JP4374104B2 - Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics - Google Patents

Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics Download PDF

Info

Publication number
JP4374104B2
JP4374104B2 JP31891199A JP31891199A JP4374104B2 JP 4374104 B2 JP4374104 B2 JP 4374104B2 JP 31891199 A JP31891199 A JP 31891199A JP 31891199 A JP31891199 A JP 31891199A JP 4374104 B2 JP4374104 B2 JP 4374104B2
Authority
JP
Japan
Prior art keywords
steel
ultrafine
joint
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31891199A
Other languages
Japanese (ja)
Other versions
JP2001131679A (en
Inventor
俊永 長谷川
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31891199A priority Critical patent/JP4374104B2/en
Publication of JP2001131679A publication Critical patent/JP2001131679A/en
Application granted granted Critical
Publication of JP4374104B2 publication Critical patent/JP4374104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、低温貯槽タンク、寒冷地向け構造物等の構造物として低温靭性を必要とする構造物に供する、材料として低温靭性に極めて優れる超細粒鋼の継手、さらに、該継手からなる接合構造体に関するものである。
【0002】
【従来の技術】
最近、加工熱処理を駆使してフェライト粒径を2μm程度以下の超細粒組織とした低温靭性、脆性き裂伝播停止特性(アレスト性)の極めて良好な低温用鋼が実用化されつつある。例えば、特開平7−126798号公報、特開平7−826424号公報、特開平9−176782号公報に示されるように、鋼板表裏面に33%以下までの超細粒層を付与することで、鋼板のアレスト性向上を図る、いわゆる表層超細粒鋼とその製造方法が種々開示されている。
【0003】
また、特開平7−126797号公報、特開平8−198829号公報、特開平8−295982号公報、特開平9−202919号公報では、前記表層超細粒鋼と同様の技術思想に基づく全厚超細粒鋼とその製造方法が開示されている。該全厚超細粒鋼は超細粒組織を鋼板の全厚にわたって形成させることで、表層超細粒鋼に比べてさらなるアレスト性向上を可能にしている。これらの超細粒鋼は細粒強化量も大きいため、同一組成のフェライト+パーライト鋼に比較して強度の大幅な向上も可能である。
【0004】
しかし、上記の例に代表されるように、超細粒鋼は加工熱処理あるいは熱処理、場合によってはメカニカルミリング等の冷間加工等を駆使して形成されたものであるが故に、本質的に熱的に不安定であり、構造体に接合するに際して、一般に用いられる、アーク溶接や、潜弧溶接により接合すると、溶接により高温に晒された溶接熱影響部(HAZ)においては超細粒組織が解消あるいは変化し、特に溶融線(フュージョンライン)近傍の溶接熱影響部の強度・靭性に関しては、通常の組織を有する鋼と同等まで低下する欠点を有している。
【0005】
従って、現在実用化されている超細粒鋼ではあくまでも母材の低温靭性やアレスト性を保証するものであって、HAZの低温靭性やアレスト性について保証するには至っていないため、HAZ靭性,HAZアレスト性(ボンドアレスト性)が構造物全体の特性を決定づけるような構造体においては,超細粒鋼を用いても安全性の向上につながらない場合があり、鋼材の特性が極めて優れているにも関わらずその使用に制限が生じる。
【0006】
【発明が解決しようとする課題】
本発明は平均フェライト粒径が3μm以下で、該超細粒組織によって鋼材の強度、靭性、アレスト性等の特性向上を図っている鋼の継手及び該継手からなる接合構造体に関するもので、鋼材の優れた特性を極端に損なうことなく、該超細粒鋼の特性を反映して構造体として優れた靭性とアレスト性を有し、安全性に優れた継手と接合構造体とを提供することを課題とする。
【0007】
【課題を解決するための手段】
鋼材の特性を全く損なわずに鋼材同士を接合する方法としては、ボルト接合が考えられるが、複雑な構造物全体を全てボルト接合で接合することは、溶接接合が主流となっている現状を踏まえると作業効率上、コスト上、現実的でない。
そこで、本発明者らは現状におけるアーク溶接法と同様の効率、コストで、実用的な溶接法の範疇において、上記の課題を解決すべく、その骨子とするところは、超細粒鋼の特性が損なわれるHAZの幅を狭くし、かつ、鋼材に比べて溶接金属及び顕著な軟化が生じないようにすることで、構造体の破壊が必ず母材原質部から生じさせることによって、構造物全体としての特性が鋼材の特性によって決定づけられるようにすることにあり、その要旨は以下の通りである。
【0008】
(1)重量%で、C:0.01〜0.2%、Si:0.01〜1%、Mn:0.1〜2%、Al:0.001〜0.1%、N:0.001〜0.01%を含有し、さらに不純物として、P:0.025%以下、S:0.015%以下を含有し、残部が鉄及び不可避不純物からなり、平均粒径が3μm以下の超細粒フェライト組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚の10〜50%まで有する鋼板を、溶接金属の幅が5mm以下、かつ、鋼板に生じた熱影響部における平均粒径が5μm以上の領域の幅が0.5mm以下となるように溶接したことを特徴とする超細粒鋼からなる、脆性き裂伝播停止特性に優れた継手。
【0009】
(2)前記溶接が、レーザー溶接であることを特徴とする、前記(1)に記載の、脆性き裂伝播停止特性に優れた継手。
【0010】
(3)鋼板が、重量%で、Cr:0.01〜1%、Ni:0.01〜6%、Mo:0.01〜1%、Cu:0.01〜1.5%、Ti:0.003〜0.1%、V:0.005〜0.5%、Nb:0.003〜0.1%、Zr:0.003〜0.1%、Ta:0.005〜0.2%、W:0.01〜2%、B:0.0003〜0.002%の1種または2種以上を、さらに含有することを特徴とする前記(1)または(2)のいずれかに記載の、脆性き裂伝播停止特性に優れた継手。
【0011】
(4)鋼板が、重量%で、Mg:0.0005〜0.01%、Ca:0.0005〜0.01%、REM:0.005〜0.1%のうち1種または2種以上を、さらに含有することを特徴とする前記(1)〜(3)のいずれかに記載の、脆性き裂伝播停止特性に優れた継手。
(5)前記(1)〜(4)のいずれかに記載の、脆性き裂伝播停止特性に優れた継手を1以上有することを特徴とする超細粒鋼からなる接合構造体にある。
【0012】
【発明の実施の形態】
溶材、フィラーメタル、あるいは鋼材自体を加熱あるいは溶融・凝固させて鋼材同士を結合させる接合構造においては、接合部近傍の熱影響部(HAZ)が程度の違いは多少あるにせよ、変態点以上に加熱されることは不可避である。従って、いずれの手段にせよ、熱的な不安定性を有している超細粒鋼のHAZは母材原質部と全く同じ組織を保持することは不可能であり、粒成長を代表として何らかの組織変化が惹起させることは避けられず、その結果、HAZの特性、特に超細粒化により顕著に発現された、強度、靭性の劣化も避けられない。
【0013】
本発明は、超細粒鋼HAZの材質劣化を極力抑制し、かつ材質劣化を前提とした上で、構造体全体としては該材質劣化が顕在化しないための手段を縷々検討した結果、発明に至ったものである。本発明における基本要件は、平均粒径が3μm以下の超細粒フェライト組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚の10%〜50%まで有する鋼板を、溶接より鋼板に生じた熱影響部における平均粒径が5μm以上の領域の幅が0.5m以下となるように溶接ることにある。
【0014】
先ず、接合体とすべき鋼の組織要件を、平均フェライト粒径が3μm以下の超細粒組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚の10〜50%まで有することとしたのは以下の理由による。
平均フェライト粒径が3μm超の組織は焼きならしや通常の制御圧延等で達成可能であり、熱的にも安定で、本発明の継手を適用するまでもないこと、また、平均フェライト粒径が3μm超では得られる強度・靭性にも限度があり、本発明によらなくとも、HAZの強度・靭性を母材原質部と同等にすることは比較的容易なためである。
【0015】
次に、該超細粒組織を、鋼板表裏面のそれぞれ、表面から板厚方向に板厚の10〜50%まで有することに限定したのは、上記と同様、各面の10%未満のみが超細粒組織となるような鋼では得られる強度・靭性にも限度があり、本発明によらなくとも、HAZの強度・靭性を母材原質部と同等にすることは比較的容易なためである。
平均フェライト粒径が3μm以下の超細粒組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚の10〜50%まで有する鋼板は、後述する化学組成要件も同時に満足すれば、表層超細粒層のシャルピー衝撃特性は破面遷移温度(vTrs)で−120℃以下、鋼板全体のアレスト特性は、KCaが400kgf/mm1.5 となる温度(TKCa400)で−100℃以下の極めて良好な特性を十分達成できる。
【0016】
なお、本発明は平均粒径が3μm以下の超細粒フェライト組織鋼を対象とするが、パーライト、ベイナイト、マルテンサイト等、フェライト以外の組織を不可避的に含んでも良い。この母材の極めて良好な靭性、アレスト性が構造体となった後にも構造体全体の特性としては、該母材の特性を保持させるために、必要な要件が、溶接より鋼板に生じた熱影響部における平均粒径が5μm以上の領域の幅が0.5m以下となるように溶接ることである。
【0017】
溶材、フィラーメタル、あるいは鋼材自体を加熱あるいは溶融・凝固させて鋼材同士を結合させる接合構造においては、接合部近傍の熱影響部(HAZ)の鋼材が程度の違いは多少あるにせよ、変態点以上に加熱されることは不可避である。従って、いずれの手段にせよ、熱的な不安定性を有している超細粒鋼のHAZは母材原質部と全く同じ組織を保持することは不可能であり、粒成長を代表として何らかの組織変化が惹起させることは避けられず、その結果、HAZの特性、特に超細粒化により顕著に発現された、強度、靭性の劣化も避けられない。
【0018】
しかし、本発明者らは詳細な実験・解析の結果、HAZの組織が変化した部分のサイズ、特性を制御することで、継手あるいは構造体全体としての安全性を確保することは可能であることを見出した。すなわち、鋼板の化学組成を規定した上で、各々HAZにおいて、材質の劣化した粗大組織の幅を0.5mm以下とすることで継手全体の特性は母材特性をほぼ反映するになる。なお、粗大組織とは平均粒径が3μm以下の母材との材質差が顕著となる、平均粒径が5μm以上の組織を指す。ここで、粒径は、フェライト主体組織の場合はフェライト粒径、ベイナイトあるいはマルテンサイト主体組織の場合は旧オーステナイト粒径のことである。
【0019】
上記HAZの組織要件は該組織の達成手段によらないが、より具体的には、平均粒径が3μm以下の超細粒フェライト組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚の10〜50%まで有する鋼板を、溶接金属の幅が5mm以下となるようにレーザー溶接で接合することが好ましい。
すなわち、超細粒組織の粗大化を極力抑制するためにはなるべく投入エネルギーが少なく、接合後の冷却速度が小さい方法が好ましい。一般のアーク溶接で入熱量を低下させた場合は、1回の溶接パスにおける熱影響の幅は小さく、冷却速度は大きいが、厚手材では必然的に多層溶接となるため、繰り返し高温に加熱される領域が存在することになるため、粒成長を抑制することが困難である。また、超細粒組織の粒成長を接合体としての特性劣化が生じない程度に抑制するためには、入熱量を極小まで抑える必要があるが、そうした場合、溶接パスの層数が極めて多くなり、溶接効率が極端に劣化して実用的でなくなる。
【0020】
本発明者らは上記のような欠点を示さず、組織変化を抑制できる接合方法として、レーザー溶接が好ましいことを見出した。すなわち、レーザー溶接では実効的に小入熱溶接ができる上、厚手材に至るまで1パスでの接合が可能であるため、鋼材を溶融させる接合方法の中では、超細粒組織の変化を最も小さくできる。レーザー溶接であっても、超細粒鋼の組織を母材原質部と全く同一のまま保存することはできないが、構造体においては、破壊の発生・伝播が超細粒組織が損なわれる溶接金属〜HAZで生ぜず、超細粒組織が保存される、加熱温度が低い母材近傍のHAZ〜母材原質部で生じるようにすれば、構造体全体としての特性を母材である超細粒鋼の特性とすることが可能となる。
【0021】
そのためには、溶接金属及びHAZの幅を一定以下に狭くすること、且つ、超細粒組織が損なわれる領域の硬さを母材原質部より高くすることが必要である。このような要件を満足した接合構造体であれば、超細粒組織が損なわれた溶接金属〜HAZ領域の極端な材質劣化を防ぐとともに、該領域の変形を抑制してあらゆるモードによる破壊が母材原質部から生じるようにすることが可能となる。
【0022】
具体的には、レーザー溶接で形成される溶接金属の幅を5mm以下とする必要がある。溶接金属の幅を5mm以下とすることにより、HAZの幅も対応して狭くなり、HAZにおける平均粒径が5μm以上の領域の幅が0.5m以下となり、且つ、十分急冷されるため、溶接金属〜HAZの硬さが母材原質部に比べて高くなる。なお、以上はフィラーメタルを用いないレーザー溶接を前提とした本発明の説明であるが、後述する鋼材成分の限定範囲内のフィラーメタル、あるいは、溶接金属として本発明の構造体を構成する鋼材と同等の特性を発現できるフィラーメタルであれば用いても構わない。
【0023】
以上、本発明では、大型構造物を含めた接合構造体全般に適用できることを前提として、大気中での接合が可能なレーザー溶接に限定しているが、ほぼ同様の特性を有する電子ビーム溶接でも、原理的には本発明の超細粒鋼からなる接合構造体を製造することは可能である。
以上が、本発明の超細粒鋼からなる継手及びそれからなる構造体に関する基本要件であるが、レーザー溶接により形成される、フィラーメタルを用いない場合の溶接金属、及び、HAZの極端な特性劣化を防ぐため、また、母材原質部の特性を確保して、より効果を発揮するためには鋼材の個々の化学成分についても下記に述べる理由により、各々限定する必要がある。
【0024】
すなわち、Cは、鋼の強度を向上させる有効な成分として含有するもので、0.01%未満では構造用鋼に必要な強度の確保が困難であるが、0.2%を超える過剰の含有は母材及び溶接部の靭性や耐溶接割れ性を低下させるので、0.01〜0.2%の範囲とした。
次に、Siは,脱酸元素として、また、母材の強度確保に有効な元素であるが、0.01%未満の含有では脱酸が不十分となり、また強度確保に不利である。逆に1%を超える過剰の含有は粗大な酸化物を形成して延性や靭性の劣化を招く。そこで、Siの範囲は0.01〜1%とした。
【0025】
また、Mnは母材の強度、靭性の確保に必要な元素であり、最低限0.1%以上含有する必要があるが、過剰に含有すると、硬質相の生成や粒界脆化等により母材靱性や溶接部の靭性、さらに溶接割れ性など劣化させるため、材質上許容できる範囲で上限を2%とした。
Alは脱酸、オーステナイト粒径の細粒化等に有効な元素であるが、効果を発揮するためには0.001%以上含有する必要がある。一方、0.1%を超えて過剰に含有すると、粗大な酸化物を形成して延性を極端に劣化させるため、0.001〜0.1%の範囲に限定する必要がある。
【0026】
NはAlやTiと結びついてオーステナイト粒微細化に有効に働くため、微量であれば機械的特性に有効に働く。また、工業的に鋼中のNを完全に除去することは不可能であり、必要以上に低減することは製造工程に過大な負荷をかけるため好ましくない。そのため、工業的に制御が可能で、製造工程への負荷が許容できる範囲として下限を0.001%とする。過剰に含有すると、固溶Nが増加し、延性や靭性に悪影響を及ぼす可能性があるため、許容できる範囲として上限を0.1%とする。
【0027】
P,Sは、不純物元素で、延性、靭性を劣化させる元素であり、極力低減することが好ましいが、材質劣化が大きくなく、許容できる量として、Pの上限を0.025%、Sの上限を0.015%に限定する。
以上が本発明の鋼材の基本成分の限定理由であるが、本発明においては、強度・靭性の調整のために、必要に応じて、Cr,Ni,Mo,Cu,Ti,V,Nb,Zr,Ta,W,Bの1種または2種以上を含有することができる。
Cr及びMoは、いずれも母材の強度向上に有効な元素であるが、明瞭な効果を生じるためには0.01%以上必要であり、一方、1.0%を超えて添加すると、靭性及び溶接性が劣化する傾向を有するため、各々0.01〜1.0%の範囲とする。
【0028】
また、Niは、母材の強度と靭性を同時に向上でき、非常に有効な元素であるが、効果を発揮させるためには0.01%以上含有させる必要がある。含有量が多くなると強度、靭性は向上するが6%を超えて添加しても効果が飽和する一方で、レーザー溶接部の溶接金属、溶接熱影響部の硬さが過大となって溶接性が劣化するため、上限を6%とする。また、6%を超える添加では焼入性が過大となるため、フェライトの生成が抑制されるためにフェライトの超細粒化に好ましくない効果も顕在化する。
【0029】
次に、Cuも、ほぼNiと同様の効果を有するが、1.5%超では熱間加工性に問題を生じるため、0.01〜1.5%の範囲に限定する。
Tiは析出強化により母材強度向上に寄与するとともに、TiNの形成により加熱オーステナイト粒径微細化にも有効な元素であり、靭性向上にも有効な元素であるが、効果を発揮するためには0.003%以上の含有が必要である。一方、0.1%を超えると、粗大な析出物、介在物を形成して靭性や延性を劣化させるため、上限を0.1%とする。
【0030】
Vも、VNを形成して強度向上に有効な元素であるが、過剰の含有では析出脆化により靭性が劣化する。従って、靭性の大きな劣化を招かずに、効果を発揮できる範囲として、0.005〜0.5%の範囲に限定する。
Nbは、Nb(C,N)を形成することで強度・靭性の向上に有効な元素であるが、過剰の含有では析出脆化により靭性が劣化する。従って、靭性の劣化を招かずに効果を発揮できる範囲として、0.003〜0.1%の範囲に限定する。
【0031】
Zrも、窒化物を形成する元素であり、Tiと同様の効果を有するが、その効果を発揮するためには0.003%以上の含有が必要である。一方、0.1%を超えると、Tiと同様、粗大な析出物、介在物を形成して靭性や延性を劣化させるため、0.003〜0.1%の範囲に限定する。
Taも、強度・靭性の向上に有効な元素であるが、効果を発揮するためには0.005%以上の含有が必要である。一方、0.2%を超えると、析出脆化や粗大な析出物、介在物による靭性劣化を生じるため、上限を0.2%とする。
【0032】
Wは、固溶強化及び析出強化により母材強度の上昇に有効であるが、効果を発揮するためには0.01%以上必要である。一方、2%を超えて過剰に含有すると、靭性劣化が顕著となるため、上限を2%とする。
Bは、微量で確実にNと結びつくため、固溶N固定により靭性向上や、焼入性向上による強度・靭性向上に有効な元素であるが、効果を発揮するためには0.0003%以上必要である。一方、0.002%を超えて過剰に含有するとBNが粗大となり、延性や靭性に悪影響を及ぼす。また溶接性も劣化させるため、上限を0.002%とする。
【0033】
さらに、延性の向上、継手靭性の向上のために、必要に応じて、Mg,Ca,REMの1種または2種以上を含有することができる。
Mg,Ca,REMは、いずれも硫化物の熱間圧延中の展伸を抑制して延性特性向上に有効である。酸化物を微細化させて継手靭性の向上にも有効に働きく。その効果を発揮するための下限の含有量は、Mg及びCaは0.0005%、REMは0.005%である。一方、過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性の劣化を招くため、上限を各々、Mg,Caは0.01%,REMは0.1%とする。
【0034】
【実施例】
以上が、本発明の要件についての説明であるが、さらに、実施例に基づいて本発明の効果を示す。表1に示す化学組成を有する鋼片を用いて、表2,表3に示す方法により超細粒鋼を製造した。表1のうち、鋼片番号13〜15は化学組成が本発明を満足していないものである。なお、表2,3の方法は各々、特開平7−126798号公報、特開平7−126797号公報に開示されている、表層あるいは全厚超細粒鋼の製造方法に準拠した方法である。
【0035】
【表1】

Figure 0004374104
【0036】
【表2】
Figure 0004374104
【0037】
【表3】
Figure 0004374104
【0038】
表4は製造された鋼板の超細粒層の割合、超細粒層のフェライト粒径、鋼板の材質等を示している。超細粒層の割合は鋼板の任意の10カ所についての断面方向の光学顕微鏡組織観察により求めた平均値であり、粒径は超細粒層のほぼ中央(全厚が超細粒組織となっている場合は板厚中心部)を倍率5000倍の走査型電子顕微鏡で5〜10視野観察して切断法により求めた値である。引張特性、2mmVノッチシャルピー衝撃特性は圧延方向に直角な方向(C方向)の板厚中心部、温度勾配型ESSO特性(KCaが600kgf/mm1.5 となる温度)はC方向について測定した値である。
【0039】
【表4】
Figure 0004374104
【0040】
表4から、本発明の化学組成を有し、平均フェライト粒径が3μm以下の超細粒組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚の10〜50%まで有する鋼板は極めて良好な材質を有している。特に靭性、母材のき裂伝播停止特性(アレスト特性)が優れている。一方、化学組成が本発明を満足していない鋼材番号B1〜B3の鋼板は超細粒組織としても靭性、アレスト特性は本発明による鋼材A1〜A12に比べて大幅に劣ることが明白である。
【0041】
表5は接合体としての材質を評価するために、表4の鋼板をレーザー溶接して突き合わせ継手を作製し、継手特性を調査した結果を、レーザー溶接条件とともに示している。レーザー溶接はレーザー切断した端面同士を突き合わせ溶接した。溶接機は20kWのCO2 レーザー溶接機を用いた。
超細粒鋼の優れた特性を継手でも保持するためには、レーザー溶接の溶接金属幅を5mm以下とする必要があるが、実施例においては,欠陥が生じないようにルートギャップ、レーザー溶接条件を適宜変化させて溶接金属幅を調整した。なお、フィラーメタルを用いる場合、フィラーメタルから脆性破壊を生じないよう、C:0.06%、Si:0.1%、Mn:1.4%、P:0.01%、S:0.003%、Ni:3.5%の組成を有する高Ni系鋼を伸線したフィラーワイヤを用いた。
【0042】
接合体の特性評価は、継手引張試験、継手2mmVノッチシャルピー衝撃試験、混成ESSO試験により行った。継手シャルピー衝撃試験は板厚中心部から、ノッチ位置が溶接金属中央とFusion Line(FL)の2種類となるようにして採取した。混成ESOO試験は、図1に示す試験体1を作製して、試験温度−120℃で助走板(S45C)3から発生させた脆性き裂をレーザー溶接部2に突入させて、該脆性き裂が伝播するか否かで接合体としてのアレスト特性を評価した。助走板3には容易に脆性き裂が発生・伝播するよう、S45Cを用い、助走板と試験継手との溶接は、入熱2kJ/mm程度のGMAW溶接4により行った。符号5はノッチであり、6はサイドグルーブである。
【0043】
【表5】
Figure 0004374104
【0044】
表5から明らかなように本発明により作製した接合構造体(試験番号C1〜C5)であれば、良好な継手強度、継手シャルピー衝撃特性を有するとともに、−120℃という非常に低温でも、十分なアレスト特性を有しており、超細粒鋼の良好な特性を接合構造体として保持していることが明らかである。
一方、比較例の試験番号D1〜D5の場合は、本発明を満足していない継手であるため、本発明に比べて特性が劣っている。特に、鋼材としては極めて良好なものを用いて継手を作製した試験番号D4,D5においても接合後の特性が鋼材の特性から大幅に劣化していることから、本発明による継手によって初めて、超細粒鋼の持つ極めて優れた特性を有効利用できることが明らかである。
【0045】
【発明の効果】
以上に述べたように、本発明によれば、超細粒鋼の有する極めて良好な靭性、き裂伝播停止特性を損なうことなく、接合構造体を作製することが可能となり、その結果、構造物の安全性を飛躍的に向上させることが可能となり、産業上の効果は極めて大きい。
【図面の簡単な説明】
【図1】図1はレーザー溶接継手のき裂伝播停止特性評価のための混成ESSO試験の形状、作成要領を示した図である。
【符号の説明】
1 試験体
2 レーザー溶接部
3 助走板
4 GMAW溶接
5 ノッチ
6 サイドグルーブ[0001]
BACKGROUND OF THE INVENTION
The present invention provides a structure of ultra-fine-grained steel that is extremely excellent in low-temperature toughness as a material for a structure that requires low-temperature toughness as a structure such as a low-temperature storage tank or a structure for cold regions, and a joint made of the joint It relates to a structure.
[0002]
[Prior art]
Recently, steels for low temperature with extremely low temperature toughness and brittle crack propagation stopping property (arrestability) having an ultrafine grain structure with a ferrite grain size of about 2 μm or less are being put into practical use by making full use of thermomechanical processing. For example, as shown in JP-A-7-126798, JP-A-7-826424, and JP-A-9-176782, by providing an ultrafine grain layer of up to 33% on the front and back surfaces of the steel sheet, Various so-called super-fine grain steels and methods for producing the same have been disclosed to improve the arrestability of steel sheets.
[0003]
In JP-A-7-12697, JP-A-8-198829, JP-A-8-295982, and JP-A-9-202919, the total thickness based on the technical idea similar to that of the superfine grain steel is used. An ultrafine-grained steel and its manufacturing method are disclosed. The full-thickness ultrafine-grained steel has an ultrafine-grained structure formed over the entire thickness of the steel sheet, thereby making it possible to further improve the arrestability compared to the super-fine grained steel. Since these ultrafine-grained steels have a large amount of fine-grain reinforcement, the strength can be significantly improved compared to ferrite + pearlite steels having the same composition.
[0004]
However, as represented by the above examples, ultrafine-grained steel is formed by using heat treatment or heat treatment, and in some cases, cold working such as mechanical milling. When joining to a structure, when joining by arc welding or submerged arc welding, an ultrafine grain structure is formed in the weld heat affected zone (HAZ) exposed to high temperature by welding. In particular, the strength and toughness of the weld heat affected zone in the vicinity of the melting line (fusion line) has a drawback of being reduced to the same level as that of steel having a normal structure.
[0005]
Therefore, ultra-fine-grained steels currently in practical use guarantee only the low temperature toughness and arrestability of the base metal, and have not yet been assured about the low temperature toughness and arrestability of HAZ, so HAZ toughness, HAZ In structures where the arrestability (bond arrestability) determines the overall characteristics of the structure, the use of ultrafine-grained steel may not lead to improved safety, and the properties of steel materials are extremely excellent. Nevertheless, its use is limited.
[0006]
[Problems to be solved by the invention]
The present invention relates to a steel joint having an average ferrite grain size of 3 μm or less and improving properties such as strength, toughness and arrestability of the steel material by the ultrafine grain structure, and a joined structure comprising the joint. To provide a joint and joint structure that has excellent toughness and arrestability as a structure reflecting the characteristics of the ultrafine-grained steel, without significantly impairing the excellent characteristics of Is an issue.
[0007]
[Means for Solving the Problems]
As a method of joining steel materials without impairing the properties of steel materials, bolt joining can be considered, but joining all complex structures by bolt joining is based on the current situation where welding joining is the mainstream. In terms of work efficiency and cost, it is not realistic.
Therefore, the inventors of the present invention have the same efficiency and cost as the arc welding method in the present situation, and in the category of practical welding methods, in order to solve the above problems, the main point is the characteristics of ultrafine-grained steel. By reducing the width of the HAZ where damage is lost and preventing weld metal and significant softening from occurring compared to steel materials, the structure will always be destroyed from the base material raw material portion. The overall characteristics are determined by the characteristics of the steel material, and the summary is as follows.
[0008]
(1) By weight, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.1 to 2%, Al: 0.001 to 0.1%, N: 0 0.001% to 0.01%, further containing P: 0.025% or less, S: 0.015% or less, the balance being iron and inevitable impurities, and an average particle size of 3 μm or less Steel sheets having ultrafine-grained ferrite structures on the front and back surfaces of the steel sheet, each having a thickness of 10 to 50% of the sheet thickness from the surface to the sheet thickness direction , and the average grain size in the heat-affected zone generated in the steel sheet is 5 mm or less . A joint excellent in brittle crack propagation stopping characteristics, made of ultrafine-grained steel , which is welded so that the width of a region having a diameter of 5 μm or more is 0.5 mm or less .
[0009]
(2) The joint having excellent brittle crack propagation stopping characteristics as described in (1) above, wherein the welding is laser welding .
[0010]
(3) The steel sheet is in% by weight, Cr: 0.01 to 1%, Ni: 0.01 to 6%, Mo: 0.01 to 1%, Cu: 0.01 to 1.5%, Ti: 0.003-0.1%, V: 0.005-0.5%, Nb: 0.003-0.1%, Zr: 0.003-0.1%, Ta: 0.005-0. 2%, W: 0.01-2%, B: 0.0003-0.002%, one or more, further containing any one of the above (1) or (2) A joint with excellent brittle crack propagation stopping characteristics described in 1.
[0011]
(4) Steel plate is% by weight, Mg: 0.0005 to 0.01%, Ca: 0.0005 to 0.01%, REM: 0.005 to 0.1%, or one or more. The joint according to any one of (1) to (3) , further including brittle crack propagation stopping characteristics .
(5) A bonded structure made of ultrafine-grained steel having one or more joints having excellent brittle crack propagation stopping characteristics according to any one of (1) to (4).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In a joint structure in which molten steel, filler metal, or the steel material itself is heated, melted or solidified to bond the steel materials, the heat affected zone (HAZ) near the joint is slightly above the transformation point, although there are some differences. It is inevitable to be heated. Therefore, in any way, HAZ of ultrafine-grained steel having thermal instability cannot maintain the exact same structure as the base material of the base material. It is inevitable that a structural change is caused. As a result, the deterioration of strength and toughness, which is manifested significantly by the characteristics of HAZ, particularly by ultrafine graining, is unavoidable.
[0013]
The present invention is based on the results of various investigations on the means for preventing material deterioration of the entire structure while suppressing the material deterioration of the ultrafine-grained steel HAZ as much as possible and presuming the material deterioration. It has come. Basic requirements in the present invention, each mean particle size of less super fine grain ferrite structure 3μm of the steel plate front and rear surfaces, the steel sheet having the surface to 10% to 50% of the thickness in the thickness direction, the more the steel sheet to weld the resulting average particle size in the heat affected zone is more than 5μm region having a width is in Rukoto be welded to be equal to or less than 0.5 m m.
[0014]
First, the microstructure requirements of the steel to be joined are determined to have an ultrafine grain structure with an average ferrite grain size of 3 μm or less from 10 to 50% of the plate thickness in the plate thickness direction from the surface to the plate thickness. The reason is as follows.
A structure having an average ferrite grain size of more than 3 μm can be achieved by normalization, normal controlled rolling, etc., is thermally stable, and does not require application of the joint of the present invention. However, if the thickness exceeds 3 μm, the strength and toughness that can be obtained are limited, and even if not according to the present invention, it is relatively easy to make the strength and toughness of HAZ equal to that of the base material base.
[0015]
Next, the ultrafine-grained structure was limited to having 10 to 50% of the plate thickness in the plate thickness direction from the front and back surfaces of the steel plate, as in the above, only less than 10% of each surface. The strength and toughness that can be obtained with a steel that has an ultrafine grain structure is limited, and it is relatively easy to make the HAZ strength and toughness the same as that of the base metal, even if not according to the present invention. It is.
A steel sheet having an ultrafine grain structure with an average ferrite grain size of 3 μm or less on the front and back surfaces of the steel sheet in the thickness direction of the steel sheet from 10 to 50% of the plate thickness exceeds the surface layer if the chemical composition requirements described later are satisfied at the same time. The Charpy impact property of the fine-grained layer is -120 ° C or less at the fracture surface transition temperature (vTrs), and the arrest property of the whole steel plate is extremely good at -100 ° C or less at the temperature (T KCa400 ) at which K Ca becomes 400 kgf / mm 1.5 Sufficient characteristics can be achieved.
[0016]
In addition, although this invention makes object the ultrafine-grained ferrite structure steel whose average particle diameter is 3 micrometers or less, you may inevitably contain structures other than ferrite, such as pearlite, bainite, and martensite. Very good toughness of the base material, the properties of even the entire structure after the arrestability became structure, in order to retain the properties of the base material, the necessary requirements, resulting in more steel sheets welded the width of the average particle size is more than 5μm region in the heat affected zone is Rukoto be welded to be equal to or less than 0.5 m m.
[0017]
In a joint structure in which molten steel, filler metal, or the steel material itself is heated, melted or solidified to join the steel materials, the heat affected zone (HAZ) in the vicinity of the joint has a slight difference in the degree of transformation. It is inevitable to be heated above. Therefore, in any way, HAZ of ultrafine-grained steel having thermal instability cannot maintain the exact same structure as the base material of the base material. It is inevitable that a structural change is caused. As a result, the deterioration of strength and toughness, which is manifested significantly by the characteristics of HAZ, particularly by ultrafine graining, is unavoidable.
[0018]
However, as a result of detailed experiments and analyses, the present inventors can secure the safety of the joint or the entire structure by controlling the size and characteristics of the part where the HAZ structure has changed. I found. In other words, by defining the chemical composition of the steel sheet and setting the width of the coarse structure with deteriorated material to 0.5 mm or less in each HAZ, the characteristics of the entire joint almost reflect the base material characteristics. The coarse structure refers to a structure having an average particle diameter of 5 μm or more in which a material difference from a base material having an average particle diameter of 3 μm or less becomes significant. Here, the particle size is the ferrite particle size in the case of a ferrite main structure, and the prior austenite particle diameter in the case of a bainite or martensite main structure.
[0019]
Although the structure requirement of the HAZ does not depend on the means for achieving the structure, more specifically, the ultrafine-grained ferrite structure having an average particle diameter of 3 μm or less is formed in the thickness direction from the surface to the sheet thickness direction on the front and back surfaces of the steel sheet. It is preferable to join the steel plates having 10 to 50% by laser welding so that the width of the weld metal is 5 mm or less.
That is, in order to suppress the coarsening of the ultrafine-grained structure as much as possible, a method in which the input energy is as small as possible and the cooling rate after joining is low is preferable. When the amount of heat input is reduced by general arc welding, the width of the heat effect in one welding pass is small and the cooling rate is large, but thick materials inevitably become multilayer welding, so they are repeatedly heated to high temperatures. Therefore, it is difficult to suppress grain growth. In addition, in order to suppress the grain growth of the ultrafine grain structure to such a level that the deterioration of the properties as a joined body does not occur, it is necessary to keep the heat input to a minimum, but in that case, the number of layers of the welding pass becomes extremely large. The welding efficiency becomes extremely impractical and becomes impractical.
[0020]
The present inventors have found that laser welding is preferable as a joining method that does not exhibit the above-described drawbacks and can suppress a change in structure. In other words, in laser welding, small heat input welding can be effectively performed, and joining in one pass is possible up to thick materials. Can be small. Even with laser welding, the microstructure of ultrafine-grained steel cannot be preserved exactly the same as that of the base metal, but in the structure, the occurrence and propagation of fractures can damage the ultrafine-grained structure. If it occurs in the HAZ-matrix base part near the base material where the heating temperature is low and the ultrafine grain structure is preserved without being produced by the metal-HAZ, the characteristics of the entire structure can be improved. It becomes possible to have the characteristics of fine-grained steel.
[0021]
For that purpose, it is necessary to make the width of the weld metal and the HAZ narrower than a certain level and to make the hardness of the region in which the ultrafine grain structure is damaged higher than that of the base material raw material portion. If the joined structure satisfies these requirements, it is possible to prevent extreme material deterioration in the weld metal to HAZ region in which the ultrafine grain structure is damaged, and to prevent deformation in any mode by suppressing deformation of the region. It can be generated from the raw material portion.
[0022]
Specifically, the width of the weld metal formed by laser welding needs to be 5 mm or less. By the width of the weld metal and 5mm or less, HAZ width becomes narrower correspondingly, the width of the average particle size is more than 5μm region in the HAZ is less 0.5 m m, and, because it is sufficiently quenched The hardness of the weld metal to HAZ is higher than that of the base metal raw material portion. In addition, although the above is description of this invention on the premise of the laser welding which does not use a filler metal, the steel material which comprises the structure of this invention as a filler metal in the limited range of the steel material component mentioned later, or a weld metal, and Any filler metal that can exhibit equivalent characteristics may be used.
[0023]
As described above, the present invention is limited to laser welding that can be joined in the atmosphere on the premise that it can be applied to all joining structures including large structures, but even electron beam welding having substantially the same characteristics. In principle, it is possible to manufacture a bonded structure made of the ultrafine-grained steel of the present invention.
The above is the basic requirement for the joint made of the ultrafine-grained steel of the present invention and the structure made of the same, but the weld metal formed by laser welding when no filler metal is used, and the extreme deterioration of the HAZ characteristics In addition, in order to secure the characteristics of the base material raw material portion and to exert more effects, it is necessary to limit the individual chemical components of the steel material for the reasons described below.
[0024]
That is, C is contained as an effective component for improving the strength of steel, and if it is less than 0.01%, it is difficult to ensure the strength required for structural steel, but an excess content exceeding 0.2%. Decreases the toughness and weld crack resistance of the base metal and the welded portion, so the content was made 0.01 to 0.2%.
Next, Si is an element effective as a deoxidizing element and for ensuring the strength of the base material. However, if it is less than 0.01%, deoxidation becomes insufficient and it is disadvantageous for securing the strength. On the other hand, an excessive content exceeding 1% forms a coarse oxide and causes deterioration of ductility and toughness. Therefore, the range of Si is set to 0.01 to 1%.
[0025]
Mn is an element necessary for ensuring the strength and toughness of the base material, and it is necessary to contain at least 0.1% or more. In order to deteriorate the toughness of the material, the toughness of the welded portion, the weld cracking property, etc., the upper limit was made 2% within the allowable range of the material.
Al is an element effective for deoxidation, austenite grain size reduction, etc., but in order to exhibit the effect, it is necessary to contain 0.001% or more. On the other hand, when it contains excessively exceeding 0.1%, a coarse oxide will be formed and ductility will be deteriorated extremely, Therefore It is necessary to limit to 0.001 to 0.1% of range.
[0026]
Since N is combined with Al and Ti and effectively works to refine austenite grains, it works effectively on mechanical properties if it is in a very small amount. Further, it is impossible to remove N in steel completely industrially, and reducing it more than necessary is not preferable because it places an excessive load on the manufacturing process. Therefore, the lower limit is set to 0.001% as a range that can be industrially controlled and the load on the manufacturing process is allowable. If excessively contained, the solid solution N increases, which may adversely affect ductility and toughness, so the upper limit is made 0.1% as an acceptable range.
[0027]
P and S are impurity elements and are elements that deteriorate ductility and toughness, and it is preferable to reduce them as much as possible. However, material deterioration is not so great that the upper limit of P is 0.025% and the upper limit of S is acceptable. Is limited to 0.015%.
The above is the reason for limiting the basic components of the steel material of the present invention. In the present invention, Cr, Ni, Mo, Cu, Ti, V, Nb, and Zr are adjusted as necessary for the adjustment of strength and toughness. , Ta, W, or B may be contained.
Both Cr and Mo are effective elements for improving the strength of the base material, but in order to produce a clear effect, 0.01% or more is necessary. On the other hand, if added over 1.0%, toughness In addition, since the weldability tends to deteriorate, the range is 0.01 to 1.0%.
[0028]
Ni is a very effective element that can improve the strength and toughness of the base material at the same time. However, in order to exert the effect, Ni needs to be contained in an amount of 0.01% or more. When the content increases, the strength and toughness improve, but even if added over 6%, the effect is saturated. On the other hand, the weld metal in the laser weld zone and the hardness of the weld heat affected zone become excessive, resulting in weldability. Since it deteriorates, the upper limit is made 6%. Further, if the addition exceeds 6%, the hardenability becomes excessive, and the formation of ferrite is suppressed, so that an unfavorable effect for the ultrafine ferrite is also manifested.
[0029]
Next, Cu has substantially the same effect as Ni, but if it exceeds 1.5%, there is a problem in hot workability, so it is limited to a range of 0.01 to 1.5%.
Ti contributes to improving the strength of the base metal by precipitation strengthening, and is an element effective for refinement of the heated austenite grain size by the formation of TiN, and is also an element effective for improving toughness. It is necessary to contain 0.003% or more. On the other hand, if it exceeds 0.1%, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so the upper limit is made 0.1%.
[0030]
V is also an element effective for improving the strength by forming VN. However, if contained excessively, the toughness deteriorates due to precipitation embrittlement. Accordingly, the range in which the effect can be exhibited without causing significant deterioration in toughness is limited to the range of 0.005 to 0.5%.
Nb is an element effective for improving strength and toughness by forming Nb (C, N), but if contained excessively, toughness deteriorates due to precipitation embrittlement. Therefore, the range in which the effect can be exhibited without causing deterioration of toughness is limited to the range of 0.003 to 0.1%.
[0031]
Zr is also an element forming a nitride and has the same effect as Ti, but 0.003% or more is required to exhibit the effect. On the other hand, if it exceeds 0.1%, like Ti, coarse precipitates and inclusions are formed and the toughness and ductility are deteriorated, so the content is limited to the range of 0.003 to 0.1%.
Ta is also an element effective for improving strength and toughness, but 0.005% or more is necessary to exert the effect. On the other hand, if it exceeds 0.2%, precipitation embrittlement, coarse precipitates, and toughness deterioration due to inclusions occur, so the upper limit is made 0.2%.
[0032]
W is effective in increasing the strength of the base metal by solid solution strengthening and precipitation strengthening, but 0.01% or more is necessary to exert the effect. On the other hand, if the content exceeds 2%, the toughness deteriorates significantly, so the upper limit is made 2%.
B is an element effective for improving toughness by solid solution N fixation and improving strength and toughness by improving hardenability because it binds to N in a small amount, but 0.0003% or more is necessary to exert the effect. is necessary. On the other hand, if the content exceeds 0.002%, BN becomes coarse and adversely affects ductility and toughness. Moreover, in order to deteriorate weldability, the upper limit is made 0.002%.
[0033]
Furthermore, in order to improve ductility and joint toughness, one or more of Mg, Ca, and REM can be contained as necessary.
Mg, Ca, and REM are all effective in improving ductility by suppressing the extension of sulfide during hot rolling. Effectively improves the toughness of the joint by refining the oxide. The lower limit content for exhibiting the effect is 0.0005% for Mg and Ca, and 0.005% for REM. On the other hand, if it is excessively contained, the sulfides and oxides are coarsened and the ductility and toughness are deteriorated. Therefore, the upper limits are 0.01% for Mg and Ca and 0.1% for REM, respectively.
[0034]
【Example】
The above is an explanation of the requirements of the present invention. Further, the effects of the present invention are shown based on examples. Using the steel pieces having the chemical composition shown in Table 1, ultrafine-grained steel was produced by the methods shown in Tables 2 and 3. In Table 1, billet numbers 13 to 15 have chemical compositions that do not satisfy the present invention. The methods shown in Tables 2 and 3 are methods compliant with the methods for producing surface layer or full-thickness ultrafine-grained steel disclosed in JP-A-7-126798 and JP-A-7-126797, respectively.
[0035]
[Table 1]
Figure 0004374104
[0036]
[Table 2]
Figure 0004374104
[0037]
[Table 3]
Figure 0004374104
[0038]
Table 4 shows the ratio of the ultrafine-grained layer of the manufactured steel sheet, the ferrite grain size of the ultrafine-grained layer, the material of the steel sheet, and the like. The ratio of the ultrafine-grained layer is an average value obtained by observing the optical microscope structure in the cross-sectional direction at any 10 locations on the steel sheet, and the grain size is almost the center of the ultrafine-grained layer (the total thickness is an ultrafine-grained structure). In this case, it is a value obtained by a cutting method by observing 5 to 10 fields of view with a scanning electron microscope having a magnification of 5000 times. Tensile property, 2mmV notch Charpy impact property is the center of the thickness in the direction perpendicular to the rolling direction (C direction), temperature gradient type ESSO property (temperature at which K Ca is 600kgf / mm 1.5 ) is the value measured in the C direction. is there.
[0039]
[Table 4]
Figure 0004374104
[0040]
From Table 4, the steel sheet having the chemical composition of the present invention and having an ultrafine grain structure with an average ferrite grain size of 3 μm or less and from 10 to 50% of the plate thickness from the surface to the plate thickness direction is extremely Good material. In particular, the toughness and the crack propagation stopping property (arrest property) of the base material are excellent. On the other hand, it is apparent that the steel sheets with the steel material numbers B1 to B3 whose chemical composition does not satisfy the present invention are significantly inferior in toughness and arrest characteristics as compared with the steel materials A1 to A12 according to the present invention even as an ultrafine grain structure.
[0041]
Table 5 shows, together with laser welding conditions, the results of investigating the joint characteristics by laser welding the steel plates of Table 4 to evaluate the material as the joined body, and investigating the joint characteristics. Laser welding was performed by butt welding the laser-cut end faces. As the welding machine, a 20 kW CO 2 laser welding machine was used.
In order to maintain the excellent properties of ultrafine-grained steel even in joints, the weld metal width of laser welding must be 5 mm or less, but in the examples, the root gap and laser welding conditions are set so as not to cause defects. The width of the weld metal was adjusted by appropriately changing. In addition, when using a filler metal, C: 0.06%, Si: 0.1%, Mn: 1.4%, P: 0.01%, S: 0.00% so as not to cause brittle fracture from the filler metal. A filler wire obtained by drawing high Ni steel having a composition of 003% and Ni: 3.5% was used.
[0042]
The characteristics of the joined body were evaluated by a joint tensile test, a joint 2 mmV notch Charpy impact test, and a hybrid ESSO test. The joint Charpy impact test was sampled from the center of the plate thickness so that the notch position was two types, the center of the weld metal and the fusion line (FL). In the hybrid ESOO test, the test body 1 shown in FIG. 1 was prepared, and a brittle crack generated from the run-up plate (S45C) 3 at a test temperature of −120 ° C. was plunged into the laser welded portion 2, and the brittle crack. The arrest characteristics as a joined body were evaluated based on whether or not the propagation occurred. S45C was used so that brittle cracks were easily generated and propagated on the run-up plate 3, and the run-up plate and the test joint were welded by GMAW welding 4 with a heat input of about 2 kJ / mm. Reference numeral 5 is a notch, and 6 is a side groove.
[0043]
[Table 5]
Figure 0004374104
[0044]
As is apparent from Table 5, the bonded structure produced according to the present invention (test numbers C1 to C5) has good joint strength and joint Charpy impact characteristics, and is sufficient even at a very low temperature of -120 ° C. It is clear that it has arrest properties and retains the good properties of ultrafine-grained steel as a bonded structure.
On the other hand, in the case of test numbers D1 to D5 of comparative examples, since the joint does not satisfy the present invention, the characteristics are inferior to those of the present invention. In particular, even in test numbers D4 and D5 in which joints were manufactured using extremely good steel materials, the properties after joining were greatly deteriorated from the properties of the steel materials. It is clear that the extremely excellent properties of grain steel can be used effectively.
[0045]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a bonded structure without impairing extremely good toughness and crack propagation stopping characteristics of ultrafine-grained steel, and as a result, the structure It is possible to dramatically improve the safety of the product, and the industrial effect is extremely large.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing the shape and preparation procedure of a hybrid ESSO test for evaluating crack propagation stop characteristics of a laser welded joint.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Test body 2 Laser welding part 3 Run-up plate 4 GMAW welding 5 Notch 6 Side groove

Claims (5)

質量%で、
C :0.01〜0.2%、
Si:0.01〜1%、
Mn:0.1〜2%、
Al:0.001〜0.1%、
N :0.001〜0.01%を含有し、さらに不純物として、
P :0.025%以下、
S :0.015%以下を含有し、残部が鉄及び不可避不純物からなり、平均粒径が3μm以下の超細粒フェライト組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚の10〜50%まで有する鋼板を、溶接金属の幅が5mm以下、かつ、鋼板に生じた熱影響部における平均粒径が5μm以上の領域の幅が0.5mm以下となるように、溶接したことを特徴とする超細粒鋼からなる、脆性き裂伝播停止特性に優れた継手
% By mass
C: 0.01-0.2%
Si: 0.01 to 1%,
Mn: 0.1 to 2%,
Al: 0.001 to 0.1%,
N: 0.001 to 0.01% is contained, and as impurities,
P: 0.025% or less,
S: 0.015% or less, the balance is made of iron and inevitable impurities, and an ultrafine ferrite structure with an average grain size of 3 μm or less is formed on the front and back surfaces of the steel sheet in the thickness direction of 10 to 10 A steel plate having up to 50% is welded so that the width of the weld metal is 5 mm or less and the width of the region having an average particle diameter of 5 μm or more in the heat-affected zone generated in the steel plate is 0.5 mm or less. A joint made of ultrafine-grained steel with excellent brittle crack propagation stopping characteristics .
前記溶接が、レーザー溶接であることを特徴とする、請求項1に記載の、脆性き裂伝播停止特性に優れた継手。  The joint having excellent brittle crack propagation stopping characteristics according to claim 1, wherein the welding is laser welding. 記載の鋼板が、さらに、質量%で、
Cr:0.01〜1%、
Ni:0.01〜6%、
Mo:0.01〜1%、
Cu:0.01〜1.5%、
Ti:0.003〜0.1%、
V :0.005〜0.5%、
Nb:0.003〜0.1%、
Zr:0.003〜0.1%、
Ta:0.005〜0.2%、
W :0.01〜2%、
B :0.0003〜0.002%の1種または2種以上を含有することを特徴とする請求項1または2のいずれかに記載の、脆性き裂伝播停止特性に優れた継手。
The described steel sheet is further in mass%,
Cr: 0.01-1%,
Ni: 0.01-6%,
Mo: 0.01 to 1%,
Cu: 0.01 to 1.5%,
Ti: 0.003 to 0.1%,
V: 0.005-0.5%
Nb: 0.003-0.1%,
Zr: 0.003 to 0.1%,
Ta: 0.005 to 0.2%,
W: 0.01-2%
B: 1 type or 2 types or more of 0.0003-0.002% is contained, The joint excellent in the brittle crack propagation stop characteristic of Claim 1 or 2 characterized by the above-mentioned.
鋼板がさらに、質量%で、
Mg:0.0005〜0.01%、
Ca:0.0005〜0.01%、
REM:0.005〜0.10%のうち1種または2種以上を含有することを特徴とする請求項1〜3のいずれかに記載の、脆性き裂伝播停止特性に優れた継手。
The steel sheet is further mass%,
Mg: 0.0005 to 0.01%,
Ca: 0.0005 to 0.01%,
REM: 1 type or 2 types or more are included among 0.005-0.10%, The joint excellent in the brittle crack propagation stop characteristic in any one of Claims 1-3 characterized by the above-mentioned.
上記請求項1〜4のいずれかに記載の、脆性き裂伝播停止特性に優れた継手を1以上有することを特徴とする超細粒鋼からなる接合構造体。  A bonded structure made of ultrafine-grained steel, comprising one or more joints having excellent brittle crack propagation stopping characteristics according to any one of claims 1 to 4.
JP31891199A 1999-11-09 1999-11-09 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics Expired - Fee Related JP4374104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31891199A JP4374104B2 (en) 1999-11-09 1999-11-09 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31891199A JP4374104B2 (en) 1999-11-09 1999-11-09 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics

Publications (2)

Publication Number Publication Date
JP2001131679A JP2001131679A (en) 2001-05-15
JP4374104B2 true JP4374104B2 (en) 2009-12-02

Family

ID=18104360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31891199A Expired - Fee Related JP4374104B2 (en) 1999-11-09 1999-11-09 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics

Country Status (1)

Country Link
JP (1) JP4374104B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435837B2 (en) * 2006-03-20 2014-03-05 新日鐵住金株式会社 Welded joint of high-tensile thick steel plate
JP5082667B2 (en) * 2007-08-10 2012-11-28 住友金属工業株式会社 High-strength thick steel plate with excellent arrest properties and method for producing the same
JP5060246B2 (en) * 2007-11-02 2012-10-31 住友金属工業株式会社 Method for evaluating arrest properties of steel sheet and steel sheet for evaluating arrest characteristics
JP5472342B2 (en) * 2012-02-24 2014-04-16 新日鐵住金株式会社 Electron beam welded joint with excellent brittle fracture resistance

Also Published As

Publication number Publication date
JP2001131679A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
KR101846759B1 (en) Steel plate and method for manufacturing same
EP1081244B1 (en) High strength, low alloy, heat resistant steel
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP4252974B2 (en) Clad steel base material and method for producing clad steel using the clad steel base material
JP3699077B2 (en) Base material for clad steel plate excellent in low temperature toughness of weld heat affected zone and method for producing the clad steel plate
JP2018053281A (en) Rectangular steel tube
US5964964A (en) Welded joint of high fatigue strength
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP2022510216A (en) Steel material with excellent toughness of weld heat affected zone and its manufacturing method
TW200827459A (en) A steel excellent in high toughness at weld heat-affect zone
JP3893921B2 (en) Low temperature Ni-containing steel and method for producing the same
JP4374104B2 (en) Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics
JPH0873983A (en) Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
TWI775607B (en) Welded joint and method of making the same
JP2003193178A (en) Heat resistant low alloy ferritic steel
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP4418115B2 (en) High-strength steel with excellent toughness of laser welds
JP2002371338A (en) Steel superior in toughness at laser weld
JP3567726B2 (en) Structural steel excellent in earthquake resistance and method of manufacturing the same
JP2020204091A (en) High strength steel sheet for high heat input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4374104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees