JP2001131679A - Joint and structure composed of hyperfine-grained steel - Google Patents

Joint and structure composed of hyperfine-grained steel

Info

Publication number
JP2001131679A
JP2001131679A JP31891199A JP31891199A JP2001131679A JP 2001131679 A JP2001131679 A JP 2001131679A JP 31891199 A JP31891199 A JP 31891199A JP 31891199 A JP31891199 A JP 31891199A JP 2001131679 A JP2001131679 A JP 2001131679A
Authority
JP
Japan
Prior art keywords
steel
ultrafine
grained
joint
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31891199A
Other languages
Japanese (ja)
Other versions
JP4374104B2 (en
Inventor
Toshinaga Hasegawa
俊永 長谷川
Hidesato Mabuchi
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31891199A priority Critical patent/JP4374104B2/en
Publication of JP2001131679A publication Critical patent/JP2001131679A/en
Application granted granted Critical
Publication of JP4374104B2 publication Critical patent/JP4374104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a joint and a joined structure having excellent toughness and arresting properties as those of structures reflecting the characteristics of hyperfine-grained steel without extremely damaging excellent characteristics of the steel and excellent in safety, as for a joint of steel in which the average ferrite grain size is <=3 μm, and the characteristics of the strength, toughness, arresting properties or the like of steel are improved by the hyperfine-grained structure, a joined structure composed of the joint and moreover, a method for joining hyperfine-grained steel. SOLUTION: In hyperfine-grained steel in which the average grain size of a part or the whole of steel having a composition containing, by weight, 0.01 to 0.2% C, 0.01 to 1% Si, 0.1 to 2% Mn, 0.001 to 0.1% Al, 0.001 to 0.01% N, <=0.025% P, <=0.015% S, and the balance Fe is <=3 μm, laser welding is executed in such a manner that the width of the region having the average grain size of >=5 μm in the heat-affected zone produced in the steel sheet by welding or joining is controlled to <=0.5 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温貯槽タンク、
寒冷地向け構造物等の構造物として低温靭性を必要とす
る構造物に供する、材料として低温靭性に極めて優れる
超細粒鋼の継手、さらに、該継手からなる接合構造体に
関するものである。
The present invention relates to a low-temperature storage tank,
The present invention relates to a joint made of ultrafine-grained steel which is extremely excellent in low-temperature toughness as a material and is used for a structure requiring low-temperature toughness as a structure such as a structure for a cold region, and a joined structure comprising the joint.

【0002】[0002]

【従来の技術】最近、加工熱処理を駆使してフェライト
粒径を2μm程度以下の超細粒組織とした低温靭性、脆
性き裂伝播停止特性(アレスト性)の極めて良好な低温
用鋼が実用化されつつある。例えば、特開平7−126
798号公報、特開平7−826424号公報、特開平
9−176782号公報に示されるように、鋼板表裏面
に33%以下までの超細粒層を付与することで、鋼板の
アレスト性向上を図る、いわゆる表層超細粒鋼とその製
造方法が種々開示されている。
2. Description of the Related Art Recently, a low-temperature steel having extremely good low-temperature toughness and brittle crack propagation arrestability (arrest property) having an ultrafine grain structure with a ferrite grain size of about 2 μm or less has been put to practical use by thermomechanical treatment. Is being done. For example, JP-A-7-126
No. 798, JP-A-7-826424 and JP-A-9-1776782, the arrestability of a steel sheet is improved by providing an ultrafine grain layer of up to 33% on the front and back surfaces of the steel sheet. Various so-called surface layer ultrafine grained steels and methods for producing the same have been disclosed.

【0003】また、特開平7−126797号公報、特
開平8−198829号公報、特開平8−295982
号公報、特開平9−202919号公報では、前記表層
超細粒鋼と同様の技術思想に基づく全厚超細粒鋼とその
製造方法が開示されている。該全厚超細粒鋼は超細粒組
織を鋼板の全厚にわたって形成させることで、表層超細
粒鋼に比べてさらなるアレスト性向上を可能にしてい
る。これらの超細粒鋼は細粒強化量も大きいため、同一
組成のフェライト+パーライト鋼に比較して強度の大幅
な向上も可能である。
In addition, Japanese Patent Application Laid-Open Nos. 7-126797, 8-198829, 8-295982
Japanese Patent Application Laid-Open No. 9-202919 discloses a full-thickness ultrafine-grained steel based on the same technical concept as the surface ultrafine-grained steel and a method for producing the same. The full-thickness ultrafine-grained steel has an ultrafine-grained structure formed over the entire thickness of the steel sheet, thereby making it possible to further improve arrestability as compared with the surface layer ultrafine-grained steel. Since these ultrafine-grained steels have a large amount of fine-grain reinforcement, their strength can be significantly improved as compared with ferrite + pearlite steels having the same composition.

【0004】しかし、上記の例に代表されるように、超
細粒鋼は加工熱処理あるいは熱処理、場合によってはメ
カニカルミリング等の冷間加工等を駆使して形成された
ものであるが故に、本質的に熱的に不安定であり、構造
体に接合するに際して、一般に用いられる、アーク溶接
や、潜弧溶接により接合すると、溶接により高温に晒さ
れた溶接熱影響部(HAZ)においては超細粒組織が解
消あるいは変化し、特に溶融線(フュージョンライン)
近傍の溶接熱影響部の強度・靭性に関しては、通常の組
織を有する鋼と同等まで低下する欠点を有している。
However, as typified by the above example, ultrafine-grained steel is formed by making full use of thermomechanical heat treatment or heat treatment, and in some cases, cold working such as mechanical milling. When it is joined to a structure by arc welding or latent arc welding, it is extremely thin in the heat affected zone (HAZ) exposed to high temperature by welding. Grain structure is eliminated or changed, especially melting line (fusion line)
The strength and toughness of the weld heat-affected zone in the vicinity has a disadvantage that it is reduced to the same level as steel having a normal structure.

【0005】従って、現在実用化されている超細粒鋼で
はあくまでも母材の低温靭性やアレスト性を保証するも
のであって、HAZの低温靭性やアレスト性について保
証するには至っていないため、HAZ靭性,HAZアレ
スト性(ボンドアレスト性)が構造物全体の特性を決定
づけるような構造体においては,超細粒鋼を用いても安
全性の向上につながらない場合があり、鋼材の特性が極
めて優れているにも関わらずその使用に制限が生じる。
[0005] Therefore, the ultrafine-grained steel currently in practical use guarantees the low-temperature toughness and arrestability of the base material to the last, and cannot guarantee the low-temperature toughness and arrestability of HAZ. In a structure in which toughness and HAZ arrestability (bond arrestability) determine the characteristics of the entire structure, the use of ultrafine-grained steel may not lead to an improvement in safety, and the characteristics of the steel material are extremely excellent. However, there are restrictions on their use.

【0006】[0006]

【発明が解決しようとする課題】本発明は平均フェライ
ト粒径が3μm以下で、該超細粒組織によって鋼材の強
度、靭性、アレスト性等の特性向上を図っている鋼の継
手及び該継手からなる接合構造体に関するもので、鋼材
の優れた特性を極端に損なうことなく、該超細粒鋼の特
性を反映して構造体として優れた靭性とアレスト性を有
し、安全性に優れた継手と接合構造体とを提供すること
を課題とする。
SUMMARY OF THE INVENTION The present invention relates to a steel joint having an average ferrite grain size of 3 μm or less, which aims to improve properties such as strength, toughness and arrestability of a steel material by the ultrafine grain structure. A joint having excellent toughness and arrestability as a structure reflecting the properties of the ultrafine-grained steel without extremely impairing the excellent properties of the steel material, and having excellent safety. And a joint structure.

【0007】[0007]

【課題を解決するための手段】鋼材の特性を全く損なわ
ずに鋼材同士を接合する方法としては、ボルト接合が考
えられるが、複雑な構造物全体を全てボルト接合で接合
することは、溶接接合が主流となっている現状を踏まえ
ると作業効率上、コスト上、現実的でない。そこで、本
発明者らは現状におけるアーク溶接法と同様の効率、コ
ストで、実用的な溶接法の範疇において、上記の課題を
解決すべく、その骨子とするところは、超細粒鋼の特性
が損なわれるHAZの幅を狭くし、かつ、鋼材に比べて
溶接金属及び顕著な軟化が生じないようにすることで、
構造体の破壊が必ず母材原質部から生じさせることによ
って、構造物全体としての特性が鋼材の特性によって決
定づけられるようにすることにあり、その要旨は以下の
通りである。
As a method of joining steel materials without impairing the characteristics of the steel materials at all, bolt joining is conceivable. However, joining all of a complicated structure by bolt joining is called welding joining. However, in view of the current situation, which is the mainstream, it is not practical in terms of work efficiency and cost. Therefore, the present inventors, at the same efficiency and cost as the current arc welding method, in the category of a practical welding method, in order to solve the above problems, the main point is that the characteristics of ultra-fine-grained steel By reducing the width of the HAZ in which is deteriorated, and by preventing the weld metal and remarkable softening from occurring as compared with steel,
The purpose of the present invention is to ensure that the characteristics of the structure as a whole are determined by the characteristics of the steel material by ensuring that the destruction of the structure always occurs from the base metal raw material portion.

【0008】(1)重量%で、C:0.01〜0.2
%、Si:0.01〜1%、Mn:0.1〜2%、A
l:0.001〜0.1%、N:0.001〜0.01
%を含有し、さらに不純物として、P:0.025%以
下、S:0.015%以下を含有し、残部が鉄及び不可
避不純物からなり、平均粒径が3μm以下の超細粒フェ
ライト組織を鋼板表裏面のそれぞれ、表面から板厚方向
に板厚の10〜50%まで有する鋼板を、溶接金属の幅
が5mm以下となるようにレーザー溶接したことを特徴
とする超細粒鋼からなる継手。
(1) By weight%, C: 0.01-0.2
%, Si: 0.01 to 1%, Mn: 0.1 to 2%, A
l: 0.001 to 0.1%, N: 0.001 to 0.01
%, Further contains, as impurities, P: 0.025% or less, S: 0.015% or less, the balance being iron and unavoidable impurities, and an ultrafine-grained ferrite structure having an average grain size of 3 μm or less. A joint made of ultrafine-grained steel, wherein a steel sheet having 10 to 50% of the thickness in the thickness direction from the front surface and the back surface of the steel plate is laser-welded so that the width of the weld metal is 5 mm or less. .

【0009】(2)重量%で、C:0.01〜0.2
%、Si:0.01〜1%、Mn:0.1〜2%、A
l:0.001〜0.1%、N:0.001〜0.01
%を含有し、さらに不純物として、P:0.025%以
下、S:0.015%以下を含有し、残部が鉄及び不可
避不純物からなり、平均粒径が3μm以下の超細粒フェ
ライト組織を鋼板表裏面のそれぞれ、表面から板厚方向
に板厚の10〜50%まで有する鋼板を、溶接または接
合により鋼板に生じた熱影響部における平均粒径が5μ
m以上の領域の幅が0.5μm以下となるように溶接ま
たは接合したことを特徴とする超細粒鋼からなる継手。
(2) C: 0.01 to 0.2% by weight
%, Si: 0.01 to 1%, Mn: 0.1 to 2%, A
l: 0.001 to 0.1%, N: 0.001 to 0.01
%, Further contains, as impurities, P: 0.025% or less, S: 0.015% or less, the balance being iron and unavoidable impurities, and an ultrafine-grained ferrite structure having an average grain size of 3 μm or less. The average grain size in the heat-affected zone generated in the steel sheet by welding or joining the steel sheet having 10 to 50% of the thickness in the thickness direction from the front surface to the front and rear surfaces of the steel plate is 5 μm.
A joint made of ultrafine-grained steel, wherein the joint is welded or joined so that the width of a region of at least m is 0.5 μm or less.

【0010】(3)鋼板が、重量%で、Cr:0.01
〜1%、Ni:0.01〜6%、Mo:0.01〜1
%、Cu:0.01〜1.5%、Ti:0.003〜
0.1%、V:0.005〜0.5%、Nb:0.00
3〜0.1%、Zr:0.003〜0.1%、Ta:
0.005〜0.2%、W:0.01〜2%、B:0.
0003〜0.002%の1種または2種以上を、さら
に含有することを特徴とする前記(1)または(2)の
いずれかに記載の超細粒鋼からなる継手。
(3) The steel sheet is Cr: 0.01% by weight.
-1%, Ni: 0.01-6%, Mo: 0.01-1
%, Cu: 0.01 to 1.5%, Ti: 0.003 to
0.1%, V: 0.005 to 0.5%, Nb: 0.00
3 to 0.1%, Zr: 0.003 to 0.1%, Ta:
0.005 to 0.2%, W: 0.01 to 2%, B: 0.
The joint made of ultrafine-grained steel according to any of (1) and (2), further comprising one or more of 0003 to 0.002%.

【0011】(4)鋼板が、重量%で、Mg:0.00
05〜0.01%、Ca:0.0005〜0.01%、
REM:0.005〜0.1%のうち1種または2種以
上を、さらに含有することを特徴とする前記(1)〜
(3)のいずれかに記載の超細粒鋼からなる継手。 (5)前記(1)〜(4)のいずれかに記載の継手を1
以上有することを特徴とする超細粒鋼からなる接合構造
体にある。
(4) The steel sheet is Mg: 0.00% by weight.
05-0.01%, Ca: 0.0005-0.01%,
REM: One or more of 0.005 to 0.1% of the above (1) to (1) are further contained.
A joint comprising the ultrafine-grained steel according to any one of (3). (5) The joint according to any of (1) to (4)
A joint structure made of ultrafine-grained steel characterized by having the above.

【0012】[0012]

【発明の実施の形態】溶材、フィラーメタル、あるいは
鋼材自体を加熱あるいは溶融・凝固させて鋼材同士を結
合させる接合構造においては、接合部近傍の熱影響部
(HAZ)が程度の違いは多少あるにせよ、変態点以上
に加熱されることは不可避である。従って、いずれの手
段にせよ、熱的な不安定性を有している超細粒鋼のHA
Zは母材原質部と全く同じ組織を保持することは不可能
であり、粒成長を代表として何らかの組織変化が惹起さ
せることは避けられず、その結果、HAZの特性、特に
超細粒化により顕著に発現された、強度、靭性の劣化も
避けられない。
BEST MODE FOR CARRYING OUT THE INVENTION In a joining structure in which a molten material, a filler metal, or a steel material itself is heated or melted and solidified to join the steel materials, a heat affected zone (HAZ) in the vicinity of the joint has a slight difference. In any case, heating beyond the transformation point is inevitable. Therefore, by any means, HA of ultrafine-grained steel having thermal instability
It is impossible for Z to retain the same structure as that of the parent material, and it is inevitable that some structural change is caused by grain growth, and as a result, the properties of HAZ, especially ultrafine In addition, deterioration of strength and toughness, which are remarkably expressed, cannot be avoided.

【0013】本発明は、超細粒鋼HAZの材質劣化を極
力抑制し、かつ材質劣化を前提とした上で、構造体全体
としては該材質劣化が顕在化しないための手段を縷々検
討した結果,発明に至ったものである。本発明における
基本要件は、平均粒径が3μm以下の超細粒フェライト
組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚
の10%〜50%まで有する鋼板を、溶接または接合に
より鋼板に生じた熱影響部における平均粒径が5μm以
上の領域の幅が0.5μm以下となるように溶接または
接合することにある。
The present invention is based on the premise that the deterioration of the material of ultra-fine-grained steel HAZ is suppressed as much as possible and on the premise of the deterioration of the material. , Which led to the invention. The basic requirement in the present invention is that a steel sheet having an ultrafine-grained ferrite structure having an average grain size of 3 μm or less from the front surface to the back surface of each of the steel plates in the thickness direction from the surface to 10% to 50% of the thickness is welded or joined. The welding or joining is performed so that the width of the region having an average particle size of 5 μm or more in the heat-affected zone is 0.5 μm or less.

【0014】先ず、接合体とすべき鋼の組織要件を、平
均フェライト粒径が3μm以下の超細粒組織を鋼板表裏
面のそれぞれ、表面から板厚方向に板厚の10〜50%
まで有することとしたのは以下の理由による。平均フェ
ライト粒径が3μm超の組織は焼きならしや通常の制御
圧延等で達成可能であり、熱的にも安定で、本発明の継
手を適用するまでもないこと、また、平均フェライト粒
径が3μm超では得られる強度・靭性にも限度があり、
本発明によらなくとも、HAZの強度・靭性を母材原質
部と同等にすることは比較的容易なためである。
First, the microstructure requirements of the steel to be joined were determined as follows: an ultrafine grain structure having an average ferrite grain size of 3 μm or less was applied to each of the front and back surfaces of the steel plate in the thickness direction from the front surface to 10 to 50% of the plate thickness.
The reason for having the above is as follows. The structure having an average ferrite grain size of more than 3 μm can be achieved by normalizing or ordinary controlled rolling, and is thermally stable, and it is not necessary to apply the joint of the present invention. If it exceeds 3 μm, the strength and toughness obtained are limited,
This is because it is relatively easy to make the strength and toughness of the HAZ equal to those of the base metal raw material portion, even if the invention is not used.

【0015】次に、該超細粒組織を、鋼板表裏面のそれ
ぞれ、表面から板厚方向に板厚の10〜50%まで有す
ることに限定したのは、上記と同様、各面の10%未満
のみが超細粒組織となるような鋼では得られる強度・靭
性にも限度があり、本発明によらなくとも、HAZの強
度・靭性を母材原質部と同等にすることは比較的容易な
ためである。平均フェライト粒径が3μm以下の超細粒
組織を鋼板表裏面のそれぞれ、表面から板厚方向に板厚
の10〜50%まで有する鋼板は、後述する化学組成要
件も同時に満足すれば、表層超細粒層のシャルピー衝撃
特性は破面遷移温度(vTrs)で−120℃以下、鋼
板全体のアレスト特性は、KCaが400kgf/mm
1.5 となる温度(TKCa400)で−100℃以下の極めて
良好な特性を十分達成できる。
Next, the ultrafine-grained structure is made
Each has 10 to 50% of the thickness in the thickness direction from the surface
Limited to less than 10% of each surface as above
The strength and toughness that can be obtained with steel that only has an ultrafine grain structure
There is a limit to the strength, and even if it is not according to the present invention, the strength of HAZ
It is relatively easy to make the degree and toughness equal to those of the base metal
That's why. Ultrafine grains with an average ferrite grain size of 3 μm or less
The thickness of the structure in the thickness direction from the front surface to the back surface
The steel sheet having up to 10 to 50% of the
If the conditions are satisfied at the same time, the Charpy impact of the surface layer
Characteristics are -120 ° C or less at fracture surface transition temperature (vTrs), steel
The arrest characteristic of the whole board is KCaIs 400kgf / mm
1.5Temperature (TKCa400) And below -100 ° C
Good characteristics can be sufficiently achieved.

【0016】なお、本発明は平均粒径が3μm以下の超
細粒フェライト組織鋼を対象とするが、パーライト、ベ
イナイト、マルテンサイト等、フェライト以外の組織を
不可避的に含んでも良い。この母材の極めて良好な靭
性、アレスト性が構造体となった後にも構造体全体の特
性としては、該母材の特性を保持させるために、必要な
要件が、溶接または接合により鋼板に生じた熱影響部に
おける平均粒径が5μm以上の領域の幅が0.5μm以
下となるように溶接または接合することである。
Although the present invention is directed to an ultrafine-grained ferritic steel having an average grain size of 3 μm or less, it may inevitably contain a structure other than ferrite, such as pearlite, bainite, martensite. Even after the very good toughness and arrestability of the base material have become a structure, the properties of the entire structure are required to maintain the properties of the base material, and the necessary requirements arise in the steel sheet by welding or joining. Welding or joining such that the width of the region having an average particle size of 5 μm or more in the heat-affected zone is 0.5 μm or less.

【0017】溶材、フィラーメタル、あるいは鋼材自体
を加熱あるいは溶融・凝固させて鋼材同士を結合させる
接合構造においては、接合部近傍の熱影響部(HAZ)
の鋼材が程度の違いは多少あるにせよ、変態点以上に加
熱されることは不可避である。従って、いずれの手段に
せよ、熱的な不安定性を有している超細粒鋼のHAZは
母材原質部と全く同じ組織を保持することは不可能であ
り、粒成長を代表として何らかの組織変化が惹起させる
ことは避けられず、その結果、HAZの特性、特に超細
粒化により顕著に発現された、強度、靭性の劣化も避け
られない。
In a joint structure in which a steel material is joined by heating, melting, or solidifying a molten material, a filler metal, or a steel material itself, a heat-affected zone (HAZ) in the vicinity of the joint portion.
It is inevitable that the steel material will be heated above the transformation point, though to some extent. Therefore, by any means, it is impossible for HAZ of ultrafine-grained steel having thermal instability to maintain the same structure as that of the base metal raw material part, and some kind of grain growth is representative. It is unavoidable that a structural change is caused, and as a result, the properties of the HAZ, particularly the strength and toughness, which are remarkably developed by ultra-fine graining, are unavoidable.

【0018】しかし、本発明者らは詳細な実験・解析の
結果、HAZの組織が変化した部分のサイズ、特性を制
御することで、継手あるいは構造体全体としての安全性
を確保することは可能であることを見出した。すなわ
ち、鋼板の化学組成を規定した上で、各々HAZにおい
て、材質の劣化した粗大組織の幅を0.5mm以下とす
ることで継手全体の特性は母材特性をほぼ反映するにな
る。なお、粗大組織とは平均粒径が3μm以下の母材と
の材質差が顕著となる、平均粒径が5μm以上の組織を
指す。ここで、粒径は、フェライト主体組織の場合はフ
ェライト粒径、ベイナイトあるいはマルテンサイト主体
組織の場合は旧オーステナイト粒径のことである。
However, as a result of detailed experiments and analysis, the present inventors can secure the safety of the joint or the entire structure by controlling the size and characteristics of the portion where the structure of the HAZ has changed. Was found. That is, after defining the chemical composition of the steel sheet and setting the width of the coarse structure whose material has deteriorated to 0.5 mm or less in each HAZ, the characteristics of the entire joint substantially reflect the characteristics of the base metal. Note that the coarse structure refers to a structure having an average particle size of 5 μm or more in which the material difference from the base material having an average particle size of 3 μm or less is significant. Here, the grain size refers to the ferrite grain size in the case of a ferrite-based structure, and the former austenite grain size in the case of a bainite or martensite-based structure.

【0019】上記HAZの組織要件は該組織の達成手段
によらないが、より具体的には、平均粒径が3μm以下
の超細粒フェライト組織を鋼板表裏面のそれぞれ、表面
から板厚方向に板厚の10〜50%まで有する鋼板を、
溶接金属の幅が5mm以下となるようにレーザー溶接で
接合することが好ましい。すなわち、超細粒組織の粗大
化を極力抑制するためにはなるべく投入エネルギーが少
なく、接合後の冷却速度が小さい方法が好ましい。一般
のアーク溶接で入熱量を低下させた場合は、1回の溶接
パスにおける熱影響の幅は小さく、冷却速度は大きい
が、厚手材では必然的に多層溶接となるため、繰り返し
高温に加熱される領域が存在することになるため、粒成
長を抑制することが困難である。また、超細粒組織の粒
成長を接合体としての特性劣化が生じない程度に抑制す
るためには、入熱量を極小まで抑える必要があるが、そ
うした場合、溶接パスの層数が極めて多くなり、溶接効
率が極端に劣化して実用的でなくなる。
The above HAZ microstructure requirements do not depend on the means for achieving the microstructure, but more specifically, an ultrafine ferrite microstructure having an average grain size of 3 μm or less is applied to each of the front and rear surfaces of the steel sheet in the thickness direction from the front surface to the sheet thickness direction. A steel plate having up to 10 to 50% of the plate thickness,
It is preferable to join by laser welding so that the width of the weld metal is 5 mm or less. That is, in order to minimize the coarsening of the ultrafine grain structure as much as possible, a method in which the input energy is as small as possible and the cooling rate after the joining is low is preferable. When the amount of heat input is reduced by general arc welding, the width of the heat effect in one welding pass is small and the cooling rate is large, but thick materials are inevitably multi-layered, so they are repeatedly heated to high temperatures. Therefore, it is difficult to suppress grain growth. In addition, in order to suppress the grain growth of the ultrafine grain structure to such an extent that the characteristics of the joined body do not deteriorate, it is necessary to minimize the heat input, but in such a case, the number of layers in the welding pass becomes extremely large. In addition, the welding efficiency is extremely deteriorated and is not practical.

【0020】本発明者らは上記のような欠点を示さず、
組織変化を抑制できる接合方法として、レーザー溶接が
好ましいことを見出した。すなわち、レーザー溶接では
実効的に小入熱溶接ができる上、厚手材に至るまで1パ
スでの接合が可能であるため、鋼材を溶融させる接合方
法の中では、超細粒組織の変化を最も小さくできる。レ
ーザー溶接であっても、超細粒鋼の組織を母材原質部と
全く同一のまま保存することはできないが、構造体にお
いては、破壊の発生・伝播が超細粒組織が損なわれる溶
接金属〜HAZで生ぜず、超細粒組織が保存される、加
熱温度が低い母材近傍のHAZ〜母材原質部で生じるよ
うにすれば、構造体全体としての特性を母材である超細
粒鋼の特性とすることが可能となる。
The present inventors have not shown the above drawbacks,
It has been found that laser welding is preferable as a joining method capable of suppressing a structural change. In other words, laser welding can effectively perform small heat input welding and can be joined in one pass up to thick materials. Therefore, among the joining methods for melting steel, the change in ultrafine grain structure is the most effective. Can be smaller. Even with laser welding, the structure of ultrafine-grained steel cannot be preserved exactly as it is in the original base metal part, but in structures, the occurrence and propagation of fractures is such that the ultrafine-grained structure is damaged. If it is generated in the HAZ to the base material raw portion near the base material where the heating temperature is low and the superfine grain structure is preserved without being generated by the metal to HAZ, the characteristics of the entire structure can be changed to the base material. It becomes possible to obtain the characteristics of fine-grained steel.

【0021】そのためには、溶接金属及びHAZの幅を
一定以下に狭くすること、且つ、超細粒組織が損なわれ
る領域の硬さを母材原質部より高くすることが必要であ
る。このような要件を満足した接合構造体であれば、超
細粒組織が損なわれた溶接金属〜HAZ領域の極端な材
質劣化を防ぐとともに、該領域の変形を抑制してあらゆ
るモードによる破壊が母材原質部から生じるようにする
ことが可能となる。
For this purpose, it is necessary to reduce the width of the weld metal and the HAZ to a certain value or less, and to make the hardness of the region where the ultrafine grain structure is damaged higher than that of the base metal material. A joint structure that satisfies these requirements prevents extreme deterioration of the material in the weld metal to HAZ region in which the ultrafine grain structure has been impaired, and suppresses deformation in the region to prevent fracture in any mode. It can be generated from the raw material part.

【0022】具体的には、レーザー溶接で形成される溶
接金属の幅を5mm以下とする必要がある。溶接金属の
幅を5mm以下とすることにより、HAZの幅も対応し
て狭くなり、HAZにおける平均粒径が5μm以上の領
域の幅が0.5μm以下となり、且つ、十分急冷される
ため、溶接金属〜HAZの硬さが母材原質部に比べて高
くなる。なお、以上はフィラーメタルを用いないレーザ
ー溶接を前提とした本発明の説明であるが、後述する鋼
材成分の限定範囲内のフィラーメタル、あるいは、溶接
金属として本発明の構造体を構成する鋼材と同等の特性
を発現できるフィラーメタルであれば用いても構わな
い。
Specifically, the width of the weld metal formed by laser welding must be 5 mm or less. By setting the width of the weld metal to 5 mm or less, the width of the HAZ also becomes correspondingly narrow, and the width of the region having an average particle size of 5 μm or more in the HAZ becomes 0.5 μm or less and is sufficiently quenched. The hardness of the metal to HAZ is higher than that of the base metal raw portion. Although the above description of the present invention is based on the assumption of laser welding without using a filler metal, a filler metal within a limited range of steel material components described later, or a steel material constituting a structure of the present invention as a weld metal. Any filler metal that can exhibit equivalent characteristics may be used.

【0023】以上、本発明では、大型構造物を含めた接
合構造体全般に適用できることを前提として、大気中で
の接合が可能なレーザー溶接に限定しているが、ほぼ同
様の特性を有する電子ビーム溶接でも、原理的には本発
明の超細粒鋼からなる接合構造体を製造することは可能
である。以上が、本発明の超細粒鋼からなる継手及びそ
れからなる構造体に関する基本要件であるが、レーザー
溶接により形成される、フィラーメタルを用いない場合
の溶接金属、及び、HAZの極端な特性劣化を防ぐた
め、また、母材原質部の特性を確保して、より効果を発
揮するためには鋼材の個々の化学成分についても下記に
述べる理由により、各々限定する必要がある。
As described above, the present invention is limited to laser welding capable of joining in the air, assuming that the present invention can be applied to all joining structures including large structures. It is also possible in principle to produce a joint structure made of the ultrafine-grained steel of the present invention by beam welding. The above are the basic requirements for the joint made of ultrafine-grained steel and the structure made of the same according to the present invention. The weld metal formed by laser welding when no filler metal is used, and the extreme deterioration of properties of the HAZ In order to prevent this and to secure the properties of the base metal raw material portion and to exhibit more effects, it is necessary to limit each chemical component of the steel material for the following reasons.

【0024】すなわち、Cは、鋼の強度を向上させる有
効な成分として含有するもので、0.01%未満では構
造用鋼に必要な強度の確保が困難であるが、0.2%を
超える過剰の含有は母材及び溶接部の靭性や耐溶接割れ
性を低下させるので、0.01〜0.2%の範囲とし
た。次に、Siは,脱酸元素として、また、母材の強度
確保に有効な元素であるが、0.01%未満の含有では
脱酸が不十分となり、また強度確保に不利である。逆に
1%を超える過剰の含有は粗大な酸化物を形成して延性
や靭性の劣化を招く。そこで、Siの範囲は0.01〜
1%とした。
That is, C is contained as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, but it exceeds 0.2%. Excessive content lowers the toughness and weld crack resistance of the base metal and the welded portion, so the content was made 0.01 to 0.2%. Next, Si is an element effective as a deoxidizing element and for securing the strength of the base material. However, if the content is less than 0.01%, deoxidation becomes insufficient and disadvantageous for securing the strength. Conversely, an excessive content exceeding 1% forms a coarse oxide and causes deterioration of ductility and toughness. Therefore, the range of Si is 0.01 to
1%.

【0025】また、Mnは母材の強度、靭性の確保に必
要な元素であり、最低限0.1%以上含有する必要があ
るが、過剰に含有すると、硬質相の生成や粒界脆化等に
より母材靱性や溶接部の靭性、さらに溶接割れ性など劣
化させるため、材質上許容できる範囲で上限を2%とし
た。Alは脱酸、オーステナイト粒径の細粒化等に有効
な元素であるが、効果を発揮するためには0.001%
以上含有する必要がある。一方、0.1%を超えて過剰
に含有すると、粗大な酸化物を形成して延性を極端に劣
化させるため、0.001〜0.1%の範囲に限定する
必要がある。
Further, Mn is an element necessary for securing the strength and toughness of the base material, and it is necessary to contain at least 0.1% or more. For example, the base material toughness, the toughness of the welded portion, the weld cracking property, and the like are deteriorated due to the above factors. Al is an element effective for deoxidation, austenite grain size reduction, etc., but 0.001%
It is necessary to contain the above. On the other hand, if it is contained in excess of 0.1%, a coarse oxide is formed and the ductility is extremely deteriorated. Therefore, it is necessary to limit the content to the range of 0.001 to 0.1%.

【0026】NはAlやTiと結びついてオーステナイ
ト粒微細化に有効に働くため、微量であれば機械的特性
に有効に働く。また、工業的に鋼中のNを完全に除去す
ることは不可能であり、必要以上に低減することは製造
工程に過大な負荷をかけるため好ましくない。そのた
め、工業的に制御が可能で、製造工程への負荷が許容で
きる範囲として下限を0.001%とする。過剰に含有
すると、固溶Nが増加し、延性や靭性に悪影響を及ぼす
可能性があるため、許容できる範囲として上限を0.1
%とする。
N works effectively with the refining of austenite grains in combination with Al and Ti, so that a small amount of N works effectively on mechanical properties. Further, it is impossible to industrially completely remove N in steel, and it is not preferable to reduce N more than necessary because an excessive load is applied to a manufacturing process. Therefore, the lower limit is set to 0.001% as a range in which industrial control is possible and load on the manufacturing process can be tolerated. If it is contained excessively, the solute N increases, which may adversely affect ductility and toughness.
%.

【0027】P,Sは、不純物元素で、延性、靭性を劣
化させる元素であり、極力低減することが好ましいが、
材質劣化が大きくなく、許容できる量として、Pの上限
を0.025%、Sの上限を0.015%に限定する。
以上が本発明の鋼材の基本成分の限定理由であるが、本
発明においては、強度・靭性の調整のために、必要に応
じて、Cr,Ni,Mo,Cu,Ti,V,Nb,Z
r,Ta,W,Bの1種または2種以上を含有すること
ができる。Cr及びMoは、いずれも母材の強度向上に
有効な元素であるが、明瞭な効果を生じるためには0.
01%以上必要であり、一方、1.0%を超えて添加す
ると、靭性及び溶接性が劣化する傾向を有するため、各
々0.01〜1.0%の範囲とする。
P and S are impurity elements which deteriorate ductility and toughness, and are preferably reduced as much as possible.
The upper limit of P is limited to 0.025%, and the upper limit of S is limited to 0.015%, as the amounts of material deterioration that are not large and are allowable.
The above is the reason for limiting the basic components of the steel material of the present invention. In the present invention, Cr, Ni, Mo, Cu, Ti, V, Nb, Z
One, two or more of r, Ta, W, and B can be contained. Both Cr and Mo are effective elements for improving the strength of the base material, but are required to be 0.1% for producing a clear effect.
The content is required to be not less than 01%. On the other hand, if added in excess of 1.0%, the toughness and weldability tend to be deteriorated.

【0028】また、Niは、母材の強度と靭性を同時に
向上でき、非常に有効な元素であるが、効果を発揮させ
るためには0.01%以上含有させる必要がある。含有
量が多くなると強度、靭性は向上するが6%を超えて添
加しても効果が飽和する一方で、レーザー溶接部の溶接
金属、溶接熱影響部の硬さが過大となって溶接性が劣化
するため、上限を6%とする。また、6%を超える添加
では焼入性が過大となるため、フェライトの生成が抑制
されるためにフェライトの超細粒化に好ましくない効果
も顕在化する。
Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but must be contained at 0.01% or more in order to exert its effect. When the content is increased, the strength and toughness are improved, but the effect is saturated even if added over 6%, but the weld metal of the laser welded portion and the hardness of the weld heat affected zone become excessively high, and the weldability is increased. Because of deterioration, the upper limit is set to 6%. Further, if the addition exceeds 6%, the hardenability becomes excessive, and the formation of ferrite is suppressed, so that an undesired effect on ultrafine graining of ferrite also becomes apparent.

【0029】次に、Cuも、ほぼNiと同様の効果を有
するが、1.5%超では熱間加工性に問題を生じるた
め、0.01〜1.5%の範囲に限定する。Tiは析出
強化により母材強度向上に寄与するとともに、TiNの
形成により加熱オーステナイト粒径微細化にも有効な元
素であり、靭性向上にも有効な元素であるが、効果を発
揮するためには0.003%以上の含有が必要である。
一方、0.1%を超えると、粗大な析出物、介在物を形
成して靭性や延性を劣化させるため、上限を0.1%と
する。
Next, Cu also has substantially the same effect as Ni, but if it exceeds 1.5%, there is a problem in hot workability. Therefore, it is limited to the range of 0.01 to 1.5%. Ti contributes to the improvement of the base metal strength by precipitation strengthening, and is an element effective in reducing the austenite grain size by formation of TiN, and is also effective in improving the toughness. A content of 0.003% or more is required.
On the other hand, if it exceeds 0.1%, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so the upper limit is made 0.1%.

【0030】Vも、VNを形成して強度向上に有効な元
素であるが、過剰の含有では析出脆化により靭性が劣化
する。従って、靭性の大きな劣化を招かずに、効果を発
揮できる範囲として、0.005〜0.5%の範囲に限
定する。Nbは、Nb(C,N)を形成することで強度
・靭性の向上に有効な元素であるが、過剰の含有では析
出脆化により靭性が劣化する。従って、靭性の劣化を招
かずに効果を発揮できる範囲として、0.003〜0.
1%の範囲に限定する。
V is an element effective for improving the strength by forming VN. However, if it is contained excessively, the toughness is deteriorated due to precipitation embrittlement. Therefore, the range in which the effect can be exhibited without causing significant deterioration in toughness is limited to the range of 0.005 to 0.5%. Nb is an element effective for improving strength and toughness by forming Nb (C, N). However, if Nb is excessively contained, toughness deteriorates due to precipitation embrittlement. Therefore, the range in which the effect can be exhibited without inducing the deterioration of toughness is set to 0.003 to 0.
Limit to 1% range.

【0031】Zrも、窒化物を形成する元素であり、T
iと同様の効果を有するが、その効果を発揮するために
は0.003%以上の含有が必要である。一方、0.1
%を超えると、Tiと同様、粗大な析出物、介在物を形
成して靭性や延性を劣化させるため、0.003〜0.
1%の範囲に限定する。Taも、強度・靭性の向上に有
効な元素であるが、効果を発揮するためには0.005
%以上の含有が必要である。一方、0.2%を超える
と、析出脆化や粗大な析出物、介在物による靭性劣化を
生じるため、上限を0.2%とする。
Zr is also an element forming nitride, and Tr
It has the same effect as i, but it requires 0.003% or more to exhibit the effect. On the other hand, 0.1
%, Coarse precipitates and inclusions are formed to deteriorate toughness and ductility, similarly to Ti.
Limit to 1% range. Ta is also an element effective in improving the strength and toughness, but is required to have an effect of 0.005 to exhibit the effect.
% Or more is required. On the other hand, if it exceeds 0.2%, precipitation embrittlement and toughness degradation due to coarse precipitates and inclusions occur, so the upper limit is made 0.2%.

【0032】Wは、固溶強化及び析出強化により母材強
度の上昇に有効であるが、効果を発揮するためには0.
01%以上必要である。一方、2%を超えて過剰に含有
すると、靭性劣化が顕著となるため、上限を2%とす
る。Bは、微量で確実にNと結びつくため、固溶N固定
により靭性向上や、焼入性向上による強度・靭性向上に
有効な元素であるが、効果を発揮するためには0.00
03%以上必要である。一方、0.002%を超えて過
剰に含有するとBNが粗大となり、延性や靭性に悪影響
を及ぼす。また溶接性も劣化させるため、上限を0.0
02%とする。
W is effective for increasing the strength of the base material by solid solution strengthening and precipitation strengthening.
01% or more is required. On the other hand, if the content exceeds 2%, the toughness deteriorates significantly, so the upper limit is set to 2%. B is an element effective for improving toughness by fixing solid solution N and improving strength and toughness by improving hardenability, because it is surely linked to N in a trace amount.
03% or more is required. On the other hand, if it is contained in excess of 0.002%, BN becomes coarse, which adversely affects ductility and toughness. In addition, the upper limit is set to 0.0
02%.

【0033】さらに、延性の向上、継手靭性の向上のた
めに、必要に応じて、Mg,Ca,REMの1種または
2種以上を含有することができる。Mg,Ca,REM
は、いずれも硫化物の熱間圧延中の展伸を抑制して延性
特性向上に有効である。酸化物を微細化させて継手靭性
の向上にも有効に働きく。その効果を発揮するための下
限の含有量は、Mg及びCaは0.0005%、REM
は0.005%である。一方、過剰に含有すると、硫化
物や酸化物の粗大化を生じ、延性、靭性の劣化を招くた
め、上限を各々、Mg,Caは0.01%,REMは
0.1%とする。
Further, in order to improve ductility and joint toughness, one or more of Mg, Ca and REM can be contained as necessary. Mg, Ca, REM
Are effective for improving ductility by suppressing the elongation of sulfide during hot rolling. It works effectively to improve the joint toughness by making the oxide finer. The lower limit contents for exhibiting the effect are 0.0005% for Mg and Ca, REM
Is 0.005%. On the other hand, if it is contained excessively, sulfides and oxides are coarsened and ductility and toughness are deteriorated. Therefore, the upper limits are respectively 0.01% for Mg and Ca and 0.1% for REM.

【0034】[0034]

【実施例】以上が、本発明の要件についての説明である
が、さらに、実施例に基づいて本発明の効果を示す。表
1に示す化学組成を有する鋼片を用いて、表2,表3に
示す方法により超細粒鋼を製造した。表1のうち、鋼片
番号13〜15は化学組成が本発明を満足していないも
のである。なお、表2,3の方法は各々、特開平7−1
26798号公報、特開平7−126797号公報に開
示されている、表層あるいは全厚超細粒鋼の製造方法に
準拠した方法である。
The above has been a description of the requirements of the present invention. The effects of the present invention will be further shown based on examples. Using steel pieces having the chemical composition shown in Table 1, ultrafine-grained steel was manufactured by the methods shown in Tables 2 and 3. In Table 1, billet numbers 13 to 15 are those whose chemical compositions do not satisfy the present invention. The methods in Tables 2 and 3 are described in JP-A-7-17-1.
No. 26798 and Japanese Patent Application Laid-Open No. 7-126797, which are based on the method for producing a superficial layer or a super-thin ultra-fine grain steel.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表4は製造された鋼板の超細粒層の割合、
超細粒層のフェライト粒径、鋼板の材質等を示してい
る。超細粒層の割合は鋼板の任意の10カ所についての
断面方向の光学顕微鏡組織観察により求めた平均値であ
り、粒径は超細粒層のほぼ中央(全厚が超細粒組織とな
っている場合は板厚中心部)を倍率5000倍の走査型
電子顕微鏡で5〜10視野観察して切断法により求めた
値である。引張特性、2mmVノッチシャルピー衝撃特
性は圧延方向に直角な方向(C方向)の板厚中心部、温
度勾配型ESSO特性(KCaが600kgf/mm1.5
となる温度)はC方向について測定した値である。
Table 4 shows the proportion of the ultrafine grain layer of the manufactured steel sheet,
It shows the ferrite grain size of the ultrafine grain layer, the material of the steel sheet, and the like. The ratio of the ultrafine-grain layer is an average value obtained by observing the optical microstructure in the cross-sectional direction at any 10 places of the steel sheet. In this case, the value is obtained by observing 5 to 10 visual fields with a scanning electron microscope with a magnification of 5,000 times. Tensile properties, 2 mm V notch Charpy impact properties were obtained at the center of the sheet thickness in the direction perpendicular to the rolling direction (C direction), and temperature gradient type ESSO characteristics (K Ca was 600 kgf / mm 1.5
Is the value measured in the C direction.

【0039】[0039]

【表4】 [Table 4]

【0040】表4から、本発明の化学組成を有し、平均
フェライト粒径が3μm以下の超細粒組織を鋼板表裏面
のそれぞれ、表面から板厚方向に板厚の10〜50%ま
で有する鋼板は極めて良好な材質を有している。特に靭
性、母材のき裂伝播停止特性(アレスト特性)が優れて
いる。一方、化学組成が本発明を満足していない鋼材番
号B1〜B3の鋼板は超細粒組織としても靭性、アレス
ト特性は本発明による鋼材A1〜A12に比べて大幅に
劣ることが明白である。
From Table 4, it can be seen that the ultrafine grain structure having the chemical composition of the present invention and having an average ferrite grain size of 3 μm or less is present in each of the front and rear surfaces of the steel sheet in the thickness direction from the surface to 10 to 50% of the sheet thickness. The steel plate has a very good material. In particular, it is excellent in toughness and crack propagation stopping characteristics (arrest characteristics) of the base material. On the other hand, it is clear that the steel sheets of steel numbers B1 to B3 whose chemical compositions do not satisfy the present invention are significantly inferior in toughness and arrest characteristics even to the ultrafine grain structure as compared with the steel materials A1 to A12 of the present invention.

【0041】表5は接合体としての材質を評価するため
に、表4の鋼板をレーザー溶接して突き合わせ継手を作
製し、継手特性を調査した結果を、レーザー溶接条件と
ともに示している。レーザー溶接はレーザー切断した端
面同士を突き合わせ溶接した。溶接機は20kWのCO
2 レーザー溶接機を用いた。超細粒鋼の優れた特性を継
手でも保持するためには、レーザー溶接の溶接金属幅を
5mm以下とする必要があるが、実施例においては,欠
陥が生じないようにルートギャップ、レーザー溶接条件
を適宜変化させて溶接金属幅を調整した。なお、フィラ
ーメタルを用いる場合、フィラーメタルから脆性破壊を
生じないよう、C:0.06%、Si:0.1%、M
n:1.4%、P:0.01%、S:0.003%、N
i:3.5%の組成を有する高Ni系鋼を伸線したフィ
ラーワイヤを用いた。
Table 5 shows the results of examining the joint characteristics together with the laser welding conditions, in order to evaluate the material as the joined body, to produce a butt joint by laser welding the steel plates of Table 4, and to show the joint characteristics. In laser welding, laser-cut end faces were butt-welded. Welding machine is 20kW CO
Two laser welding machines were used. In order to maintain the excellent properties of ultrafine-grained steel even at joints, the weld metal width of laser welding needs to be 5 mm or less. However, in the examples, the root gap and the laser welding conditions are set so that no defects occur. Was appropriately changed to adjust the width of the weld metal. When a filler metal is used, C: 0.06%, Si: 0.1%, M
n: 1.4%, P: 0.01%, S: 0.003%, N
i: A filler wire drawn from a high Ni-based steel having a composition of 3.5% was used.

【0042】接合体の特性評価は、継手引張試験、継手
2mmVノッチシャルピー衝撃試験、混成ESSO試験
により行った。継手シャルピー衝撃試験は板厚中心部か
ら、ノッチ位置が溶接金属中央とFusion Lin
e(FL)の2種類となるようにして採取した。混成E
SOO試験は、図1に示す試験体1を作製して、試験温
度−120℃で助走板(S45C)3から発生させた脆
性き裂をレーザー溶接部2に突入させて、該脆性き裂が
伝播するか否かで接合体としてのアレスト特性を評価し
た。助走板3には容易に脆性き裂が発生・伝播するよ
う、S45Cを用い、助走板と試験継手との溶接は、入
熱2kJ/mm程度のGMAW溶接4により行った。符
号5はノッチであり、6はサイドグルーブである。
The characteristics of the joined body were evaluated by a joint tensile test, a joint 2 mm V notch Charpy impact test, and a hybrid ESSO test. In the joint Charpy impact test, the notch position is from the center of the plate thickness to the weld metal center and Fusion Lin.
e (FL). Hybrid E
In the SOO test, a test piece 1 shown in FIG. 1 was prepared, and a brittle crack generated from the approaching plate (S45C) 3 at a test temperature of −120 ° C. was caused to penetrate into the laser welded portion 2, and this brittle crack was The arrest characteristics of the zygote were evaluated based on whether it propagated or not. S45C was used for the bridging plate 3 so that brittle cracks were easily generated and propagated, and welding between the bridging plate and the test joint was performed by GMAW welding 4 having a heat input of about 2 kJ / mm. Reference numeral 5 denotes a notch, and reference numeral 6 denotes a side groove.

【0043】[0043]

【表5】 [Table 5]

【0044】表5から明らかなように本発明により作製
した接合構造体(試験番号C1〜C5)であれば、良好
な継手強度、継手シャルピー衝撃特性を有するととも
に、−120℃という非常に低温でも、十分なアレスト
特性を有しており、超細粒鋼の良好な特性を接合構造体
として保持していることが明らかである。一方、比較例
の試験番号D1〜D5の場合は、本発明を満足していな
い継手であるため、本発明に比べて特性が劣っている。
特に、鋼材としては極めて良好なものを用いて継手を作
製した試験番号D4,D5においても接合後の特性が鋼
材の特性から大幅に劣化していることから、本発明によ
る継手によって初めて、超細粒鋼の持つ極めて優れた特
性を有効利用できることが明らかである。
As is clear from Table 5, the joint structure (test numbers C1 to C5) produced according to the present invention has good joint strength and joint Charpy impact characteristics, and can be used even at a very low temperature of -120 ° C. It is evident that the alloy has sufficient arrest characteristics and retains the good characteristics of ultrafine-grained steel as a bonded structure. On the other hand, in the case of the test numbers D1 to D5 of the comparative examples, since the joints do not satisfy the present invention, the characteristics are inferior to those of the present invention.
In particular, even in Test Nos. D4 and D5 in which joints were manufactured using extremely good steel materials, the characteristics after joining were significantly deteriorated from the characteristics of the steel materials. It is clear that the extremely excellent properties of the grain steel can be effectively used.

【0045】[0045]

【発明の効果】以上に述べたように、本発明によれば、
超細粒鋼の有する極めて良好な靭性、き裂伝播停止特性
を損なうことなく、接合構造体を作製することが可能と
なり、その結果、構造物の安全性を飛躍的に向上させる
ことが可能となり、産業上の効果は極めて大きい。
As described above, according to the present invention,
It is possible to produce a bonded structure without impairing the extremely good toughness and crack propagation arrest characteristics of ultrafine-grained steel, and as a result, it is possible to dramatically improve the safety of the structure The industrial effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はレーザー溶接継手のき裂伝播停止特性評
価のための混成ESSO試験の形状、作成要領を示した
図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a view showing a shape and a preparation procedure of a hybrid ESSO test for evaluating a crack propagation stopping characteristic of a laser welded joint.

【符号の説明】 1 試験体 2 レーザー溶接部 3 助走板 4 GMAW溶接 5 ノッチ 6 サイドグルーブ[Explanation of Signs] 1 Specimen 2 Laser welded part 3 Approaching plate 4 GMAW welding 5 Notch 6 Side groove

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.01〜0.2%、 Si:0.01〜1%、 Mn:0.1〜2%、 Al:0.001〜0.1%、 N :0.001〜0.01%を含有し、さらに不純物
として、 P :0.025%以下、 S :0.015%以下を含有し、残部が鉄及び不可避
不純物からなり、平均粒径が3μm以下の超細粒フェラ
イト組織を鋼板表裏面のそれぞれ、表面から板厚方向に
板厚の10〜50%まで有する鋼板を、溶接金属の幅が
5mm以下となるようにレーザー溶接したことを特徴と
する超細粒鋼からなる継手。
C .: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.1 to 2%, Al: 0.001 to 0.1%, N : 0.001 to 0.01%, and further, as impurities, P: 0.025% or less, S: 0.015% or less, the balance being iron and unavoidable impurities, and the average particle size is 3 μm. A steel sheet having the following ultrafine grained ferrite structure in each of the front and rear surfaces of the steel sheet in the thickness direction from the surface to 10 to 50% of the sheet thickness is laser-welded so that the width of the weld metal is 5 mm or less. Made of ultrafine-grained steel.
【請求項2】 重量%で、 C :0.01〜0.2%、 Si:0.01〜1%、 Mn:0.1〜2%、 Al:0.001〜0.1%、 N :0.001〜0.01%を含有し、さらに不純物
として、 P :0.025%以下、 S :0.015%以下を含有し、残部が鉄及び不可避
不純物からなり、平均粒径が3μm以下の超細粒フェラ
イト組織を鋼板表裏面のそれぞれ、表面から板厚方向に
板厚の10〜50%まで有する鋼板を、溶接または接合
により鋼板に生じた熱影響部における平均粒径が5μm
以上の領域の幅が0.5μm以下となるように溶接また
は接合したことを特徴とする超細粒鋼からなる継手。
2. In% by weight, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.1 to 2%, Al: 0.001 to 0.1%, N : 0.001 to 0.01%, and further, as impurities, P: 0.025% or less, S: 0.015% or less, the balance being iron and unavoidable impurities, and the average particle size is 3 μm. A steel sheet having the following ultrafine grained ferrite structure in each of the front and rear surfaces of the steel sheet in the thickness direction from the surface to 10 to 50% of the sheet thickness has an average grain size of 5 μm in a heat-affected zone generated in the steel sheet by welding or joining.
A joint made of ultrafine-grained steel, which is welded or joined so that the width of the above region is 0.5 μm or less.
【請求項3】 記載の鋼板が、さらに、重量%で、 Cr:0.01〜1%、 Ni:0.01〜6%、 Mo:0.01〜1%、 Cu:0.01〜1.5%、 Ti:0.003〜0.1%、 V :0.005〜0.5%、 Nb:0.003〜0.1%、 Zr:0.003〜0.1%、 Ta:0.005〜0.2%、 W :0.01〜2%、 B :0.0003〜0.002%の1種または2種以
上を含有することを特徴とする請求項1または2のいず
れかに記載の超細粒鋼からなる継手。
3. The steel sheet according to claim 1, further comprising Cr: 0.01 to 1%, Ni: 0.01 to 6%, Mo: 0.01 to 1%, Cu: 0.01 to 1% by weight. 0.5%, Ti: 0.003-0.1%, V: 0.005-0.5%, Nb: 0.003-0.1%, Zr: 0.003-0.1%, Ta: 3. The composition according to claim 1, further comprising one or more of 0.005 to 0.2%, W: 0.01 to 2%, and B: 0.0003 to 0.002%. A joint made of the ultrafine-grained steel according to any one of the above.
【請求項4】 鋼板がさらに、重量%で、 Mg:0.0005〜0.01%、 Ca:0.0005〜0.01%、 REM:0.005〜0.10%のうち1種または2種
以上を含有することを特徴とする請求項1〜3のいずれ
かに記載の超細粒鋼からなる継手。
4. The steel sheet may further comprise one or more of: 0.0005-0.01% Mg: 0.0005-0.01%, REM: 0.005-0.10% by weight. The joint made of ultrafine-grained steel according to any one of claims 1 to 3, wherein the joint comprises two or more types.
【請求項5】 上記請求項1〜4のいずれかに記載の継
手を1以上有することを特徴とする超細粒鋼からなる接
合構造体。
5. A joint structure made of ultrafine-grained steel, comprising one or more joints according to claim 1.
JP31891199A 1999-11-09 1999-11-09 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics Expired - Fee Related JP4374104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31891199A JP4374104B2 (en) 1999-11-09 1999-11-09 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31891199A JP4374104B2 (en) 1999-11-09 1999-11-09 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics

Publications (2)

Publication Number Publication Date
JP2001131679A true JP2001131679A (en) 2001-05-15
JP4374104B2 JP4374104B2 (en) 2009-12-02

Family

ID=18104360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31891199A Expired - Fee Related JP4374104B2 (en) 1999-11-09 1999-11-09 Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics

Country Status (1)

Country Link
JP (1) JP4374104B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254767A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Welded joint of high-tensile strength thick steel plate
JP2009041083A (en) * 2007-08-10 2009-02-26 Sumitomo Metal Ind Ltd High-strength thick steel plate having excellent brittle-crack arrestability, and method for producing the same
JP2009115493A (en) * 2007-11-02 2009-05-28 Sumitomo Metal Ind Ltd Arresting characteristic evaluation method of steel plate, and steel plate for arresting characteristic evaluation
JP2012106290A (en) * 2012-02-24 2012-06-07 Nippon Steel Corp Electronic beam weld joint with excellent resistance to generation of brittle fracture
JP7485936B2 (en) 2020-07-08 2024-05-17 日本製鉄株式会社 Manufacturing method for welded joints using low-temperature Ni steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254767A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Welded joint of high-tensile strength thick steel plate
JP2009041083A (en) * 2007-08-10 2009-02-26 Sumitomo Metal Ind Ltd High-strength thick steel plate having excellent brittle-crack arrestability, and method for producing the same
JP2009115493A (en) * 2007-11-02 2009-05-28 Sumitomo Metal Ind Ltd Arresting characteristic evaluation method of steel plate, and steel plate for arresting characteristic evaluation
JP2012106290A (en) * 2012-02-24 2012-06-07 Nippon Steel Corp Electronic beam weld joint with excellent resistance to generation of brittle fracture
JP7485936B2 (en) 2020-07-08 2024-05-17 日本製鉄株式会社 Manufacturing method for welded joints using low-temperature Ni steel

Also Published As

Publication number Publication date
JP4374104B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
WO2014196499A1 (en) Spot welded joint and spot welding method
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
US5964964A (en) Welded joint of high fatigue strength
TWI589708B (en) Steel material for high heat input welding
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
KR20230042371A (en) Welded joints and manufacturing methods of welded joints
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
US20220258283A1 (en) Method for producing a coated tailored welded blank by means of laser-beam welding or hybrid laser/gas-metal-arc welding and filler wire and use thereof for this purpose
JP4374104B2 (en) Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics
JPH0873983A (en) Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
WO2015151521A1 (en) Welded joint
JP3287125B2 (en) High tensile steel
JP5070866B2 (en) Hot-rolled steel sheet and spot welded member
JP3722044B2 (en) Welded joint
JP2002371338A (en) Steel superior in toughness at laser weld
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JP2020204091A (en) High strength steel sheet for high heat input welding
JP4418115B2 (en) High-strength steel with excellent toughness of laser welds
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JP3567726B2 (en) Structural steel excellent in earthquake resistance and method of manufacturing the same
JP3825623B2 (en) High-tensile steel with excellent fracture resistance of welds
TWI846149B (en) Manufacturing method of laser-arc hybrid welding joint
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4374104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees