に仕上げ圧延を開始すればよいことが分かった。 After heating to the above temperature range, the steel sheet surface temperature is (Ar 3 transformation point −90 ° C.) to (Ar 3 transformation point −20 ° C.) during rolling at a mean cooling rate of 1 ° C./second or more. When the recrystallization temperature was examined in the component system of the steel sheet of the present invention, the temperature at t / 8 to t / 4 part of the steel sheet was recrystallized from (Ar 3 transformation point + 110 ° C.) to (Ar 3 transformation point + 180 ° C.). After the temperature range, less than (Ar 3 transformation point + 110 ° C.) is defined as the non-recrystallization temperature range, and the temperature at the position of t / 8 to t / 4 (t: plate thickness) is cooled to the recrystallization temperature range It was found that finish rolling should be started.

そのために、粗圧延完了後に、平均冷却速度:1℃/秒以上の水冷を、鋼板表面温度が(Ar3変態点−90℃)〜(Ar3変態点−20℃)まで行う。この工程での冷却を「水冷」としたのは、空冷で当該板厚位置の温度を再結晶温度域まで冷却するには、長時間が必要となり、冷却中にオーステナイト粒は粒成長してしまい、組織の微細化を達成することが困難になるからである。また空冷では、生産性の低下を招いてしまうため、生産性の観点からも水冷とする。このときの冷却停止温度を、鋼板表面温度で(Ar3変態点−90℃)〜(Ar3変態点−20℃)とするのは、t/8〜t/4部の温度を再結晶温度域にするためである。 Therefore, after completion of rough rolling, water cooling at an average cooling rate of 1 ° C./second or more is performed until the steel sheet surface temperature is (Ar 3 transformation point −90 ° C.) to (Ar 3 transformation point −20 ° C.). Cooling in this process is called “water cooling” because it takes a long time to cool the temperature at the plate thickness position to the recrystallization temperature range by air cooling, and the austenite grains grow during cooling. This is because it becomes difficult to achieve finer structure. In addition, since air cooling causes a decrease in productivity, water cooling is also used from the viewpoint of productivity. The cooling stop temperature at this time is (Ar 3 transformation point −90 ° C.) to (Ar 3 transformation point −20 ° C.) in terms of the steel sheet surface temperature. The temperature of t / 8 to t / 4 part is the recrystallization temperature. This is to make it an area.

次で、(Ar3変態点+10℃)〜(Ar3変態点+80℃)まで復熱を完了した後仕上げ圧延を開始する。復熱が完了する前に圧延を実施すると、t/8〜t/4部とt/2部(板厚中央部)との温度差が大きい状態での圧延となり、相対的に強度が低くなっているt/2部には優先的に圧延歪が導入されるが、t/8〜t/4部には圧延歪が導入されにくくなり、t/8〜t/4部の組織の微細化が困難になる。鋼板表面温度で(Ar3変態点−90℃)〜(Ar3変態点−20℃)に冷却した後に、復熱が完了するのは(Ar3変態点+10℃)〜(Ar3変態点+80℃)であるために、これを復熱完了温度とした。また復熱を十分に行わない状態では、上述の如く、板厚方向の温度差が大きいために、仕上げ圧延中に板厚方向の変形抵抗の差に起因する「反り」が発生しやすくなるため、反り発生低減の観点からも復熱完了後に仕上げ圧延を開始することが好ましい。 Next, after completion of recuperation from (Ar 3 transformation point + 10 ° C.) to (Ar 3 transformation point + 80 ° C.), finish rolling is started. If rolling is performed before the recuperation is completed, rolling is performed with a large temperature difference between t / 8 to t / 4 part and t / 2 part (plate thickness center part), and the strength is relatively low. The rolling strain is preferentially introduced into the t / 2 part, but the rolling strain is difficult to be introduced into the t / 8 to t / 4 part, and the structure of the t / 8 to t / 4 part is refined. Becomes difficult. After cooling to (Ar 3 transformation point −90 ° C.) to (Ar 3 transformation point −20 ° C.) at the steel sheet surface temperature, reheating is completed at (Ar 3 transformation point + 10 ° C.) to (Ar 3 transformation point +80). This was regarded as the recuperation completion temperature. In addition, in the state where the recuperation is not sufficiently performed, as described above, the temperature difference in the thickness direction is large, so that “warping” due to the difference in deformation resistance in the thickness direction is likely to occur during finish rolling. From the viewpoint of reducing the occurrence of warpage, it is preferable to start the finish rolling after completion of recuperation.

鋼板のt/8〜t/4部での温度が(Ar3変態点+110℃)〜(Ar3変態点+180℃)をオーステナイト低温側再結晶温度域(再結晶温度域)、(Ar3変態点+110℃)未満をオーステナイト未再結晶温度域(未再結晶温度域)と定義し、夫々の温度域での累積圧下率をRr、Rdとしたとき、下記(1)式の関係を満足するR(細微粒化寄与圧下係数とする)と、前記したd-1/2(d:結晶粒の円相当直径)の関係について検討したところ、図2に示すような結果が得られた。尚、下記(1)式は、夫々の温度領域での累積圧下率が細粒化に寄与する割合に基づいて実験によって求められたものであり、上記Rは結晶粒微細化の指標となるものである。
R=(0.44×Rr)+(0.56×Rd) …(1)
The temperature at t / 8 to t / 4 part of the steel sheet is from (Ar 3 transformation point + 110 ° C.) to (Ar 3 transformation point + 180 ° C.) austenite low temperature side recrystallization temperature range (recrystallization temperature range), (Ar 3 transformation temperature) The point below + 110 ° C. is defined as the austenite non-recrystallization temperature range (non-recrystallization temperature range), and when the cumulative rolling reduction in each temperature range is Rr and Rd, the relationship of the following formula (1) is satisfied. When the relationship between R (reduced contribution reduction coefficient) and d −1/2 (d: equivalent diameter of crystal grains) was examined, the results shown in FIG. 2 were obtained. The following equation (1) is obtained by experiments based on the ratio of the cumulative reduction ratio in each temperature region to contribute to the refinement, and the above R is an index for refinement of the grain. It is.
R = (0.44 × Rr) + (0.56 × Rd) (1)

尚、夫々の温度領域での累積圧下率は、下記(2)式によって求められるものである。
累積圧下率=(t0−t1)/t0×100 ・・・ (2)
〔式(2)中、t0は当該温度域での鋼片の圧延開始厚(mm)を表し、t1は当該温度域での鋼片の圧延終了厚(mm)を表す。〕
The cumulative rolling reduction in each temperature region is obtained by the following equation (2).
Cumulative rolling reduction = (t 0 −t 1 ) / t 0 × 100 (2)
Wherein (2), t 0 represents the start rolling thickness of the steel strip in the temperature range (mm), t 1 represents the end of rolling thickness of the steel strip in the temperature range (mm). ]

図2の結果から明らかなように、基本的にR≧35であるとき、d-1/2≧0.35を満足でき、前記図1との関係から、Kca≧7000N/mm3/2を満足できることが分かる。またR≧35であっても、Rr≦10(%)である場合には、オーステナイト低温側再結晶温度域での圧下量が不足し、変態前のオーステナイト粒を微細にできず、d-1/2≧0.35を満足できずに脆性亀裂伝播特性が劣化することが分かる(後記実施例の実験No.11)。このように、上記(1)式で規定されるRを35以上にすることによって、Kca≧7000N/mm3/2を満足させることができるのであるが、こうした条件を満足させるためには、仕上げ圧延での累積圧下率を60%以上とする必要がある。尚、本発明の製造方法においては、スラブ加熱後に、鋳造組織を均一な組織とするために、オーステナイト高温域にて粗圧延を実施することになるが、上記仕上げ圧延時の累積圧下率を60%以上確保するためには、粗圧延の完了板厚は最終厚さの2.5倍以上を確保することが好ましい。 As is apparent from the results of FIG. 2, when R ≧ 35, d −1/2 ≧ 0.35 can be basically satisfied. From the relationship with FIG. 1, Kca ≧ 7000 N / mm 3/2 is satisfied. It turns out that it is satisfactory. Even if R ≧ 35, if Rr ≦ 10 (%), the amount of reduction in the austenite low-temperature recrystallization temperature range is insufficient, and the austenite grains before transformation cannot be made fine, and d −1 It can be seen that brittle crack propagation characteristics deteriorate without satisfying /2≧0.35 (Experiment No. 11 in Examples described later). Thus, Kca ≧ 7000 N / mm 3/2 can be satisfied by setting the R defined by the above formula (1) to 35 or more. It is necessary to make the cumulative rolling reduction in rolling 60% or more. In the production method of the present invention, after slab heating, in order to make the cast structure uniform, rough rolling is performed in the high temperature range of austenite. In order to ensure at least%, it is preferable to ensure that the finished thickness of the rough rolling is at least 2.5 times the final thickness.

仕上げ圧延が終了した後は、(Ar3変態点−120℃)以上の温度から平均冷却速度:5℃/秒以上で400〜500℃の温度範囲まで加速冷却をする必要がある。この工程は、鋼板のt/8〜t/4部の組織をベイナイト単相とし、板厚:50mm以上での厚鋼板での高強度化を確保するためのものである。こうした観点から、加速冷却の停止温度は、組織がベイナイト主体となる温度まで冷却する必要があるので、500℃以下とする。但し、加速冷却の停止温度が400℃未満となると、島状マルテンサイト相が生成し、母材靭性の劣化を招くので、400℃を下限とする。 After finish rolling is completed, it is necessary to perform accelerated cooling from a temperature of (Ar 3 transformation point −120 ° C.) or higher to an average cooling rate of 5 ° C./second to a temperature range of 400 to 500 ° C. This step is for ensuring a high strength in a thick steel plate having a thickness of 50 mm or more with a structure of t / 8 to t / 4 part of the steel plate being a bainite single phase. From this point of view, the accelerated cooling stop temperature is set to 500 ° C. or lower because it is necessary to cool to a temperature at which the structure is mainly composed of bainite. However, when the accelerated cooling stop temperature is less than 400 ° C., an island-like martensite phase is generated and the base material toughness is deteriorated, so 400 ° C. is the lower limit.

前記のような製造方法によって、本発明の化学成分組成の要件および組織要件を満たし、且つ引張強さTSが510MPa以上である厚鋼板を製造することができる。本発明の鋼板における板厚は、50〜80mmであることが好ましい。   By the manufacturing method as described above, it is possible to manufacture a thick steel plate that satisfies the chemical component composition requirements and the structural requirements of the present invention and has a tensile strength TS of 510 MPa or more. It is preferable that the plate | board thickness in the steel plate of this invention is 50-80 mm.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、上・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す化学成分組成の鋼を転炉で溶製し、種々の冷却、圧延条件によって鋼板を製造した。このときの製造条件を下記表2に示す。鋼片のt/8〜t/4部の温度は、差分法を用いたプロセスコンピュータによって算出した。具体的な温度管理の手順は下記の通りである。尚、本発明におけるAr3変態点は、下記(3)式によって計算される値を採用したものである。 Steels having the chemical composition shown in Table 1 below were melted in a converter, and steel sheets were produced under various cooling and rolling conditions. The manufacturing conditions at this time are shown in Table 2 below. The temperature of t / 8 to t / 4 part of the steel slab was calculated by a process computer using a difference method. The specific temperature management procedure is as follows. The Ar 3 transformation point in the present invention employs a value calculated by the following equation (3).

Ar3変態点=910−310[C]−80[Mn]−20[Cu]−15[Cr]−
55[Ni]−80[Mo]+0.35(t−8) …(3)
但し、t:板厚であり、[C],[Mn],[Cu],[Cr],[Ni]および[Mo]は、夫々C,Mn,Cu,Cr,NiおよびMoの含有量(質量%)を示す[本発明の厚鋼板では、上記(3)式中、Cu,Cr,NiおよびMoについては、含有しないものとして計算する]。
Ar 3 transformation point = 910-310 [C] -80 [Mn ] -20 [Cu] -15 [Cr] -
55 [Ni] -80 [Mo] +0.35 (t-8) (3)
Where t is the plate thickness, and [C], [Mn], [Cu], [Cr], [Ni] and [Mo] are the contents of C, Mn, Cu, Cr, Ni and Mo, respectively ( [In the thick steel plate of the present invention, Cu, Cr, Ni and Mo are calculated as not containing in the above formula (3)].

[圧延中の温度測定方法]
1.プロセスコンピュータを用い、加熱開始から加熱終了までの雰囲気温度や在炉時間に基づいて鋼片の所定の位置(t/8〜t/4部)の加熱温度を算出する。
2.算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)のデータに基づいて、板厚方向の任意の位置における圧延温度を差分法など計算に適した方法を用いて計算しつつ圧延を実施する。
3.鋼板の表面温度は圧延ライン上に設置された放射型温度計を用いて実測する。但し、プロセスコンピュータでも理論値を計算しておく。
4.粗圧延開始時、粗圧延終了時、仕上げ圧延開始時にそれぞれ実測した鋼板の表面温度を、プロセスコンピュータから算出される計算温度と照合する。
5.計算温度と実測温度の差が±30℃以上の場合は、計算表面温度が実測温度と一致するように再計算してプロセスコンピュータ上の計算温度とし、±30℃未満の場合は、プロセスコンピュータから算出された計算温度をそのまま用いる。
6.上記算出された計算温度を用い、制御対象としている領域の圧延温度を管理する。
[Temperature measurement method during rolling]
1. Using a process computer, the heating temperature at a predetermined position (t / 8 to t / 4 part) of the steel slab is calculated based on the atmospheric temperature from the start of heating to the end of heating and the in-furnace time.
2. Using the calculated heating temperature, based on the rolling pass schedule during rolling and the data of the cooling method (water cooling or air cooling) between passes, a method suitable for calculation such as the difference method is used to calculate the rolling temperature at any position in the plate thickness direction. The rolling is carried out while using the calculation.
3. The surface temperature of the steel sheet is measured using a radiation type thermometer installed on the rolling line. However, the theoretical value is also calculated in the process computer.
4). The surface temperature of the steel sheet measured at the start of rough rolling, at the end of rough rolling, and at the start of finish rolling is collated with a calculated temperature calculated from a process computer.
5. If the difference between the calculated temperature and the measured temperature is ± 30 ° C or more, recalculate the calculated surface temperature so that it matches the measured temperature to obtain the calculated temperature on the process computer. The calculated temperature is used as it is.
6). Using the calculated temperature calculated above, the rolling temperature in the region to be controlled is managed.

Figure 0005337412
Figure 0005337412

Figure 0005337412
Figure 0005337412

得られた各鋼板について、フェライトおよびベイナイトの分率(面積率)、t/8〜t/4部における大角粒界径d(およびd-1/2)、機械的特性(降伏点YP、引張強さTS、衝撃特性(母材の衝撃特性)、脆性亀裂伝播停止特性(母材のアレスト特性)、およびHAZ靭性を下記の方法によって測定した。これらの結果を一括して、下記表3に示す。 For each steel plate obtained, the fraction of ferrite and bainite (area ratio), the large-angle grain boundary diameter d (and d −1/2 ) at t / 8 to t / 4 part, mechanical properties (yield point YP, tensile) Strength TS, impact characteristics (impact characteristics of base material), brittle crack propagation stop characteristics (arrest characteristics of base material), and HAZ toughness were measured by the following methods, and the results are collectively shown in Table 3 below. Show.

[フェライト、ベイナイト分率]
鋼板のt/8〜t/4部から、鋼板の圧延方向に平行で且つ鋼板の表面に対して垂直な面が露出するようにサンプルを切り出し、これを、♯150〜♯1000までの湿式エメリー研磨紙を用いて研磨し、その後に研磨剤としてダイヤモンドスラリーを用いて鏡面仕上げした。この鏡面研磨片を、2%硝酸−エタノール溶液(ナイタール溶液)でエッチングした後、150μm×200μmの視野を観察倍率400倍で観察し、画像解析にてフェライト分率を測定した。ここでフェライト以外のラス状組織は全てベイナイトとみなした。そして、合計で5視野のフェライト、ベイナイト分率を求め、その平均値を採用した。
[Ferrite and bainite fraction]
A sample was cut from t / 8 to t / 4 part of the steel sheet so that a plane parallel to the rolling direction of the steel sheet and perpendicular to the surface of the steel sheet was exposed, and this was processed into wet emery from # 150 to # 1000. It grind | polished using abrasive paper, and mirror-finished using diamond slurry as an abrasive | polishing agent after that. After this mirror-polished piece was etched with a 2% nitric acid-ethanol solution (Nital solution), a 150 μm × 200 μm field of view was observed at an observation magnification of 400 times, and the ferrite fraction was measured by image analysis. Here, all lath structures other than ferrite were regarded as bainite. And the ferrite and bainite fraction of 5 visual fields in total were calculated | required, and the average value was employ | adopted.

[大角粒界径の円相当直径]
(a)鋼板の圧延方向に平行に切断した、板厚の表裏面を含むサンプルを準備した。
(b)#150〜#1000までの湿式エメリー研磨紙或はそれと同等の機能を有する研磨方法を用いて断面を研磨し、ダイヤモンドスラリー等の研磨剤を用いて鏡面仕上げを施す。
(c)鋼板のt/8〜t/4部において、鋼板の圧延方向に平行な断面において、FE−SEM−EBSP(電子放出型走査電子顕微鏡を用いた電子後方散乱回折像法)によって大角粒界径を測定した。具体的には、Tex SEM Laboratries社のEBSP装置(商品名:「OIM」)を、FE−SEMと組み合わせて用い、傾角(結晶方位差)が15°以上の境界を結晶粒界として、大角粒界径を測定した。このときの測定条件は、測定領域:200×200(μm)、測定ステップ:0.5μm間隔とし、測定方位の信頼性を示すコンフィデンス・インデックス(Confidence Index)が0.1よりも小さい測定点は解析対象から除外した。このようにして求められる大角粒界径の平均値を算出して、本発明における「大角粒界径(平均円相当径d)」とした。
(d)テキストデータの解析法として、大角粒界径(平均円相当径d)が2.5μm以下のものについては、測定ノイズと判断し、平均値計算の対象から除外した。
[Equivalent circle diameter of large-angle grain boundary diameter]
(A) A sample including the front and back surfaces of the plate thickness cut in parallel with the rolling direction of the steel plate was prepared.
(B) A cross-section is polished using a wet emery polishing paper of # 150 to # 1000 or a polishing method having a function equivalent to that, and mirror-finished using an abrasive such as diamond slurry.
(C) At t / 8 to t / 4 part of the steel plate, large-angle grains are obtained by FE-SEM-EBSP (electron backscattering diffraction imaging using an electron emission scanning electron microscope) in a cross section parallel to the rolling direction of the steel plate. The field diameter was measured. Specifically, an EBSP apparatus (trade name: “OIM”) manufactured by Tex SEM Laboratories is used in combination with an FE-SEM, and a boundary having an inclination (crystal orientation difference) of 15 ° or more is used as a grain boundary. The field diameter was measured. The measurement conditions at this time are as follows: measurement area: 200 × 200 (μm), measurement step: 0.5 μm interval, and a measurement index having a confidence index (Confidence Index) indicating the reliability of the measurement orientation is smaller than 0.1. Excluded from analysis. The average value of the large-angle grain boundary diameters thus obtained was calculated and used as the “large-angle grain boundary diameter (average circle equivalent diameter d)” in the present invention.
(D) As a method for analyzing text data, those having a large-angle grain boundary diameter (average equivalent circle diameter d) of 2.5 μm or less were determined to be measurement noise and excluded from the target of average value calculation.

[母材の引張特性]
各鋼板の深さt/4の部位(圧延方向に垂直な方向:C方向)からNK U14A試験片を採取し、JIS Z2241に従って引張試験を行うことによって、降伏点YPおよび引張強さTSを測定した。降伏点YP:390MPa以上、引張強さTS:510MPa以上を合格とした。
[Tensile properties of base material]
NK U14A test specimens are taken from a portion of each steel sheet having a depth t / 4 (direction perpendicular to the rolling direction: C direction), and a tensile test is performed according to JIS Z2241, thereby measuring the yield point YP and the tensile strength TS. did. Yield point YP: 390 MPa or more and tensile strength TS: 510 MPa or more were regarded as acceptable.

[母材靭性]
Vノッチシャルピー試験を行い(JIS Z 2242に準拠した試験方法)で衝撃試験を行い、遷移曲線により脆性破面遷移温度vTrsを求めた。試験片は、t/4部(圧延方向に平行な方向:L方向)からNK(日本海事協会)船級が定めるU4号試験片を採取した。このとき、各温度(最低4温度以上)の測定につき、n=3で試験を実施し、3点中最も脆性破面率の高い点を通るように、脆性破面遷移曲線を描き、脆性破面率が50%となる温度を脆性破面遷移温度vTrsとして算出した(vTrsが最も高温側となるように線を引く)。vTrsが−80℃以下を合格(母材靭性が良好)とした。
[Base material toughness]
A V-notch Charpy test was conducted (test method based on JIS Z 2242), and a brittle fracture surface transition temperature vTrs was determined from a transition curve. As a test piece, a U4 test piece determined by NK (Japan Maritime Association) classification was collected from t / 4 part (direction parallel to rolling direction: L direction). At this time, for each temperature measurement (minimum 4 temperatures or more), the test was carried out at n = 3, and a brittle fracture surface transition curve was drawn so as to pass through the point with the highest brittle fracture surface ratio among the three points. The temperature at which the area ratio was 50% was calculated as the brittle fracture surface transition temperature vTrs (a line was drawn so that vTrs was on the highest temperature side). When vTrs was −80 ° C. or lower, it was determined to be acceptable (good base material toughness).

[脆性亀裂停止特性]
脆性亀裂停止特性(アレスト特性)は、社団法人日本溶接協会(WES)発行の鋼種認定試験方法(2003年3月31日制定)で規定される「脆性破壊伝播停止試験」に準じて行った。試験は、脆性破壊伝播停止試験方法の図7.2に示されている形状の試験片を用い、該試験片に−190℃〜+60℃の範囲から選ばれる任意の温度範囲で温度勾配をつけて4試験体分行った。Kca値は下記(4)式で算出した。下記(4)式中、cは伝播部入口から脆性亀裂先端までの長さ、σは伝播部入り口から脆性亀裂先端までの長さ、Wは伝播部幅を、夫々示している。
[Brittle crack stopping characteristics]
The brittle crack arrest property (arrest property) was performed in accordance with the “brittle fracture propagation stop test” defined by the steel type qualification test method (established on March 31, 2003) issued by the Japan Welding Association (WES). In the test, a test piece having the shape shown in FIG. 7.2 of the brittle fracture propagation stop test method is used, and a temperature gradient is applied to the test piece in an arbitrary temperature range selected from the range of −190 ° C. to + 60 ° C. A total of 4 specimens were used. The Kca value was calculated by the following formula (4). In the following formula (4), c represents the length from the propagation portion entrance to the brittle crack tip, σ represents the length from the propagation portion entrance to the brittle crack tip, and W represents the propagation portion width.

Figure 0005337412
Figure 0005337412

Tを脆性亀裂先端の温度(単位はK)とし、X軸を1/T、Y軸を算出したKca値として1/TとKca値の相関関係を示すグラフを作成し、4点の近似曲線と273Kとの交点を−10℃でのKca値とした。−10℃でのKca値を下記表3に示す。本発明では、−10℃でのKcaが7000N/mm3/2以上の場合を合格(脆性亀裂伝播停止特性に優れる)とする。 Create a graph showing the correlation between 1 / T and Kca value, where T is the temperature of the brittle crack tip (unit is K), X axis is 1 / T, and Y axis is the calculated Kca value. And the Kca value at -10 ° C. The Kca value at −10 ° C. is shown in Table 3 below. In the present invention, a case where Kca at −10 ° C. is 7000 N / mm 3/2 or more is regarded as acceptable (excellent in brittle crack propagation stopping characteristics).

[HAZ靭性の評価]
再現HAZ熱サイクル試験(1400℃までの昇温速度:50℃/秒、最高加熱温度1400℃でのキープ時間:30秒、冷却時における800〜500℃までの冷却時間Tc:300秒)による入熱量:40〜45kJ/mmの大入熱溶接時のボンド部の熱履歴を模擬し、HAZ部について、−20℃でシャルピー衝撃試験を行い、吸収エネルギー(vE-20)を測定した。このとき3本の試験片について吸収エネルギー(vE-20)を測定し、その平均値を求めた。そして、vE-20の平均値が100J以上のものをHAZ靭性に優れると評価した。
[Evaluation of HAZ toughness]
Repetitive HAZ thermal cycle test (heating rate up to 1400 ° C: 50 ° C / second, keeping time at maximum heating temperature of 1400 ° C: 30 seconds, cooling time from 800 to 500 ° C during cooling Tc: 300 seconds) The amount of heat: 40 to 45 kJ / mm The heat history of the bond part during high heat input welding was simulated, and the HAZ part was subjected to a Charpy impact test at −20 ° C. to measure the absorbed energy (vE −20 ). At this time, the absorbed energy (vE -20 ) was measured for the three test pieces, and the average value was obtained. And the thing whose average value of vE- 20 is 100J or more was evaluated as excellent in HAZ toughness.

Figure 0005337412
Figure 0005337412

表3の結果から次のように考察できる。まず実験No.1〜7のものは、本発明で規定する全ての要件を満足するものであり、脆性亀裂伝播停止特性が良好になっている。これに対して、本発明の要件のいずれかを欠くものは(実験No.8〜32)、いずれかの特性が劣っている。詳細には、下記の通りである。   From the results in Table 3, it can be considered as follows. First, experiment no. 1-7 satisfy | fills all the requirements prescribed | regulated by this invention, and the brittle crack propagation stop characteristic is favorable. On the other hand, those lacking any of the requirements of the present invention (Experiment Nos. 8-32) are inferior in any of the characteristics. Details are as follows.

実験No.8のものは、加熱温度が本発明で規定する範囲よりも低いものであるので、大角粒界径が微細化して良好なアレスト特性を示したが、Nbの固溶不足によって、強度が不足している。   Experiment No. In No. 8, since the heating temperature was lower than the range specified in the present invention, the large-angle grain boundary diameter was refined and showed good arrest characteristics, but the strength was insufficient due to the lack of solid solution of Nb. ing.

実験No.9のものは、加熱温度が本発明で規定する範囲よりも高く、そのため加熱時のオーステナイトが粗大化し、十分な組織微細化ができず、良好なアレスト特性が得られていない。実験No.10、16〜25のものは、仕上げ圧延時の累積圧下率が不足しており、大角粒界径の微細化が確保できず、良好なアレスト特性が得られていない。   Experiment No. In No. 9, the heating temperature is higher than the range specified in the present invention, so that austenite during heating is coarsened, and sufficient fine structure cannot be obtained, and good arrest characteristics are not obtained. Experiment No. Nos. 10 and 16 to 25 have insufficient cumulative rolling reduction at the time of finish rolling, and cannot ensure the refinement of the large-angle grain boundary diameter, so that good arrest characteristics are not obtained.

実験No.11,12のものは、粗圧延後における水冷後の温度が本発明で規定する範囲を外れるものであり、オーステナイト低温側再結晶温度若しくは、オーステナイト未再結晶温度域での累積圧下率が低くなり、大角粒界径の微細化が確保できず、良好なアレスト特性が得られていない。   Experiment No. Nos. 11 and 12 are those in which the temperature after water cooling after rough rolling is out of the range specified in the present invention, and the cumulative reduction ratio in the austenite low-temperature side recrystallization temperature or the austenite non-recrystallization temperature range becomes low. Further, the refinement of the large-angle grain boundary diameter cannot be ensured and good arrest characteristics are not obtained.

実験No.13のものは、冷却開始温度が本発明で規定する範囲を外れるものであり、ベイナイト分率が低下し、高強度が得られていない。実験No.14のものは、冷却停止温度が本発明で規定する範囲を外れるものであり(前記図1参照)、島状マルテンサイトが生成し、靭性が劣化してしまい、良好なアレスト特性が得られていない。   Experiment No. In No. 13, the cooling start temperature is outside the range defined in the present invention, the bainite fraction is lowered, and high strength is not obtained. Experiment No. In No. 14, the cooling stop temperature is outside the range defined in the present invention (see FIG. 1), island martensite is generated, toughness is deteriorated, and good arrest characteristics are obtained. Absent.

実験No.15のものは、圧延完了後、加速冷却を実施せずに空冷としたために、ベイナイト組織とならず、フェライトを主体とした組織となるので、強度が不足するばかりか、組織が粗大化して良好なアレスト特性が得られていない。   Experiment No. No. 15 was air cooled without performing accelerated cooling after completion of rolling, so it became a structure mainly composed of ferrite, not a bainite structure, so that not only the strength was insufficient, but the structure was coarse and good Arrest characteristics are not obtained.

実験No.26〜32のものは、化学成分組成が本発明で規定するいずれかの要件を満足しないものであり、良好なアレスト特性が得られていない、或いは強度不足やHAZ靭性の劣化を招いている。   Experiment No. Nos. 26 to 32 have chemical composition compositions that do not satisfy any of the requirements defined in the present invention, and have not been able to obtain good arrest characteristics, or have been insufficient in strength or deteriorated in HAZ toughness.

表3の結果に基づき、d-1/2とKcaとの関係を示したのが前記図1である。また、前記(1)式の関係を満足するR(細粒化寄与圧下係数)と、d-1/2(d:結晶粒の円相当直径)の関係について示したのが前記図2である。 FIG. 1 shows the relationship between d −1/2 and Kca based on the results in Table 3. Further, FIG. 2 shows the relationship between R (fine grain contribution reduction coefficient) satisfying the relationship of the expression (1) and d −1/2 (d: equivalent diameter of crystal circle). .

t/8〜t/4部における大角粒界径をd(μm)としたときのd-1/2と、脆性亀裂伝播停止特性を表す−10℃でのKcaとの関係を示すグラフである。It is a graph which shows the relationship between d- 1 / 2 when the large angle grain boundary diameter in t / 8-t / 4 part is made into d (micrometer), and Kca at -10 degreeC showing a brittle crack propagation stop characteristic. . (1)式の関係を満足するR(細粒化寄与圧下係数)と、d-1/2(d:結晶粒の円相当直径)の関係について示したグラフである。It is the graph shown about the relationship of R (fine grain contribution reduction coefficient) which satisfies the relationship of (1), and d- 1 / 2 (d: circle equivalent diameter of a crystal grain).

Claims (2)

C:0.05〜0.12%(質量%の意味、化学成分組成について以下同じ)、Si:0.05〜0.30%、Mn:1.00〜1.80%、P:0.025%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.06%、Ti:0.005〜0.03%、Nb:0.005〜0.05%、B:0.0005〜0.003%およびN:0.0020〜0.0090%を夫々含有し、残部が鉄および不可避不純物であり、
表面から深さt/8〜t/4(tは板厚を表す、以下同じ)の位置において、ベイナイトを95面積%以上含む組織からなり、且つ隣り合う2つの結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、当該結晶粒の平均円相当径が8μm以下であることを特徴とする、下記特性を満足する脆性亀裂伝播停止特性に優れた厚鋼板。
母材の引張強さTS:510MPa以上
母材の脆性破面遷移温度vTrs:−80℃以下
脆性亀裂伝播停止特性を示すKca(−10℃):7000N/mm 3/2 以上
HAZのシャルピー吸収エネルギーvE -20 の平均:100J以上
C: 0.05 to 0.12% (meaning by mass, the same applies to the chemical composition), Si: 0.05 to 0.30%, Mn: 1.00 to 1.80%, P: 0.00. 025% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.06%, Ti: 0.005 to 0.03%, Nb: 0.005 to 0.05%, B: 0.0005 to 0.003% and N: 0.0020 to 0.0090%, respectively, the balance being iron and inevitable impurities,
At a position of depth t / 8 to t / 4 (t represents the plate thickness, hereinafter the same) from the surface, it is composed of a structure containing bainite 95% by area or more , and the orientation difference between two adjacent crystals is 15 ° or more When the region surrounded by the large-angle grain boundary is a crystal grain, the average equivalent circle diameter of the crystal grain is 8 μm or less, and the steel plate excellent in brittle crack propagation stopping characteristics satisfying the following characteristics: .
Tensile strength TS of base material: 510 MPa or more
Base material brittle fracture surface transition temperature vTrs: -80 ° C or less
Kca (−10 ° C.) showing brittle crack propagation stopping characteristics: 7000 N / mm 3/2 or more
Average of Charpy absorbed energy vE- 20 of HAZ : 100J or more
請求項1に記載の鋼板を製造するに当り、
スラブを1050〜1150℃の温度に加熱し、
粗圧延完了後に、鋼板表面温度が(Ar3変態点−90℃)〜(Ar3変態点−20℃)までを平均冷却速度:1℃/秒以上で水冷し、(Ar3変態点+10℃)〜(Ar3変態点+80℃)まで復熱を完了する工程を行なった後、仕上げ圧延を開始し、
仕上圧延において、下記(A)および(B)を満足し、且つ、累積圧下率が60%以上となる圧延を行い、
仕上げ圧延完了(Ar3変態点−120℃)以上の温度から平均冷却速度:5℃/秒以上で400〜500℃の温度範囲まで加速冷却をすることを特徴とする脆性亀裂伝播停止特性に優れた厚鋼板の製造方法。
(A)R≧35
(B)Rr>10
ここで、R=(0.44×Rr)+(0.56×Rd)で表され、
Rrは、鋼板のt/8〜t/4部での温度が、(Ar 3 変態点+110℃)〜(Ar 3 変態点+180℃)の範囲にあるオーステナイト低温側再結晶温度域での累積圧下率(%)を意味し、
Rdは、鋼板のt/8〜t/4部での温度が、(Ar 3 変態点+110℃)未満のオーステナイト未再結晶温度域での累積圧下率(%)を意味する。
In manufacturing the steel sheet according to claim 1,
Heating the slab to a temperature between 1050 and 1150 ° C .;
After completion of the rough rolling, the steel sheet surface temperature is (Ar 3 transformation point −90 ° C.) to (Ar 3 transformation point −20 ° C.) with an average cooling rate of 1 ° C./second or more, and (Ar 3 transformation point + 10 ° C.). ) after performing the step of completing the ~ recuperation up (Ar 3 transformation point + 80 ° C.), start the finish rolling,
In finish rolling, the following (A) and (B) are satisfied, and the rolling reduction is 60% or more,
After completion of finish rolling , brittle crack propagation stopping characteristics characterized by accelerated cooling from a temperature of (Ar 3 transformation point −120 ° C.) or higher to an average cooling rate of 5 ° C./second to a temperature range of 400 to 500 ° C. A method for producing thick steel plates with excellent resistance.
(A) R ≧ 35
(B) Rr> 10
Here, R = (0.44 × Rr) + (0.56 × Rd),
Rr is the cumulative reduction in the austenite low-temperature side recrystallization temperature range where the temperature at t / 8 to t / 4 part of the steel sheet is in the range of (Ar 3 transformation point + 110 ° C.) to (Ar 3 transformation point + 180 ° C.). Rate (%)
Rd means the cumulative rolling reduction (%) in the austenite non-recrystallization temperature range where the temperature at t / 8 to t / 4 part of the steel sheet is less than (Ar 3 transformation point + 110 ° C.).
JP2008160617A 2008-06-19 2008-06-19 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same Expired - Fee Related JP5337412B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008160617A JP5337412B2 (en) 2008-06-19 2008-06-19 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
CN2009101475308A CN101608283B (en) 2008-06-19 2009-06-18 Thick steel plate with excellent brittlement crevasse crack propagation halt characteristic and manufacturing method thereof
KR1020090054162A KR101056336B1 (en) 2008-06-19 2009-06-18 Thick sheet with excellent brittle crack propagation stopping characteristics and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160617A JP5337412B2 (en) 2008-06-19 2008-06-19 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010001520A JP2010001520A (en) 2010-01-07
JP5337412B2 true JP5337412B2 (en) 2013-11-06

Family

ID=41482192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160617A Expired - Fee Related JP5337412B2 (en) 2008-06-19 2008-06-19 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same

Country Status (3)

Country Link
JP (1) JP5337412B2 (en)
KR (1) KR101056336B1 (en)
CN (1) CN101608283B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759109B2 (en) * 2010-03-09 2015-08-05 株式会社神戸製鋼所 Steel material excellent in brittle crack propagation stop property and method for producing the same
CN108130479A (en) * 2011-02-08 2018-06-08 杰富意钢铁株式会社 The excellent plate thickness of long brittle-cracking propagation stopping characteristics is the steel plate and its manufacturing method of more than 50mm
JP5900312B2 (en) * 2011-12-27 2016-04-06 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP5304925B2 (en) * 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
CN104272084A (en) * 2012-08-06 2015-01-07 杰富意钢铁株式会社 Method for evaluating long brittle crack arresting ability in thick steel plate, and testing device and method for manufacturing thick steel plate using same
CN103898406B (en) * 2014-03-25 2016-08-24 宝山钢铁股份有限公司 A kind of yield strength 890MPa level low welding crack sensitivity steel plate and manufacture method thereof
KR101657827B1 (en) * 2014-12-24 2016-09-20 주식회사 포스코 Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof
KR101999015B1 (en) 2017-12-24 2019-07-10 주식회사 포스코 Steel for structure having superior resistibility of brittle crack arrestability and manufacturing method thereof
CN110076196B (en) * 2019-05-15 2020-05-22 南京钢铁股份有限公司 Production method of crack arrest steel for container ship
KR20220147125A (en) * 2020-08-31 2022-11-02 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
CN115398019B (en) * 2020-08-31 2023-07-07 日本制铁株式会社 Steel sheet and method for producing same
WO2022045352A1 (en) * 2020-08-31 2022-03-03 日本製鉄株式会社 Steel sheet and method for producing same
CN113637896A (en) * 2021-07-12 2021-11-12 南京钢铁股份有限公司 Low-cost 420 MPa-grade bridge steel resisting large heat input welding and production method thereof
CN116555673B (en) * 2023-05-08 2024-09-17 邯郸钢铁集团有限责任公司 Low-alloy high-strength galvanized strip steel with yield strength of 460MPa and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102183A (en) 1996-09-25 1998-04-21 Nippon Steel Corp Thick steel plate excellent in brittle crack arrest property and toughness at low temperature, and its production
JPH11256229A (en) 1998-03-13 1999-09-21 Nkk Corp Steel excellent in brittle fracture propagation stopping characteristic and its production
JP4077166B2 (en) * 2001-02-28 2008-04-16 株式会社神戸製鋼所 Steel plate with excellent arrest properties and its manufacturing method
JP4044470B2 (en) * 2003-03-25 2008-02-06 株式会社神戸製鋼所 High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP4676871B2 (en) * 2005-12-19 2011-04-27 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth control
JP5181461B2 (en) * 2006-10-31 2013-04-10 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5096087B2 (en) * 2007-09-11 2012-12-12 株式会社神戸製鋼所 High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness

Also Published As

Publication number Publication date
KR20090132522A (en) 2009-12-30
JP2010001520A (en) 2010-01-07
CN101608283B (en) 2011-11-02
KR101056336B1 (en) 2011-08-11
CN101608283A (en) 2009-12-23

Similar Documents

Publication Publication Date Title
JP5337412B2 (en) Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5096087B2 (en) High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
JP4972451B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP4881773B2 (en) Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
WO2012108543A1 (en) Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same
WO2013099318A1 (en) High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP6400516B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP5114095B2 (en) Steel plate excellent in brittle crack propagation stop property and toughness at the center of plate thickness and method for producing the same
JP5759109B2 (en) Steel material excellent in brittle crack propagation stop property and method for producing the same
JP5612532B2 (en) Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JPWO2014175122A1 (en) H-section steel and its manufacturing method
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
WO2015194619A1 (en) High-strength steel plate and process for producing same
JP5147276B2 (en) High-tensile steel plate with excellent brittle cracking suppression / stop properties and low temperature toughness of weld heat affected zone
JP5812193B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6477743B2 (en) High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same
JP2005054250A (en) High tensile strength steel sheet having excellent base metal toughness and haz toughness
JP7396322B2 (en) steel plate
JP7508029B1 (en) High strength extra thick steel plate and its manufacturing method
JP7338811B1 (en) Steel plate and its manufacturing method
JP7468814B1 (en) High strength extra thick steel plate and its manufacturing method
JP7173163B2 (en) Welded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5337412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees