JP5435837B2 - Welded joint of high-tensile thick steel plate - Google Patents

Welded joint of high-tensile thick steel plate Download PDF

Info

Publication number
JP5435837B2
JP5435837B2 JP2006077029A JP2006077029A JP5435837B2 JP 5435837 B2 JP5435837 B2 JP 5435837B2 JP 2006077029 A JP2006077029 A JP 2006077029A JP 2006077029 A JP2006077029 A JP 2006077029A JP 5435837 B2 JP5435837 B2 JP 5435837B2
Authority
JP
Japan
Prior art keywords
steel plate
welded joint
steel
toughness
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006077029A
Other languages
Japanese (ja)
Other versions
JP2007254767A (en
Inventor
俊永 長谷川
茂 大北
昌紀 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006077029A priority Critical patent/JP5435837B2/en
Publication of JP2007254767A publication Critical patent/JP2007254767A/en
Application granted granted Critical
Publication of JP5435837B2 publication Critical patent/JP5435837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、引張強さが490MPa以上で、板厚が35mm以上の高張力厚鋼板を溶接して得た高張力厚鋼板の溶接継手に関する。   The present invention relates to a welded joint of a high-tensile steel plate obtained by welding a high-tensile steel plate having a tensile strength of 490 MPa or more and a plate thickness of 35 mm or more.

近年、船舶及び海洋構造物等の溶接構造物の大型化に伴い、使用される鋼の高強度化及び厚手化が進められている。また、安全性の追求から、厚手高強度化の要求と共に低温靱性に対する要求も厳格化してきている。   In recent years, with the increase in size of welded structures such as ships and offshore structures, the strength and thickness of steel used has been increased. In addition, from the pursuit of safety, demands for low temperature toughness have been tightened along with demands for thick and high strength.

低温靱性の厳格化は、シャルピー衝撃試験における試験温度の低温下及び要求吸収エネルギーの増加にも反映されるが、より実際の構造物に近い全厚での大型破壊試験による破壊靱性値の要求も増加している。即ち、脆性破壊の発生破壊靱性(Kc値)については、母材だけでなく、溶接継手についても、全厚でのディープノッチ試験及びCTOD試験での保証が求められ、更に一旦発生した脆性き裂の停止能力を表す脆性き裂伝播停止破壊靱性値としてのKca値を、最低限母材において保証することが求められている。   The stricter low-temperature toughness is reflected in the low temperature of the test temperature in Charpy impact test and the increase in the required absorbed energy, but the demand for fracture toughness value by large-scale fracture test at full thickness closer to the actual structure is also required. It has increased. In other words, with regard to the fracture toughness (Kc value) of brittle fracture, not only the base metal but also welded joints are required to be guaranteed in the deep notch test and CTOD test at full thickness, and once the brittle crack has occurred. As a minimum, it is required to guarantee a Kca value as a brittle crack propagation stop fracture toughness value representing the stopping ability of a base material.

従来、継手の脆性破壊特性に関しては、溶接継手において靱性が最も劣化する可能性が高い溶接熱影響部(Heat Affected Zone:HAZ)の靱性に注目し、この部分の靭性を向上させるために、HAZの組織微細化を中心に金属組織学的な靱性向上が図られている。そして、その評価手段としては、鋼板の一定位置から採取された小型の試験片を使用したシャルピー衝撃試験が一般的であり、このシャルピー衝撃試験の結果を向上させるための金属組織学的手法が、鋼板全体の脆性破壊特性の向上にも適用されている。   Conventionally, regarding the brittle fracture characteristics of joints, attention has been paid to the toughness of a heat affected zone (HAZ) where the toughness is most likely to deteriorate in a welded joint. In order to improve the toughness of this part, HAZ Improvement of metallographic toughness has been achieved with a focus on the refinement of the structure. And as its evaluation means, Charpy impact test using a small test piece collected from a certain position of the steel sheet is common, metallographic technique to improve the result of this Charpy impact test, It is also applied to improve the brittle fracture characteristics of the entire steel sheet.

しかしながら、母材においては、鋼板の組織、強度特性及び靱性が板厚方向に変化しており、HAZにおいては、さらに複雑な組織及び機械的性質の分布を有している。このため、シャルピー衝撃特性で評価される全厚での破壊靱性値は、この複雑な組織及び機械的性質の分布の総合的特性として決定される。特に、母材が厚手材になる程、全厚で測定される破壊靱性値と、シャルピー衝撃試験のような小型試験との差が大きくなる。従って、シャルピー衝撃特性に基づいて、特定位置での靱性だけを向上させただけでは、必ずしもKc値及びKca値を直接的に向上させることができない場合もある。また、母材である鋼板の破壊靱性値及び継手全体としての破壊靱性値を、金属組織学的な手段だけで確実に向上させるためには、鋼板及び継手の全ての位置において靱性を高める必要がある。このため、高価な合金元素を多量に添加したり、TMCP技術を駆使したりする必要が生じ、製造コストの増加及び溶接性の劣化を伴う問題が生じる。   However, in the base material, the structure, strength characteristics, and toughness of the steel sheet change in the thickness direction, and in HAZ, the structure has a more complicated structure and distribution of mechanical properties. For this reason, the fracture toughness value at the total thickness evaluated by the Charpy impact property is determined as an overall characteristic of this complex structure and distribution of mechanical properties. In particular, the thicker the base material, the greater the difference between the fracture toughness value measured at full thickness and a small test such as the Charpy impact test. Therefore, there are cases where the Kc value and the Kca value cannot always be improved directly by only improving the toughness at a specific position based on the Charpy impact characteristics. In addition, in order to reliably improve the fracture toughness value of the base steel sheet and the fracture toughness of the joint as a whole, it is necessary to increase the toughness at all positions of the steel sheet and joint. is there. For this reason, it is necessary to add a large amount of an expensive alloy element or to make full use of the TMCP technique, which causes problems associated with an increase in manufacturing cost and deterioration of weldability.

そこで、従来、靱性分布を制御することによって、鋼板全体の破壊靱性値を向上させる技術が提案されている(例えば、特許文献1参照。)。この特許文献1に記載の溶接用構造用鋼板においては、Ni等の高価な元素を添加せずに、Kca特性及びNDT特性を両立させるため、粗圧延後、表層部のみ冷却してAr点以下とした後、板厚内部の顕熱により復熱しながら圧延することにより、表層から少なくとも0.1mm以上の範囲を、平均円相当径で3μm以下のフェライト粒からなり、かつそのフェライト粒の同一結晶方位を有する集合組織のコロニーのアスペクト比(長径/短径)が4以上の組織により構成している。 Thus, conventionally, a technique for improving the fracture toughness value of the entire steel sheet by controlling the toughness distribution has been proposed (see, for example, Patent Document 1). In the structural steel sheet for welding described in Patent Document 1, in order to achieve both Kca characteristics and NDT characteristics without adding an expensive element such as Ni, after rough rolling, only the surface layer portion is cooled and Ar 1 point. After the following, by rolling while recuperating by sensible heat inside the plate thickness, a range of at least 0.1 mm or more from the surface layer is composed of ferrite grains having an average equivalent circle diameter of 3 μm or less, and the same ferrite grains The colony of the texture having a crystal orientation is composed of a structure having an aspect ratio (major axis / minor axis) of 4 or more.

特開平5−148542号公報JP-A-5-148542

しかしながら、前述した従来の技術には、以下に示す問題点がある。特許文献1に記載の技術は、鋼板の表層部に靱性が極めて良好な超細粒組織を形成させて、鋼板全体としてのKca値を高める技術であるが、溶接継手としたときの破壊靱性値については考慮されていない。更に、従来、個々の位置での化学組成の調整及び組織制御によるシャルピー衝撃特性の向上だけでなく、鋼板の板厚方向又は継手全体における組織及び機械的性質の分布の総合的制御という観点で、母材のKca値に加えて、母材及び継手の脆性破壊発生の破壊靱性値(Kc値)を向上させる技術は、開発されていない。   However, the conventional techniques described above have the following problems. The technique described in Patent Document 1 is a technique for increasing the Kca value of the steel sheet as a whole by forming an ultrafine grain structure with extremely good toughness on the surface layer of the steel sheet. Is not considered. Furthermore, conventionally, in addition to improving the Charpy impact properties by adjusting the chemical composition and structure control at each position, in terms of comprehensive control of the structure and mechanical property distribution in the plate thickness direction of the steel sheet or in the entire joint, In addition to the Kca value of the base material, a technique for improving the fracture toughness value (Kc value) of occurrence of brittle fracture of the base material and the joint has not been developed.

本発明は、上記問題点に鑑みてなされたものであって、板厚が35mm以上の厚手高張力鋼板を溶接した継手において、脆性破壊発生の破壊靱性値(Kc値)及び脆性破壊き裂伝播停止破壊靱性値(Kca値)の両方が良好な高張力鋼板の溶接継手を提供することを目的とする。   The present invention has been made in view of the above-described problems, and in a joint in which a thick high-tensile steel plate having a thickness of 35 mm or more is welded, the fracture toughness value (Kc value) of brittle fracture occurrence and brittle fracture crack propagation. It aims at providing the welded joint of the high-tensile steel plate with favorable both stop fracture toughness values (Kca value).

本発明に係る高張力厚鋼板の溶接継手は、引張強さが490MPa以上724MPa以下で、板厚が35mm以上70mm以下の高張力厚鋼板を溶接して得た高張力厚鋼板の溶接継手において、前記鋼板とこの鋼板の溶接熱影響部を含む溶接部とからなり、前記鋼板は、質量%で、C:0.01〜0.3%、Si:0.01〜2%、Mn:0.1〜3%、Al:0.003〜0.1%、N:0.001〜0.01%を含有すると共に、P:0.02%以下及びS:0.01%以下に規制し、残部がFe及び不可避不純物からなり、前記鋼板及び前記溶接熱影響部は、板厚の1/4の位置での2mmVノッチシャルピー衝撃特性が破面遷移温度で−20℃以下であり、かつ前記鋼板の表面から板厚の1/6の位置までの範囲の降伏応力YPSと、板厚の1/4の位置から板厚中心までの範囲の降伏応力YPCとの比(YPS/YPC)が1.3以下であることを特徴とする。 The welded joint of the high strength thick steel plate according to the present invention is a welded joint of a high strength thick steel plate obtained by welding a high strength thick steel plate having a tensile strength of 490 MPa to 724 MPa and a plate thickness of 35 mm to 70 mm . It consists of the said steel plate and the welding part containing the welding heat affected zone of this steel plate, and the said steel plate is the mass%, C: 0.01-0.3%, Si: 0.01-2%, Mn: 0.00. 1 to 3%, Al: 0.003 to 0.1%, N: 0.001 to 0.01%, P: 0.02% or less and S: 0.01% or less, The balance consists of Fe and unavoidable impurities, and the steel plate and the weld heat affected zone have a 2 mm V notch Charpy impact property at a position of ¼ of the plate thickness and a fracture surface transition temperature of −20 ° C. or less, Yield stress YPS in the range from the surface of the sheet to 1/6 of the plate thickness The ratio of the yield stress YPC ranging from 1/4 position in the plate thickness to the thickness center (YPS / YPC) is equal to or more than 1.3.

この溶接継手では、前記鋼板は、更に、質量%で、Ti:0.005〜0.03%及びCa:0.0005〜0.003%を含有しており、かつ前記鋼板及び前記溶接熱影響部の組織中には、平均円相当径が0.005〜2μmの酸化物粒子が、単位面積当たりの個数で、100〜3000個/mm含まれていてもよい。 In this welded joint, the steel sheet further contains, by mass%, Ti: 0.005 to 0.03% and Ca: 0.0005 to 0.003%, and the steel sheet and the welding heat effect. In the structure of the part, 100 to 3000 particles / mm 2 of oxide particles having an average equivalent circle diameter of 0.005 to 2 μm may be contained per unit area.

また、前記鋼板は、更に、質量%で、Mg:0.0001〜0.002%を含有することもできる。   Moreover, the said steel plate can also contain Mg: 0.0001-0.002% by the mass% further.

更に、前記鋼板におけるS含有量は、例えば、質量%で、0.002〜0.01%としてもよい。   Furthermore, S content in the said steel plate is good also as 0.002-0.01% by mass%, for example.

更にまた、前記鋼板は、更に、質量%で、Cu:0.05〜1.5%、Cr:0.05〜2%、Mo:0.05〜2%、W:0.05〜2%、V:0.01〜0.2%、Nb:0.003〜0.1%、Ta:0.01〜0.2%及びZr:0.005〜0.1%からなる群から選択された1種又は2種以上の元素を含有していてもよく、また、Y:0.001〜0.01%及びCe:0.005〜0.1%からなる群から選択された1種又は2種以上の元素を含有していてもよい。 Furthermore, the steel sheet further contains, by mass%, C u: 0.05~1.5%, Cr: 0.05~2%, Mo: 0.05~2%, W: 0.05~2 %, V: 0.01-0.2%, Nb: 0.003-0.1%, Ta: 0.01-0.2% and Zr: 0.005-0.1% 1 type selected from the group consisting of Y: 0.001 to 0.01% and Ce: 0.005 to 0.1% may be contained. Or you may contain 2 or more types of elements.

本発明によれば、引張強さが490MPa以上で、板厚が35mm以上の厚手高張力鋼板の溶接継手において、母材となる鋼板の組成を適正化すると共に、鋼板及び溶接熱影響部における板厚の1/4位置での低温靱性、及び母材における鋼板表層部と内部の各降伏応力の比を適正化しているため、脆性破壊発生の破壊靱性値(Kc値)及び脆性破壊き裂伝播停止破壊靱性値(Kca値)の両方を良好にすることができ、産業上の効果は極めて大きい。   According to the present invention, in a welded joint of a thick high-tensile steel plate having a tensile strength of 490 MPa or more and a plate thickness of 35 mm or more, the composition of the steel plate that serves as a base material is optimized, and the plate in the steel plate and the weld heat affected zone. The fracture toughness value (Kc value) and brittle fracture crack propagation due to the occurrence of brittle fracture because the ratio of the low-temperature toughness at the 1/4 position of the thickness and the ratio of the yield stress inside the steel sheet surface layer in the base metal is optimized. Both the stop fracture toughness value (Kca value) can be improved, and the industrial effect is extremely large.

以下、本発明を実施するための最良の形態について、詳細に説明する。本発明者は溶接継手の破壊靱性値の支配因子を詳細に検討し、従来から知られているように、比較的厚さの薄い溶接継手では、板厚の1/4位置でのシャルピー衝撃特性と、全厚の脆性破壊発生の破壊靱性値(Kc値)又は脆性破壊き裂伝播停止破壊靱性値(Kca値)との間には相関はあるものの、板厚が35mm以上の厚手の溶接継手においては、板厚の1/4位置でのシャルピー衝撃特性が同等でも、溶接継手の全厚のKc値及び/又はKca値が大きく異なる場合があることを確認した。また、この原因を鋼材の成分、組織及び機械的性質等から調べた結果、溶接継手の全厚におけるKc値及びKca値の破壊靱性値は、シャルピー衝撃特性の他に、特に、母材となる鋼板の板厚方向の降伏応力(YP)分布が、大きな影響していることを知見した。   Hereinafter, the best mode for carrying out the present invention will be described in detail. The present inventor has studied in detail the factors governing the fracture toughness value of welded joints, and as is known from the past, in a relatively thin welded joint, the Charpy impact characteristics at ¼ position of the plate thickness. There is a correlation between the total thickness of brittle fracture occurrence fracture toughness value (Kc value) or brittle fracture crack propagation stop fracture toughness value (Kca value), but a thick welded joint with a plate thickness of 35 mm or more In the above, it was confirmed that the Kc value and / or Kca value of the total thickness of the welded joint may be greatly different even if the Charpy impact characteristics at the 1/4 position of the plate thickness are equivalent. Moreover, as a result of investigating this cause from the composition, structure, mechanical properties, etc. of the steel material, the Kc value and the fracture toughness value of the Kca value in the total thickness of the welded joint are particularly the base material in addition to the Charpy impact characteristics. It was found that the yield stress (YP) distribution in the plate thickness direction of the steel plate has a great influence.

本発明は上記知見に基づき、溶接継手の母材である板厚が35mm以上の厚手の鋼板及びその溶接熱影響部における板厚の1/4位置での低温靱性、及び母材(鋼板)の表層部の降伏応力と内部の降伏応力との比を適正化することにより、溶接継手全厚のKc値及びKca値の破壊靱性値を向上するものであり、その要件とするところは下記に示す通りである。   Based on the above knowledge, the present invention is a thick steel plate having a thickness of 35 mm or more, which is a base material of a welded joint, and low-temperature toughness at 1/4 position of the thickness in the weld heat affected zone, and the base material (steel plate) By optimizing the ratio between the yield stress of the surface layer and the internal yield stress, the fracture toughness value of the weld joint full thickness Kc value and Kca value is improved, and the requirements are as follows. Street.

即ち、本発明の高張力厚鋼板の溶接継手(以下、単に溶接継手という。)は、板厚が35mm以上の高張力厚鋼板を溶接して得た継手であり、母材である鋼板と、この鋼板の溶接熱影響部を含む溶接部とにより構成される。そして、この鋼板は、質量%で、C:0.01〜0.3%、Si:0.01〜2%、Mn:0.1〜3%、P:0.02%以下、S:0.01%以下、Al:0.003〜0.1%、N:0.001〜0.01%を含有し、残部がFe及び不可避不純物からなる組成を有する。また、鋼板及びその溶接熱影響部は、板厚の1/4の位置での2mmVノッチシャルピー衝撃特性が破面遷移温度で−20℃以下であり、かつ鋼板の表面から板厚の1/6の位置までの範囲の降伏応力YPと、板厚の1/4の位置から板厚中心までの範囲の降伏応力YPとの比(YP/YP)が下記数式(1)を満足するものである。 That is, the high-tensile thick steel plate welded joint of the present invention (hereinafter simply referred to as a welded joint) is a joint obtained by welding a high-tensile thick steel plate having a thickness of 35 mm or more, and a steel plate as a base material, It is comprised by the welding part containing the welding heat affected zone of this steel plate. And this steel plate is the mass%, C: 0.01-0.3%, Si: 0.01-2%, Mn: 0.1-3%, P: 0.02% or less, S: 0 .01% or less, Al: 0.003 to 0.1%, N: 0.001 to 0.01%, with the balance being Fe and inevitable impurities. The steel plate and its weld heat-affected zone have a 2 mm V notch Charpy impact property at a fracture surface transition temperature of −20 ° C. or less at a quarter of the plate thickness, and 1/6 of the plate thickness from the surface of the steel plate. The ratio (YP S / YP C ) of the yield stress YP S in the range up to the position of γ and the yield stress YP C in the range from the position of ¼ the plate thickness to the center of the plate thickness satisfies the following formula (1) To do.

Figure 0005435837
Figure 0005435837

図1は横軸に鋼板の表層部の降伏応力YPと、鋼板の内部の降伏応力YPとの比(YP/YP)をとり、縦軸に継手のKc値をとって、各破面遷移温度(vTrs)における継手のKc値とYP/YPとの関係を示すグラフ図であり、図2はシャルピー衝撃試験と大型破壊試験との違いを示す概念図である。なお、図1に示すKc値は、溶接継手の溶接金属と溶接熱影響部との境界(フュージョンライン:FL)において、図2に示すように全厚にノッチを入れたディープノッチ試験によって測定された−20℃におけるKc値である。また、破面遷移温度(vTrs)及び鋼板の表層部の降伏応力YPと鋼板の内部の降伏応力YPとの比(YP/YP)は、板厚のt/4位置を中心とする範囲のみにノッチを入れた2mmVノッチシャルピー衝撃試験によって測定した値である。 FIG. 1 shows the ratio (YP S / YP C ) between the yield stress YP S of the surface layer portion of the steel sheet and the yield stress YP C inside the steel sheet on the horizontal axis, and the Kc value of the joint on the vertical axis. FIG. 2 is a graph showing the relationship between the Kc value of the joint at the fracture surface transition temperature (vTrs) and YP S / YP C, and FIG. 2 is a conceptual diagram showing the difference between the Charpy impact test and the large fracture test. The Kc value shown in FIG. 1 is measured by a deep notch test in which a notch is made in the entire thickness as shown in FIG. 2 at the boundary (fusion line: FL) between the weld metal of the weld joint and the weld heat affected zone. Kc value at -20 ° C. The ratio of the fracture surface transition temperature (vTrs) and the yield stress YP S of the surface layer portion of the steel sheet to the yield stress YP C inside the steel sheet (YP S / YP C ) is centered on the t / 4 position of the plate thickness. It is a value measured by a 2 mm V notch Charpy impact test in which notches are made only in the range.

また、鋼板の表層部の降伏応力YPは、溶接継手の母材部である鋼板の表面から板厚の1/6位置までの範囲の降伏応力、鋼板の内部の降伏応力YPは、板厚の1/4位置から板厚中心までの範囲の降伏応力を示す。これらの降伏応力YP及びYPの測定は、夫々鋼板の表面から板厚の1/6位置及び板厚の1/4位置から板厚中心までを試験片厚とする板状引張試験片を使用して行うことが好ましいが、鋼板が厚く、各試験片の厚さが引張試験機の能力を超えてしまう場合は、夫々の範囲を分割して複数の板状又は丸棒引張試験片を採取し、これらの試験片を使用して試験を行った後、各分割位置での降伏応力を平均してもよい。 Further, the yield stress YP S of the surface layer portion of the steel plate is the yield stress in the range from the surface of the steel plate, which is the base material portion of the welded joint, to the 1/6 position of the plate thickness, and the yield stress YP C inside the steel plate is The yield stress in the range from the 1/4 position of the thickness to the center of the plate thickness is shown. These yield stresses YP S and YP C are measured using a plate-like tensile test piece having a thickness from the surface of the steel plate to the 1/6 position of the plate thickness and from the 1/4 position of the plate thickness to the center of the plate thickness. It is preferable to use it, but when the steel plate is thick and the thickness of each test piece exceeds the capacity of the tensile tester, each plate is divided into a plurality of plate or round bar tensile test pieces. After collecting and testing using these specimens, the yield stress at each split position may be averaged.

更に、上述した測定に使用した溶接継手は、炭素当量が約0.3〜0.5質量%程度の種々の化学組成を有する高張力鋼を、熱間圧延する際に圧延条件又は圧延後の冷却・熱処理条件を変えることによって板厚方向の強度分布を変化させ、板厚が50mm、引張強度TSが490〜600MPaの厚手鋼板を製造し、これらの厚手鋼板を簡易エレガス溶接法により1パス大入熱溶接を行って作製した。   Furthermore, the welded joint used in the above-described measurement is subjected to rolling conditions or after rolling when high-tensile steel having various chemical compositions having a carbon equivalent of about 0.3 to 0.5% by mass is hot-rolled. By changing the cooling and heat treatment conditions, the strength distribution in the plate thickness direction is changed to produce thick steel plates with a plate thickness of 50 mm and a tensile strength TS of 490 to 600 MPa, and these thick steel plates are one pass large by a simple elegance welding method. It was produced by heat input welding.

図1に示すように、シャルピー試験により測定された板厚の1/4位置でのシャルピー衝撃特性(破面遷移温度:vTrs)が同程度の場合でも、ディープノッチ試験により測定された板厚全厚保における脆性破壊発生の破壊靭性(Kc値)は、鋼板の表層部と内部の降伏応力比(YP/YP)に影響を受ける。特に、上記数式(1)で定義される鋼板の表層部の降伏応力YPと鋼板の内部の降伏応力YPとの比(YP/YP)が1.3を超えて高くなると、継手のKc値は大きく低下する。これは、溶接継手が荷重を受けた際に、母材鋼板の表層部の降伏応力YPが鋼板の内部の降伏応力YPに比べて高く、上述した降伏応力比(YP/YP)が1.3を超えるような条件の場合には、鋼板の変形が拘束され、その結果、板厚中心部での局部応力が通常よりも上昇する。このような理由から、シャルピー衝撃試験のような小型試験で得られる板厚の1/4位置での低温靱性が良好であっても、Kc値が大きく低下ことがある。 As shown in FIG. 1, even when the Charpy impact characteristics (fracture surface transition temperature: vTrs) at the 1/4 position of the plate thickness measured by the Charpy test are similar, the total plate thickness measured by the deep notch test is The fracture toughness (Kc value) of the occurrence of brittle fracture in thickness maintenance is affected by the yield stress ratio (YP S / YP C ) between the surface layer portion and the inside of the steel sheet. In particular, when the ratio (YP S / YP C ) between the yield stress YP S of the surface layer portion of the steel sheet defined by the above formula (1) and the yield stress YP C inside the steel sheet exceeds 1.3, the joint The Kc value of is greatly reduced. This is because when the welded joint receives a load, the yield stress YP S of the surface layer portion of the base steel plate is higher than the yield stress YP C inside the steel plate, and the above-described yield stress ratio (YP S / YP C ). When the condition exceeds 1.3, the deformation of the steel plate is constrained, and as a result, the local stress at the central portion of the plate thickness increases more than usual. For these reasons, even if the low temperature toughness at the 1/4 position of the plate thickness obtained by a small test such as the Charpy impact test is good, the Kc value may be greatly reduced.

本発明者は、このような現象は、母材が板厚35mm以上の厚板の場合に特に顕著となり、化学組成及び微視組織にはよらず、また継手及び母材の違いによらず、更にディープノッチ試験及びCTOD試験で求められる脆性破壊発生の破壊靱性値(Kc値)だけでなく、2重引張試験及びESSO試験により測定される脆性き裂の伝播停止破壊靱性値(Kca値)においても同様であることを確認した。   The inventor of the present invention is particularly prominent when the base material is a thick plate having a thickness of 35 mm or more, regardless of the chemical composition and microstructure, and regardless of the difference between the joint and the base material. Furthermore, not only the fracture toughness value (Kc value) of the occurrence of brittle fracture required by the deep notch test and the CTOD test, but also the propagation stop fracture toughness value (Kca value) of the brittle crack measured by the double tensile test and the ESSO test. The same was confirmed.

一方、図1に示すように、上記数式(1)で定義される鋼板の表層部の降伏応力YPと鋼板の内部の降伏応力YPとの比(YP/YP)が1.3以下の条件であっても、板厚の1/4位置でのシャルピー衝撃特性(vTrs)が低下することにより、脆性破壊発生の破壊靱性値(Kc値)は低下する。このため、目標とする脆性破壊発生の破壊靱性値(Kc値)を確保するためには、板厚の1/4位置でのシャルピー衝撃特性(vTrs)も良好にする必要がある。 On the other hand, as shown in FIG. 1, the ratio (YP S / YP C ) between the yield stress YP S of the surface layer portion of the steel sheet defined by the above formula (1) and the yield stress YP C inside the steel sheet is 1.3. Even under the following conditions, the fracture toughness value (Kc value) of the occurrence of brittle fracture is lowered due to a decrease in Charpy impact characteristics (vTrs) at a 1/4 position of the plate thickness. For this reason, in order to secure the target fracture toughness value (Kc value) for the occurrence of brittle fracture, it is necessary to improve the Charpy impact characteristics (vTrs) at the 1/4 position of the plate thickness.

図1によれば、溶接継手における板厚の1/4位置でのシャルピー衝撃特性(vTrs)が−20℃以下を満足し、上記数式(1)式で定義される鋼板の表層部(鋼板の表面から板厚の1/6位置までの範囲)の降伏応力YPと鋼板の内部(板厚の1/4位置から板厚中心までの範囲)の降伏応力YPとの比(YP/YP)が1.3以下を満足する条件であれば、溶接継手の全厚における脆性破壊発生の破壊靱性値(Kc)を、3920N/mm1.5(400kgf/mm1.5)以上とすることができる。 According to FIG. 1, the Charpy impact property (vTrs) at a 1/4 position of the plate thickness in the welded joint satisfies −20 ° C. or less, and the surface layer portion of the steel plate defined by the above formula (1) (of the steel plate) The ratio of the yield stress YP S in the range from the surface to the 1/6 position of the plate thickness) and the yield stress YP C in the interior of the steel plate (the range from the 1/4 position of the plate thickness to the center of the plate thickness) (YP S / YP C ) is a condition satisfying 1.3 or less, the fracture toughness value (Kc) of occurrence of brittle fracture in the entire thickness of the welded joint is 3920 N / mm 1.5 (400 kgf / mm 1.5 ) or more. can do.

同様に、本発明者は、板厚50mmの厚手鋼板を溶接した溶接継手について、上述した降伏応力比(YP/YP)と、ESSO試験により測定される溶接継手における鋼板(母材)の脆性き裂の伝播停止破壊靱性値(Kca値)及び板厚の1/4位置でのシャルピー衝撃特性(vTrs)との関係についても検討し、この板厚の1/4位置でのシャルピー衝撃特性(vTrs)が−20℃以下を満足し、かつ降伏応力比(YP/YP)が1.3以下を満足する条件にしたとき、鋼板(母材)の全厚における脆性き裂の伝播停止破壊靱性値(Kca値)が3920N/mm1.5(400kgf/mm1.5)となる温度が−40℃以下となり、伝播停止破壊靱性も良好となることを確認している。 Similarly, the inventor of the present invention has obtained the above-described yield stress ratio (YP S / YP C ) for the welded joint obtained by welding a thick steel plate having a thickness of 50 mm, and the steel plate (base material) of the welded joint measured by the ESSO test. We also investigated the relationship between the propagation stop fracture toughness value (Kca value) of brittle cracks and the Charpy impact property (vTrs) at 1/4 position of the plate thickness, and the Charpy impact property at 1/4 position of the plate thickness. When (vTrs) satisfies −20 ° C. or less and the yield stress ratio (YP S / YP C ) satisfies 1.3 or less, the propagation of a brittle crack in the entire thickness of the steel plate (base material) It has been confirmed that the temperature at which the stop fracture toughness value (Kca value) is 3920 N / mm 1.5 (400 kgf / mm 1.5 ) is −40 ° C. or less, and the propagation stop fracture toughness is also improved.

以上の検討結果から、本発明においては、溶接継手の全厚における脆性破壊発生の破壊靱性値(Kc)及び溶接継手における鋼板の脆性き裂の伝播停止破壊靱性値(Kca値)を十分に向上するために、溶接継手における鋼板(母材)及び溶接熱影響部の夫々について、板厚の1/4位置での2mmVノッチシャルピー衝撃特性が破面遷移温度で−20℃以下を満足し、かつ鋼板の表面から板厚の1/6位置までの範囲の降伏応力YPと、板厚の1/4位置から板厚中心までの範囲の降伏応力YPとの比(YP/YP)が上記数式(1)の関係を満足することとした。 From the above examination results, in the present invention, the fracture toughness value (Kc) of the occurrence of brittle fracture in the entire thickness of the welded joint and the propagation stop fracture toughness value (Kca value) of the brittle crack of the steel plate in the welded joint are sufficiently improved. Therefore, for each of the steel plate (base material) and the weld heat-affected zone in the welded joint, the 2 mmV notch Charpy impact property at the 1/4 position of the plate thickness satisfies a fracture surface transition temperature of −20 ° C. or less, and The ratio of the yield stress YP S in the range from the surface of the steel plate to 1/6 position of the plate thickness and the yield stress YP C in the range from the 1/4 position of the plate thickness to the center of the plate thickness (YP S / YP C ) Satisfies the relationship of the above formula (1).

なお、上述した降伏応力比(YP/YP)の下限は、脆性破壊発生の破壊靱性値(Kc)を向上させる点からは特に限定する必要はなく、鋼板の表層部の過度な軟質化によって継手強度が要求値を下回ることがない範囲で、この降伏応力比(YP/YP)を低下することができる。 The lower limit of the yield stress ratio (YP S / YP C ) described above is not particularly limited from the viewpoint of improving the fracture toughness value (Kc) of occurrence of brittle fracture, and excessive softening of the surface layer portion of the steel sheet. Thus, the yield stress ratio (YP S / YP C ) can be reduced within a range where the joint strength does not fall below the required value.

また、溶接継手の脆性破壊発生の破壊靱性値(Kc値)、脆性破壊き裂伝播停止破壊靱性値(Kca値)及びシャルピー衝撃特性は、以下の方法で測定することができる。脆性破壊発生の破壊靱性値(Kc値)は、例えば、ディープノッチ試験により求めることができる。具体的には、図2に示すように、突き合わせ継手から幅が400mm程度の試験片を作製し、溶接金属と母材鋼板の溶接熱影響部との境界部に先端径の小さい機械加工により鋼板全厚にわたる切欠き(以下、ノッチともいう)を、試験片の端部両側又は幅方向の中央部に設け、この切欠きに直角な方向に荷重をかけ、脆性破壊が発生したときの荷重から脆性破壊発生の破壊靱性値(Kc値)求める。   Moreover, the fracture toughness value (Kc value) of brittle fracture occurrence, the brittle fracture crack propagation stop fracture toughness value (Kca value), and the Charpy impact property of a welded joint can be measured by the following methods. The fracture toughness value (Kc value) of the occurrence of brittle fracture can be determined, for example, by a deep notch test. Specifically, as shown in FIG. 2, a test piece having a width of about 400 mm is prepared from the butt joint, and the steel plate is machined by machining with a small tip diameter at the boundary between the weld metal and the weld heat affected zone of the base steel plate. Notches covering the entire thickness (hereinafter also referred to as notches) are provided on both sides of the end of the test piece or in the center in the width direction, and a load is applied in a direction perpendicular to the notches. Determine the fracture toughness value (Kc value) of the occurrence of brittle fracture.

脆性破壊き裂伝播停止破壊靱性値(Kca値)は、例えば、ESSO試験により求めることができる。具体的には、前述のディープノッチ試験とほぼ同様の試験片幅の全厚試験片に対して、試験片の端部片側にノッチを導入し、一定の予荷重をかけると共に、ノッチ部から試験片幅方向の反対側にわたって、ノッチから遠ざかるに伴い温度が上昇する温度勾配を設けた上で、ノッチ部に楔を打ち込む等によって脆性破壊を発生させる。そして、この脆性破壊が停止した位置と荷重とから、脆性破壊停止時の応力拡大係数、即ち、脆性破壊き裂伝播停止破壊靱性値(Kca値)を求める。このように、上述の如く、脆性破壊発生の破壊靱性値(Kc値)及び脆性破壊き裂伝播停止破壊靱性値(Kca値)は、溶接継手の全厚試験片に対して測定されるため、通常、大型の試験装置が使用される。   The brittle fracture crack propagation stop fracture toughness value (Kca value) can be determined, for example, by an ESSO test. Specifically, for a full-thickness test piece with the same specimen width as the deep notch test described above, a notch is introduced to the end piece side of the test piece, a certain preload is applied, and the test is started from the notch part. A brittle fracture is generated by, for example, driving a wedge into the notch portion after providing a temperature gradient that increases as it moves away from the notch over the opposite side in the one-width direction. Then, a stress intensity factor at the time of brittle fracture stop, that is, a brittle fracture crack propagation stop fracture toughness value (Kca value) is obtained from the position and load at which this brittle fracture has stopped. Thus, as described above, the fracture toughness value (Kc value) of brittle fracture occurrence and the brittle fracture crack propagation stop fracture toughness value (Kca value) are measured for the full thickness test piece of the welded joint, Usually, a large test apparatus is used.

これに対して、シャルピー衝撃試験は、ディープノッチ試験及びESSO試験に比べて簡便な小型試験装置を使用することができ、試験片の厚さも標準的には10mm程度である。このため、板厚が厚い鋼板においては、全厚での靭性を表すものではなく、例えば、板厚の1/4位置での特定温度における吸収エネルギー及び破面遷移温度(vTrs)等によって、鋼材同士の靭性の相対評価及び簡便な品質管理として利用される。なお、シャルピー試験片は、き裂進展長さは最大でも8mmであり、また、ノッチもそれほど先端半径が小さくない機械ノッチであるため、シャルピー衝撃特性は脆性破壊の発生特性を表しているものと考えられる。   On the other hand, the Charpy impact test can use a simple small test apparatus as compared with the deep notch test and the ESSO test, and the thickness of the test piece is typically about 10 mm. For this reason, in a steel plate with a large plate thickness, it does not represent the toughness of the entire thickness, and, for example, the steel material by the absorbed energy and the fracture surface transition temperature (vTrs) at a specific temperature at the 1/4 position of the plate thickness. It is used for relative evaluation of toughness between each other and simple quality control. The Charpy test piece has a crack propagation length of 8 mm at the maximum, and the notch is a mechanical notch with a not so small tip radius, so the Charpy impact characteristic represents the characteristic of occurrence of brittle fracture. Conceivable.

本発明は、上述した溶接継手における鋼板(母材)及び溶接熱影響部の夫々について、板厚の1/4位置での2mmVノッチシャルピー衝撃特性が共に破面遷移温度で−20℃以下を満足し、かつ鋼板の表面から板厚の1/6位置までの範囲の降伏応力YPと、板厚の1/4位置から板厚中心までの範囲の降伏応力YPとの比(YP/YP)が、上記数式(1)の関係を満足するように、溶接継手の母材鋼板の化学組成を規定する必要がある。 In the present invention, for each of the steel plate (base material) and the weld heat affected zone in the above-described welded joint, both the 2 mm V notch Charpy impact characteristics at the 1/4 position of the plate thickness satisfy a fracture surface transition temperature of −20 ° C. or less. The ratio of the yield stress YP S in the range from the surface of the steel plate to 1/6 position of the plate thickness and the yield stress YP C in the range from 1/4 position of the plate thickness to the center of the plate thickness (YP S / It is necessary to define the chemical composition of the base steel sheet of the welded joint so that YP C ) satisfies the relationship of the above formula (1).

次に、本発明の溶接継手における母材鋼板の成分組成の限定理由について説明する。なお、本発明の溶接継手においては、溶接部のうち溶接金属を除いた部分、即ち、溶接熱影響部は、溶接材料の溶融による成分混入はないため、その成分組成は以下に示す母材鋼板の成分組成と同じものとなる。また、以下の説明においては、特に説明のない限り、「%」は「質量%」を意味するものとする。   Next, the reason for limiting the component composition of the base steel sheet in the welded joint of the present invention will be described. In the welded joint of the present invention, the portion excluding the weld metal in the welded portion, that is, the weld heat affected zone is not mixed with components due to melting of the welding material, so the component composition is the base material steel plate shown below. It becomes the same thing as the component composition. In the following description, “%” means “mass%” unless otherwise specified.

C:0.01〜0.3%
Cは、鋼の強度を向上させる有効な成分として含有するものである。しかしながら、C含有量が0.01%未満では、溶接継手に必要な母材強度の確保が困難となる。一方、C含有量が0.3%を超える程の過剰の含有は、母材靱性が著しく劣化するため、脆性破壊発生の破壊靱性値(Kc値)及び脆性破壊き裂伝播停止破壊靱性値(Kca値)が共に劣化する。また、C含有量が0.3%を超えると、耐溶接割れ性も低下するため好ましくない。従って、C含有量は0.01〜0.3%の範囲とする。
C: 0.01 to 0.3%
C is contained as an effective component for improving the strength of steel. However, if the C content is less than 0.01%, it is difficult to ensure the base metal strength necessary for the welded joint. On the other hand, if the C content exceeds 0.3%, the toughness of the base metal deteriorates significantly, so that the fracture toughness value (Kc value) of brittle fracture occurrence and the brittle fracture crack propagation stop fracture toughness value ( Both Kca value) deteriorates. On the other hand, if the C content exceeds 0.3%, the weld crack resistance also decreases, which is not preferable. Therefore, the C content is in the range of 0.01 to 0.3%.

Si:0.01〜2%
Siは、鋼中の脱酸元素として、また、母材の強度確保に有効な元素である。しかしながら、Si含有量が0.01%未満の場合、これらに関して明確な効果が得られない。一方、Si含有量が2%を超える過剰の含有は、鋼中に粗大な酸化物を形成して母材の延性や靭性の劣化を招く。そこで、Siの含有量は0.01〜2%とする。
Si: 0.01-2%
Si is an element effective as a deoxidizing element in steel and for securing the strength of the base material. However, when the Si content is less than 0.01%, a clear effect cannot be obtained with respect to these. On the other hand, when the Si content exceeds 2%, a coarse oxide is formed in the steel, resulting in deterioration of the ductility and toughness of the base material. Therefore, the Si content is set to 0.01 to 2%.

Mn:0.1〜3%
Mnは、母材の強度及び靭性の確保に必要な元素であり、また、Sと結合して硫化物を形成し、更に、酸化物と複合化するか又は酸化物周囲に析出することにより、特に溶接熱影響部のピン止めによる加熱オーステナイト粒の微細化に効果をもたらす。
しかしながら、母材鋼板中のMn含有量が0.1%未満の場合、このような効果が得られない。一方、Mnを過剰に含有すると、具体的には、Mn含有量が3%を超えると、硬質相の生成及び粒界脆化等により、母材靱性、溶接部の靭性、更には溶接割れ性等が劣化する。よって、Mn含有量は0.1〜3%とする。
Mn: 0.1 to 3%
Mn is an element necessary for ensuring the strength and toughness of the base material, and also combines with S to form a sulfide, and further compounded with an oxide or precipitated around the oxide, In particular, it has an effect on refinement of heated austenite grains by pinning of the heat affected zone.
However, such an effect cannot be obtained when the Mn content in the base steel sheet is less than 0.1%. On the other hand, when Mn is excessively contained, specifically, when the Mn content exceeds 3%, the toughness of the base metal, the toughness of the welded part, and further the weld cracking property due to the formation of the hard phase and the grain boundary embrittlement. Etc. deteriorate. Therefore, the Mn content is 0.1 to 3%.

Al:0.003〜0.1%
Alは、鋼中の脱酸として作用する他、Al酸化物を形成し、特に、溶接熱影響部においてピン止めによる加熱オーステナイト粒径の細粒化に有効な元素である。しかしながら、Al含有量が0.003%未満の場合、加熱オーステナイト粒径の細粒化により靭性を高める効果が得られない、一方、Alを過剰に含有すると、具体的にはAl含有量が0.1%を超えると、溶接熱影響部においてピン止めによる加熱オーステナイトの微細化に有効なAl酸化物の微細分散が困難となり、逆に粗大な酸化物が形成するため靱性が劣化する。このため、Al含有量は0.003%〜0.1%とする。
Al: 0.003-0.1%
In addition to acting as deoxidation in steel, Al forms an Al oxide and is an effective element for refining the heated austenite grain size by pinning in the heat affected zone. However, when the Al content is less than 0.003%, the effect of increasing the toughness cannot be obtained by reducing the heated austenite grain size. On the other hand, when the Al content is excessive, the Al content is specifically 0. If it exceeds 0.1%, it becomes difficult to finely disperse the Al oxide effective for refining the heated austenite by pinning in the weld heat affected zone, and on the contrary, a coarse oxide is formed and the toughness deteriorates. For this reason, Al content shall be 0.003%-0.1%.

N:0.001〜0.01%
Nは、鋼中で固溶状態のときには、母材の延性及び靭性に悪影響を及ぼす。このため、母材の延性及び靭性を確保するためには、N含有量をできるだけ低減することが望ましい。具体的には、N含有量が0.01%を超えると、固溶Nが増加することによる延性及び靭性への悪影響が顕著となる。一方、鋼中のNを完全に除去することは工業的に不可能であり、Nを必要以上に低減することは、製造工程に過大な負荷をかけるため好ましくない。また、Nは、Al及び後述するTiと結合して窒化物を形成し、母材鋼板及びその溶接熱影響部においてオーステナイト粒の微細化や析出強化に有効に働くため、その含有量が微量であれば、母材鋼板の強度及び靭性等の機械的特性向上に有効である。しかしながら、N含有量が0.001%未満の場合、このような効果は得られない。よって、N含有量は、延性及び靭性への影響が許容でき、かつ工業的に制御が可能で、更に製造工程への負荷が許容できる範囲、即ち、0.001〜0.01%とする。
N: 0.001 to 0.01%
N adversely affects the ductility and toughness of the base metal when in a solid solution state in steel. For this reason, in order to ensure the ductility and toughness of the base material, it is desirable to reduce the N content as much as possible. Specifically, when the N content exceeds 0.01%, the adverse effect on ductility and toughness due to an increase in solid solution N becomes significant. On the other hand, it is industrially impossible to completely remove N in steel, and it is not preferable to reduce N more than necessary because it places an excessive load on the manufacturing process. In addition, N combines with Al and Ti described later to form a nitride, and effectively works for refining and precipitation strengthening of austenite grains in the base steel plate and its weld heat affected zone, so its content is very small. If present, it is effective for improving mechanical properties such as strength and toughness of the base steel sheet. However, such an effect cannot be obtained when the N content is less than 0.001%. Therefore, the N content is within a range where the influence on ductility and toughness can be tolerated and can be industrially controlled, and the load on the manufacturing process can be allowed, that is, 0.001 to 0.01%.

P:0.02%以下
Pは、不純物元素であり、母材鋼板の機械的性質に対して有害であるため、極力低減する方が好ましい。特に、P含有量が0.02%を超えると、機械的性質が低下する。そこで、本発明の溶接継手においては、母材鋼板におけるP含有量を、実用上悪影響が許容できる量以下、即ち、0.02%以下に規制する。
P: 0.02% or less P is an impurity element and is harmful to the mechanical properties of the base steel sheet. Therefore, it is preferable to reduce it as much as possible. In particular, when the P content exceeds 0.02%, the mechanical properties deteriorate. Therefore, in the welded joint of the present invention, the P content in the base steel plate is restricted to an amount that is practically acceptable for adverse effects, that is, 0.02% or less.

S:0.01%以下
Sも前述のPと同様に、母材鋼板の延性及び靱性に悪影響を及ぼす不純物元素であり、0.01%を超える量のSを含有すると、母材の延性や靱性が低下する。よって、S含有量は0.01%以下に規制する。また、Sは、Mn等と結合し、酸化物粒子の周囲にこれらの硫化物を形成することにより、特に溶接継手の溶接熱影響部においてピン止めにより加熱オーステナイト粒径の粗大化を抑制し、靭性を高める効果がある。この効果を発揮させるためには、S含有量を0.002%以上とすることが好ましい。更に、母材鋼板の延性及び靱性をより向上させるためには、S含有量を0.005%以下にすることが好ましい。
S: 0.01% or less S is also an impurity element that adversely affects the ductility and toughness of the base steel sheet, as in the case of P described above, and if it contains S in an amount exceeding 0.01%, Toughness decreases. Therefore, the S content is restricted to 0.01% or less. In addition, S is bonded to Mn and the like, and by forming these sulfides around the oxide particles, it suppresses the coarsening of the heated austenite grain size by pinning particularly in the weld heat affected zone of the weld joint, Has the effect of increasing toughness. In order to exert this effect, the S content is preferably 0.002% or more. Furthermore, in order to further improve the ductility and toughness of the base steel sheet, the S content is preferably 0.005% or less.

以上が本発明の溶接継手の母材鋼板における基本的な成分組成の限定理由であるが、本発明の溶接継手においては、特に、母材鋼板及びその溶接熱影響部における低温靭性を向上させるために、母材中に上記各元素に加えて、Ti及びCaを含有させることもできる。   The above is the reason for limiting the basic component composition of the base steel plate of the welded joint of the present invention. In the welded joint of the present invention, in particular, to improve the low temperature toughness in the base steel plate and its weld heat affected zone. In addition to the above elements, Ti and Ca can also be contained in the base material.

Ti:0.005〜0.03%
Tiは、前述したAlと同様に脱酸作用を有する元素である。また、Tiは、Alに比べてOとの親和力が小さいため、Alに比べ鋼中に残存する酸化物は少ないが、Al酸化物を微細分散化させる作用を有するため、Alと共に添加することにより、特に溶接熱影響部においてピン止めによる加熱オーステナイト粒径の微細化を促進させ、靭性を高める効果がある。更に、Nと結合してTi窒化物を形成し、母材鋼板の強度及び靭性等の機械的特性を向上させる作用がある。しかしながら、Ti含有量が0.005%未満の場合、これらの効果を十分に発揮されない。一方、Ti含有量が0.03%を超えると、粗大なTiN及び酸化物を形成し、靭性が低下する虞がある。このため、本発明の溶接継手においては、母材鋼板にTiを含有させる場合は、その含有量を0.005〜0.03%とする。
Ti: 0.005 to 0.03%
Ti is an element having a deoxidizing action like Al described above. In addition, Ti has a lower affinity with O than Al, so there are few oxides remaining in the steel compared to Al, but it has the effect of finely dispersing Al oxide, so it can be added together with Al. Especially, in the heat affected zone, there is an effect of promoting the refinement of the heated austenite grain size by pinning and increasing the toughness. Furthermore, it combines with N to form Ti nitride, and has the effect of improving mechanical properties such as strength and toughness of the base steel sheet. However, when the Ti content is less than 0.005%, these effects cannot be sufficiently exhibited. On the other hand, if the Ti content exceeds 0.03%, coarse TiN and oxides are formed, and the toughness may be reduced. For this reason, in the welded joint of this invention, when making a base material steel plate contain Ti, the content shall be 0.005-0.03%.

Ca:0.0005〜0.003%
Caは、Al及びTiよりも強い脱酸作用があり、Alと共に添加することにより、溶接熱影響部において酸化物を微細分散して加熱オーステナイトの微細化を促進し、更に靭性を高める効果がある。しかしながら、Ca含有量が0.0005%未満の場合、この効果が発揮されない。一方、Ca含有量が0.003%を超えると、粗大な硫化物及び酸化物が形成されるため、却って靭性が低下する虞がある。このため、本発明の溶接継手においては、母材鋼板にCaを含有させる場合は、その含有量を0.0005〜0.003%とする。
Ca: 0.0005 to 0.003%
Ca has a stronger deoxidizing effect than Al and Ti, and when added together with Al, it has the effect of finely dispersing oxides in the heat affected zone to promote refinement of heated austenite and further enhancing toughness. . However, this effect is not exhibited when the Ca content is less than 0.0005%. On the other hand, if the Ca content exceeds 0.003%, coarse sulfides and oxides are formed, so that the toughness may be lowered. For this reason, in the welded joint of this invention, when making a base material steel plate contain Ca, the content shall be 0.0005 to 0.003%.

また、本発明の溶接継手においては、母材中に上記各元素に加えて、Mgを含有させてもよい。   In the welded joint of the present invention, Mg may be contained in the base material in addition to the above elements.

Mg:0.0001〜0.002%
Mgは、前述のAl及びTiよりも強い脱酸作用があり、Alと共に添加することにより、溶接熱影響部において酸化物微細分散を促進させ、靭性を高める効果がある。しかしながら、Mg含有量が0.0001%未満の場合、この効果が得られない。一方、Mg含有量が0.002%を超えると、酸化物の粗大化し、却って靭性が低下することが懸念される。よって、母材鋼板にMgを含有させる場合は、その含有量を0.0001〜0.002%とする。
Mg: 0.0001 to 0.002%
Mg has a stronger deoxidizing action than Al and Ti described above, and when added together with Al, it has the effect of promoting fine oxide dispersion in the weld heat affected zone and increasing toughness. However, this effect cannot be obtained when the Mg content is less than 0.0001%. On the other hand, when the Mg content exceeds 0.002%, there is a concern that the oxide becomes coarse and the toughness is lowered. Therefore, when making a base material steel plate contain Mg, the content shall be 0.0001 to 0.002%.

本発明の溶接継手においては、更に、溶接継手における母材鋼板の強度及び靭性の調整のために、必要に応じて、上記各成分に加えて、Ni、Cu、Cr、Mo、W、V、Nb、Ta、Zr及びBからなる群から選択された1種又は2種以上の元素を含有することもできる。   In the welded joint of the present invention, Ni, Cu, Cr, Mo, W, V, in addition to the above components, as necessary, for adjusting the strength and toughness of the base steel sheet in the welded joint. One or more elements selected from the group consisting of Nb, Ta, Zr and B can also be contained.

Cu:0.05〜1.5%
Cuは、Niとほぼ同様の母材鋼板の強度及び靭性を共に向上する効果を有する元素である。しかしながら、Cu含有量が0.05%未満の場合、その効果が発揮されない。一方、Cu含有量が1.5%を超えると、熱間加工性及びHAZ靭性に問題が生じる。このため、本発明の溶接継手においては、母材鋼板にCuを添加する場合は、その含有量を0.05〜1.5%とする。
Cu: 0.05 to 1.5%
Cu is an element having an effect of improving both the strength and toughness of a base steel plate substantially similar to Ni. However, when the Cu content is less than 0.05%, the effect is not exhibited. On the other hand, if the Cu content exceeds 1.5%, problems arise in hot workability and HAZ toughness. For this reason, in the welded joint of this invention, when adding Cu to a base material steel plate, the content shall be 0.05 to 1.5%.

Cr:0.05〜2%
Crは、焼入性の向上及び固溶強化による強度向上に有効な元素であるが、母材鋼板中のCr含有量が0.05%未満の場合、その効果が得られない。一方、Crを過剰に含有させると、具体的には、Cr含有量が2%を超えると、硬さの増加及び粗大析出物の形成等により、母材鋼板及びHAZの靭性に悪影響を及ぼす。よって、母材鋼板にCuを添加する場合は、その含有量を0.05〜2%とする。
Cr: 0.05-2%
Cr is an element effective for improving the hardenability and improving the strength by solid solution strengthening. However, when the Cr content in the base steel sheet is less than 0.05%, the effect cannot be obtained. On the other hand, when Cr is excessively contained, specifically, when the Cr content exceeds 2%, the toughness of the base steel plate and the HAZ is adversely affected by the increase in hardness and the formation of coarse precipitates. Therefore, when adding Cu to a base material steel plate, the content is made 0.05 to 2%.

Mo:0.05〜2%
Moも前述のCrと同様の効果を有し、強度向上に有効な元素である。しかしながら、Mo含有量が0.05%未満の場合はその効果が得られず、また、Mo含有量が2%を超えると、他の特性に悪影響を及ぼす。よって、母材鋼板にMoを添加する場合は、その含有量を、添加効果を発揮でき、更に他の特性に悪影響をおよぼさない範囲、即ち、0.05〜2%に限定する。
Mo: 0.05-2%
Mo also has the same effect as Cr described above, and is an element effective for improving the strength. However, when the Mo content is less than 0.05%, the effect cannot be obtained, and when the Mo content exceeds 2%, other characteristics are adversely affected. Therefore, when adding Mo to a base material steel plate, the content is limited to a range in which the addition effect can be exhibited and the other characteristics are not adversely affected, that is, 0.05 to 2%.

W:0.05〜2%
Wも前述したCr及びMoと同様の効果によって強度の向上に有効な元素である。しかしながら、W含有量が0.05%未満の場合はその効果が得られず、また、W含有量が2%を超えると、他の特性に悪影響を及ぼす、よって、母材鋼板にWを添加する場合は、その含有量を、添加効果を発揮でき、更に他の特性に悪影響をおよぼさない範囲、即ち、0.05〜2%に限定する。
W: 0.05-2%
W is an element effective for improving the strength by the same effect as Cr and Mo described above. However, if the W content is less than 0.05%, the effect cannot be obtained, and if the W content exceeds 2%, other properties are adversely affected. Therefore, W is added to the base steel sheet. In that case, the content is limited to a range in which the effect of addition can be exhibited and the other characteristics are not adversely affected, that is, 0.05 to 2%.

V:0.01〜0.2%
Vは、主として析出強化により高強度化に寄与する元素である。しかしながら、V含有量が0.01%未満では、その効果が発揮されない。一方、Vを過剰に含有すると、具体的にはV含有量が0.2%を超えると、析出脆化により靭性が極端に劣化する。よって、本発明の溶接継手においては、母材鋼板にVを添加する場合は、その含有量を0.01〜0.2%の範囲に限定する。
V: 0.01 to 0.2%
V is an element that contributes to high strength mainly by precipitation strengthening. However, when the V content is less than 0.01%, the effect is not exhibited. On the other hand, when V is excessively contained, specifically, when the V content exceeds 0.2%, the toughness is extremely deteriorated due to precipitation embrittlement. Therefore, in the welded joint of this invention, when adding V to a base material steel plate, the content is limited to the range of 0.01 to 0.2%.

Nb:0.003〜0.1%
Nbは、変態強化及び析出強化により、微量でも高強度化に寄与する元素である。また、Nbは、オーステナイトの加工及び再結晶挙動に大きな影響を及ぼすため、母材鋼板の靭性向上にも有効である。しかしながら、Nb含有量が0.003%未満の場合、これらの効果が発揮されない。一方、Nbを過剰に含有すると、具体的には、Nb含有量が0.1%を超えると、靭性が極端に劣化する。よって、本発明の溶接継手においては、母材鋼板にNbを添加する場合は、その含有量を0.003〜0.1%の範囲に限定する。
Nb: 0.003 to 0.1%
Nb is an element that contributes to high strength even in a small amount by transformation strengthening and precipitation strengthening. Nb is also effective in improving the toughness of the base steel sheet because it significantly affects the processing and recrystallization behavior of austenite. However, when the Nb content is less than 0.003%, these effects are not exhibited. On the other hand, when Nb is contained excessively, specifically, when the Nb content exceeds 0.1%, the toughness is extremely deteriorated. Therefore, in the welded joint of the present invention, when Nb is added to the base steel plate, its content is limited to a range of 0.003 to 0.1%.

Ta:0.01〜0.2%
Taも前述のNbと同様の効果を有し、適正量を添加することにより、強度及び靭性の向上に寄与する。しかしながら、Ta含有量が0.01%未満では効果が明瞭には生ぜず、また、Ta含有量が0.2%を超える過剰な含有では、粗大な析出物に起因した靭性劣化が顕著となる。よって、母材鋼板にTaを添加する場合は、その含有量を0.01〜0.2%とする。
Ta: 0.01 to 0.2%
Ta also has the same effect as Nb described above, and contributes to the improvement of strength and toughness by adding an appropriate amount. However, if the Ta content is less than 0.01%, the effect is not clearly produced, and if the Ta content exceeds 0.2%, the toughness deterioration due to coarse precipitates becomes remarkable. . Therefore, when adding Ta to a base material steel plate, the content is made 0.01 to 0.2%.

Zr:0.005〜0.1%
Zrも強度向上に有効な元素であるが、その含有量が0.005%未満の場合、その効果が発揮されない。一方、Zrを過剰に含有すると、具体的には、Zr含有量が0.1%を超えると、粗大な析出物を形成して靭性に悪影響を及ぼす。よって、母材鋼板にZrを添加する場合は、その含有量を0.005〜0.1%とする。
Zr: 0.005 to 0.1%
Zr is also an element effective for improving the strength, but when the content is less than 0.005%, the effect is not exhibited. On the other hand, if Zr is contained excessively, specifically, if the Zr content exceeds 0.1%, coarse precipitates are formed, which adversely affects toughness. Therefore, when adding Zr to a base material steel plate, the content is made 0.005 to 0.1%.

更に、本発明の溶接継手においては、母材鋼板の延性向上及び継手靭性の向上等のために、必要に応じて、上記各成分に加えて、Y及び/又はCeを含有することもできる。   Furthermore, in the welded joint of the present invention, Y and / or Ce can be contained in addition to the above-described components as necessary for the purpose of improving the ductility of the base steel plate and improving the joint toughness.

Y:0.001〜0.01%,Ce:0.005〜0.1%
Y及びCeは、いずれも酸化物を微細化して、母材鋼板及び溶接熱影響部の延性向上及び靭性向上に有効に作用する元素である。しかしながら、Y含有量が0.001%未満又はCe含有量が0.005%未満の場合、その効果が発揮されない。一方、これらの元素を過剰に含有すると、具体的には、Y含有量が0.01%を超えるか、又はCe含有量が0.1%を超えると、硫化物及び酸化物が粗大化し、延性及び靭性の劣化を招く。よって、母材鋼板にY及び/又はCeを添加する場合は、夫々Y含有量を0.001〜0.01%、Ce含有量を0.005〜0.1%とする。
Y: 0.001 to 0.01%, Ce: 0.005 to 0.1%
Y and Ce are both elements that effectively refine the oxide and effectively improve the ductility and toughness of the base steel plate and the weld heat affected zone. However, when the Y content is less than 0.001% or the Ce content is less than 0.005%, the effect is not exhibited. On the other hand, when these elements are contained excessively, specifically, when the Y content exceeds 0.01% or the Ce content exceeds 0.1%, sulfides and oxides become coarse, It causes deterioration of ductility and toughness. Therefore, when adding Y and / or Ce to the base steel sheet, the Y content is set to 0.001 to 0.01% and the Ce content is set to 0.005 to 0.1%, respectively.

以上が本発明の溶接継手における母材鋼板の成分組成に関する限定理由である。なお、本発明の溶接継手の母材鋼板における残部は、Fe及び不可避的不純物である。   The above is the reason for limitation regarding the component composition of the base steel sheet in the welded joint of the present invention. In addition, the remainder in the base material steel plate of the welded joint of the present invention is Fe and inevitable impurities.

上記各母材成分のうち、Al、Ti、Ca及びMgは、上述したとおり、母材鋼板及びその溶接熱影響部において、ピン止めによる加熱オーステナイト粒を微細化する効果があるが、本発明の溶接継手においては、これらの効果をより安定して向上させるために、更に溶接継手の母材鋼板及び溶接熱影響部中に微細分散させる酸化物中の成分組成及び個数密度の好ましい範囲を規定する。   Among the above-mentioned base material components, Al, Ti, Ca and Mg, as described above, have the effect of refining the heated austenite grains by pinning in the base steel plate and its welding heat affected zone. In the welded joint, in order to improve these effects more stably, the preferable range of the component composition and number density in the oxide finely dispersed in the base steel plate and the weld heat affected zone of the welded joint is further specified. .

Al、Ti、Ca及びMgの酸化物は、特に溶接時に高温に晒される溶接熱影響部において、ピン止めによるオーステナイト粒径の微細化を促進し、靭性向上に特に有効である。また、これらの酸化物は、母材においても加熱オーステナイト粒径の微細化により鋼の焼入性が低減されるため、鋼板の焼入及び加工熱処理において鋼板表面側の強度を過剰に高めず、その結果、鋼板表層部と内部との降伏応力の比を小さくすることで母材の破壊靭性の向上に寄与し得る。   Al, Ti, Ca, and Mg oxides are particularly effective in improving toughness by promoting the refinement of austenite grain size by pinning, particularly in welding heat-affected zones that are exposed to high temperatures during welding. In addition, these oxides also reduce the hardenability of the steel due to the refinement of the heated austenite grain size even in the base material, so that the strength on the steel sheet surface side is not excessively increased in the quenching and thermomechanical treatment of the steel sheet, As a result, it is possible to contribute to the improvement of the fracture toughness of the base metal by reducing the ratio of the yield stress between the steel sheet surface layer and the inside.

従来から、鋼中に存在する分散粒子は、高温においてオーステナイト粒界の移動をピン止めして粒成長を抑制し、再加熱オーステナイト粒の細粒化を促進させることが知られている。従来、このような作用をする分散粒子としては、Ti窒化物が知られている。しかしながら、Ti窒化物は、熱延工程では有効であるが、溶接時における1400℃以上の高温では固溶する割合が大きくなり、ピン止め効果が小さくなるため、再加熱オーステナイト粒の細粒化効果は十分に得られない。   Conventionally, it has been known that dispersed particles present in steel pin the movement of austenite grain boundaries at high temperatures to suppress grain growth and promote refining of reheated austenite grains. Conventionally, Ti nitride is known as a dispersed particle having such an action. However, although Ti nitride is effective in the hot rolling process, the proportion of solid solution increases at a high temperature of 1400 ° C. or higher during welding, and the pinning effect is reduced. Therefore, the effect of refinement of reheated austenite grains is reduced. Is not enough.

そこで、本発明の溶接継手では、溶接時に高温に晒される溶接熱影響部においても、固溶せずにピン止め粒子として安定して存在し得るAl、Ti、Ca及びMgの酸化物を活用する。   Therefore, in the welded joint of the present invention, oxides of Al, Ti, Ca, and Mg that can be stably present as pinning particles without dissolving in the heat affected zone exposed to high temperatures during welding are utilized. .

一方、鋼材中のMn、Ca及びMgは、Sと結合して硫化物を形成し、上述した酸化物と複合化するか又はこれらの酸化物の周囲に析出することで、分散粒子のサイズを大きくし、上述したピン止めによる再加熱オーステナイト粒の細粒化を更に促進する効果がある。   On the other hand, Mn, Ca and Mg in the steel material combine with S to form sulfides, and are compounded with the above-mentioned oxides or precipitated around these oxides, thereby reducing the size of dispersed particles. There is an effect of enlarging and further promoting the refinement of the reheated austenite grains by the pinning described above.

一般に、分散粒子による結晶粒界のピン止め効果は、鋼中に占める分散粒子の累積体積率が増加する程、また、1個当りの分散粒子のサイズが大きい程その効果が大きくなる。しかしながら、鋼中に占める分散粒子の累積体積率の増加は、分散粒子の構成元素の含有量によって限界がある。また、1個当りの分散粒子のサイズの増大は、分散粒子の累積体積率を低下及び材質に有害な粗大介在物となるため限度がある。   In general, the pinning effect of the grain boundaries by the dispersed particles increases as the cumulative volume ratio of the dispersed particles in the steel increases and as the size of the dispersed particles per particle increases. However, the increase in the cumulative volume fraction of the dispersed particles in the steel is limited by the content of the constituent elements of the dispersed particles. Further, the increase in the size of the dispersed particles per particle is limited because the cumulative volume ratio of the dispersed particles is lowered and coarse inclusions are harmful to the material.

分散粒子の構成元素であるO含有量及びS含有量が増大すると、酸化物又は酸化物と硫化物とからなる分散粒子は、材質に有害な粗大介在物が増加するため、好ましくない。そこで、本発明の溶接継手においては、O含有量を増大させずに酸化物ま又は酸化物と硫化物とからなる分散粒子の累積体積分率を増加するため、Oとの溶解度積が小さい、即ち、強脱酸元素であるAlを活用し、更にAlよりも強い脱酸元素であるCa、更には必要に応じてMgを活用する。   When the O content and the S content, which are constituent elements of the dispersed particles, increase, the dispersed particles composed of oxides or oxides and sulfides are not preferable because coarse inclusions harmful to the material increase. Therefore, in the welded joint of the present invention, since the cumulative volume fraction of dispersed particles consisting of oxide or oxide and sulfide is increased without increasing the O content, the solubility product with O is small. That is, Al, which is a strong deoxidizing element, is utilized, Ca, which is a stronger deoxidizing element than Al, and further Mg if necessary.

また、Tiは、Al、Ca及びMgに比べて脱酸力は小さいが、TiをAl、Ca及びMgと共に添加することにより、Al、Ca及びMgの酸化物を微細分散させ、酸化物又は酸化物と硫化物からなる分散粒子の累積体積率の増加させる効果がある。   Ti has a smaller deoxidizing power than Al, Ca, and Mg, but by adding Ti together with Al, Ca, and Mg, oxides of Al, Ca, and Mg are finely dispersed and oxidized or oxidized. This has the effect of increasing the cumulative volume fraction of dispersed particles composed of a material and a sulfide.

本発明者のAlと、Ti、Ca及びMg等の脱酸元素の1種又は2種以上とを複合添加した溶解実験結果によれば、酸化物又は酸化物と硫化物とからなる分散粒子の累積体積率を増加させて、ピン止めによる再加熱オーステナイト粒の細粒化をより促進させるためには、鋼中に生成する酸化物の分散粒子の組成として、酸化物粒子中のOを除いた全成分元素の質量に対する割合(質量%)で、(1)AlとTi及びCaとを複合添加する場合は、Ca及びAlの含有量を夫々5%以上とし、(2)AlとTi、Ca及びMgとを複合添加する場合は、Ca及びAlの含有量を夫々5%以上とすると共に、Mgの含有量を1%以上とすることが好ましい。また、上述したCa及びMgは、硫化物の形成元素であるMnに比べて、Sとの溶解度積が小さい元素であり、酸化物と複合化するか又は酸化物周辺に析出する硫化物(MnS,CaS,MgS)を安定化させて、S含有量を増加させずに酸化物と硫化物とからなる分散粒子の累積体積分率を増加させる効果がある。   According to the results of the dissolution experiment in which the present inventor combined Al and one or more deoxidizing elements such as Ti, Ca and Mg, the dispersed particles composed of oxides or oxides and sulfides. In order to increase the cumulative volume fraction and further promote refining of reheated austenite grains by pinning, O in the oxide particles was removed as a composition of dispersed particles of oxide generated in steel. When (1) Al, Ti, and Ca are added in a ratio (mass%) with respect to the mass of all component elements, the contents of Ca and Al are 5% or more, respectively. (2) Al, Ti, and Ca When Mg and Mg are added in combination, the Ca and Al contents are preferably 5% or more and the Mg content is preferably 1% or more. In addition, Ca and Mg described above are elements having a smaller solubility product with S than Mn, which is a sulfide-forming element, and are sulfides (MnS) that are complexed with oxides or precipitate around oxides. , CaS, MgS), there is an effect of increasing the cumulative volume fraction of dispersed particles composed of oxides and sulfides without increasing the S content.

また、本発明者のAlと、Ti、Ca及びMg等の脱酸元素の1種又は2種以上とを複合添加した溶解実験結果によれば、酸化物と硫化物とからなる分散粒子の累積体積率を増加し、ピン止めによる再加熱オーステナイト粒の細粒化をより促進させるためには、鋼中に生成する酸化物と硫化物とからなる分散粒子の組成として、酸化物粒子中のOを除いた全成分元素の質量に対する割合(質量%)で、(3)AlとTi及びCaを複合添加する場合は、Ca及びAlの含有量を夫々5%以上とすると共にS含有量を1%以上とし、(4)AlとTi、Ca及びMgとを複合添加する場合は、Ca及びAlの含有量を夫々5%以上とすると共にMg及びSの含有量を1%以上とすることが好ましい。   In addition, according to the results of dissolution experiments in which the present inventor combined Al and one or more deoxidizing elements such as Ti, Ca, and Mg, accumulation of dispersed particles composed of oxides and sulfides. In order to increase the volume ratio and further promote the refining of reheated austenite grains by pinning, the composition of dispersed particles composed of oxides and sulfides formed in the steel is changed to O in the oxide particles. (3) When Al, Ti, and Ca are added together, the content of Ca and Al is set to 5% or more and the S content is 1 (4) When Al and Ti, Ca and Mg are added in combination, the Ca and Al contents should be 5% or more and the Mg and S contents should be 1% or more. preferable.

次に、本発明の溶接継手における鋼板及び溶接熱影響部の組織中に存在する酸化物粒子の平均円相当径、及び単位面積当たりの個数(以下、個数密度ともいう。)の好ましい範囲の限定理由について説明する。なお、酸化物中にSを含む場合、酸化物と硫化物とが複合化している場合、酸化物を核として硫化物がこの酸化物の周囲に析出している場合のいずれの場合においても、オーステナイトの成長抑制には同等の効果を有する。このため、以下の粒子サイズ及び個数密度の説明において、酸化物の分散粒子と、酸化物と硫化物からなる分散粒子とは、特に断らない限り、同等に扱う。   Next, limitation of the preferable range of the average equivalent circle diameter of the oxide particles present in the structure of the steel plate and the weld heat affected zone in the weld joint of the present invention, and the number per unit area (hereinafter also referred to as number density). The reason will be explained. In the case where the oxide contains S, in the case where the oxide and the sulfide are complexed, in any case where the sulfide is precipitated around the oxide with the oxide as a nucleus, It has the same effect for suppressing the growth of austenite. For this reason, in the following description of particle size and number density, oxide dispersed particles and oxide and sulfide dispersed particles are treated equally unless otherwise specified.

平均円相当径:0.005〜2μm
上述したように、溶接熱影響部の結晶粒界のピン止め効果は、鋼中に占める分散粒子の累積体積率が増加する程、また1個当りの分散粒子のサイズが大きい程、その効果が大きくなる。酸化物又は酸化物と硫化物とからなる分散粒子の大きさを変化させた溶接継手試験片を使用し、高温に加熱したときのオーステナイト粒径を詳細に調査した結果によれば、分散粒子の平均円相当径が0.005μm未満になると、分散粒子1個当りのピン止め効果が小さくなり、粒界に存在する分散粒子の割合が小さくなるため、加熱オーステナイト粒の微細化効果が安定して得られなくなる。一方、分散粒子の平均円相当径が2μmを超えると、鋼中に占める分散粒子の累積体積率が減少するため、同様に加熱オーステナイト粒の微細化効果が安定して得られなくなる。これらの理由から、大入熱溶接〜超大入熱溶接に相当する溶接時の加熱温度及び保持時間において、安定的にオーステナイト粒径をピン止めするためには、分散粒子のサイズを平均円相当径で0.005〜2μmとすることが好ましい。
Average equivalent circle diameter: 0.005 to 2 μm
As described above, the pinning effect of the grain boundary of the weld heat affected zone is more effective as the cumulative volume fraction of dispersed particles in the steel increases and as the size of the dispersed particles per particle increases. growing. According to the results of a detailed investigation of the austenite particle size when heated to a high temperature using a welded joint specimen in which the size of the dispersed particles composed of oxide or oxide and sulfide was changed, When the average equivalent circle diameter is less than 0.005 μm, the pinning effect per dispersed particle is reduced, and the proportion of dispersed particles existing at the grain boundary is reduced, so that the refined effect of the heated austenite grains is stabilized. It can no longer be obtained. On the other hand, if the average equivalent circle diameter of the dispersed particles exceeds 2 μm, the cumulative volume fraction of the dispersed particles in the steel decreases, and similarly, the effect of refining the heated austenite grains cannot be stably obtained. For these reasons, in order to stably pin the austenite particle size at the heating temperature and holding time corresponding to large heat input welding to super large heat input welding, the size of the dispersed particles is set to the average equivalent circle diameter. The thickness is preferably 0.005 to 2 μm.

単位面積当たりの個数:100〜3000個/mm
上述したように、溶接熱影響部の結晶粒界のピン止め効果は、鋼中に占める分散粒子の累積体積率が増加する程、また1個当りの分散粒子のサイズが大きい程、その効果が大きくなる。本発明者が酸化物又は酸化物と硫化物とからなる分散粒子の大きさが一定の条件で、その個数密度を変化させた溶接継手試験片を使用して、高温に加熱したときのオーステナイト粒径を詳細に調査した結果、分散粒子の大きさが前述した平均円相当径の範囲を満足していても、分散粒子の個数密度が100個/mm未満になると、ピン止め効果が小さくなり、加熱オーステナイト粒の細粒化の安定した効果が得られなくなることがわかった。そして、本発明者の検討によれば、溶接部のうち、フュージョンライン(FL:溶融金属と溶接熱影響部との境界)から2mm以内の溶接熱影響部のオーステナイト粒径を、確実に200μm以下に細粒化するためには、粒子径が0.005〜2μmの粒子を100個/mm以上とすることが好ましい。
Number per unit area: 100 to 3000 / mm 2
As described above, the pinning effect of the grain boundary of the weld heat affected zone is more effective as the cumulative volume fraction of dispersed particles in the steel increases and as the size of the dispersed particles per particle increases. growing. The austenite grains when the present inventor uses a welded joint test piece in which the number density is changed under the condition that the size of dispersed particles composed of oxide or oxide and sulfide is constant, and is heated to a high temperature. As a result of examining the diameter in detail, the pinning effect is reduced when the number density of the dispersed particles is less than 100 particles / mm 2 even if the size of the dispersed particles satisfies the above-mentioned range of the average equivalent circle diameter. It has been found that the stable effect of the refinement of the heated austenite grains cannot be obtained. According to the study of the present inventor, the austenite grain size of the weld heat affected zone within 2 mm from the fusion line (FL: boundary between the molten metal and the weld heat affected zone) is reliably 200 μm or less. In order to make the particles finer, it is preferable that the number of particles having a particle diameter of 0.005 to 2 μm is 100 particles / mm 2 or more.

一方、分散粒子の個数密度が増加する程ピン止めによる組織単位は微細になり、溶接熱影響部の加熱オーステナイト粒子は微細化するが、分散粒子の個数密度が3000個/mmを超えると、その効果は飽和し、却って延性及び靭性に有害な粗大な粒子が生成する可能性を高めることにもなる。このため、本発明の溶接継手においては、分散粒子の個数密度の上限を3000個/mmとすることが好ましい。 On the other hand, as the number density of the dispersed particles increases, the structural unit by pinning becomes finer, and the heated austenite particles in the weld heat affected zone become finer, but when the number density of the dispersed particles exceeds 3000 / mm 2 , The effect is saturated and on the contrary increases the possibility of producing coarse particles which are detrimental to ductility and toughness. For this reason, in the welded joint of the present invention, it is preferable that the upper limit of the number density of dispersed particles is 3000 / mm 2 .

なお、上述した酸化物又は酸化物と硫化物とからなる分散粒子の大きさ及び個数密度(単位面積当たりの個数)の測定は、例えば、以下の要領で行なうことができる。先ず、溶接継手の母材となる鋼板及びその溶接熱影響部から抽出レプリカを作製し、その抽出レプリカを電子顕微鏡にて10000倍の倍率で20視野以上、観察面積にして1000μm以上を観察することにより、この酸化物の大きさ及び個数を測定する。このとき、鋼板の表層部から中心部までの間であれば、どの部位から採取した抽出レプリカでもよい。また、粒子が適正に観察可能であれば、観察倍率を低くしても問題はない。 In addition, the measurement of the magnitude | size and number density (number per unit area) of the dispersed particle which consists of an oxide or an oxide and sulfide mentioned above can be performed in the following ways, for example. First, an extraction replica is produced from a steel plate as a base material of a welded joint and its heat-affected zone, and the extracted replica is observed with an electron microscope at a magnification of 10,000 times for 20 fields of view and an observation area of 1000 μm 2 or more. Thus, the size and number of the oxides are measured. At this time, an extraction replica collected from any part may be used as long as it is between the surface layer part and the center part of the steel plate. If the particles can be observed properly, there is no problem even if the observation magnification is lowered.

次に、本発明の溶接継手において母材として使用される板厚が35mm以上の高張力厚鋼板を製造するための好ましい実施形態について説明する。本発明の溶接継手においては、上述した要件を満足する鋼板であれば、その製造方法については特に限定する必要はないが、上述した要件を満足する鋼板を製造するための好ましい方法及び条件を以下に示す。但し、本発明の溶接継手における金属組織学的要件及び力学的要件を満足するための方法は、下記に示す方法に限定されるものではない。   Next, a preferred embodiment for producing a high-tensile steel plate having a plate thickness of 35 mm or more used as a base material in the welded joint of the present invention will be described. In the welded joint of the present invention, if it is a steel plate that satisfies the above-mentioned requirements, it is not necessary to specifically limit the manufacturing method, but preferable methods and conditions for manufacturing a steel plate that satisfies the above-mentioned requirements are as follows. Shown in However, the method for satisfying the metallographic and mechanical requirements in the welded joint of the present invention is not limited to the method shown below.

上述した本発明の要件を満足できる鋼板製造方法としては、例えば、以下に示す(a)〜(f)の方法がある。   Examples of the steel sheet manufacturing method that can satisfy the above-described requirements of the present invention include the following methods (a) to (f).

(a)C:0.01〜0.3%、Si:0.01〜2%、Mn:0.1〜3%、Al:0.003〜0.1%、N:0.001〜0.01%を含有すると共に、P:0.02%以下及びS:0.01%以下に規制し、更に、必要に応じて、Ti:0.005〜0.03%及びCa:0.0005〜0.003%、Mg:0.0001〜0.002%、Cu:0.05〜1.5%、Cr:0.05〜2%、Mo:0.05〜2%、W:0.05〜2%、V:0.01〜0.2%、Nb:0.003〜0.1%、Ta:0.01〜0.2%及びZr:0.005〜0.1%からなる群から選択された1種又は2種以上の元素を含有し、残部がFe及び不可避不純物からなる組成の鋼片を、AC変態点〜1300℃に加熱した後、熱間圧延して、変態前の平均オーステナイト粒径を50μm以下とした上で、平均冷却速度を3〜100℃/秒として、Ar変態点以上の温度から600℃〜200℃の温度範囲にまで加速冷却する。 (A) C: 0.01 to 0.3%, Si: 0.01 to 2%, Mn: 0.1 to 3%, Al: 0.003 to 0.1%, N: 0.001 to 0 0.01% and P: 0.02% or less and S: 0.01% or less, and further Ti: 0.005-0.03% and Ca: 0.0005 as necessary. -0.003%, Mg: 0.0001-0.002% , Cu: 0.05-1.5%, Cr: 0.05-2%, Mo: 0.05-2%, W: 0 0.05 to 2%, V: 0.01 to 0.2%, Nb: 0.003 to 0.1%, Ta: 0.01 to 0.2%, and Zr: 0.005 to 0.1% one or more elements selected from the group consisting containing a slab of the balance being Fe and unavoidable impurities, was heated to AC 3 transformation point to 1300 ° C., and hot-rolled The average austenite grain size before transformation on which the 50μm or less, an average cooling rate of 3 to 100 ° C. / sec, to accelerated cooling from Ar 3 transformation point or more temperature to a temperature range of 600 ° C. to 200 DEG ° C..

(b) 前述した(a)と同様の鋼組成の鋼片を、AC変態点〜1300℃に加熱した後、オーステナイトの再結晶域又は部分再結晶域で熱間圧延して、平均オーステナイト粒径が100μm以下とし、更にこの状態からオーステナイトの未再結晶域において累積圧下率が30〜90%の熱間圧延を行う。その後、均冷却速度を3〜100℃/秒として、Ar変態点以上から600℃〜200℃の温度範囲にまで加速冷却する。 (B) A steel slab having the same steel composition as that of (a) described above is heated to an AC 3 transformation point to 1300 ° C., and then hot-rolled in an austenite recrystallization region or a partial recrystallization region to obtain average austenite grains. From this state, hot rolling with a cumulative rolling reduction of 30 to 90% is performed in the austenite non-recrystallized region. Thereafter, the cooling rate is set to 3 to 100 ° C./second, and the cooling is accelerated from the Ar 3 transformation point to the temperature range of 600 to 200 ° C.

(c) 前述した(a)の方法において、オーステナイト域での熱間圧延に加えて、圧延開始時のフェライト分率が10〜30%のフェライト/オーステナイト二相域で累積圧下率が10〜60%の圧延を行う。   (C) In the method of (a) described above, in addition to hot rolling in the austenite region, the cumulative rolling reduction is 10 to 60 in the ferrite / austenite two-phase region where the ferrite fraction at the start of rolling is 10 to 30%. % Rolling.

(d) 前述した(b)の方法において、オーステナイト域での熱間圧延に加えて、圧延開始時のフェライト分率が10〜30%のフェライト/オーステナイト二相域で累積圧下率が10〜60%の圧延を行う。   (D) In the method of (b) described above, in addition to hot rolling in the austenite region, the cumulative rolling reduction is 10 to 60 in the ferrite / austenite two-phase region where the ferrite fraction at the start of rolling is 10 to 30%. % Rolling.

(e) 前述した(a)〜(d)の熱間圧延及び加速冷却を行った後、必要に応じて、450℃〜AC変態点の温度範囲で焼戻しを施す。 (E) After performing the above-described hot rolling and accelerated cooling of (a) to (d), tempering is performed in the temperature range of 450 ° C. to AC 1 transformation point as necessary.

なお、上述した(a)及び(c)の方法は、オーステナイトの状態が再結晶か、未再結晶かを問わない場合に好ましい製造条件であり、上述した(b)及び(d)の方法は、オーステナイトの状態をより限定した場合に好ましい製造条件である。   The methods (a) and (c) described above are preferable production conditions when the austenite state is recrystallized or not recrystallized. The methods (b) and (d) described above are This is a preferable production condition when the state of austenite is more limited.

また、焼戻し処理を施す場合は、誘導加熱によって表面の降伏応力を制御する方法も有効である。その際、誘導加熱による焼戻しの加熱温度は、表面温度で500℃〜AC変態点の範囲とすることが好ましい。誘導加熱による焼戻しは、必要に応じて、前述した(a)〜(d)の方法で製造した鋼板に適用することも可能であるが、熱間圧延条件を(a)〜(d)のように限定せずに、以下に示す(f)の方法で製造した鋼板にも適用可能である。 In addition, when tempering is performed, a method of controlling the surface yield stress by induction heating is also effective. At that time, the heating temperature for tempering by induction heating is preferably in the range of 500 ° C. to AC 1 transformation point in terms of surface temperature. Tempering by induction heating can be applied to the steel plate produced by the above-described methods (a) to (d) as necessary, but the hot rolling conditions are as shown in (a) to (d). However, the present invention can be applied to a steel plate manufactured by the method (f) shown below.

(f) 前述した(a)と同様の鋼組成の鋼片を、AC変態点〜1300℃に加熱して熱間圧延した後、平均冷却速度を3〜100℃/秒として、400℃以下まで加速冷却する。 (F) A steel slab having the same steel composition as (a) described above is heated to AC 3 transformation point to 1300 ° C. and hot-rolled, and then an average cooling rate of 3 to 100 ° C./second is set to 400 ° C. or less. Cool to acceleration.

通常の炉加熱焼戻しを必要に応じて施す場合には、前述した(a)〜(d)の熱間圧延及び加速冷却処理が前提となる。一方、誘導加熱焼戻しの場合は、表層部の方が内部よりも焼戻しによる軟化が大となるため、表層部と内部の材質差を小さくする上で有利である。このため、前述の(a)〜(d)の方法によって鋼板を製造してもよいし、オーステナイト状態を特に規定しない方法、即ち、前述の(f)のように、鋼片をAC変態点〜1300℃に加熱して熱間圧延した後で、平均冷却速度を3〜100℃/秒として、400℃以下まで加速冷却する方法を適用してもよい。 When performing normal furnace heating and tempering as necessary, the above-described hot rolling and accelerated cooling processes (a) to (d) are assumed. On the other hand, in the case of induction heating tempering, the surface layer portion is more softened by tempering than the inside, which is advantageous in reducing the material difference between the surface layer portion and the inside. For this reason, a steel plate may be produced by the above-described methods (a) to (d), or a method in which the austenite state is not particularly defined, that is, the steel slab is subjected to AC 3 transformation point as in (f) above. After heating to ˜1300 ° C. and hot rolling, a method of accelerating cooling to 400 ° C. or less may be applied at an average cooling rate of 3 to 100 ° C./second.

以上が本発明の溶接継手における鋼板の要件についての詳細な説明である。本発明の溶接継手の母材鋼板は、大入熱溶接により溶接継手を作製しても、その溶接熱による鋼板の溶接熱影響部の組織粗大化を抑制し、必要な靱性を確保できることが可能であるため、溶接継手を作製する場合の溶接方法及び条件は問わない。即ち、本発明の溶接継手を製造する際は、母材鋼板を、MAG溶接等による多層盛溶接はもちろん、エレガス溶接及びエレクトロスラグ溶接等の1パス大入熱溶接で溶接したとしても,上述した効果が損なわれることはない。   The above is the detailed description about the requirements of the steel plate in the welded joint of the present invention. The base metal steel sheet of the welded joint of the present invention can suppress the coarsening of the weld heat-affected zone of the steel sheet due to the welding heat and secure the required toughness even if the welded joint is produced by high heat input welding. Therefore, the welding method and conditions for producing a welded joint are not limited. That is, when the welded joint of the present invention is manufactured, the base steel plate is not limited to multi-layer welding by MAG welding or the like, but also by one-pass large heat input welding such as elegance welding and electroslag welding. The effect is not impaired.

以上詳述したように、本発明の溶接継手においては、板厚が35mm以上の厚手の溶接継手の母材鋼板及び溶接熱影響部における板厚の1/4位置での低温靱性を適正化すると共に、母材鋼板の表層部の降伏応力YPと内部の降伏応力YPとの比(YP/YP)を適正化しているため、溶接継手全厚のKc値やKca値の破壊靱性値を向上することができる。 As described above in detail, in the welded joint of the present invention, the low temperature toughness at the 1/4 position of the thickness of the base steel plate and the weld heat affected zone of the thick welded joint having a thickness of 35 mm or more is optimized. In addition, since the ratio (YP S / YP C ) between the yield stress YP S of the surface layer portion of the base steel sheet and the internal yield stress YP C is optimized, the fracture toughness of the Kc value and Kca value of the weld joint full thickness The value can be improved.

以下、本発明の実施例により、本発明の効果を詳細に説明する。本実施例においては、下記表1に示す組成のインゴット及びスラブ等の形態の鋼片を、下記表2に示す条件で加工及び熱処理し、板厚が50〜80mmの厚手鋼板を作製した。なお、下記表1におけるNo.1〜No.10の鋼片は鋼組成が本発明の範囲内のものであり、No.11〜No.15の鋼片は鋼組成が本発明の範囲から外れているものである。そして、下記表1における下線は、本発明の範囲外であることを示す。また、下記表1に示す鋼組成における残部は、Fe及び不可避的不純物である。更に、下記表2におけるNo.A1〜No.A13の鋼板は、本発明の要件の全てを満足する実施例であり、No.B1〜No.B8の鋼板は、いずれかの要件が本発明の範囲から外れた比較例である。更にまた、下記表1には、昇温速度を2.5℃/分として各鋼片を昇温したときの加熱変態点も併せて示す。   Hereinafter, the effects of the present invention will be described in detail by way of examples of the present invention. In this example, steel pieces in the form of ingots and slabs having the compositions shown in Table 1 below were processed and heat-treated under the conditions shown in Table 2 below to produce thick steel plates having a thickness of 50 to 80 mm. In Table 1 below, No. 1-No. No. 10 steel slab has a steel composition within the scope of the present invention. 11-No. The steel bill of 15 has a steel composition outside the scope of the present invention. And the underline in following Table 1 shows that it is outside the scope of the present invention. Further, the balance in the steel composition shown in Table 1 below is Fe and inevitable impurities. Furthermore, No. 2 in Table 2 below. A1-No. The steel sheet of A13 is an example that satisfies all the requirements of the present invention. B1-No. The steel plate of B8 is a comparative example in which any requirement is out of the scope of the present invention. Furthermore, Table 1 below also shows the heating transformation point when each steel slab is heated at a rate of temperature increase of 2.5 ° C./min.

Figure 0005435837
Figure 0005435837

Figure 0005435837
Figure 0005435837

また、各鋼板の組織中に含まれる酸化物粒子の組成及び粒子径0.005〜2μmの粒子数を調べた。各鋼板の組織中に含まれる酸化物粒子の組成、大きさ及び個数は、鋼片と同じであり、その後の圧延及び熱処理等の加工条件には影響されない。即ち、同じ鋼片を使用している鋼板は、その組織中に含まれる酸化物粒子の組成、大きさ及び個数は同じとなる。このため、これらの測定は、各鋼片の板厚の1/4位置及び板厚中心部の夫々10箇所以上から試験片を採取し、この試験片から作製した抽出レプリカを電子顕微鏡にて観察することにより行った。その結果を下記表3に示す。なお、下記表3に示す酸化物組成は、Oを除いた全成分元素の質量に対する割合(質量%)である。   Further, the composition of oxide particles contained in the structure of each steel plate and the number of particles having a particle size of 0.005 to 2 μm were examined. The composition, size, and number of oxide particles contained in the structure of each steel plate are the same as those of the steel slab, and are not affected by subsequent processing conditions such as rolling and heat treatment. That is, steel plates using the same steel slab have the same composition, size and number of oxide particles contained in the structure. For this reason, these measurements were made by taking test pieces from 10 or more positions of each steel piece ¼ position and the central part of the thickness, and observing the extracted replicas made from the test pieces with an electron microscope. It was done by doing. The results are shown in Table 3 below. In addition, the oxide composition shown in Table 3 below is a ratio (% by mass) to the mass of all component elements excluding O.

Figure 0005435837
Figure 0005435837

次に、上述の方法で作製した実施例及び比較例の各鋼板の機械的性質の評価、並びにこれらの鋼板を溶接して得た溶接継手のシャルピー衝撃特性の評価及びディープノッチ試験を行った。各鋼板(母材)の特性は、表層部及び内部の引張特性、シャルピー衝撃特性、及び全厚での温度勾配型ESSO試験による脆性き裂伝播停止特性(Kca)について調査した。   Next, evaluation of the mechanical properties of each steel sheet of Examples and Comparative Examples produced by the above-described method, evaluation of Charpy impact characteristics of welded joints obtained by welding these steel sheets, and a deep notch test were performed. The characteristics of each steel plate (base material) were examined for the surface layer portion and internal tensile properties, Charpy impact properties, and brittle crack propagation stopping properties (Kca) by temperature gradient type ESSO test at the full thickness.

引張試験は、試験片長手方向が圧延方向に平行となるように採取した板状引張試験片を使用し、室温下で行った。そして、表層部の引張特性は、試験片厚が鋼板表面〜板厚の1/6までとなるようにし、また内部の引張特性は、試験片厚が板厚の1/4〜板厚中心部までとなるようにして採取した試験片により測定した。   The tensile test was performed at room temperature using a plate-like tensile test specimen collected so that the longitudinal direction of the test specimen was parallel to the rolling direction. And, the tensile property of the surface layer part is set so that the thickness of the test piece is from the steel sheet surface to 1/6 of the plate thickness, and the internal tensile characteristic is ¼ to the central part of the plate thickness. It measured with the test piece extract | collected so that it might become.

また、シャルピー衝撃特性は、破面遷移温度(vTrs)により評価した。その際、シャルピー衝撃試験片は、引張試験片と同様に、試験片長手方向が圧延方向に平行となる方向で、表層部については試験片中心が鋼板表面から6mmの位置となるように、内部については試験片中心が鋼板の板厚1/4位置となるように採取した。   The Charpy impact characteristics were evaluated by the fracture surface transition temperature (vTrs). At that time, the Charpy impact test piece is the same as the tensile test piece in the direction in which the longitudinal direction of the test piece is parallel to the rolling direction, and the center of the test piece is positioned 6 mm from the surface of the steel plate for the surface layer portion. Was collected so that the center of the test piece was at the position of 1/4 of the thickness of the steel sheet.

更に、脆性き裂伝播停止特性は、温度勾配条件と負荷応力を種々変化させた複数の試験結果に基づいて、Kca値が3920N/mm1.5(400kgf/mm1.5)となる温度(Tkca400)で評価した。 Furthermore, the brittle crack propagation stop characteristic is based on the temperature at which the Kca value becomes 3920 N / mm 1.5 (400 kgf / mm 1.5 ) based on a plurality of test results obtained by changing the temperature gradient condition and the load stress. Tkca400).

一方、溶接継手は、簡易エレクトロガス溶接機を使用し、鋼板原厚のままで、入熱が約30〜45kJ/mmの1パス溶接により作製した。そして、シャルピー衝撃試験は、試験片中心が鋼板板厚の1/4となる位置で、ノッチをFusion Lineに一致させた試験片を使用し、その破面遷移温度(vTrs)により評価した。また、溶接継手の破壊靭性値は、ディープノッチ試験により求めたKc値を使用した。更に、ディープノッチ試験は、板厚貫通中央切欠タイプの試験片で、Fusion Lineに切欠を導入し、−20℃で試験を行った。   On the other hand, the welded joint was produced by one-pass welding with a heat input of about 30 to 45 kJ / mm using a simple electrogas welding machine with the steel plate thickness still being maintained. In the Charpy impact test, a test piece having a notch aligned with the Fusion Line at a position where the center of the test piece is 1/4 of the steel plate thickness was used, and the evaluation was performed based on the fracture surface transition temperature (vTrs). Moreover, Kc value calculated | required by the deep notch test was used for the fracture toughness value of a welded joint. Further, the deep notch test was a plate thickness through center notch type test piece, in which a notch was introduced into the fusion line and the test was performed at -20 ° C.

以上の結果を下記表4にまとめて示す。なお、下記表4に示すオーステナイト粒径は、再結晶域〜部分再結晶域圧延を終了した時点での平均オーステナイト粒径である。また、未再結晶上限温度は、100%未再結晶粒となる上限の温度であり、その再結晶率は加速冷却開始直前での再結晶率とし、小型シミュレーション試験結果に基づいて推定した値である。更に、累積圧下率は、未再結晶上限温度〜Ar変態点の温度範囲における圧延の累積圧下率であり、Ar変態点は、未再結晶域圧延後、空冷での実測値である。更にまた、二相域圧延はAr変態点未満の温度域での圧延であり、そのフェライト分率は、別途、二相域圧延開始前に途中焼入を行った実験による測定値である。更にまた、焼戻し方式は、炉加熱の場合は熱処理炉での焼戻しであり、誘導加熱の場合は高周波誘導加熱での焼戻しである。また、炉加熱においては、加熱温度での保持時間を10〜120分とし、誘導加熱においては保持はなしとし、いずれも冷却は空冷で行った。更にまた、焼戻し温度は、炉加熱の場合は加熱炉温度であり、高周波誘導加熱の場合は表面の実測値である。 The above results are summarized in Table 4 below. In addition, the austenite particle size shown in the following Table 4 is an average austenite particle size at the time when the recrystallization region to partial recrystallization region rolling is completed. The upper limit temperature for non-recrystallization is the upper limit temperature at which 100% non-recrystallized grains are formed. The recrystallization rate is the recrystallization rate immediately before the start of accelerated cooling, and is a value estimated based on the results of a small simulation test. is there. Furthermore, the cumulative rolling reduction is cumulative rolling reduction of rolling in the temperature range of the pre-recrystallization upper limit temperature to Ar 3 transformation point, Ar 3 transformation point after the non-recrystallization region rolling, a measured value of air cooling. Furthermore, the two-phase zone rolling is rolling in a temperature range below the Ar 3 transformation point, and the ferrite fraction is a measured value obtained by an experiment in which intermediate quenching was performed before the start of the two-phase zone rolling. Furthermore, the tempering method is tempering in a heat treatment furnace in the case of furnace heating, and tempering in high-frequency induction heating in the case of induction heating. In the furnace heating, the holding time at the heating temperature was set to 10 to 120 minutes, and in the induction heating, the holding was not performed, and the cooling was performed by air cooling. Furthermore, the tempering temperature is the furnace temperature in the case of furnace heating, and is the actual measured value of the surface in the case of high frequency induction heating.

Figure 0005435837
Figure 0005435837

上記表2〜4に示すように、実施例No.A1〜No.A13の鋼板は、本発明の要件を全て満足しているため、母材鋼板及び溶接継手共に、シャルピー衝撃試験による靭性が良好であり、かつ鋼板全厚で行う大型破壊靭性値も良好な値であった。   As shown in Tables 2-4 above, Example No. A1-No. Since the steel sheet of A13 satisfies all the requirements of the present invention, both the base steel sheet and the welded joint have good toughness by the Charpy impact test, and the large fracture toughness value performed at the full thickness of the steel sheet is also a good value. there were.

これに対して、比較例No.B1〜No.B8の鋼板は、本発明のいずれかの要件を満足していないため、表4に示す機械的性質からも明らかなように、前述した実施例No.A1〜No.A13の鋼板と比べて、シャルピー衝撃特性及び破壊靭性値が共に劣っているか、又はシャルピー衝撃特性は良好であっても、大型破壊試験による破壊靭性値が劣っていた。   In contrast, Comparative Example No. B1-No. Since the steel sheet of B8 does not satisfy any of the requirements of the present invention, as apparent from the mechanical properties shown in Table 4, the above-mentioned Example No. A1-No. Compared to the steel sheet of A13, both Charpy impact properties and fracture toughness values were inferior, or even when Charpy impact properties were good, the fracture toughness values in large-scale fracture tests were inferior.

具体的には、No.B1の鋼板は、C含有量が本発明の範囲を超えているため、母材鋼板及びHAZ共に、シャルピー衝撃試験による靭性値自体が著しく劣化しており、その結果、破壊靭性値が極めて低かった。また、No.B2〜No.B5の鋼板は、各々、Si、Mn、P又はSの含有量が本発明の範囲を超えているため、C含有量が過剰である場合と同様の理由により、良好な破壊靭性値が得られなかった。更に、No.B6〜No.B8の鋼板は、鋼組成は本発明の範囲内であるため、母材鋼板及びHAZ共に十分に高い靭性が得られているが、鋼板の製造方法が適切でないために、鋼板表層部の降伏応力が内部の降伏応力に比べて過大となっている。このため、表層部の降伏応力と内部の降伏応力との比(YP/YP)が1.3以下という本発明の要件の1つを満足しておらず、その結果、全厚で測定される母材鋼板の脆性亀裂伝播停止特性(Kca値)及び継手の脆性破壊発生特性(Kc値)が、同様の鋼組成を有する実施例の鋼板と比べて大きく劣っていた。 Specifically, no. In the steel plate of B1, since the C content exceeds the range of the present invention, both the base steel plate and HAZ have significantly deteriorated the toughness value by the Charpy impact test, and as a result, the fracture toughness value was extremely low. . No. B2-No. Each of the steel plates of B5 has a Si, Mn, P or S content exceeding the range of the present invention, and therefore a good fracture toughness value is obtained for the same reason as when the C content is excessive. There wasn't. Furthermore, no. B6-No. Since the steel composition of B8 has a steel composition within the scope of the present invention, both the base steel plate and HAZ have sufficiently high toughness. However, since the steel plate manufacturing method is not appropriate, the yield stress of the steel plate surface layer portion is Is excessive compared to the internal yield stress. For this reason, one of the requirements of the present invention that the ratio of the yield stress of the surface layer portion to the internal yield stress (YP S / YP C ) is 1.3 or less is not satisfied. The brittle crack propagation stopping property (Kca value) of the base steel plate and the brittle fracture occurrence property (Kc value) of the joint were greatly inferior to those of the steel plates of the examples having the same steel composition.

以上の結果から、本発明の溶接継手は、母材鋼板及び溶接継手において、シャルピー衝撃試験による靭性だけでなく、全厚で測定され、良好な特性を得ることが容易でない大型破壊試験による破壊靭性値も極めて良好であることが確認された。   From the above results, the welded joint of the present invention is not only toughness by Charpy impact test, but also toughness by large-scale fracture test that is not easy to obtain good characteristics, measured at full thickness, in the base steel plate and welded joint. The value was also confirmed to be very good.

横軸に鋼板の表層部の降伏応力YPと、鋼板の内部の降伏応力YPとの比(YP/YP)をとり、縦軸に継手のKc値をとって、各破面遷移温度(vTrs)における継手のKc値とYP/YPとの関係を示すグラフ図である。The horizontal axis represents the ratio of the yield stress YP S in the surface layer of the steel sheet to the yield stress YP C in the steel sheet (YP S / YP C ), and the vertical axis represents the Kc value of the joint. is a graph showing the relationship between the Kc value of the joint and YP S / YP C in temperature (vTrs). シャルピー衝撃試験と大型破壊試験との違いを示す概念図である。It is a conceptual diagram which shows the difference between a Charpy impact test and a large-scale fracture test.

Claims (6)

引張強さが490MPa以上724MPa以下で、板厚が35mm以上70mm以下の高張力厚鋼板を溶接して得た高張力厚鋼板の溶接継手において、
前記鋼板とこの鋼板の溶接熱影響部を含む溶接部とからなり、
前記鋼板は、
質量%で、
C:0.01〜0.3%、
Si:0.01〜2%、
Mn:0.1〜3%、
Al:0.003〜0.1%、
N:0.001〜0.01%を含有すると共に、
P:0.02%以下及び
S:0.01%以下に規制し、
残部がFe及び不可避不純物からなり、
前記鋼板及び前記溶接熱影響部は、板厚の1/4の位置での2mmVノッチシャルピー衝撃特性が破面遷移温度で−20℃以下であり、
かつ前記鋼板の表面から板厚の1/6の位置までの範囲の降伏応力YPSと、板厚の1/4の位置から板厚中心までの範囲の降伏応力YPCとの比(YPS/YPC)が1.3以下であることを特徴とする高張力厚鋼板の溶接継手。
In a welded joint of a high strength thick steel plate obtained by welding a high strength thick steel plate having a tensile strength of 490 MPa to 724 MPa and a plate thickness of 35 mm to 70 mm ,
It consists of the steel plate and a welded portion including the weld heat affected zone of this steel plate,
The steel plate
% By mass
C: 0.01 to 0.3%
Si: 0.01-2%
Mn: 0.1 to 3%
Al: 0.003 to 0.1%,
N: containing 0.001 to 0.01%,
P: 0.02% or less and S: 0.01% or less,
The balance consists of Fe and inevitable impurities,
The steel plate and the weld heat affected zone have a 2 mm V notch Charpy impact property at a position of 1/4 of the plate thickness, which is −20 ° C. or less at the fracture surface transition temperature,
The ratio of the yield stress YPS in the range from the surface of the steel plate to 1/6 of the plate thickness and the yield stress YPC in the range from the 1/4 position of the plate thickness to the center of the plate thickness (YPS / YPC) Is a welded joint of high-tensile thick steel plate, characterized by being 1.3 or less.
前記鋼板は、更に、質量%で、Ti:0.005〜0.03%及びCa:0.0005〜0.003%を含有し、
かつ前記鋼板及び前記溶接熱影響部の組織中には、平均円相当径が0.005〜2μmの酸化物粒子が、単位面積当たりの個数で、100〜3000個/mm2含まれていることを特徴とする請求項1に記載の高張力厚鋼板の溶接継手。
The steel sheet further contains, by mass%, Ti: 0.005 to 0.03% and Ca: 0.0005 to 0.003%,
And in the structure of the steel plate and the weld heat affected zone, oxide particles having an average equivalent circle diameter of 0.005 to 2 μm are included in a number per unit area of 100 to 3000 / mm 2. The welded joint of the high-tensile thick steel plate according to claim 1.
前記鋼板は、更に、質量%で、Mg:0.0001〜0.002%を含有することを特徴とする請求項2に記載の高張力厚鋼板の溶接継手。   The high strength steel plate welded joint according to claim 2, wherein the steel sheet further contains Mg: 0.0001 to 0.002% by mass. 前記鋼板におけるS含有量が、質量%で、0.002〜0.01%であることを特徴とする請求項1〜3のいずれか1項に記載の高張力厚鋼板の溶接継手。   The S content in the steel plate is 0.002 to 0.01% by mass%, and the welded joint for high-tensile thick steel plate according to any one of claims 1 to 3. 前記鋼板は、更に、質量%で、Cu:0.05〜1.5%、Cr:0.05〜2%、Mo:0.05〜2%、W:0.05〜2%、V:0.01〜0.2%、Nb:0.003〜0.1%、Ta:0.01〜0.2%及びZr:0.005〜0.1%からなる群から選択された1種又は2種以上の元素を含有することを特徴とする請求項1〜4のいずれか1項に記載の高張力厚鋼板の溶接継手。 The steel sheet further contains, by mass%, C u: 0.05~1.5%, Cr: 0.05~2%, Mo: 0.05~2%, W: 0.05~2%, V 1 selected from the group consisting of: 0.01-0.2%, Nb: 0.003-0.1%, Ta: 0.01-0.2% and Zr: 0.005-0.1% The welded joint for high-strength thick steel plates according to any one of claims 1 to 4, comprising seeds or two or more elements. 前記鋼板は、更に、質量%で、Y:0.001〜0.01%及びCe:0.005〜0.1%からなる群から選択された1種又は2種以上の元素を含有することを特徴とする請求項1〜5のいずれか1項に記載の高張力厚鋼板の溶接継手。   The steel sheet further contains one or more elements selected from the group consisting of Y: 0.001 to 0.01% and Ce: 0.005 to 0.1% by mass%. The welded joint for high-tensile thick steel plates according to any one of claims 1 to 5.
JP2006077029A 2006-03-20 2006-03-20 Welded joint of high-tensile thick steel plate Expired - Fee Related JP5435837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077029A JP5435837B2 (en) 2006-03-20 2006-03-20 Welded joint of high-tensile thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077029A JP5435837B2 (en) 2006-03-20 2006-03-20 Welded joint of high-tensile thick steel plate

Publications (2)

Publication Number Publication Date
JP2007254767A JP2007254767A (en) 2007-10-04
JP5435837B2 true JP5435837B2 (en) 2014-03-05

Family

ID=38629295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077029A Expired - Fee Related JP5435837B2 (en) 2006-03-20 2006-03-20 Welded joint of high-tensile thick steel plate

Country Status (1)

Country Link
JP (1) JP5435837B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076939B2 (en) * 2008-02-07 2012-11-21 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP5874290B2 (en) * 2011-10-07 2016-03-02 Jfeスチール株式会社 Steel material for welded joints excellent in ductile crack growth characteristics and method for producing the same
JP5949114B2 (en) * 2011-11-28 2016-07-06 Jfeスチール株式会社 Manufacturing method of structural high strength thick steel plate with excellent brittle crack propagation stopping characteristics
JP5304925B2 (en) * 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
CN105008574B (en) * 2013-03-12 2018-05-18 杰富意钢铁株式会社 The steel plate and its manufacturing method of multi-layer welding connector CTOD characteristic goods
CN112725698B (en) * 2020-12-28 2021-12-07 郑州航空工业管理学院 Multi-scale structure block material and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327065B2 (en) * 1995-08-31 2002-09-24 住友金属工業株式会社 Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP4374104B2 (en) * 1999-11-09 2009-12-02 新日本製鐵株式会社 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics
JP2002256380A (en) * 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd Thick high tensile strength steel plate having excellent brittle crack propagation arrest property and weld zone property and production method therefor
JP4035990B2 (en) * 2001-12-13 2008-01-23 Jfeスチール株式会社 Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
JP2004035946A (en) * 2002-07-03 2004-02-05 Nippon Steel Corp Method for producing high-tension steel having excellent weldability

Also Published As

Publication number Publication date
JP2007254767A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4213833B2 (en) High toughness and high strength steel with excellent weld toughness and manufacturing method thereof
JP5201665B2 (en) High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding
JP4897126B2 (en) Thick steel plate manufacturing method
WO2020262638A1 (en) Steel material and method for producing same
WO2014103629A1 (en) STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2
JP6665659B2 (en) Thick steel plate and manufacturing method thereof
JP2013087334A (en) Steel sheet having excellent toughness in weld heat affected zone and method for manufacturing the same
JP5435837B2 (en) Welded joint of high-tensile thick steel plate
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP6665658B2 (en) High strength steel plate
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
WO2017183720A1 (en) Thick steel plate
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP2019183221A (en) Thick steel sheet and manufacturing method therefor
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP3858907B2 (en) Manufacturing method of structural steel materials with excellent earthquake resistance
JP2688312B2 (en) High strength and high toughness steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5435837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees