WO2013099318A1 - High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor - Google Patents

High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor Download PDF

Info

Publication number
WO2013099318A1
WO2013099318A1 PCT/JP2012/063409 JP2012063409W WO2013099318A1 WO 2013099318 A1 WO2013099318 A1 WO 2013099318A1 JP 2012063409 W JP2012063409 W JP 2012063409W WO 2013099318 A1 WO2013099318 A1 WO 2013099318A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
plate thickness
steel plate
crack propagation
less
Prior art date
Application number
PCT/JP2012/063409
Other languages
French (fr)
Japanese (ja)
Inventor
佳子 竹内
長谷 和邦
三田尾 眞司
善明 村上
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147017473A priority Critical patent/KR101588258B1/en
Priority to BR112014015779-0A priority patent/BR112014015779B1/en
Priority to CN201280065286.0A priority patent/CN104024462B/en
Priority to EP12863408.6A priority patent/EP2799584B1/en
Publication of WO2013099318A1 publication Critical patent/WO2013099318A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Abstract

Provided are: a high-strength thick steel plate for construction having excellent characteristics for preventing the diffusion of brittle cracks, said plate being used for ships and having a preferred plate thickness of at least 50 mm; and a method for producing the thick steel plate. The thick steel plate has excellent characteristics for preventing the diffusion of brittle cracks, characterized in that: the main constituent of the metal structure is bainite; the steel plate has an aggregate structure in which the density (I) in the RD//(110) plane at the plate thickness center is at least 1.5; and the Charpy fracture appearance transition temperature (vTrs) at the surface and plate thickness center is not more than -40°C. More preferably, the Charpy fracture appearance transition temperature (vTrs) at the plate thickness center, and the density (I) in the RD//(110) plane satisfy formula (1). vTrs(1/2t) - 12 × IRD//(110)[1/2t] ≤ -70 ...(1), wherein, vTrs(1/2t) is the fracture appearance transition temperature at the plate thickness center (°C), and IRD//(110)[1/2t] is the density in the RD//(110) plane at the plate thickness center.

Description

脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
 本発明は、脆性亀裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high−strength thick steel plate)およびその製造方法に関し、特に、船舶に用いて好適な板厚50mm以上のものに関する。 The present invention relates to a high-strength thick steel plate and a manufacturing method thereof excellent in brittle crack propagation arresting characteristics and particularly for a ship. It relates to a plate thickness of 50 mm or more.
 船舶等の大型構造物においては、脆性破壊(brittle fracture)に伴う事故が経済や環境に及ぼす影響が大きいため、安全性の向上が常に求められ、使用される鋼材に対しては、使用温度における靭性(toughness)や、脆性亀裂伝播停止特性が要求されている。 In large structures such as ships, accidents associated with brittle fractures have a large impact on the economy and the environment, so there is always a need to improve safety. There are demands for toughness and brittle crack propagation stopping properties.
 コンテナ船やバルクキャリアーなどの船舶はその構造上、船体外板(outer plate of ship’s hull)に高強度の厚肉材を使用するが、最近は船体の大型化に伴い一層の高強度厚肉化が進展している。一般に、鋼板の脆性亀裂伝播停止特性は高強度あるいは厚肉材ほど劣化する傾向があるため、脆性亀裂伝播停止特性への要求も一段と高度化している。 Ships such as container ships and bulk carriers use high-strength thick materials for the outer plate of the ship (outer plate of ship's hull). Fleshing is progressing. In general, since the brittle crack propagation stop property of a steel sheet tends to deteriorate as the strength or thickness of the material increases, the demand for the brittle crack propagation stop property is further advanced.
 鋼材の脆性亀裂伝播停止特性を向上させる手段として、従来からNi含有量を増加させる方法が知られている。液化天然ガス(Liquefied Natural Gas)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。 Conventionally, a method of increasing the Ni content is known as a means for improving the brittle crack propagation stopping property of steel. 9% Ni steel is used on a commercial scale in liquefied natural gas storage tanks.
 しかし、Ni量の増加はコストの大幅な上昇を余儀なくさせるため、LNG貯槽タンク以外の用途には適用が難しい。 However, an increase in the amount of Ni necessitates a significant increase in cost, making it difficult to apply to applications other than LNG storage tanks.
 一方、LNGのような極低温(ultra low temperature)にまで至らない、船舶やラインパイプに使用される、板厚が50mm未満の比較的薄手の鋼材に対しては、TMCP(Thermo−Mechanical Control Process)法により細粒化を図り、低温靭性を向上させて、優れた脆性亀裂伝播停止特性を付与することができる。 On the other hand, TMCP (Thermo-Mechanical Control Process) is used for relatively thin steel materials with a plate thickness of less than 50 mm used for ships and line pipes that do not reach ultra low temperature such as LNG. ) Method, fine graining can be achieved, low temperature toughness can be improved, and excellent brittle crack propagation stopping characteristics can be imparted.
 また、合金コストを上昇させることなく、脆性亀裂伝播停止特性を向上させるため表層部の組織を超微細化(ultra fine crystallization)した鋼材が特許文献1で提案されている。 Further, Patent Document 1 proposes a steel material in which the structure of the surface layer portion is ultrafinely refined in order to improve brittle crack propagation stopping characteristics without increasing the alloy cost.
 特許文献1記載の脆性亀裂伝播停止特性に優れた鋼材は、脆性亀裂が伝播する際、鋼材表層部に発生するシアリップ(塑性変形領域shear−lips)が脆性亀裂伝播停止特性の向上に効果があることに着目し、シアリップ部分の結晶粒を微細化させて、伝播する脆性亀裂が有する伝播エネルギーを吸収させることを特徴とする。 The steel material excellent in the brittle crack propagation stopping characteristics described in Patent Document 1 has an effect of improving the brittle crack propagation stopping characteristics due to shear lip (plastic deformation region shear-lips) generated in the steel layer when the brittle crack propagates. In particular, it is characterized in that the propagation energy possessed by the propagating brittle crack is absorbed by refining the crystal grains of the shear lip portion.
 製造方法として、熱間圧延後の制御冷却により表層部分をAr3変態点(transformation point)以下に冷却し、その後制御冷却(controlled cooling)を停止して表層部分を変態点以上に復熱(recuperate)させる工程を1回以上繰り返して行い、この間に鋼材に圧下を加えることにより、繰り返し変態させ又は加工再結晶させて、表層部分に超微細なフェライト組織(ferrite structure)又はベイナイト組織(bainite structure)を生成させることが記載されている。 As a manufacturing method, the surface layer portion is cooled to below A r3 transformation point (transformation point) by controlled cooling after hot rolling, then controlled cooling (Controlled Cooling) The Stop recuperator the surface layer portion to the transformation point or higher (Recuperate ) Is repeated one or more times, and during this time, the steel material is subjected to reduction, and repeatedly transformed or processed and recrystallized, so that a superfine ferrite structure or bainite structure is formed on the surface layer portion. Is described.
 さらに、特許文献2では、フェライト−パーライト(pearlite)を主体のミクロ組織とする鋼材において脆性亀裂伝播停止特性を向上させるためには、鋼材の両表面部は円相当粒径(circle−equivalent average grain size):5μm以下、アスペクト比(aspect ratio of the grains):2以上のフェライト粒を有するフェライト組織を50%以上有する層で構成し、フェライト粒径のバラツキを抑えることが重要で、バラツキを抑える方法として仕上げ圧延中の1パス当りの最大圧下率(rolling reduction)を12%以下とし局所的な再結晶現象を抑制することが記載されている。 Further, in Patent Document 2, in order to improve the brittle crack propagation stop property in a steel material mainly composed of ferrite-pearlite, both surface portions of the steel material have an equivalent circular particle diameter (cycle-equalent average grain). size): 5 μm or less, aspect ratio (aspect ratio of the grains): a layer having a ferrite structure having 50% or more of ferrite grains having two or more ferrite grains, and it is important to suppress variations in the ferrite grain size, and to suppress variations As a method, it is described that a maximum rolling reduction per pass during finish rolling is set to 12% or less to suppress a local recrystallization phenomenon.
 しかし、特許文献1、2に記載の脆性亀裂伝播停止特性に優れた鋼材は、鋼材表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、特定の組織を得るもので、実生産規模では制御が容易でなく、特に板厚が50mmを超える厚肉材では圧延、冷却設備への負荷が大きいプロセスである。 However, the steel materials excellent in brittle crack propagation stopping characteristics described in Patent Documents 1 and 2 are obtained by recooling only the steel surface layer part and then recovering the heat, and by applying processing during the recuperation, a specific structure is obtained. On the actual production scale, control is not easy, and in particular, a thick material with a plate thickness exceeding 50 mm is a process with a heavy load on the rolling and cooling equipment.
 一方、特許文献3には、フェライト結晶粒の微細化のみならずフェライト結晶粒内に形成されるサブグレイン(subgrain)に着目し、脆性亀裂伝播停止特性を向上させる、TMCPの延長上にある技術が記載されている。 On the other hand, in Patent Document 3, attention is paid not only to the refinement of ferrite crystal grains but also to subgrains formed in ferrite crystal grains, and a technique on the extension of TMCP that improves brittle crack propagation stop characteristics. Is described.
 具体的には、板厚30~40mmにおいて、鋼板表層の冷却および復熱などの複雑な温度制御を必要とせずに、(a)微細なフェライト結晶粒を確保する圧延条件、(b)鋼材板厚の5%以上の部分に微細フェライト組織を生成する圧延条件、(c)微細フェライトに集合組織(texture)を発達させるとともに加工(圧延)により導入した転位(dislocation)を熱的エネルギーにより再配置しサブグレインを形成させる圧延条件、(d)形成した微細なフェライト結晶粒と微細なサブグレイン粒の粗大化を抑制する冷却条件、によって脆性亀裂伝播停止特性を向上させる。 Specifically, in a plate thickness of 30 to 40 mm, without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer, (a) rolling conditions for securing fine ferrite crystal grains, (b) steel plate Rolling conditions for generating a fine ferrite structure in a portion of 5% or more of the thickness, (c) A texture is developed in the fine ferrite, and dislocations introduced by processing (rolling) are rearranged by thermal energy The brittle crack propagation stop characteristic is improved by rolling conditions for forming subgrains and (d) cooling conditions for suppressing coarsening of the formed fine ferrite crystal grains and fine subgrain grains.
 また、制御圧延において、変態したフェライトに圧下を加えて集合組織を発達させることにより、脆性亀裂伝播停止特性を向上させる方法も知られている。鋼材の破壊面上にセパレーション(separation)を板面と平行な方向に生ぜしめ、脆性亀裂先端の応力を緩和させることにより、脆性破壊に対する抵抗を高める。 Also known is a method of improving the brittle crack propagation stop property by controlling the rolling to develop a texture by reducing the transformed ferrite. Separation is produced on the fracture surface of the steel material in a direction parallel to the plate surface, and the stress at the tip of the brittle crack is relaxed, thereby increasing the resistance to brittle fracture.
 例えば、特許文献4には、制御圧延により(110)面X線強度比(X−ray plane intensity ratio in the(110)plane showing a texture developing degree)を2以上とし、かつ円相当径(diameter equivalent to a circle in the crystal grains)20μm以上の粗大粒を10%以下とすることにより、耐脆性破壊特性を向上させることが記載されている。 For example, in Patent Document 4, the (110) plane X-ray intensity ratio in the (110) plane showing a texture developing degree) is set to 2 or more by controlled rolling, and the equivalent diameter of the circle (diameter equivalent). To a circle in the crystal grains) It is described that the brittle fracture resistance is improved by making coarse particles of 20 μm or more 10% or less.
 特許文献5には継手部の脆性亀裂伝播停止性能の優れた溶接構造用鋼として、板厚内部の圧延面における(100)面のX線面強度比が1.5以上を有することを特徴とする鋼板が開示されている。当該集合組織発達による応力負荷方向と亀裂伝播方向の角度のずれにより脆性き裂伝播停止特性に優れることが記載されている。 Patent Document 5 is characterized in that, as a welded structural steel having excellent brittle crack propagation stopping performance in a joint part, the (100) plane X-ray plane strength ratio in the rolled surface inside the plate thickness is 1.5 or more. A steel sheet is disclosed. It is described that it has excellent brittle crack propagation stoppage properties due to the difference in angle between the stress loading direction and the crack propagation direction due to the texture development.
特公平7−100814号公報Japanese Patent Publication No. 7-100814 特開2002−256375号公報JP 2002-256375 A 特許第3467767号公報Japanese Patent No. 3467767 特許第3548349号公報Japanese Patent No. 3548349 特許第2659661号公報Japanese Patent No. 2659661
 ところで、最近の6、000TEU(Twenty−foot Equivalent Unit)を超える大型コンテナ船では板厚50mmを超える厚鋼板が使用される。非特許文献1は、板厚65mmの鋼板の脆性亀裂伝播停止性能を評価し、母材の大型脆性亀裂伝播停止試験で脆性亀裂が停止しない結果を報告している。 By the way, a heavy-duty container ship exceeding the recent 6,000 TEU (Twenty-foot Equivalent Unit) uses a thick steel plate exceeding 50 mm. Non-Patent Document 1 evaluates the brittle crack propagation stopping performance of a steel plate having a thickness of 65 mm, and reports a result that the brittle crack does not stop in a large-scale brittle crack propagation stopping test of the base material.
 また、供試材の標準ESSO試験(ESSO test compliant with WES 3003)では使用温度−10℃におけるKcaの値(以下、Kca(−10℃)とも記載する)が3000N/mm3/2に満たない結果が示され、50mmを超える板厚の鋼板を適用した船体構造の場合、安全性確保が課題となることが示唆されている。 Further, in the standard ESSO test (ESSO test comprehensive with WES 3003) of the test material, the value of Kca at the use temperature of −10 ° C. (hereinafter also referred to as Kca (−10 ° C.)) is less than 3000 N / mm 3/2 . The results are shown, and it is suggested that in the case of a hull structure to which a steel plate having a thickness exceeding 50 mm is applied, ensuring safety is an issue.
 上述した特許文献1~5に記載の脆性亀裂伝播停止特性に優れる鋼板は、製造条件や開示されている実験データから板厚50mm程度までが主な対象で、50mmを超える厚肉材へ適用した場合、所定の特性が得られるか不明で、船体構造で必要な板厚方向の亀裂伝播に対しての特性については全く検証されていない。 The above-described steel sheets with excellent brittle crack propagation stopping characteristics described in Patent Documents 1 to 5 are mainly applied to manufacturing conditions and disclosed experimental data up to a plate thickness of about 50 mm, and applied to thick materials exceeding 50 mm. In this case, it is unclear whether a predetermined characteristic can be obtained, and the characteristics against crack propagation in the plate thickness direction necessary for the hull structure have not been verified at all.
 そこで本発明は、圧延条件を最適化し、板厚方向での集合組織を制御する工業的に極めて簡易なプロセスで安定して製造し得る脆性亀裂伝播停止特性に優れる高強度厚鋼板およびその製造方法を提供することを目的とする。 Accordingly, the present invention provides a high-strength thick steel plate having excellent brittle crack propagation stopping characteristics that can be stably produced by an industrially simple process that optimizes rolling conditions and controls the texture in the thickness direction, and a method for producing the same The purpose is to provide.
 本発明者らは、上記課題の達成に向けて鋭意研究を重ね、厚肉鋼板でも優れた亀裂伝播停止特性を有する高強度厚鋼板について以下の知見を得た。
1.板厚50mmを超える厚鋼板について、標準ESSO試験を行い、図1(a)に模式的に示すような、短い亀裂の分岐3aが確認された場合に、高いアレスト性が得られることを確認した。亀裂の分岐3aにより応力が緩和さるためと推測される。図1(a)(b)は標準ESSO試験片1のノッチ2から突入した亀裂3が母材5において先端形状4で伝播を停止したことを模式的に示す。
2.上記の破面形態を得るためには、亀裂を分岐させる組織形態にする必要がある。フェライトを主体とする鋼組織よりも、内部にパケット等が存在するベイナイトを主体とする鋼組織のほうが有利である。また、へき開面(cleavage plane)である(100)面を亀裂の進展方向である圧延方向あるいは板幅方向に対して斜めに集積させることが有効である。
3.標準ESSO試験の破面を詳細に観察・解析した結果、亀裂の先端部となる板厚中央部の材質を制御することがアレスト性能改善に効果的である。特に板厚中央部の靭性および集合組織に関する指標として下記(1)式をみたすことが有効である。
vTrs(1/2t)−12×IRD//(110)[1/2t]≦−70・・・(1)
vTrs(1/2t)  : 板厚中央部の破面遷移温度 (℃)
RD//(110)[1/2t] : 板厚中央部のRD//(110)面の集積度
t:板厚(mm)
4.さらに、オーステナイト再結晶温度域にある状態において累積圧下率を20%以上とする圧延を実施することによって組織の細粒化を図る。その後、オーステナイト未再結晶温度域にある状態において累積圧下率を40%以上とする。かつ、最初のパスの圧延温度と最後のパスの圧延温度との差が40℃以内で圧延することによって、板厚中央部の集合組織を制御し、上述の組織を実現できる。
The inventors of the present invention have made extensive studies to achieve the above-mentioned problems, and have obtained the following knowledge about a high-strength thick steel plate having excellent crack propagation stopping characteristics even with a thick steel plate.
1. A standard ESSO test was performed on a thick steel plate having a thickness of more than 50 mm, and it was confirmed that high arrestability was obtained when a short crack branch 3a as shown schematically in FIG. 1A was confirmed. . It is presumed that the stress is relieved by the crack branch 3a. FIGS. 1A and 1B schematically show that the crack 3 that has entered from the notch 2 of the standard ESSO test piece 1 has stopped propagating at the tip shape 4 in the base material 5.
2. In order to obtain the above fractured surface form, it is necessary to make the structure form to branch the crack. A steel structure mainly composed of bainite having a packet or the like inside is more advantageous than a steel structure mainly composed of ferrite. It is also effective to accumulate the (100) plane, which is a cleavage plane, obliquely with respect to the rolling direction or the plate width direction, which is the crack propagation direction.
3. As a result of detailed observation and analysis of the fracture surface of the standard ESSO test, it is effective to improve the arrest performance by controlling the material of the central part of the plate thickness that becomes the tip of the crack. In particular, it is effective to satisfy the following formula (1) as an index relating to the toughness and texture of the central portion of the plate thickness.
vTrs (1 / 2t) −12 × I RD // (110) [1 / 2t] ≦ −70 (1)
vTrs (1 / 2t) : Fracture surface transition temperature at the thickness center (° C)
I RD // (110) [1 / 2t] : Degree of integration of RD // (110) plane at the center of the plate thickness t: Plate thickness (mm)
4). Furthermore, the structure is refined by carrying out rolling with a cumulative rolling reduction of 20% or more in a state where the temperature is in the austenite recrystallization temperature range. Thereafter, the cumulative rolling reduction is set to 40% or more in a state in the austenite non-recrystallization temperature region. In addition, by rolling the difference between the rolling temperature of the first pass and the rolling temperature of the last pass within 40 ° C., the texture at the center of the plate thickness can be controlled, and the above-described structure can be realized.
 本発明は得られた知見を基に更に検討を加えてなされたものである。すなわち、本発明は、
1.金属組織がベイナイト主体であり、板厚中央部におけるRD//(110)面(Rolling Direction parallel to(110)plane)の集積度Iが1.5以上の集合組織を有し、かつ表層部および板厚中央部におけるシャルピー破面遷移温度がvTrs≦−40℃であることを特徴とする脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
2.板厚中央部のシャルピー靭性値およびRD//(110)面の集積度Iが、下記(1)式を満たすことを特徴とする1記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
vTrs(1/2t)−12×IRD//(110)[1/2t]≦−70・・・(1)
vTrs(1/2t)  : 板厚中央部の破面遷移温度 (℃)
I RD//(110)[1/2t] : 板厚中央部のRD//(110)面の集積度
t:板厚(mm)
3.鋼組成が、質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.5%、Al:0.005~0.08%、P:0.03%以下、S:0.01%以下、N:0.0050%以下、Ti:0.005~0.03%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする1または2のいずれかに記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
4.鋼組成が、更に、質量%で、Nb:0.005~0.05%、Cu:0.01~0.5%、Ni:0.01~1.0%、Cr:0.01~0.5%、Mo:0.01~0.5%、V:0.001~0.10%、B:0.0030%以下、Ca:0.0050%以下、REM:0.010%以下のいずれか1種以上を含有することを特徴とする3に記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
5.3または4のいずれかに記載の組成を有する鋼素材(slab)を、1000~1200℃の温度に加熱し、オーステナイト再結晶温度域およびオーステナイト未再結晶温度域における累積圧下率の合計が65%以上の圧延を実施する。このとき、板厚中央部がオーステナイト再結晶温度域にある状態においては累積圧下率が20%以上である。次いで、板厚中央部がオーステナイト未再結晶温度域にある状態においては、累積圧下率が40%以上、かつ、前記板厚中央部がオーステナイト未再結晶温度域にある状態における圧延のうち最初のパスの圧延温度と最後のパスの圧延温度との差が40℃以内で圧延する。その後、4℃/s以上の冷却速度にて450℃以下まで冷却することを特徴とする脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。
6.450℃以下に加速冷却した後、さらに、Ac1点以下の温度に焼戻す工程を有する、5に記載の脆性亀裂伝播停止特性に優れた高強度厚鋼板の製造方法。
The present invention has been made by further study based on the obtained knowledge. That is, the present invention
1. The metal structure is mainly bainite, and has a texture with an accumulation degree I of RD // (110) plane (Rolling Direction parallel to (110) plane) at the center of the plate thickness of 1.5 or more, and a surface layer portion and A structural high-strength thick steel plate excellent in brittle crack propagation stop characteristics, characterized in that the Charpy fracture surface transition temperature at the center of the plate thickness is vTrs ≦ −40 ° C.
2. The structural high strength thickness excellent in brittle crack propagation stopping characteristics according to 1, wherein the Charpy toughness value at the center of the plate thickness and the degree of integration I of the RD // (110) plane satisfy the following formula (1): steel sheet.
vTrs (1 / 2t) −12 × I RD // (110) [1 / 2t] ≦ −70 (1)
vTrs (1 / 2t) : Fracture surface transition temperature at the thickness center (° C)
I RD // (110) [1 / 2t] : Degree of integration of RD // (110) plane at the center of the plate thickness t: Plate thickness (mm)
3. Steel composition is mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, Al: 0.005-0.08 %, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, Ti: 0.005-0.03%, with the balance being Fe and inevitable impurities 3. A structural high-strength thick steel plate excellent in brittle crack propagation stopping characteristics according to either 1 or 2.
4). The steel composition is further mass%, Nb: 0.005 to 0.05%, Cu: 0.01 to 0.5%, Ni: 0.01 to 1.0%, Cr: 0.01 to 0 0.5%, Mo: 0.01 to 0.5%, V: 0.001 to 0.10%, B: 0.0030% or less, Ca: 0.0050% or less, REM: 0.010% or less 3. The structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics as described in 3 above, containing at least one of them.
The steel material (slab) having the composition described in either 5.3 or 4 is heated to a temperature of 1000 to 1200 ° C., and the sum of the cumulative reduction ratios in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range is Roll 65% or more. At this time, the cumulative rolling reduction is 20% or more in a state where the center portion of the plate thickness is in the austenite recrystallization temperature region. Then, in the state where the plate thickness central portion is in the austenite non-recrystallization temperature range, the cumulative rolling reduction is 40% or more, and the first rolling in the state where the plate thickness central portion is in the austenite non-recrystallization temperature range Rolling is performed within a difference of 40 ° C. between the rolling temperature of the pass and the rolling temperature of the last pass. Then, it cools to 450 degrees C or less with the cooling rate of 4 degrees C / s or more, The manufacturing method of the structural high strength thick steel plate excellent in the brittle crack propagation stop characteristic.
6.450 ° C. After accelerated cooling below, further comprising the step of tempering at a temperature below A c1 point, the method of producing a high strength thick steel plate superior in brittle crack propagation stop characteristics described 5.
 本発明によれば、板厚方向に集合組織が適切に制御され、脆性亀裂伝播停止特性に優れる、板厚50mm以上の高強度厚鋼板およびその製造方法が得られ、好ましくは板厚50mmを超える、より好ましくは板厚55mm以上の鋼板に適用することが有効である。そして、造船分野では大型のコンテナ船、バルクキャリアーの強力甲板部構造においてハッチサイドコーミングや甲板部材へ適用することにより船舶の安全性向上に寄与するなど、産業上極めて有用である。 According to the present invention, it is possible to obtain a high-strength thick steel plate having a thickness of 50 mm or more and a method for producing the same, in which the texture is appropriately controlled in the thickness direction and excellent in brittle crack propagation stop characteristics, and preferably exceeds 50 mm. More preferably, it is effective to apply to a steel plate having a thickness of 55 mm or more. And in the shipbuilding field, it contributes to improving the safety of ships by applying it to hatch side combing and deck members in the structure of large decks of large container ships and bulk carriers.
板厚50mmを超える厚鋼板の標準ESSO試験の破面形態を模式的に示す図で(a)は試験片を平面側から観察した図、(b)は試験片の破面を示す図。The figure which shows typically the fracture surface form of the standard ESSO test of the thick steel plate exceeding 50 mm in thickness, (a) is the figure which observed the test piece from the plane side, (b) is the figure which shows the fracture surface of a test piece.
 本発明では、1.板厚中央部の靭性および集合組織、2.金属組織を規定する。
1.靭性および集合組織
 本発明では、圧延方向または圧延直角方向など水平方向(鋼板の面内方向)に進展する亀裂に対して亀裂伝播停止特性を向上させるため、その板厚中央部での靭性とRD//(100)面の集積度Iを所望する脆性亀裂伝播停止特性に応じて適宜規定する。
In the present invention, 1. Toughness and texture at the center of the plate thickness Define the metallographic structure.
1. Toughness and texture In the present invention, in order to improve the crack propagation stop characteristic for cracks that progress in the horizontal direction (in-plane direction of the steel sheet) such as the rolling direction or the direction perpendicular to the rolling direction, the toughness and RD at the center of the sheet thickness are improved. // The degree of integration I on the (100) plane is appropriately defined according to the desired brittle crack propagation stop characteristics.
 まず、母材靭性が良好であることが亀裂の進展を抑制するための前提となるので、本発明に係る鋼板では表層部および板厚中央部におけるシャルピー破面遷移温度を−40℃以下と規定する。なお、板厚中央部におけるシャルピー破面遷移温度が−50℃以下であることが好ましい。 First, since good base material toughness is a precondition for suppressing the progress of cracks, in the steel sheet according to the present invention, the Charpy fracture surface transition temperature in the surface layer part and the center part of the plate thickness is specified to be −40 ° C. or lower. To do. In addition, it is preferable that the Charpy fracture surface transition temperature in a plate | board thickness center part is -50 degrees C or less.
 RD//(100)面の集積度Iを発達させることにより、へき開面を亀裂主方向に対し斜めに集積させ、微細な亀裂分岐を発生させることによる脆性亀裂先端の応力緩和の効果により脆性亀裂伝播停止性能が向上する。 By developing the degree of integration I of the RD // (100) plane, the cleaved surface is accumulated obliquely with respect to the main crack direction, and the effect of stress relaxation at the brittle crack tip by generating fine crack branching causes brittle cracks. Propagation stop performance is improved.
 最近のコンテナ船やバルクキャリアーなど船体外板に用いられるようになった板厚50mmを超える厚肉材で、構造安全性を確保する上で目標とされる脆性亀裂伝播停止性能:Kca(−10℃)≧6000N/mm3/2を得る場合、板厚中央部におけるRD//(110)面の集積度Iを1.5以上、好ましくは1.7以上とする必要がある。 A brittle crack propagation stopping performance, which is a target for ensuring structural safety, is a thick material exceeding 50 mm thick that has been used for hull outer plates such as recent container ships and bulk carriers: Kca (−10 In order to obtain (° C.) ≧ 6000 N / mm 3/2 , it is necessary that the integration degree I of the RD // (110) plane at the central portion of the plate thickness is 1.5 or more, preferably 1.7 or more.
 ここで、板厚中央部におけるRD//(110)面の集積度Iとは、次のことを指す。まず、板厚中央部から板厚1mmのサンプルを採取し、板面に平行な面を機械研磨(mechanical polishing)・電解研磨(electrolytic polishing)することにより、X線回折用の試験片を用意する。この試験片を用いて、Mo線源を用いて、X線回折測定(X−ray diffraction measurement)を実施し、(200)、(110)および(211)正極点図(pole figures)を求め、得られた正極点図から3次元結晶方位密度関数(three dimensional orientation distribution function)をBunge法で計算して求める。次に、得られた3次元結晶方位密度関数から、Bunge表記でψ=0°~90°まで、5°間隔で合計19枚の断面図において、圧延方向に対して(110)面が平行となる方位の3次元結晶方位密度関数の値を積算して積算値(integrated value)を求める。この積算値を前記積算した方位の個数で割った値を、RD//(110)面の集積度Iと称する。 Here, the degree of integration I of the RD // (110) plane in the central portion of the plate thickness indicates the following. First, a sample having a thickness of 1 mm is collected from the central portion of the plate thickness, and a specimen parallel to the plate surface is mechanically polished / electrolytic polished to prepare a test piece for X-ray diffraction. . Using this test piece, an X-ray diffraction measurement (X-ray diffraction measurement) was performed using a Mo ray source, and (200), (110) and (211) positive figures (pole figures) were obtained, A three-dimensional crystal orientation density function is calculated from the obtained positive pole figure by the Bunge method. Next, from the obtained three-dimensional crystal orientation density function, the (110) plane is parallel to the rolling direction in a total of 19 cross-sectional views at 5 ° intervals from ψ 2 = 0 ° to 90 ° in Bunge notation. The integrated value is obtained by integrating the values of the three-dimensional crystal orientation density function of the orientation. A value obtained by dividing the integrated value by the number of integrated directions is referred to as an integration degree I of the RD // (110) plane.
 上述の母材靭性および集合組織の規定に加えて、板厚中央部のシャルピー靭性値およびRD//(110)面の集積度Iが、下記(1)式を満たすことが、好ましい。下記(1)式が満足されることにより、さらに優れた脆性亀裂伝播停止性能を得ることができる。
vTrs(1/2t)−12×IRD//(110)[1/2t]≦−70・・・(1)
vTrs(1/2t)  : 板厚中央部の破面遷移温度 (℃)
RD//(110)[1/2t] : 板厚中央部のRD//(110)集積度
t:板厚(mm)
It is preferable that the Charpy toughness value at the center of the plate thickness and the degree of integration I on the RD // (110) plane satisfy the following expression (1) in addition to the above-mentioned base material toughness and texture definition. By satisfying the following formula (1), further excellent brittle crack propagation stopping performance can be obtained.
vTrs (1 / 2t) −12 × I RD // (110) [1 / 2t] ≦ −70 (1)
vTrs (1 / 2t) : Fracture surface transition temperature at the thickness center (° C)
I RD // (110) [1 / 2t] : RD // (110) integration at the center of the plate thickness t: plate thickness (mm)
2.金属組織
 本発明では、金属組織をベイナイト主体とする。金属組織がベイナイト主体であるとは、ベイナイト相の面積分率が全体の80%以上であることとする。残部は、フェライト、マルテンサイト(島状マルテンサイトを含む)、パーライトなどが合計の面積分率で20%以下である。
 上記の靭性および集合組織を得るためには、オーステナイト未再結晶温度域において制御圧延を行った後に、ベイナイトへ変態させることが有効である。圧延後にオーステナイトからフェライトへ変態する場合は、目的とする靭性は得られるものの、オーステナイトからフェライトへ変態する際に変態時間が十分に存在するため、得られる集合組織がランダムとなってしまい、目標とするRD//(110)面の集積度Iが1.5以上、好ましくは1.7以上、が達成できない。これに対して、オーステナイト未再結晶温度域で圧延された組織がベイナイトへ変態する場合は変態時間が十分ではなく、特定方位の集合組織が優先的に形成される、いわゆるバリアント(variant)の選択が行われることにより、RD//(110)面の集積度Iが1.5以上、好ましくは1.7以上、を得ることができる。このため圧延・冷却後に得られる金属組織はベイナイト主体となる。
2. Metal structure In the present invention, the metal structure is mainly composed of bainite. The fact that the metal structure is mainly bainite means that the area fraction of the bainite phase is 80% or more of the whole. The balance is 20% or less of the total area fraction of ferrite, martensite (including island martensite), pearlite, and the like.
In order to obtain the above toughness and texture, it is effective to transform into bainite after performing controlled rolling in the austenite non-recrystallization temperature range. When transforming from austenite to ferrite after rolling, the desired toughness can be obtained, but because there is sufficient transformation time when transforming from austenite to ferrite, the resulting texture becomes random, and the target The degree of integration I on the RD // (110) plane is not more than 1.5, preferably not less than 1.7. On the other hand, when the structure rolled in the austenite non-recrystallization temperature region is transformed into bainite, the transformation time is not sufficient, and a so-called variant is selected in which a texture with a specific orientation is preferentially formed. Is performed, it is possible to obtain an integration degree I of RD // (110) plane of 1.5 or more, preferably 1.7 or more. For this reason, the metal structure obtained after rolling and cooling is mainly bainite.
3.化学成分
 以下、本発明における好ましい化学成分について説明する。説明において%は質量%である。
 C:0.03~0.20%
Cは鋼の強度を向上する元素であり、本発明では、所望の強度を確保するためには0.03%以上の含有を必要とするが、0.20%を超えると、溶接性が劣化するばかりか靭性にも悪影響がある。このため、Cは、0.03~0.20%の範囲に規定することが好ましい。さらに好ましくは、0.05~0.15%である。
3. Chemical Components Hereinafter, preferable chemical components in the present invention will be described. In the description,% is mass%.
C: 0.03-0.20%
C is an element that improves the strength of steel. In the present invention, it is necessary to contain 0.03% or more in order to ensure a desired strength, but if it exceeds 0.20%, the weldability deteriorates. As well as adversely affecting toughness. For this reason, C is preferably specified in the range of 0.03 to 0.20%. More preferably, it is 0.05 to 0.15%.
 Si:0.03~0.5%
Siは脱酸元素として、また、鋼の強化元素として有効であるが、0.03%未満の含有量ではその効果がない。一方、0.5%を越えると鋼の表面性状を損なうばかりか靭性が極端に劣化する。従ってその添加量を0.03%以上、0.5%以下とすることが好ましい。
Si: 0.03-0.5%
Si is effective as a deoxidizing element and as a strengthening element for steel, but if its content is less than 0.03%, it has no effect. On the other hand, if it exceeds 0.5%, not only the surface properties of the steel are impaired, but also the toughness is extremely deteriorated. Therefore, the addition amount is preferably 0.03% or more and 0.5% or less.
 Mn:0.5~2.5%
Mnは、強化元素として添加する。0.5%より少ないとその効果が十分でなく、2.5%を超えると溶接性が劣化し、鋼材コストも上昇するため、0.5%以上、2.5以下とすることが好ましい。
Mn: 0.5 to 2.5%
Mn is added as a strengthening element. If the content is less than 0.5%, the effect is not sufficient. If the content exceeds 2.5%, the weldability is deteriorated and the steel material cost is increased.
 Al:0.005~0.08%
Alは、脱酸剤として作用し、このためには0.005%以上の含有を必要とするが、0.08%を超えて含有すると、靭性を低下させるとともに、溶接した場合に、溶接金属部の靭性を低下させる。このため、Alは、0.005~0.08%の範囲に規定することが好ましく、さらに好ましくは、0.02~0.04%である。
Al: 0.005 to 0.08%
Al acts as a deoxidizer, and for this purpose, it needs to contain 0.005% or more. However, if it contains more than 0.08%, it reduces the toughness and, when welded, weld metal Reduce the toughness of the part. Therefore, Al is preferably specified in the range of 0.005 to 0.08%, more preferably 0.02 to 0.04%.
 N:0.0050%以下
Nは、鋼中のAlと結合してAlNを形成することにより、圧延加工時の結晶粒径を調整し、鋼を強化するが、0.0050%を超えると靭性が劣化するため、0.0050%以下とすることが好ましい。
N: 0.0050% or less N combines with Al in the steel to form AlN, thereby adjusting the crystal grain size during rolling and strengthening the steel, but if it exceeds 0.0050%, the toughness Since it deteriorates, it is preferable to make it 0.0050% or less.
 P、S
P、Sは、鋼中の不可避不純物であるが、Pは0.03%を超えると、Sは0.01%を超えると靭性が劣化するため、それぞれ、0.03%以下、0.01%以下が望ましく、それぞれ、0.02%以下、0.005%以下がさらに望ましい。
P, S
P and S are inevitable impurities in the steel. However, if P exceeds 0.03%, the toughness deteriorates when S exceeds 0.01%. % Or less is desirable, and 0.02% or less and 0.005% or less are more desirable, respectively.
 Ti:0.005~0.03%
Tiは微量の添加により、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化して母材靭性を向上させる効果を有する。その効果は0.005%以上の添加によって得られるが、0.03%を超える含有は、母材および溶接熱影響部の靭性を低下させるので、Tiは、0.005~0.03%の範囲にするのが好ましい。
Ti: 0.005 to 0.03%
Ti has the effect of forming nitrides, carbides, or carbonitrides by adding a small amount, and refining crystal grains to improve the base material toughness. The effect is obtained by addition of 0.005% or more, but inclusion exceeding 0.03% lowers the toughness of the base metal and the weld heat affected zone, so Ti is 0.005 to 0.03%. The range is preferable.
 以上が本発明の基本成分組成であるが、更に特性を向上させるため、Nb、Cu、Ni、Cr、Mo、V、B、Ca、REMの1種以上を含有することが可能である。 The above is the basic component composition of the present invention, but in order to further improve the characteristics, it is possible to contain one or more of Nb, Cu, Ni, Cr, Mo, V, B, Ca, and REM.
 Nb:0.005~0.05%
Nbは、NbCとしてフェライト変態時あるいは再加熱時に析出し、高強度化に寄与する。また、オーステナイト域の圧延において未再結晶温度域を拡大させる効果をもち、ベイナイトのパケットの細粒化に寄与するので、靭性の改善にも有効である。その効果は0.005%以上の添加により発揮されるが0.05%を超えて添加すると、粗大なNbCが析出し、逆に靭性の低下を招くのでその上限は0.05%とするのが好ましい。
Nb: 0.005 to 0.05%
Nb precipitates as NbC at the time of ferrite transformation or reheating, and contributes to the increase in strength. In addition, it has the effect of expanding the non-recrystallization temperature region in rolling in the austenite region, and contributes to the fine graining of the bainite packet, which is also effective in improving toughness. The effect is exhibited by addition of 0.005% or more, but if added over 0.05%, coarse NbC precipitates and conversely causes a decrease in toughness, so the upper limit is made 0.05%. Is preferred.
 Cu、Ni、Cr、Mo
Cu、Ni、Cr、Moはいずれも鋼の焼入れ性を高める元素である。圧延後の強度アップに直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために添加することができ、これらの効果は0.01%以上含有することにより発揮されるので、含有される場合には、0.01%以上とすることが好ましい。しかしながら、過度に含有すると靭性や溶接性が劣化するため、含有させる場合には、それぞれ上限をCuは0.5%、Niは1.0%、Crは0.5%、Moは0.5%とすることが好ましい。
Cu, Ni, Cr, Mo
Cu, Ni, Cr, and Mo are all elements that enhance the hardenability of steel. While contributing directly to strength enhancement after rolling, it can be added to improve functions such as toughness, high-temperature strength, or weather resistance, since these effects are exhibited by containing 0.01% or more, When contained, the content is preferably 0.01% or more. However, when it contains excessively, toughness and weldability will deteriorate, when containing, upper limit is 0.5% for Cu, 1.0% for Ni, 0.5% for Cr, and 0.5% for Mo. % Is preferable.
 V:0.001~0.10%
Vは、V(C、N)として析出強化により、鋼の強度を向上する元素である。この効果を発揮させるために0.001%以上含有してもよいが、0.10%を超えて含有すると、靭性を低下させる。このため、Vを含有させる場合には、0.001~0.10%の範囲とすることが好ましい。
V: 0.001 to 0.10%
V is an element that improves the strength of the steel by precipitation strengthening as V (C, N). In order to exhibit this effect, 0.001% or more may be contained, but if it exceeds 0.10%, toughness is reduced. For this reason, when it contains V, it is preferable to set it as 0.001 to 0.10% of range.
 B:0.0030%以下
Bは微量で鋼の焼き入れ性を高める元素として添加してもよい。しかし、0.0030%を超えて含有すると溶接部の靭性を低下させるので、Bを含有させる場合には0.0030%以下とすることが好ましい。
B: 0.0030% or less B may be added as an element that enhances the hardenability of steel in a small amount. However, if it exceeds 0.0030%, the toughness of the welded portion is lowered. Therefore, when B is contained, the content is preferably 0.0030% or less.
 Ca:0.0050%以下、REM:0.010%以下
Ca、REMは溶接熱影響部の組織を微細化し靭性を向上させ、添加しても本発明の効果が損なわれることはないので必要に応じて添加してもよい。しかし、過度に含有すると、粗大な介在物を形成し母材の靭性を劣化させるので、含有させる場合にはそれぞれの上限をCaは0.0050%、REMは0.010%とするのが好ましい。
Ca: 0.0050% or less, REM: 0.010% or less Ca, REM is necessary because it refines the structure of the heat affected zone and improves toughness, and even if added, the effect of the present invention is not impaired. It may be added accordingly. However, if it is excessively contained, coarse inclusions are formed and the toughness of the base material is deteriorated. Therefore, when it is included, the upper limit of Ca is preferably 0.0050% and REM is preferably 0.010%. .
4.製造条件
 以下、本発明における好ましい製造条件について説明する。
 製造条件として、鋼素材(スラブ)の加熱温度、熱間圧延条件、冷却条件などを規定することが好ましい。特に、熱間圧延については、オーステナイト再結晶温度域およびオーステナイト未再結晶温度域の合計での累積圧下率のほかに、板厚中央部がオーステナイト再結晶温度域にある場合と、オーステナイト未再結晶温度域にある場合とのそれぞれについて、累積圧下率を規定するとともに、前記板厚中央部がオーステナイト未再結晶域にある状態における圧延の温度条件を規定することが好ましい。これらを規定することにより、厚鋼板の表層部および板厚中央部における靭性、板厚中央部におけるRD//(110)集積度I、ならびに、板厚の1/4部における強度を、所望の値とすることができる。
4). Manufacturing conditions Hereinafter, preferable manufacturing conditions in the present invention will be described.
As manufacturing conditions, it is preferable to define the heating temperature, hot rolling conditions, cooling conditions, and the like of the steel material (slab). In particular, for hot rolling, in addition to the cumulative reduction ratio in the sum of the austenite recrystallization temperature range and the austenite non-recrystallization temperature range, the case where the central portion of the plate thickness is in the austenite recrystallization temperature range, It is preferable to define the cumulative rolling reduction for each of the cases in the temperature range and the rolling temperature conditions in a state where the plate thickness center portion is in the austenite non-recrystallized region. By defining these, the toughness at the surface layer portion and the central portion of the plate thickness, the RD // (110) integration degree I at the central portion of the plate thickness, and the strength at ¼ portion of the plate thickness can be obtained as desired. Can be a value.
 まず、上記した組成の溶鋼を、転炉等で溶製し、連続鋳造等で鋼素材とする。ついで、鋼素材を、1000~1200℃の温度に加熱してから熱間圧延を行う。 First, the molten steel having the above composition is melted in a converter or the like, and is made into a steel material by continuous casting or the like. Next, the steel material is heated to a temperature of 1000 to 1200 ° C. and then hot rolled.
 加熱温度が1000℃未満では、オーステナイト再結晶温度域における圧延を行う時間が十分に確保できない。また1200℃超えではオーステナイト粒が粗大化し、靭性の低下を招くばかりか、酸化ロスが顕著となり、歩留が低下するので、加熱温度は1000~1200℃とすることが好ましい。靭性の観点からより好ましい加熱温度の範囲は1000~1150℃である。 If the heating temperature is less than 1000 ° C., sufficient time for rolling in the austenite recrystallization temperature region cannot be secured. If the temperature exceeds 1200 ° C., the austenite grains become coarse, leading to a decrease in toughness, as well as significant oxidation loss and a decrease in yield. Therefore, the heating temperature is preferably 1000 to 1200 ° C. A more preferable heating temperature range is from 1000 to 1150 ° C. from the viewpoint of toughness.
 本発明においては、以下に述べるように、熱間圧延条件およびそれに続く冷却条件を規定することが好ましい。これにより、オーステナイト未再結晶温度域で圧延された組織をベイナイトへ変態させるので、この場合の変態時間が十分ではないことから、特定方位の集合組織が優先的に形成される、いわゆるバリアントの選択が行われることにより、RD//(110)面の集積度Iを1.5以上、好ましくは1.7以上とすることができる。 In the present invention, as described below, it is preferable to define hot rolling conditions and subsequent cooling conditions. As a result, the structure rolled in the austenite non-recrystallization temperature region is transformed into bainite, so the transformation time in this case is not sufficient, so the so-called variant selection in which a texture with a specific orientation is preferentially formed. Is performed, the integration degree I of the RD // (110) plane can be 1.5 or more, preferably 1.7 or more.
 熱間圧延はまず、板厚中央部がオーステナイト再結晶温度域にある状態において、累積圧下率を20%以上とする圧延を行うことが好ましい。この累積圧下率を20%以上とすることによりオーステナイトが細粒化し、最終的に得られる金属組織も細粒化して、靭性が向上する。累積圧下率が20%未満であると、オーステナイトの細粒化が不十分で、最終的に得られる組織において靭性が向上しない。 In the hot rolling, first, it is preferable to perform rolling with a cumulative reduction ratio of 20% or more in a state where the central portion of the plate thickness is in the austenite recrystallization temperature region. By setting the cumulative rolling reduction to 20% or more, austenite is refined and the finally obtained metal structure is also refined to improve toughness. If the cumulative rolling reduction is less than 20%, austenite is not sufficiently refined and the toughness is not improved in the finally obtained structure.
 次に、板厚中央部の温度がオーステナイト未再結晶温度域にある状態において累積圧下率40%以上とする圧延を行うことが好ましい。この温度域での累積圧下率を40%以上とすることにより、板厚中央部の集合組織を十分に発達させ、板厚中央部のRD//(110)面の集積度Iを1.5以上、好ましくは1.7以上とすることができる。 Next, it is preferable to perform rolling at a cumulative reduction of 40% or more in a state where the temperature at the center of the plate thickness is in the austenite non-recrystallization temperature range. By setting the cumulative reduction ratio in this temperature range to 40% or more, the texture at the central portion of the plate thickness is sufficiently developed, and the integration degree I of the RD // (110) plane at the central portion of the plate thickness is 1.5. As mentioned above, Preferably it can be 1.7 or more.
 なお、板厚中央部の温度がオーステナイト未再結晶温度域にある状態における圧延に時間がかかり過ぎると組織が粗大化してしまい、靭性の低下をまねいてしまう。そのため、前記板厚中央部がオーステナイト未再結晶域にある状態における圧延のうち最初のパスの圧延温度と最後のパスの圧延温度との差が40℃以内とすることが好ましい。ここで、圧延温度とは、圧延直前の鋼材の板厚中央部の温度を指す。板厚中央部の温度は、板厚、表面温度および熱履歴等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の板厚中央部の温度が求められる。 In addition, if it takes too much time for rolling in a state where the temperature at the center of the plate thickness is in the austenite non-recrystallization temperature range, the structure becomes coarse and the toughness is lowered. Therefore, it is preferable that the difference between the rolling temperature of the first pass and the rolling temperature of the last pass in the rolling in a state where the central portion of the plate thickness is in the austenite non-recrystallized region is within 40 ° C. Here, the rolling temperature refers to the temperature at the center of the plate thickness of the steel just before rolling. The temperature at the center of the plate thickness is obtained by simulation calculation or the like from the plate thickness, surface temperature, thermal history, and the like. For example, the temperature at the center of the plate thickness of the steel sheet is obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
 上記のオーステナイト再結晶温度域およびオーステナイト未再結晶温度域を合わせた全体として累積圧下率は65%以上とすることが好ましい。全体の圧下率が小さいと、組織の圧下が十分でなく、靭性および強度が目的の値を達成することが出来ない。全体の累積圧下率を65%以上とすることにより、組織に対して十分な圧下量を確保することができ、靭性および強度が目的の値を達成することができるためである。 The cumulative rolling reduction is preferably 65% or more as a whole by combining the austenite recrystallization temperature range and the austenite non-recrystallization temperature range. When the overall rolling reduction is small, the rolling of the structure is not sufficient, and the toughness and strength cannot achieve the target values. This is because by setting the total cumulative rolling reduction to 65% or more, a sufficient rolling reduction can be ensured for the structure, and the toughness and strength can achieve the target values.
 オーステナイト再結晶温度域、および、オーステナイト未再結晶温度域は、当該成分組成を有する鋼に、条件を変化させた熱・加工履歴を与える予備的実験を行うことにより、把握することができる。 The austenite recrystallization temperature range and the austenite non-recrystallization temperature range can be grasped by conducting a preliminary experiment in which the steel having the component composition is given a heat / working history with varying conditions.
 なお、熱間圧延の終了温度は特に限定されるものではないが、圧延能率の観点からは、オーステナイト未再結晶温度域において終了させることが好ましい。 In addition, although the completion | finish temperature of hot rolling is not specifically limited, From a viewpoint of rolling efficiency, it is preferable to complete | finish in the austenite non-recrystallization temperature range.
 圧延が終了した鋼板は、4℃/s以上の冷却速度にて450℃以下まで冷却することが好ましい。冷却速度を4℃/s以上とすることにより、組織が粗大化することなく、また、フェライト変態を抑制することにより、細粒のベイナイト組織が得られ、目標とする優れた靱性や集合組織、強度を得ることができる。冷却速度が4℃/s未満では、各板厚位置において、組織の粗大化やフェライト変態が進むため、所望の組織が得られないばかりか、鋼板の強度も低下する。冷却停止温度を450℃以下とすることにより、ベイナイト変態を十分に進行させることができ、所望の靭性や集合組織有する金属組織を得ることができる。冷却停止温度が450℃より高いと、ベイナイト変態が十分には進行せず、フェライトやパーライトなどの組織も生成し、本発明が目的とするベイナイト主体の組織が得られない。なお、これら冷却速度や冷却停止温度は、鋼板の板厚中央部の温度とする。板厚中央部の温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の板厚中央部の温度が求められる。 It is preferable that the rolled steel sheet is cooled to 450 ° C. or lower at a cooling rate of 4 ° C./s or higher. By making the cooling rate 4 ° C./s or more, the structure is not coarsened, and by suppressing the ferrite transformation, a fine-grained bainite structure is obtained, and the excellent excellent toughness and texture are obtained. Strength can be obtained. When the cooling rate is less than 4 ° C./s, coarsening of the structure and ferrite transformation proceed at each plate thickness position, so that not only a desired structure cannot be obtained but also the strength of the steel sheet is lowered. By setting the cooling stop temperature to 450 ° C. or less, the bainite transformation can be sufficiently advanced, and a metal structure having desired toughness and texture can be obtained. If the cooling stop temperature is higher than 450 ° C., the bainite transformation does not proceed sufficiently, and a structure such as ferrite or pearlite is also produced, and the bainite-based structure intended by the present invention cannot be obtained. In addition, let these cooling rate and cooling stop temperature be the temperature of the plate | board thickness center part of a steel plate. The temperature at the central portion of the plate thickness is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the temperature at the center of the plate thickness of the steel sheet is obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
 冷却が終了した鋼板について、焼戻し(temper)処理を実施することも可能である。焼戻しを実施することにより、鋼板の靭性をさらに向上させることができる。焼戻し温度は、鋼板平均温度でAC1点以下として実施することにより、圧延・冷却で得られた所望の組織を損なわないようにすることができる。本発明ではAC1点(℃)を下式で求める。
C1点=751−26.6C+17.6Si−11.6Mn−169Al−23Cu−23Ni+24.1Cr+22.5Mo+233Nb−39.7V−5.7Ti−895B
式において各元素記号は鋼中含有量(質量%)で、含有しない場合は0とする。
It is also possible to perform a tempering process on the steel plate that has been cooled. By performing tempering, the toughness of the steel sheet can be further improved. A tempering temperature can be made not to impair the desired structure obtained by rolling and cooling by implementing as steel sheet average temperature below AC1 point. In the present invention, the AC1 point (° C.) is obtained by the following equation.
A C1 point = 751-26.6C + 17.6Si-11.6Mn-169Al-23Cu-23Ni + 24.1Cr + 22.5Mo + 233Nb-39.7V-5.7Ti-895B
In the formula, each element symbol is the content (% by mass) in steel, and 0 if not contained.
 鋼板の平均温度も、板厚中央部の温度と同様、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。 The average temperature of the steel sheet can also be obtained by simulation calculation or the like from the sheet thickness, surface temperature, cooling conditions, etc., similarly to the temperature at the center of the sheet thickness.
 表1に示す各組成の溶鋼(鋼記号A~O)を、転炉で溶製し、連続鋳造法で鋼素材(スラブ厚250mm)とし、板厚50~90mmに熱間圧延後、冷却を行いNo.1~30の供試鋼を得た。表2に熱間圧延条件と冷却条件を示す。 Molten steel (steel symbols A to O) of each composition shown in Table 1 is melted in a converter, made into a steel material (slab thickness 250 mm) by a continuous casting method, hot-rolled to a sheet thickness of 50 to 90 mm, and then cooled. No. 1-30 test steels were obtained. Table 2 shows hot rolling conditions and cooling conditions.
 得られた厚鋼板について、板厚の1/4部よりΦ14mmのJIS14A号試験片を試験片の長手方向が圧延方向と直角となるように採取し、引張試験を行い、降伏点(Yield Strength)、引張強さ(Tensile Strength)を測定した。 With respect to the obtained thick steel plate, a JIS 14A test piece having a diameter of 14 mm was collected from a 1/4 part of the plate thickness so that the longitudinal direction of the test piece was perpendicular to the rolling direction, and a tensile test was performed, yield point (Yield Strength). Tensile Strength was measured.
 また、板厚の1/2部よりJIS4号衝撃試験片を試験片の長手軸の方向が圧延方向と平行となるように採取し、シャルピー衝撃試験を行って、破面遷移温度を求めた。ここで、表層部の衝撃試験片は、最も表面に近い面を鋼板表面から1mmの深さにするものとする。 Also, a JIS No. 4 impact test piece was taken from 1/2 part of the plate thickness so that the direction of the longitudinal axis of the test piece was parallel to the rolling direction, and a Charpy impact test was conducted to determine the fracture surface transition temperature. Here, the impact test piece of the surface layer part is assumed to have a surface closest to the surface at a depth of 1 mm from the steel sheet surface.
 次に、脆性亀裂伝播停止特性を評価するため、標準ESSO試験を行い、−10℃におけるKca値(Kca(−10℃))を求めた。 Next, in order to evaluate the brittle crack propagation stop characteristic, a standard ESSO test was performed to obtain a Kca value (Kca (−10 ° C.)) at −10 ° C.
 さらに、板厚中央部におけるRD//(110)面の集積度Iを次のようにして求めた。まず、板厚中央部から板厚1mmのサンプルを採取し、板面に平行な面を機械研磨・電解研磨することにより、X線回折用の試験片を用意した。この試験片を用いて、Mo線源を用いて、X線回折測定を実施し、(200)、(110)および(211)正極点図を求めた。得られた正極点図から3次元結晶方位密度関数をBunge法で計算して求めた。次に、得られた3次元結晶方位密度関数から、ψ=0°~90°まで、Bunge表記で5°間隔で合計19枚の断面図において、圧延方向に対して(110)面が平行となる方位の3次元結晶方位密度関数の値を積算して積算値を求めた。この積算値を前記積算した方位の個数19で割った値を、RD//(110)面の集積度Iとした。 Furthermore, the degree of integration I of the RD // (110) plane at the central portion of the plate thickness was determined as follows. First, a sample having a plate thickness of 1 mm was collected from the central portion of the plate thickness, and a test piece for X-ray diffraction was prepared by mechanically polishing and electrolytic polishing a surface parallel to the plate surface. Using this test piece, X-ray diffraction measurement was performed using a Mo ray source, and (200), (110) and (211) positive electrode dot diagrams were obtained. A three-dimensional crystal orientation density function was calculated from the obtained positive electrode dot diagram by the Bunge method. Next, from the obtained three-dimensional crystal orientation density function, (110) plane is parallel to the rolling direction in a total of 19 cross-sectional views at 5 ° intervals in the Bunge notation from ψ 2 = 0 ° to 90 °. The integrated value was obtained by integrating the values of the three-dimensional crystal orientation density function of the orientation to be. A value obtained by dividing the integrated value by the integrated number of azimuths 19 was defined as an integration degree I of the RD // (110) plane.
 表3にこれらの試験結果を示す。板厚中央部における靭性値および集合組織が本発明の範囲内である供試鋼板(製造番号1~13、27~30)の場合、Kca(−10℃)が6000N/mm3/2以上と優れた脆性亀裂伝播停止性能を示した。また、表層部および板厚中央部のシャルピー靭性値およびRD//(110)集積度Iが(1)式を満たしている供試鋼板(製造番号1~13)においては、(1)式を満たしていない供試鋼板(製造番号27~30)と比較して、高いKca(−10℃)の値が得られた。 Table 3 shows the results of these tests. In the case of a test steel sheet (manufacturing numbers 1 to 13, 27 to 30) in which the toughness value and texture at the center of the plate thickness are within the scope of the present invention, Kca (−10 ° C.) is 6000 N / mm 3/2 or more. Excellent brittle crack propagation stopping performance was demonstrated. Further, in the test steel sheets (manufacturing numbers 1 to 13) in which the Charpy toughness value and RD // (110) integration degree I of the surface layer portion and the center portion of the plate thickness satisfy the equation (1), the equation (1) is A higher Kca (−10 ° C.) value was obtained as compared with the test steel plates (Product Nos. 27 to 30) which were not satisfied.
 一方、鋼板の成分組成が本発明の好ましい範囲内であるが、鋼板の製造条件における加熱・圧延条件が本発明の好ましい範囲を外れる鋼板(製造番号21~26)はKca(−10℃)の値は6000N/mm3/2には達しなかった。鋼板(製造番号22、23、26)では鋼板の集合組織が本発明の規定を満たさない。 鋼板の成分組成が本発明の好ましい範囲外であった供試鋼板(製造番号14~20)については、鋼板の靭性が本願発明の規定を満たさず、Kca(−10℃)の値は6000N/mm3/2には達しなかった。 On the other hand, although the component composition of the steel sheet is within the preferable range of the present invention, the steel sheet (manufacturing numbers 21 to 26) whose heating and rolling conditions in the manufacturing conditions of the steel sheet deviate from the preferable range of the present invention is Kca (−10 ° C.). The value did not reach 6000 N / mm 3/2 . In the steel plate (manufacturing numbers 22, 23, and 26), the texture of the steel plate does not satisfy the provisions of the present invention. For the test steel sheets (Production Nos. 14 to 20) in which the component composition of the steel sheets was outside the preferred range of the present invention, the toughness of the steel sheets did not satisfy the provisions of the present invention, and the value of Kca (−10 ° C.) was 6000 N / It did not reach mm 3/2 .
 また、板厚中央部における靭性値および集合組織のうち少なくも一方が本発明の範囲外である供試鋼板(製造番号14~26)の場合、Kca(−10℃)が6000N/mm3/2に達しなかった。 Further, in the case of a test steel plate (manufacturing number 14 to 26) in which at least one of the toughness value and texture in the central portion of the plate thickness is outside the scope of the present invention, Kca (−10 ° C.) is 6000 N / mm 3 / 2 was not reached.
1  標準ESSO試験片
2  ノッチ
3  亀裂
3a 分岐
4  先端形状
5  母材
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1 Standard ESSO Test Piece 2 Notch 3 Crack 3a Branch 4 Tip Shape 5 Base Material
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (8)

  1.  金属組織がベイナイト主体であり、板厚中央部におけるRD//(110)面の集積度Iが1.5以上の集合組織を有し、かつ表層部および板厚中央部におけるシャルピー破面遷移温度vTrsが−40℃以下であることを特徴とする脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。 The metal structure is mainly bainite, the RD // (110) plane has a texture I of 1.5 or more in the central part of the sheet thickness, and the Charpy fracture surface transition temperature in the surface layer part and the central part of the sheet thickness. A structural high-strength thick steel plate excellent in brittle crack propagation stopping characteristics, characterized in that vTrs is −40 ° C. or lower.
  2.  板厚中央部のシャルピー破面遷移温度およびRD//(110)面の集積度Iが、下記(1)式を満たすことを特徴とする請求項1記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
    vTrs(1/2t)−12×IRD//(110)[1/2t]≦−70・・・(1)
    vTrs(1/2t)  : 板厚中央部の破面遷移温度 (℃)
    RD//(110)[1/2t] : 板厚中央部のRD//(110)面の集積度
    t:板厚(mm)
    The structure excellent in brittle crack propagation stopping characteristics according to claim 1, wherein the Charpy fracture surface transition temperature in the central portion of the plate thickness and the degree of integration I of the RD // (110) plane satisfy the following formula (1): High strength thick steel plate.
    vTrs (1 / 2t) −12 × I RD // (110) [1 / 2t] ≦ −70 (1)
    vTrs (1 / 2t) : Fracture surface transition temperature at the thickness center (° C)
    I RD // (110) [1 / 2t] : Degree of integration of RD // (110) plane at the center of the plate thickness t: Plate thickness (mm)
  3.  鋼組成が、質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.5%、Al:0.005~0.08%、P:0.03%以下、S:0.01%以下、N:0.0050%以下、Ti:0.005~0.03%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする請求項1または2のいずれかに記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。 Steel composition is mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, Al: 0.005-0.08 %, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, Ti: 0.005-0.03%, with the balance being Fe and inevitable impurities The structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics according to any one of claims 1 and 2.
  4.  鋼組成が、更に、質量%で、Nb:0.005~0.05%、Cu:0.01~0.5%、Ni:0.01~1.0%、Cr:0.01~0.5%、Mo:0.01~0.5%、V:0.001~0.10%、B:0.0030%以下、Ca:0.0050%以下、REM:0.010%以下のいずれか1種以上を含有することを特徴とする請求項3に記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。 The steel composition is further mass%, Nb: 0.005 to 0.05%, Cu: 0.01 to 0.5%, Ni: 0.01 to 1.0%, Cr: 0.01 to 0 0.5%, Mo: 0.01 to 0.5%, V: 0.001 to 0.10%, B: 0.0030% or less, Ca: 0.0050% or less, REM: 0.010% or less The structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics according to claim 3, comprising at least one of them.
  5.  請求項3に記載の組成を有する鋼素材を、1000~1200℃の温度に加熱し、オーステナイト再結晶温度域およびオーステナイト未再結晶温度域における累積圧下率の合計が65%以上の圧延を実施し、このとき、板厚中央部がオーステナイト再結晶温度域にある状態においては累積圧下率が20%以上であり、次いで、板厚中央部がオーステナイト未再結晶温度域にある状態においては、累積圧下率が40%以上、かつ、前記板厚中央部がオーステナイト未再結晶温度域にある状態における圧延のうち最初のパスの圧延温度と最後のパスの圧延温度との差が40℃以内であり、その後、4℃/s以上の冷却速度にて450℃以下まで冷却することを特徴とする脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。 The steel material having the composition according to claim 3 is heated to a temperature of 1000 to 1200 ° C., and rolling is performed such that the sum of the cumulative reduction ratios in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range is 65% or more. In this state, the cumulative reduction ratio is 20% or more in the state where the central portion of the plate thickness is in the austenite recrystallization temperature range, and then the cumulative reduction in the state where the central portion of the plate thickness is in the austenite non-recrystallization temperature region. The difference between the rolling temperature of the first pass and the rolling temperature of the last pass in rolling in a state where the rate is 40% or more and the sheet thickness central portion is in the austenite non-recrystallization temperature range is within 40 ° C, Then, it cools to 450 degrees C or less with the cooling rate of 4 degrees C / s or more, The manufacturing method of the structural high strength thick steel plate excellent in the brittle crack propagation stop characteristic.
  6.  450℃以下に加速冷却した後、さらに、Ac1点以下の温度に焼戻す工程を有する請求項5に記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。 The method for producing a high-strength structural steel plate excellent in brittle crack propagation stopping property according to claim 5, further comprising a step of tempering to a temperature of not more than Ac1 after accelerated cooling to 450 ° C or lower.
  7.  請求項4に記載の組成を有する鋼素材を、1000~1200℃の温度に加熱し、オーステナイト再結晶温度域およびオーステナイト未再結晶温度域における累積圧下率の合計が65%以上の圧延を実施し、このとき、板厚中央部がオーステナイト再結晶温度域にある状態においては累積圧下率が20%以上であり、次いで、板厚中央部がオーステナイト未再結晶温度域にある状態においては、累積圧下率が40%以上、かつ、前記板厚中央部がオーステナイト未再結晶温度域にある状態における圧延のうち最初のパスの圧延温度と最後のパスの圧延温度との差が40℃以内であり、その後、4℃/s以上の冷却速度にて450℃以下まで冷却することを特徴とする脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。 The steel material having the composition according to claim 4 is heated to a temperature of 1000 to 1200 ° C., and rolling is performed in which the total rolling reduction in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range is 65% or more. In this state, the cumulative reduction ratio is 20% or more in the state where the central portion of the plate thickness is in the austenite recrystallization temperature range, and then the cumulative reduction in the state where the central portion of the plate thickness is in the austenite non-recrystallization temperature region. The difference between the rolling temperature of the first pass and the rolling temperature of the last pass in rolling in a state where the rate is 40% or more and the sheet thickness central portion is in the austenite non-recrystallization temperature range is within 40 ° C, Then, it cools to 450 degrees C or less with the cooling rate of 4 degrees C / s or more, The manufacturing method of the structural high strength thick steel plate excellent in the brittle crack propagation stop characteristic.
  8.  450℃以下に加速冷却した後、さらに、Ac1点以下の温度に焼戻す工程を有する請求項7に記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。 The method for producing a structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics according to claim 7, further comprising a step of tempering to a temperature of not more than Ac 1 point after accelerated cooling to 450 ° C. or less.
PCT/JP2012/063409 2011-12-27 2012-05-18 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor WO2013099318A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147017473A KR101588258B1 (en) 2011-12-27 2012-05-18 High-strength thick steel plate for structural use with excellent brittle crack arrestability and method for manufacturing the same
BR112014015779-0A BR112014015779B1 (en) 2011-12-27 2012-05-18 METHOD FOR PRODUCING A HIGH RESISTANCE THICK STEEL PLATE FOR STRUCTURAL USE
CN201280065286.0A CN104024462B (en) 2011-12-27 2012-05-18 The structure high-strength steel plate of excellent in brittle-cracking propagation stopping characteristics and manufacture method thereof
EP12863408.6A EP2799584B1 (en) 2011-12-27 2012-05-18 Production method for a high-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks,

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011285570 2011-12-27
JP2011-285570 2011-12-27
JP2012-111158 2012-05-15
JP2012111158A JP5304925B2 (en) 2011-12-27 2012-05-15 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same

Publications (1)

Publication Number Publication Date
WO2013099318A1 true WO2013099318A1 (en) 2013-07-04

Family

ID=48696841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063409 WO2013099318A1 (en) 2011-12-27 2012-05-18 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor

Country Status (6)

Country Link
EP (1) EP2799584B1 (en)
JP (1) JP5304925B2 (en)
KR (1) KR101588258B1 (en)
CN (1) CN104024462B (en)
BR (1) BR112014015779B1 (en)
WO (1) WO2013099318A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105792958A (en) * 2013-11-28 2016-07-20 韩国生产技术研究院 Metal material with improved low-temperature property and method for manufacturing same
JP2018503744A (en) * 2014-12-24 2018-02-08 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504520A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
WO2018030186A1 (en) * 2016-08-09 2018-02-15 Jfeスチール株式会社 Thick high-strength steel plate and production process therefor
JP2018504524A (en) * 2014-12-24 2018-02-15 ポスコPosco Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same
JP2018504523A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155440A1 (en) * 2013-03-26 2014-10-02 Jfeスチール株式会社 High strength thick steel plate for high heat input welding with excellent brittle crack arrestability and manufacturing method therefor
US20160312327A1 (en) * 2013-12-12 2016-10-27 Jfe Steel Corporation Steel plate and method for manufacturing same (as amended)
US10316385B2 (en) 2014-03-31 2019-06-11 Jfe Steel Corporation High-tensile-strength steel plate and process for producing same
CN110878404B (en) * 2015-09-18 2022-03-04 杰富意钢铁株式会社 High-strength thick steel plate for structure
JP6338022B2 (en) * 2016-02-24 2018-06-06 Jfeスチール株式会社 High-strength extra-thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
RU2630086C1 (en) * 2016-06-14 2017-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Low silica shipbuilding steel
JP6274375B1 (en) * 2016-08-09 2018-02-07 Jfeスチール株式会社 High strength thick steel plate and manufacturing method thereof
KR102193527B1 (en) * 2016-08-09 2020-12-21 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate and its manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100814B2 (en) 1990-09-28 1995-11-01 新日本製鐵株式会社 Method for producing steel sheet with excellent brittle crack propagation arresting properties and low temperature toughness
JPH08209239A (en) * 1995-02-01 1996-08-13 Kobe Steel Ltd Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c
JP2659661B2 (en) 1993-01-06 1997-09-30 新日本製鐵株式会社 Structural steel for welding with excellent brittle fracture propagation stopping performance at joints and method of manufacturing the same
JP2002256375A (en) 2001-02-28 2002-09-11 Kobe Steel Ltd Steel plate having excellent arrest property and its manufacturing method
JP3467767B2 (en) 1998-03-13 2003-11-17 Jfeスチール株式会社 Steel with excellent brittle crack arrestability and method of manufacturing the same
JP3548349B2 (en) 1996-09-18 2004-07-28 新日本製鐵株式会社 Structural steel sheet with excellent brittle fracture resistance after plastic deformation
JP2010001520A (en) * 2008-06-19 2010-01-07 Kobe Steel Ltd Thick steel plate excellent in brittle-crack propagation stop property, and producing method thereof
JP2010202931A (en) * 2009-03-04 2010-09-16 Jfe Steel Corp High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same
JP2011001607A (en) * 2009-06-19 2011-01-06 Sumitomo Metal Ind Ltd Thick steel plate having excellent hydrogen-induced cracking resistance and brittle crack arrest property

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100814A (en) 1993-10-04 1995-04-18 Sekisui Chem Co Ltd Manufacture of cement molded item
JP3906779B2 (en) * 2002-10-25 2007-04-18 Jfeスチール株式会社 Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance
JP5435837B2 (en) * 2006-03-20 2014-03-05 新日鐵住金株式会社 Welded joint of high-tensile thick steel plate
JP4946512B2 (en) * 2007-02-28 2012-06-06 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2008261030A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp Method of manufacturing thick high-strength steel plate excellent in brittle crack propagation stopping characteristic
JP5096087B2 (en) * 2007-09-11 2012-12-12 株式会社神戸製鋼所 High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
JP5076939B2 (en) * 2008-02-07 2012-11-21 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP2011052243A (en) * 2009-08-31 2011-03-17 Nippon Steel Corp Method for manufacturing thick high-strength steel sheet superior in characteristics of stopping propagation of brittle crack
JP5487892B2 (en) * 2009-11-12 2014-05-14 新日鐵住金株式会社 Manufacturing method of low yield ratio high strength steel sheet with excellent low temperature toughness

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100814B2 (en) 1990-09-28 1995-11-01 新日本製鐵株式会社 Method for producing steel sheet with excellent brittle crack propagation arresting properties and low temperature toughness
JP2659661B2 (en) 1993-01-06 1997-09-30 新日本製鐵株式会社 Structural steel for welding with excellent brittle fracture propagation stopping performance at joints and method of manufacturing the same
JPH08209239A (en) * 1995-02-01 1996-08-13 Kobe Steel Ltd Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c
JP3548349B2 (en) 1996-09-18 2004-07-28 新日本製鐵株式会社 Structural steel sheet with excellent brittle fracture resistance after plastic deformation
JP3467767B2 (en) 1998-03-13 2003-11-17 Jfeスチール株式会社 Steel with excellent brittle crack arrestability and method of manufacturing the same
JP2002256375A (en) 2001-02-28 2002-09-11 Kobe Steel Ltd Steel plate having excellent arrest property and its manufacturing method
JP2010001520A (en) * 2008-06-19 2010-01-07 Kobe Steel Ltd Thick steel plate excellent in brittle-crack propagation stop property, and producing method thereof
JP2010202931A (en) * 2009-03-04 2010-09-16 Jfe Steel Corp High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same
JP2011001607A (en) * 2009-06-19 2011-01-06 Sumitomo Metal Ind Ltd Thick steel plate having excellent hydrogen-induced cracking resistance and brittle crack arrest property

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INOUE ET AL.: "Long Brittle Crack Propagation of Heavy-Thick Shipbuilding Steels, Conference proceedings", THE JAPAN SOCIETY OF NAVAL ARCHITECTS AND OCEAN ENGINEERS, 2006, pages 359 - 362
See also references of EP2799584A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105792958A (en) * 2013-11-28 2016-07-20 韩国生产技术研究院 Metal material with improved low-temperature property and method for manufacturing same
JP2018503744A (en) * 2014-12-24 2018-02-08 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504520A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504524A (en) * 2014-12-24 2018-02-15 ポスコPosco Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same
JP2018504523A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
US10822671B2 (en) 2014-12-24 2020-11-03 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
US10883159B2 (en) 2014-12-24 2021-01-05 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
WO2018030186A1 (en) * 2016-08-09 2018-02-15 Jfeスチール株式会社 Thick high-strength steel plate and production process therefor

Also Published As

Publication number Publication date
EP2799584A4 (en) 2015-01-07
EP2799584A1 (en) 2014-11-05
KR20140097463A (en) 2014-08-06
JP2013151732A (en) 2013-08-08
JP5304925B2 (en) 2013-10-02
BR112014015779A8 (en) 2017-07-04
CN104024462B (en) 2016-03-23
CN104024462A (en) 2014-09-03
BR112014015779A2 (en) 2017-06-13
KR101588258B1 (en) 2016-01-25
BR112014015779B1 (en) 2019-04-09
EP2799584B1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
WO2013099318A1 (en) High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP5733425B2 (en) High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5434145B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5304924B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5598617B1 (en) High strength thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5598618B1 (en) High strength thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6536514B2 (en) High strength steel plate for structure excellent in brittle crack propagation arresting property and method of manufacturing the same
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP5812193B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2009132995A (en) High strength thick steel plate for structural use having excellent brittle crack propagation arrest property, and method for producing the same
JP5733424B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6112265B2 (en) High-strength extra heavy steel plate and method for producing the same
JP5949113B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6477743B2 (en) High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same
JP5838801B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP6338022B2 (en) High-strength extra-thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
WO2018030186A1 (en) Thick high-strength steel plate and production process therefor
JP5949114B2 (en) Manufacturing method of structural high strength thick steel plate with excellent brittle crack propagation stopping characteristics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280065286.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147017473

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012863408

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014015779

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014015779

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140626