JPH0873983A - Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production - Google Patents

Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production

Info

Publication number
JPH0873983A
JPH0873983A JP20779494A JP20779494A JPH0873983A JP H0873983 A JPH0873983 A JP H0873983A JP 20779494 A JP20779494 A JP 20779494A JP 20779494 A JP20779494 A JP 20779494A JP H0873983 A JPH0873983 A JP H0873983A
Authority
JP
Japan
Prior art keywords
fatigue strength
steel plate
strength
fatigue
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20779494A
Other languages
Japanese (ja)
Other versions
JP3569314B2 (en
Inventor
Shuji Aihara
周二 粟飯原
Hidesato Mabuchi
秀里 間渕
Katsumi Kurebayashi
勝巳 榑林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20779494A priority Critical patent/JP3569314B2/en
Publication of JPH0873983A publication Critical patent/JPH0873983A/en
Application granted granted Critical
Publication of JP3569314B2 publication Critical patent/JP3569314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To improve fatigue strength in the weld joint of a structure by control ling the structure of a weld heat-affected zone (HAZ). CONSTITUTION: This steel plate has a chemical composition which contains, by weight, 0.015-0.15% C, 0.01-2.0% Si, 0.2-1.5% Mn, <=0.03% P, and <=0.01% S as essential components and contains, if necessary, one or more elements among Al, Cu, Ni, Cr, Mo, Nb, V, Ti, N, Ca, and REM and in which the value of carbon equivalent is regulated to <=0.24% when Si is <1.0% and to <=0.275% when Si is >=1.0%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、造船・海洋構造物・橋
梁などの分野に用いられる、溶接継手の疲労強度に優れ
た溶接構造用軟鋼と引張強さが50kgf/mm2 級の
高張力厚鋼板およびそれらの製造方法に関するものであ
る。
[Field of Industrial Application] The present invention is used in the fields of shipbuilding, offshore structures, bridges, etc., and has a welded joint mild steel excellent in fatigue strength of a welded joint and a high tensile strength of 50 kgf / mm 2 class. The present invention relates to thick steel plates and their manufacturing methods.

【0002】[0002]

【従来の技術】溶接構造物の大形化と環境保全に対する
要求の高まりに伴い、構造部材は従来にも増した信頼性
が要求されるようになってきている。溶接構造物で想定
される破壊形態としては、疲労破壊、脆性破壊、延性破
壊などがあるが、これらのうち、疲労破壊は実使用環境
下において最も頻繁に発生し易い破壊形態であり、溶接
構造物の信頼性向上のために最も留意すべき問題であ
る。最近の大型タンカーにおける疲労き裂発生、海洋構
造物における疲労き裂を発端とした倒壊など、疲労破壊
が問題となった事例は少なくない。
2. Description of the Related Art With the increasing size of welded structures and the increasing demands for environmental protection, structural members are required to have higher reliability than ever before. Fatigue fracture, brittle fracture, ductile fracture, etc. are possible fracture modes assumed in a welded structure. Of these, fatigue fracture is the most frequently occurring fracture mode in actual use environments. This is the most important issue for improving the reliability of products. There are many cases in which fatigue failure has become a problem, such as the recent occurrence of fatigue cracks in large tankers and collapse starting from fatigue cracks in offshore structures.

【0003】これまでに、疲労強度向上に関する技術が
多数提案されているが、そのほとんどは薄鋼板の母材、
あるいはスポット溶接部の疲労強度向上に関するもので
ある。例えば、特開昭61−96057号公報において
は、ベイナイトの面積比率を5〜60%とすることで疲
労強度向上が計れることが記載されている。厚鋼板溶接
継手の疲労破壊に関する研究によれば、疲労き裂は溶接
部の応力集中部に発生する。この部分には残留応力も作
用しているため、応力集中と残留応力の重畳作用により
疲労き裂の発生が容易となることが明らかにされてい
る。
Up to now, many techniques for improving fatigue strength have been proposed, most of which are thin steel sheet base materials,
Alternatively, it relates to improvement of fatigue strength of spot welds. For example, Japanese Patent Laid-Open No. 61-96057 discloses that the fatigue strength can be improved by setting the area ratio of bainite to 5 to 60%. According to a study on fatigue fracture of thick steel plate welded joints, fatigue cracks occur at stress concentration parts of welds. Since residual stress also acts on this part, it has been clarified that fatigue cracks are easily generated by the superposed action of stress concentration and residual stress.

【0004】これまでに、溶接部材の疲労強度支配要因
と疲労強度改善に関する膨大な研究がなされているが、
溶接部疲労強度の改善は、グラインダー研削、溶接ビー
ド最終層を加熱・再溶融により止端部形状を整形するな
どの溶接止端部形状改善による応力集中度の低減による
もの、ショットピーニング処理などの溶接止端部圧縮残
留応力生成によるものなど、力学的要因による改善がほ
とんどであった(特開昭59−110490号公報、特
開平1−301823号公報など)。また、溶接後熱処
理による残留応力低減効果も従来からよく知られたもの
である。
To date, a great deal of research has been conducted on factors that govern the fatigue strength of welded members and improvements in fatigue strength.
Weld fatigue strength is improved by reducing the stress concentration by improving the weld toe shape, such as grinding and grinding and shaping the toe shape by heating and re-melting the final layer of the weld bead, shot peening, etc. Most of the improvements were due to mechanical factors such as the generation of compressive residual stress at the weld toe portion (JP-A-59-110490, JP-A-1-301823, etc.). Further, the effect of reducing the residual stress by the heat treatment after welding is well known in the past.

【0005】一方、上記のような特殊な施工や溶接後熱
処理を用いずに、鋼材の成分を限定することによって厚
鋼板溶接継手の疲労強度を改善する方法が提案されてい
る。特願平4−294544号においては、Cuを0.
5〜2.0%含有した極低C鋼は溶接残留応力が低く、
同時に溶接熱影響部(以下、HAZと記す)の強度が確
保されるために溶接継手の疲労強度が向上することが記
載されている。
On the other hand, there has been proposed a method of improving the fatigue strength of a thick steel plate welded joint by limiting the components of the steel material without using the above-mentioned special construction and post-weld heat treatment. In Japanese Patent Application No. 4-294544, Cu is added to 0.
Ultra-low C steel containing 5 to 2.0% has low welding residual stress,
At the same time, it is described that the fatigue strength of the welded joint is improved because the strength of the weld heat affected zone (hereinafter referred to as HAZ) is secured.

【0006】溶接熱影響部の微視組織と疲労強度の関係
はこれまでにほとんど明らかにされていないが、特開平
5−345928号公報では、HAZ組織の疲労強度は
島状マルテンサイトの生成により向上することが明らか
にされている。すなわち、硬質の島状マルテンサイトが
HAZ組織中に存在すると、一旦発生した微視疲労き裂
は伝播を阻止または遅延され、実質的に疲労強度が向上
することが記載されている。
Although the relationship between the microstructure and the fatigue strength of the heat-affected zone of the weld has not been clarified so far, in JP-A-5-345928, the fatigue strength of the HAZ structure is due to the formation of island martensite. It has been shown to improve. That is, it is described that when hard island martensite is present in the HAZ structure, microfatigue cracks once generated are prevented or delayed from propagating and the fatigue strength is substantially improved.

【0007】[0007]

【発明が解決しようとする課題】これらのうち、特開昭
61−96057号公報記載の発明は、ベイナイト面積
率を特定範囲に限定することにより疲労強度を向上させ
るものであるが、これは薄鋼板母材の疲労強度向上に関
するものであり、本発明が対象とする厚鋼板の突き合わ
せ溶接、または隅肉溶接の疲労強度向上には適用できな
い。
Of these, the invention described in JP-A-61-96057 improves the fatigue strength by limiting the bainite area ratio to a specific range, but this is thin. The present invention relates to the improvement of the fatigue strength of a steel plate base material, and cannot be applied to the improvement of the fatigue strength of butt welding or fillet welding of thick steel plates, which is the object of the present invention.

【0008】特開昭59−110490号公報および特
開平1−301823号公報記載の発明では、溶接後に
特殊な施工をする必要があり、溶接ままで疲労強度を改
善することはできない。特願平4−294544号に記
載の発明は、溶接部の疲労強度向上を計るものである
が、Cが0.010%以下の極低炭素鋼に関するもので
あり、一般の溶接構造用厚鋼板に適用はできない。
In the inventions described in JP-A-59-110490 and JP-A-1-301823, it is necessary to perform special work after welding, and the fatigue strength cannot be improved as it is. The invention described in Japanese Patent Application No. 4-294544 is intended to improve the fatigue strength of a welded portion, but relates to an ultra-low carbon steel having a C content of 0.010% or less, and a general thick steel plate for welded structure. Cannot be applied to.

【0009】特開平5−345928号公報記載の発明
は、島状マルテンサイトを生成させるために、溶接後に
溶接部をAc1 〜Ac3 の中間温度域に加熱後冷却する
特殊な溶接後熱処理を施すものであり、溶接ままで疲労
強度を向上させることはできない。本発明は、応力集中
度の低減や溶接残留応力の低減を実現するための付加的
な溶接施工による疲労強度向上ではなく、溶接ままでH
AZのミクロ組織を制御することにより、突き合わせ溶
接継手または隅肉溶接継手の疲労強度を向上させた溶接
構造用軟鋼板と引張強さが50kgf/mm2 級の高張
力鋼板、およびそれらの製造方法を提供することを目的
とする。
The invention described in Japanese Unexamined Patent Publication No. 5-345928 discloses a special post-weld heat treatment in which the welded portion is heated to an intermediate temperature range of Ac 1 to Ac 3 and then cooled to generate island martensite. Since it is applied, it is impossible to improve the fatigue strength as it is. The present invention does not improve the fatigue strength by the additional welding work for realizing the reduction of the stress concentration degree and the reduction of the welding residual stress, and the
Welded structural mild steel sheet with improved fatigue strength of butt welded joints or fillet welded joints by controlling the microstructure of AZ, high-strength steel sheet having a tensile strength of 50 kgf / mm 2 grade, and methods for producing the same The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明者らは、溶接部の
疲労き裂発生・伝播と、そのミクロ組織依存性に関する
系統的な実験を実施した結果、疲労き裂の発生と伝播を
最も効果的に抑制するHAZミクロ組織はフェライトで
あることを知見した。これに基づいて、炭素当量値を限
定することによりHAZのフェライト組織分率を増加さ
せ、溶接継手の疲労強度を向上できることを見出した。
The inventors of the present invention conducted systematic experiments on fatigue crack initiation / propagation in welds and its microstructure dependence, and found that fatigue crack initiation / propagation was most likely to occur. It has been found that the HAZ microstructure that is effectively suppressed is ferrite. Based on this, it was found that by limiting the carbon equivalent value, the ferrite structure fraction of HAZ can be increased and the fatigue strength of the welded joint can be improved.

【0011】すなわち、本発明の要旨とするところは下
記のとおりである。 (1)重量%で、 0.015≦C≦0.15、 0.01≦Si<1.0、 0.2≦Mn≦1.5、 P≦0.03、 S≦0.01、 Ceq≦0.24、 残部Feおよび不可避的不純物よりなることを特徴とす
る溶接継手の疲労強度に優れた溶接構造用厚鋼板。
That is, the gist of the present invention is as follows. (1) In weight%, 0.015 ≦ C ≦ 0.15, 0.01 ≦ Si <1.0, 0.2 ≦ Mn ≦ 1.5, P ≦ 0.03, S ≦ 0.01, Ceq ≦ 0.24, balance steel and unavoidable impurities, and a thick steel plate for welded structure excellent in fatigue strength of a welded joint.

【0012】ただし、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/5+Nb/3 (2)重量%で、 0.015≦C≦0.15、 1.0≦Si≦2.0、 0.2≦Mn≦1.5、 P≦0.03、 S≦0.01、 Ceq≦0.275、 残部Feおよび不可避的不純物よりなることを特徴とす
る溶接継手の疲労強度に優れた溶接構造用厚鋼板。
However, Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 5 + Nb / 3 (2) wt%, 0.015 ≦ C ≦ 0.15, 1.0 ≦ Si ≦ 2.0, 0.2 ≦ Mn ≦ 1.5, P ≦ 0.03, S ≦ 0.01, Ceq ≦ 0.275, balance Fe and unavoidable impurities, and a thick steel plate for welded structure excellent in fatigue strength of a welded joint.

【0013】ただし、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/5+Nb/3 (3)重量%で、 0.005≦Al≦0.10 を含有することを特徴とする前記(1)または(2)記
載の溶接継手の疲労強度に優れた溶接構造用厚鋼板。 (4)重量%で、 0.1≦Cu≦2.0 を含有することを特徴とする前記(1)〜(3)のいず
れか1項に記載の溶接継手の疲労強度に優れた溶接構造
用厚鋼板。
However, Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 5 + Nb / 3 (3) wt%, 0.005 ≦ Al ≦ 0.10 is contained, and the welded structure excellent in fatigue strength of the welded joint according to the above (1) or (2). Thick steel plate. (4) The welded structure having excellent fatigue strength of the welded joint according to any one of (1) to (3) above, characterized by containing 0.1 ≦ Cu ≦ 2.0 in weight%. Thick steel plate.

【0014】(5)重量%で、 0.1≦Ni≦2.0 を含有することを特徴とする前記(1)〜(4)のいづ
れか1項に記載の溶接継手の疲労強度に優れた溶接構造
用厚鋼板。
(5) The welded joint according to any one of the above items (1) to (4) is excellent in fatigue strength, characterized in that it contains 0.1 ≦ Ni ≦ 2.0 in a weight percentage. Steel plate for welded structure.

【0015】(6)重量%で、 0.05≦Cr≦1.0、 0.02≦Mo≦1.0 の1種または2種を含有することを特徴とする前記
(1)〜(5)のいづれか1項に記載の溶接継手の疲労
強度に優れた溶接構造用厚鋼板。
(6) One or two of 0.05≤Cr≤1.0 and 0.02≤Mo≤1.0 are contained in a weight percentage of the above (1) to (5). ) A thick steel plate for welded structure having excellent fatigue strength of the welded joint according to any one of 1).

【0016】(7)重量%で、 0.005≦Nb≦0.08、 0.005≦ V≦0.10 の1種または2種を含有することを特徴とする前記
(1)〜(6)のいづれか1項に記載の溶接継手の疲労
強度に優れた溶接構造用厚鋼板。
(7) One or two of 0.005≤Nb≤0.08 and 0.005≤V≤0.10. ) A thick steel plate for welded structure having excellent fatigue strength of the welded joint according to any one of 1).

【0017】(8)重量%で、 0.005≦Ti≦0.025、 0.001≦ N≦0.010、 Ti/N≦5.0 を含有することを特徴とする前記(1)〜(7)のいづ
れか1項に記載の溶接継手の疲労強度に優れた溶接構造
用厚鋼板。
(8) 0.001≤Ti≤0.025, 0.001≤N≤0.010, Ti / N≤5.0 at a weight percentage of the above (1) to (1) A thick steel plate for welded structure having excellent fatigue strength of the welded joint according to any one of (7).

【0018】(9)重量%で、 0.0005≦ Ca≦0.005、 0.0005≦REM≦0.005 の1種または2種を含有することを特徴とする前記
(1)〜(8)のいづれか1項に記載の溶接継手の疲労
強度に優れた溶接構造用厚鋼板。
(9) One or two of 0.0005≤Ca≤0.005 and 0.0005≤REM≤0.005 are contained in a weight percentage of the above (1) to (8). ) A thick steel plate for welded structure having excellent fatigue strength of the welded joint according to any one of 1).

【0019】(10)前記(1)〜(9)のいずれか1
項に記載の鋼と同一成分を有する鋼塊をAc3 点以上、
1250℃以下に加熱後、再結晶温度域で熱間圧延した
後、自然冷却することを特徴とする溶接継手の疲労強度
に優れた溶接構造用厚鋼板の製造方法。 (11)前記(1)〜(9)のいずれか1項に記載の鋼
と同一成分を有する鋼塊をAc3 点以上、1250℃以
下に加熱後、再結晶温度域で熱間圧延し、引き続き未再
結晶温度域において累積圧下率で40〜90%の熱間圧
延をした後、自然冷却することを特徴とする溶接継手の
疲労強度に優れた溶接構造用厚鋼板の製造方法。
(10) Any one of (1) to (9) above
A steel ingot having the same composition as the steel described in the item 3 or more Ac,
A method for producing a thick steel plate for welded structure excellent in fatigue strength of a welded joint, which comprises heating to 1250 ° C. or lower, hot rolling in a recrystallization temperature range, and natural cooling. (11) A steel ingot having the same composition as the steel according to any one of (1) to (9) above is heated to an Ac 3 point or higher and 1250 ° C. or lower, and then hot rolled in a recrystallization temperature range, A method for producing a thick steel plate for welded structure excellent in fatigue strength of a welded joint, which is characterized by performing hot rolling at a cumulative reduction of 40 to 90% in a non-recrystallization temperature range and then performing natural cooling.

【0020】(12)前記(1)〜(9)のいずれか1
項に記載の鋼と同一成分を有する鋼塊をAc3 点以上、
1250℃以下に加熱後、再結晶温度域で熱間圧延し、
引き続き未再結晶温度域において累積圧下率で40〜9
0%の熱間圧延をした後、1〜60℃/secの冷却速
度で0〜600℃まで冷却することを特徴とする溶接継
手の疲労強度に優れた溶接構造用厚鋼板の製造方法。
(12) Any one of (1) to (9) above
A steel ingot having the same composition as the steel described in the item 3 or more Ac,
After heating below 1250 ° C, hot rolling in the recrystallization temperature range,
Then, in the non-recrystallization temperature range, the cumulative rolling reduction was 40 to 9
A method for producing a thick steel plate for welded structure excellent in fatigue strength of a welded joint, which comprises performing 0% hot rolling and then cooling to 0 to 600 ° C at a cooling rate of 1 to 60 ° C / sec.

【0021】(13)前記(1)〜(9)のいずれか1
項に記載の鋼と同一成分を有する鋼塊をAc3 点以上、
1250℃以下に加熱後、再結晶温度域で熱間圧延し、
引き続き未再結晶温度域において累積圧下率で40〜9
0%の熱間圧延をした後、1〜60℃/secの冷却速
度で0〜600℃まで冷却し、さらに300℃〜Ac 1
点に加熱して焼戻し熱処理することを特徴とする溶接継
手の疲労強度に優れた溶接構造用厚鋼板の製造方法。
(13) Any one of (1) to (9) above
The steel ingot having the same composition as the steel described in the item3More than points,
After heating below 1250 ° C, hot rolling in the recrystallization temperature range,
Then, in the non-recrystallization temperature range, the cumulative rolling reduction was 40 to 9
After 0% hot rolling, cooling rate of 1-60 ° C / sec
Cooling to 0-600 ℃, then 300 ℃ -Ac 1
Welded joint characterized by heating to a point and tempering heat treatment
A method for manufacturing a thick steel plate for welded structures, which has excellent hand fatigue strength.

【0022】[0022]

【作用】本発明者らは、まず溶接継手の疲労試験片のき
裂発生・伝播の状況をミクロ的に詳細に観察を行った。
その結果、ほとんどの疲労き裂は溶接金属とHAZの境
界部、すなわち溶接融合線(fusion line;
溶接金属とHAZの境界)付近から発生し、HAZ内を
伝播し、さらに母材部に突入して試験片の全体破壊に至
ることを知見した。溶接融合線付近は溶接止端部に一致
し、この部分で最も応力集中が高くなるためである。こ
のように、疲労き裂は溶接融合線付近から発生してHA
Z内を伝播するために、疲労強度はHAZのミクロ組織
に大きく影響を受けることが明らかとなった。
FUNCTION The present inventors first carried out a detailed microscopic observation of the state of crack initiation / propagation in a fatigue test piece of a welded joint.
As a result, most fatigue cracks are at the weld metal / HAZ boundary, or fusion line.
It was found that it is generated near the boundary between the weld metal and the HAZ), propagates in the HAZ, and further rushes into the base metal portion, resulting in the total destruction of the test piece. This is because the vicinity of the weld fusion line coincides with the weld toe and the stress concentration is highest at this portion. In this way, fatigue cracks are generated near the weld fusion line and HA
It was revealed that the fatigue strength is greatly affected by the HAZ microstructure because it propagates in the Z.

【0023】次に、疲労強度に及ぼすHAZ組織の影響
を解明するために系統的な実験を実施し、以下に示すよ
うな重要な知見を得た。上記のように、疲労き裂の発生
部は溶接融合線近傍であり、さらにき裂伝播の初期段階
はHAZ内である。これらの領域は応力集中部に一致し
ている。HAZミクロ組織と応力集中の両因子を再現す
ることによりHAZミクロ組織が疲労強度に及ぼす影響
を調査することができる。すなわち、溶接再現熱サイク
ルを与えた鋼材から応力集中を設けた試験片を加工し、
疲労試験に供してHAZミクロ組織と疲労強度の関係を
求めた。試験片の外形寸法は10×10×55mm、切
欠深さは2mm、切欠先端半径は0.75mmで、支点
間距離を40mmとして3点曲げ繰り返し荷重を与え、
疲労破壊させた。応力集中係数は2.6である。
Next, a systematic experiment was carried out to clarify the effect of the HAZ structure on the fatigue strength, and the following important findings were obtained. As described above, the fatigue crack initiation portion is near the weld fusion line, and the initial stage of crack propagation is within the HAZ. These regions correspond to the stress concentration part. By reproducing both the HAZ microstructure and stress concentration factors, the effect of the HAZ microstructure on fatigue strength can be investigated. That is, a test piece provided with stress concentration is machined from a steel material subjected to a welding reproduction heat cycle,
A fatigue test was performed to determine the relationship between the HAZ microstructure and fatigue strength. The outer dimensions of the test piece are 10 × 10 × 55 mm, the notch depth is 2 mm, the notch tip radius is 0.75 mm, the fulcrum distance is 40 mm, and a three-point bending repeated load is applied.
Fatigue destroyed. The stress concentration factor is 2.6.

【0024】図1は軟鋼および引張強さが50kgf/
mm2 級の強度を有する実験室真空溶解鋼を素材とし
て、最高加熱温度を1400℃、800〜500℃の冷
却時間を1〜30秒とした溶接再現熱サイクルを与えた
再現HAZ材の疲労限度比(疲労限/再現HAZ材の引
張強さ)を再現HAZ材の引張強さに対してプロットし
たものである。200倍の光学顕微鏡で観察した再現H
AZ材のミクロ組織写真からポイントカウンティング法
によりミクロ組織の面積率を測定し、面積率で60%以
上を占めるミクロ組織を決定し、このミクロ組織の種類
によりプロットデータを分類した。同図から明らかなよ
うに、疲労限度比はHAZミクロ組織に大きく依存す
る。すなわち、マルテンサイト、下部ベイナイト、下部
ベイナイト・上部ベイナイト混合組織、上部ベイナイ
ト、フェライトの順に疲労限度比が高くなり、フェライ
ト組織が最も優れた疲労特性を有する組織であることを
知見した。
FIG. 1 shows mild steel and a tensile strength of 50 kgf /
Fatigue limit of reproduced HAZ material that was given a simulated welding cycle with maximum heating temperature of 1400 ° C and cooling time of 800 to 500 ° C for 1 to 30 seconds, using laboratory vacuum melting steel with strength of mm 2 class The ratio (fatigue limit / tensile strength of the reproduced HAZ material) is plotted against the tensile strength of the reproduced HAZ material. Reproduction H observed with a 200x optical microscope
The area ratio of the microstructure was measured from the microstructure photograph of the AZ material by the point counting method, the microstructure occupying 60% or more of the area ratio was determined, and the plot data was classified according to the type of the microstructure. As is clear from the figure, the fatigue limit ratio largely depends on the HAZ microstructure. That is, it has been found that the fatigue limit ratio becomes higher in the order of martensite, lower bainite, lower bainite / upper bainite mixed structure, upper bainite, and ferrite, and the ferrite structure has the best fatigue property.

【0025】ごく一般に用いられている溶接構造用軟鋼
(代表的な成分は0.14%C−0.2%Si−0.9
%Mn)や引張強さが50kgf/mm2 級の圧延まま
高張力鋼(代表的な成分は0.17%C−0.3%Si
−1.4%Mn)は炭素当量値が高く、HAZの焼入れ
性が高いために、入熱が50kJ/cm以下の小・中入
熱溶接では、HAZミクロ組織はベイナイトあるいはマ
ルテンサイト主体の組織となる。従って、このような鋼
では疲労限度比が低く、HAZから疲労破壊が容易に発
生することが図1から理解できる。本実験から、HAZ
のミクロ組織をフェライト主体組織とすることにより疲
労限度比を高め、溶接継手の疲労強度を向上できること
が初めて明らかとなった。
Mild steel for welded structure which is generally used (a typical composition is 0.14% C-0.2% Si-0.9).
% Mn) and tensile strength of 50 kgf / mm 2 grade as-rolled high-strength steel (typical composition is 0.17% C-0.3% Si)
-1.4% Mn) has a high carbon equivalent value and high hardenability of HAZ. Therefore, in the small / medium heat input welding where the heat input is 50 kJ / cm or less, the HAZ microstructure is mainly bainite or martensite. Becomes Therefore, it can be understood from FIG. 1 that such steel has a low fatigue limit ratio and fatigue fracture easily occurs from the HAZ. From this experiment, HAZ
It was clarified for the first time that the fatigue limit ratio can be increased and the fatigue strength of the welded joint can be improved by making the microstructure of (1) a ferrite-based structure.

【0026】図1で示したように、応力集中を有する疲
労試験においては高温変態組織ほど疲労限度比が高くな
り、逆に、低温変態組織ほど疲労限度比が低くなる。こ
のような疲労強度がミクロ組織に依存する原因は完全に
は解明されていないが、(1)低温変態組織ほど変態時
に導入された転位密度が高く、この転位は繰り返し応力
を受けると再配列されてしまうために転位強化は疲労強
度にはあまり寄与しない、(2)低温変態組織になると
ベイナイトやマルテンサイトのラス界面、あるいは旧オ
ーステナイト粒界の強度が粒内組織の強度に比べて相対
的に低くなり、ラス界面や旧オーステナイト粒界で疲労
き裂が容易に発生する、(3)フェライト組織では伝播
するき裂先端における塑性変形が顕著で、塑性吸収エネ
ルギーが増大し、その結果としてき裂伝播を遅延させ
る、などの理由が考えられる。
As shown in FIG. 1, in the fatigue test having stress concentration, the fatigue limit ratio becomes higher as the high temperature transformed structure becomes higher, and conversely, the fatigue limit ratio becomes lower as the low temperature transformed structure becomes. The reason why such fatigue strength depends on the microstructure has not been completely clarified, but (1) the low temperature transformation structure has a higher dislocation density introduced during transformation, and the dislocations are rearranged when subjected to repeated stress. Therefore, dislocation strengthening does not contribute much to fatigue strength. (2) In low temperature transformation structure, the strength of bainite or martensite lath interface or former austenite grain boundary is relatively higher than that of intragranular structure. Fatigue cracks easily occur at lath interfaces and old austenite grain boundaries. (3) Plastic deformation at the propagating crack tip is remarkable in ferrite structure, plastic absorbed energy increases, and as a result, cracks increase. Possible reasons include delaying the propagation.

【0027】応力集中の少ない平滑試験片においては疲
労強度のミクロ組織依存性は少なく、むしろ静的な引張
強さと高い相関関係を有することが知られている。上に
示したように、再現HAZ材疲労強度がミクロ組織によ
り影響を受け、特にフェライト主体組織で疲労限度比が
上昇することは応力集中部で特異的に生じる現象であ
り、ミクロ組織をフェライト主体組織とすることによる
疲労強度向上の効果は溶接継手のように応力集中が存在
する場合に特に顕著に作用するものである。
It is known that in a smooth test piece having a small stress concentration, the fatigue strength has little microstructure dependence, and rather has a high correlation with static tensile strength. As shown above, the fatigue strength of the reproduced HAZ material is affected by the microstructure, and the fact that the fatigue limit ratio rises in the ferrite-based structure is a phenomenon that occurs specifically in the stress concentration part. The effect of improving the fatigue strength by forming the structure is particularly remarkable when stress concentration is present as in a welded joint.

【0028】上記のように、HAZミクロ組織をフェラ
イト組織とすることが疲労強度向上の上で最も望ましい
が、HAZが溶接中に受ける連続冷却変態で100%フ
ェライト組織とすることは、特に冷却速度が大きい小・
中入熱溶接では困難であり、必然的にフェライトより変
態温度が低いベイナイトなどの組織が混入する。しかし
ながら、上部ベイナイトはフェライトに次いで疲労限度
比が高いために、上部ベイナイトが多少混入してもHA
Zの疲労強度をあまり低下させないことが期待できる。
As described above, it is most desirable to make the HAZ microstructure a ferrite structure in order to improve the fatigue strength, but it is particularly preferable to make the HAZ a 100% ferrite structure in the continuous cooling transformation which is received during welding. Is large
Medium heat input welding is difficult, and inevitably a structure such as bainite, which has a lower transformation temperature than ferrite, is mixed. However, since the upper bainite has the next highest fatigue limit ratio after ferrite, even if some upper bainite is mixed in, HA
It can be expected that the fatigue strength of Z will not be significantly reduced.

【0029】図2は再現HAZ材の疲労限度比をフェラ
イト面積率に対してプロットしたものである。図から明
らかなことは、(1)フェライト面積率が増加するに従
って疲労限度比は上昇する。さらに、フェライト面積率
が60%以上であれば疲労限度比が著しく上昇する。疲
労限度比の向上はフェライト面積率が60%以上の範囲
において特に顕著である。(2)同一のフェライト面積
率で比較すると、Siを1.0%以上添加した鋼はSi
添加量が1.0%未満の鋼に比べてさらに疲労限度比が
上昇する。この結果から、HAZのフェライト面積率を
60%以上とすることにより疲労限度比を向上でき、さ
らにSiを1.0%以上添加すると疲労限度比向上の効
果は顕著となることが明らかとなった。
FIG. 2 is a plot of the fatigue limit ratio of the reproduced HAZ material against the ferrite area ratio. It is clear from the figure that (1) the fatigue limit ratio increases as the ferrite area ratio increases. Further, if the ferrite area ratio is 60% or more, the fatigue limit ratio increases significantly. The improvement of the fatigue limit ratio is particularly remarkable in the range where the ferrite area ratio is 60% or more. (2) Comparing with the same ferrite area ratio, the steel with Si added by 1.0% or more is Si
The fatigue limit ratio is further increased as compared with steel in which the addition amount is less than 1.0%. From these results, it was revealed that the fatigue limit ratio can be improved by setting the ferrite area ratio of HAZ to 60% or more, and the effect of improving the fatigue limit ratio becomes remarkable when Si is added to 1.0% or more. .

【0030】上にも述べたとおり、ごく一般に用いられ
ている溶接構造用軟鋼や引張強さが50kgf/mm2
級の圧延まま高張力鋼は炭素当量値が高く、HAZの焼
入れ性が高いため、これらの鋼では小・中入熱溶接のH
AZミクロ組織がベイナイト・マルテンサイト組織とな
る。このためにHAZの疲労強度向上は望めない。HA
Zの疲労破壊に対する感受性を低くし、応力集中下にお
いても疲労き裂の発生を防止し、あるいは発生したき裂
の伝播を遅延させるためには、HAZミクロ組織をフェ
ライト主体組織とすることが効果的である。HAZミク
ロ組織をフェライト主体とするためにはHAZ焼入れ性
を低下させることが必要である。このために、HAZ焼
入れ性を表す指標である炭素当量の値を限界値以下に限
定する必要がある。ここで、HAZのフェライト面積率
を最も正確に表す炭素当量式を検討した結果、一般に使
用されているIIWの炭素当量式にNbの焼入れ性上昇
効果を考慮した次式、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/5+Nb/3 を用いればよいことが明らかとなった。
As described above, mild steel for welded structure and tensile strength of 50 kgf / mm 2 which are generally used.
High-strength as-rolled high-strength steel has a high carbon equivalent value and high hardenability of HAZ.
The AZ microstructure becomes a bainite martensite structure. Therefore, the HAZ fatigue strength cannot be improved. HA
In order to reduce the susceptibility of Z to fatigue fracture, prevent the occurrence of fatigue cracks even under stress concentration, or delay the propagation of cracks that have occurred, it is effective to make the HAZ microstructure a ferrite-based structure. Target. In order to make the HAZ microstructure mainly ferrite, it is necessary to reduce the HAZ hardenability. For this reason, it is necessary to limit the value of carbon equivalent, which is an indicator of the HAZ hardenability, to a limit value or less. Here, as a result of investigating a carbon equivalent formula that most accurately expresses the ferrite area ratio of HAZ, the following formula that considers the hardenability increasing effect of Nb in the commonly used carbon equivalent formula of IIW, Ceq = C + Mn / 6 + ( Cu + Ni) / 15 + (Cr
It became clear that + Mo + V) / 5 + Nb / 3 should be used.

【0031】図3は実験室真空溶解鋼再現HAZのフェ
ライト面積率を上記の炭素当量に対してプロットしたも
のである。同図から明らかなことは、まずHAZフェラ
イト面積率は炭素当量と良い相関を示し、炭素当量値が
低いほどHAZフェライト面積率が上昇する。しかし、
同一の炭素当量値で比較すると、Siを1.0%以上添
加した鋼はさらにフェライト面積率が上昇することが明
らかとなった。図2の結果から、HAZ疲労強度向上に
はHAZのフェライト面積率を60%以上とすることが
必要であるが、これを実現するためには、Si添加量が
1.0%未満の鋼には炭素当量値を0.24%以下、S
i添加量が1.0%以上の鋼では炭素当量値を0.27
5%以下とすればよいことがわかる。Siを1.0%以
上添加することにより炭素当量上限値を0.275%ま
で上げることが可能であり、従ってSiを1.0%以上
添加することによってHAZの疲労強度を向上できるだ
けでなく、板厚の厚い鋼板でも母材強度の確保が容易に
なる。
FIG. 3 is a plot of the ferrite area ratio of the laboratory vacuum-melted steel reproduced HAZ against the above carbon equivalent. It is clear from the figure that the HAZ ferrite area ratio shows a good correlation with the carbon equivalent, and the lower the carbon equivalent value, the higher the HAZ ferrite area ratio. But,
When compared with the same carbon equivalent value, it became clear that the steel having Si added in an amount of 1.0% or more has a further increased ferrite area ratio. From the results of FIG. 2, it is necessary to set the ferrite area ratio of HAZ to 60% or more in order to improve the HAZ fatigue strength, but in order to realize this, in the steel in which the amount of Si added is less than 1.0%, Has a carbon equivalent value of 0.24% or less, S
Carbon equivalent value is 0.27 for steel with i addition of 1.0% or more
It can be seen that it should be 5% or less. It is possible to raise the carbon equivalent upper limit to 0.275% by adding Si by 1.0% or more. Therefore, not only can the fatigue strength of the HAZ be improved by adding Si by 1.0% or more, It becomes easy to secure the strength of the base material even with a thick steel plate.

【0032】Siを添加することによる疲労限度比向上
の理由は、(1)Siはフェライト形成元素であるため
HAZ組織のフェライト面積率を増加させることに加
え、(2)Siの固溶強化により疲労繰り返し中の転位
の運動に対する抵抗力が上昇すること、さらに(3)積
層欠陥エネルギーの低下により交差すべりが生じ難くな
り、繰り返し塑性変形の可逆性が高まることにより、非
可逆塑性変形によって蓄積される歪が増加し難くなるた
めであると考えられる。このようなSiの効果は溶接部
疲労強度だけでなく、フェライト主体組織である母材の
疲労強度向上にも効果を発揮する。
The reason for improving the fatigue limit ratio by adding Si is (1) because Si is a ferrite-forming element, in addition to increasing the ferrite area ratio of the HAZ structure, (2) solid solution strengthening of Si The resistance to the movement of dislocations during fatigue cycling increases, and (3) cross-slip is less likely to occur due to the reduction of stacking fault energy, and the reversibility of cyclic plastic deformation increases, so that it accumulates due to irreversible plastic deformation. It is considered that this is because it is difficult for the distortion to increase. Such an effect of Si exerts an effect not only on the fatigue strength of the welded portion but also on the fatigue strength of the base material having a ferrite-based structure.

【0033】実溶接継手のHAZで応力集中が高い領域
は溶接融合線から1.0mm以内の範囲であり、疲労き
裂が発生するのはこの領域内である。従って、溶接融合
線から1.0mmのHAZにおいてフェライト面積率を
60%以上とすることが重要である。上記の検討結果か
ら明らかなように、本発明の骨子はHAZミクロ組織を
フェライト主体とすることによりHAZの疲労破壊感受
性を低め、溶接継手の疲労強度を向上させるものであ
り、これを実現するために上記で定義した炭素当量値を
Si添加量の範囲に応じて限定するものである。
The area where the stress concentration is high in the HAZ of the actual welded joint is within 1.0 mm from the weld fusion line, and it is within this area that fatigue cracks occur. Therefore, it is important to set the ferrite area ratio to 60% or more in the HAZ 1.0 mm from the weld fusion line. As is clear from the above-mentioned examination results, the skeleton of the present invention is to reduce the fatigue fracture susceptibility of HAZ and improve the fatigue strength of the welded joint by making the HAZ microstructure mainly ferrite, and to realize this. The carbon equivalent value defined above is limited in accordance with the range of the Si addition amount.

【0034】以上の基本思想を基に、各合金元素の範囲
を限定した理由を以下に述べる。CはHAZの焼入れ性
を上昇する元素であり、多量に添加するとベイナイトや
マルテンサイト組織が生成しやすくなる。HAZのフェ
ライト面積率を増加し、疲労強度を高めるためにはC量
は低いほうが望ましい。しかし、Cは母材の強度を上昇
させる元素であり、母材強度上昇のためには多量に添加
することが望ましい。C量が0.015%未満では母材
強度を確保できないため、下限値を0.015%とし
た。逆に、0.15%超ではHAZ焼入れ性が高くなり
過ぎてフェライト面積率が低下し、疲労強度を向上でき
ない。さらに、母材およびHAZの靱性が顕著に低下す
る。従って、C量の上限値を0.15%とした。母材強
度と疲労強度向上のバランスを考慮すると、0.02〜
0.07%のC量が最も望ましい。
The reason why the range of each alloying element is limited based on the above basic idea will be described below. C is an element that increases the hardenability of HAZ, and if it is added in a large amount, bainite and martensite structure are easily generated. In order to increase the ferrite area ratio of HAZ and enhance the fatigue strength, it is desirable that the C content be low. However, C is an element that increases the strength of the base material, and it is desirable to add a large amount of C to increase the strength of the base material. If the C content is less than 0.015%, the strength of the base material cannot be secured, so the lower limit was made 0.015%. On the other hand, if it exceeds 0.15%, the HAZ hardenability becomes too high, the ferrite area ratio decreases, and the fatigue strength cannot be improved. Furthermore, the toughness of the base material and HAZ is significantly reduced. Therefore, the upper limit of the amount of C is set to 0.15%. Considering the balance between base material strength and fatigue strength improvement, 0.02-
A C content of 0.07% is most desirable.

【0035】Siは脱酸剤として有用な元素である上
に、上記のとおり疲労強度向上に効果を発揮する添加元
素である。Si量が0.01%未満では脱酸が不十分と
なり、介在物が増加し、母材の延性や靱性を低下させ
る。従って、Si量の下限値を0.01%とした。Si
添加量が高いほどフェライトの強化とHAZのフェライ
ト面積率増加が顕著となり、疲労強度向上の目的のため
にはSi添加量は高いほど望ましい。しかし、Si添加
量が高いほど母材とHAZの靱性は低下する。靱性低下
はSi量が2.0%を超えると顕著となる。このため、
Si量の上限値を2.0%とした。
Si is an element that is useful as a deoxidizer and is an additive element that exerts an effect of improving fatigue strength as described above. If the Si content is less than 0.01%, deoxidation becomes insufficient, inclusions increase, and the ductility and toughness of the base material decrease. Therefore, the lower limit of the amount of Si is set to 0.01%. Si
The higher the amount added, the more remarkable the strengthening of ferrite and the increase in the ferrite area ratio of HAZ. For the purpose of improving fatigue strength, the higher the amount of Si added, the more desirable. However, the higher the amount of Si added, the lower the toughness of the base metal and HAZ. The decrease in toughness becomes remarkable when the Si content exceeds 2.0%. For this reason,
The upper limit of the amount of Si was set to 2.0%.

【0036】Mnは母材強度確保に有効な元素である。
Mn量が0.2%未満では母材強度を確保できないた
め、下限値を0.2%とした。逆に、1.5%超添加す
ると、HAZ焼入れ性が上昇し、HAZミクロ組織をフ
ェライト主体とすることができない。従って、Mn量の
上限値を1.5%とした。Pは低いほど好ましく、0.
03%超含有すると母材とHAZの靱性を顕著に低下さ
せる。従って、P量の上限値を0.03%とした。
Mn is an element effective for securing the strength of the base material.
If the amount of Mn is less than 0.2%, the strength of the base material cannot be secured, so the lower limit was made 0.2%. On the other hand, if over 1.5% is added, the HAZ hardenability is increased, and the HAZ microstructure cannot be composed mainly of ferrite. Therefore, the upper limit of the amount of Mn is set to 1.5%. The lower P is, the more preferable.
If the content exceeds 03%, the toughness of the base material and HAZ is significantly reduced. Therefore, the upper limit of the amount of P is set to 0.03%.

【0037】Sは低いほど好ましく、0.01%超含有
するとMnS析出が顕著となり、母材とHAZの靱性を
害し、板厚方向の延性も低下させる。さらに、MnS介
在物が多量に存在すると、これが疲労き裂の起点となり
疲労強度のばらつきの原因となる。従って、S量の上限
値を0.01%とした。Alは必要に応じて添加する元
素であり、脱酸により鋼中介在物を減少させるのに有効
な元素である。Alが0.005%未満では脱酸が不十
分で鋼中介在物が減少できない。従って、下限を0.0
05%とした。逆に0.10%超含有すると、アルミナ
系介在物が増加して延性低下を来すとともに、疲労き裂
の発生を容易とする。従って、上限を0.10%とし
た。Ti、Ca、REMの強脱酸元素を含有する場合に
は、Alを0.005%以下とすることができる。
The lower the S content, the more preferable it is. If it exceeds 0.01%, MnS precipitation becomes remarkable, the toughness of the base metal and HAZ is impaired, and the ductility in the sheet thickness direction is also reduced. Furthermore, when a large amount of MnS inclusions are present, this becomes the starting point of fatigue cracks and causes variations in fatigue strength. Therefore, the upper limit of the amount of S is set to 0.01%. Al is an element added as necessary, and is an element effective in reducing inclusions in steel by deoxidation. If Al is less than 0.005%, deoxidation is insufficient and inclusions in steel cannot be reduced. Therefore, the lower limit is 0.0
It was set to 05%. On the other hand, if the content exceeds 0.10%, alumina-based inclusions increase and ductility decreases, and fatigue cracks easily occur. Therefore, the upper limit is set to 0.10%. When a strong deoxidizing element such as Ti, Ca or REM is contained, Al can be 0.005% or less.

【0038】Cuは母材強度上昇に効果を示す元素であ
る。Cu量が0.1%未満では強度上昇効果を期待でき
ないため、下限値を0.1%とした。Cuは焼入れ性向
上と固溶強化により母材の強度上昇に寄与するだけでな
く、圧延・冷却後の焼戻し熱処理により微細Cuを析出
することにより著しく母材強度を上昇させることができ
る。炭素当量値が低い本発明鋼ではこの効果は特に有効
である。析出硬化を発揮させるためには、Cuは0.4
%以上の添加が必要である。しかし、2.0%超添加す
るとHAZ焼入れ性が高くなり、フェライト主体組織と
することができないし、また鋳造割れが発生しやすくな
るため、Cu量の上限値を2.0%とした。
Cu is an element effective in increasing the strength of the base material. If the amount of Cu is less than 0.1%, the effect of increasing strength cannot be expected, so the lower limit was made 0.1%. Cu not only contributes to an increase in the strength of the base material by improving the hardenability and solid solution strengthening, but also the strength of the base material can be significantly increased by precipitating fine Cu by tempering heat treatment after rolling and cooling. This effect is particularly effective in the steel of the present invention having a low carbon equivalent value. Cu is 0.4 in order to exert precipitation hardening.
% Or more must be added. However, if over 2.0% is added, the HAZ hardenability becomes high, a ferrite-based structure cannot be obtained, and casting cracks easily occur, so the upper limit of the Cu content was set to 2.0%.

【0039】Niは母材とHAZの靱性を向上させる元
素であり、靱性向上のためには0.1%以上添加するこ
とが必要である。しかし、2.0%超添加すると、HA
Z焼入れ性が高くなり、HAZ組織をフェライト主体と
することができない。従って、Ni量の上限値を2.0
%とした。Crは焼入れ性を向上させるとともに、母材
の強度向上にも効果のある元素である。0.05%未満
では母材強度上昇効果が顕著でないので、Cr量の下限
値を0.05%とした。逆に1.0%超添加すると、H
AZ焼入れ性が高くなり過ぎてフェライト面積率を60
%以上とすることができなくなるし、母材およびHAZ
の靱性低下が著しくなる。従って、Cr量の上限値を
1.0%とした。
Ni is an element that improves the toughness of the base metal and HAZ, and it is necessary to add 0.1% or more to improve the toughness. However, if added over 2.0%, HA
Z hardenability becomes high, and the HAZ structure cannot be mainly composed of ferrite. Therefore, the upper limit of the Ni content is 2.0
%. Cr is an element effective not only for improving the hardenability but also for improving the strength of the base material. If it is less than 0.05%, the effect of increasing the strength of the base material is not significant, so the lower limit of the Cr content was made 0.05%. Conversely, if over 1.0% is added, H
AZ hardenability becomes too high and ferrite area ratio is 60
% Or more, and the base metal and HAZ
Toughness is markedly reduced. Therefore, the upper limit of the amount of Cr is set to 1.0%.

【0040】Moは焼入れ性を向上させるとともに、母
材の強度向上にも効果のある元素である。圧延・冷却後
に焼戻し熱処理を実施する場合には、微細Mo炭化物を
析出させて、さらに強度の向上が計れる。Mo量が0.
02%未満では母材の強度向上効果が顕著でないので、
下限値を0.02%とした。逆に、1.0%超添加する
と、HAZ焼入れ性が高くなり過ぎてフェライト面積率
を60%以上とすることができなくなるし、母材および
HAZの靱性低下が著しくなる。従って、Mo量の上限
値を1.0%とした。
Mo is an element effective not only for improving the hardenability but also for improving the strength of the base material. When tempering heat treatment is carried out after rolling and cooling, fine Mo carbide is precipitated to further improve strength. Mo amount is 0.
If it is less than 02%, the effect of improving the strength of the base material is not significant, so
The lower limit was 0.02%. On the contrary, if the content exceeds 1.0%, the HAZ hardenability becomes too high, and the ferrite area ratio cannot be made 60% or more, and the toughness of the base material and HAZ is significantly lowered. Therefore, the upper limit of the amount of Mo is set to 1.0%.

【0041】Nbは炭窒化物を形成して母材の強度向上
と細粒化に効果がある。圧延・冷却後に焼戻し熱処理を
実施する場合には、微細Nb炭窒化物を析出させて、さ
らに強度の向上が計れる。Nb量が0.005%未満で
はこの効果が顕著でないので下限値を0.005%とし
た。逆に、0.080%超添加すると、HAZ焼入れ性
が高くなり過ぎてフェライト面積率を60%以上とする
ことができなくなる。従って、Nb量の上限値を0.0
80%とした。
Nb forms a carbonitride and is effective in improving the strength and grain refining of the base material. When tempering heat treatment is carried out after rolling and cooling, fine Nb carbonitrides can be precipitated to further improve the strength. If the amount of Nb is less than 0.005%, this effect is not remarkable, so the lower limit was made 0.005%. On the contrary, if the content exceeds 0.080%, the HAZ hardenability becomes too high, and the ferrite area ratio cannot be made 60% or more. Therefore, the upper limit of the Nb amount is 0.0
It was set to 80%.

【0042】Vは炭窒化物を形成して母材の強度向上と
細粒化に効果がある。圧延・冷却後に焼戻し熱処理を実
施する場合には、微細V炭窒化物を析出させて、さらに
強度の向上が計れる。V量が0.005%未満ではこの
効果が顕著でないので、下限値を0.005%とした。
逆に、0.10%超添加すると、HAZ焼入れ性が高く
なり過ぎてフェライト面積率を60%以上とすることが
できなくなる。従って、V量の上限値を0.10%とし
た。
V forms a carbonitride and is effective in improving the strength of the base material and making it finer. When tempering heat treatment is carried out after rolling and cooling, fine V carbonitrides are precipitated to further improve the strength. If the amount of V is less than 0.005%, this effect is not remarkable, so the lower limit was made 0.005%.
On the contrary, if the content exceeds 0.10%, the HAZ hardenability becomes too high and the ferrite area ratio cannot be made 60% or more. Therefore, the upper limit of the amount of V is set to 0.10%.

【0043】Tiは適量のNとの組み合わせによりTi
Nを生成し、HAZのオーステナイト粒の粗大化を抑制
するとともに固溶Nを低下させるためにHAZ靱性を向
上させる。さらに、TiNを核としてオーステナイト粒
内からもフェライトを生成させ、HAZ靱性を向上させ
る。Ti量が0.005%未満ではこれらの効果が顕著
でないため、下限値を0.005%とした。しかし、
0.025%超、またはTi/N比が5.0を超えて添
加すると、Tiの炭化物を多量に生成して母材とHAZ
の靱性を低下させる。従って、Ti添加量の上限値を
0.025%とし、Ti/Nの上限を5.0とした。
Ti can be obtained by combining Ti with an appropriate amount of N.
N is generated to suppress coarsening of the austenite grains of the HAZ and to reduce the solute N so that the HAZ toughness is improved. Further, by using TiN as a nucleus, ferrite is also generated from inside the austenite grains, and the HAZ toughness is improved. If the Ti content is less than 0.005%, these effects are not remarkable, so the lower limit was made 0.005%. But,
If added in excess of 0.025% or Ti / N ratio exceeds 5.0, a large amount of Ti carbide is generated and the base metal and HAZ
Toughness is reduced. Therefore, the upper limit of the Ti addition amount is set to 0.025% and the upper limit of Ti / N is set to 5.0.

【0044】NはTiと結合してTiNを生成し、HA
Zのオーステナイト粒成長抑制と粒内変態フェライトに
より靱性を向上させる。N量が0.001%未満ではこ
の効果が期待できないため、下限値を0.001%とし
た。しかし、0.010%超添加すると、固溶N量が増
加して母材ならびにHAZの靱性を低下させる。このた
めに、N量の上限値を0.010%とした。TiとNの
適量添加によりTiNを生成して上記効果を発揮できる
が、過剰N、あるいは過剰Tiの弊害を少なくするため
には、Ti/Nの比を2.0〜3.4の範囲とすること
が望ましい。
N combines with Ti to form TiN, and HA
The toughness is improved by suppressing the austenite grain growth of Z and the intragranular transformation ferrite. This effect cannot be expected if the amount of N is less than 0.001%, so the lower limit was made 0.001%. However, if added in excess of 0.010%, the amount of solute N increases and the toughness of the base material and HAZ decreases. Therefore, the upper limit of the amount of N is set to 0.010%. Although TiN can be produced by adding an appropriate amount of Ti and N to exert the above effect, in order to reduce the adverse effects of excess N or excess Ti, the Ti / N ratio is set to a range of 2.0 to 3.4. It is desirable to do.

【0045】CaはCaSとしてSを固定し、MnS生
成量を低下させる。粗大なMnSは疲労破壊の起点とな
ることがあるため、Caを添加することによって疲労強
度のばらつきを低減することができる。Ca添加量が
0.0005%未満では上記の効果が顕著ではない。従
って、Ca添加量の下限値を0.0005%とした。逆
に、Caを0.005%超添加すると、粗大なCa酸化
・硫化物を生成してこれが疲労破壊の起点となり易くな
る。従って、Ca添加量の上限値を0.005%とし
た。
Ca fixes S as CaS and reduces the amount of MnS produced. Coarse MnS may be a starting point of fatigue fracture, so that the addition of Ca can reduce the variation in fatigue strength. If the amount of Ca added is less than 0.0005%, the above effect is not remarkable. Therefore, the lower limit of the amount of Ca added is set to 0.0005%. On the other hand, if Ca is added in an amount of more than 0.005%, coarse Ca oxides and sulfides are generated, and this easily becomes the starting point of fatigue fracture. Therefore, the upper limit of the amount of Ca added is set to 0.005%.

【0046】REMは上記Caと同じ効果を有する。R
EMとしてはランタノイド系、アクチノイド系ともに同
様な効果を有するが、代表的なものはランタノイド系の
La、Ceである。REM添加量が0.0005%未満
ではMnS生成量を低下させる効果が顕著ではないので
下限値を0.0005%とした。逆に、REMを0.0
05%超添加すると、粗大なREM酸化・硫化物を生成
してこれが疲労破壊の起点となり易くなる。従って、R
EM添加量の上限値を0.005%とした。
REM has the same effect as Ca described above. R
As EM, both lanthanoid series and actinide series have similar effects, but typical ones are lanthanide series La and Ce. If the amount of REM added is less than 0.0005%, the effect of lowering the amount of MnS produced is not significant, so the lower limit was made 0.0005%. Conversely, REM is 0.0
If added in excess of 05%, coarse REM oxides / sulfides will be generated, and this will easily become the starting point of fatigue fracture. Therefore, R
The upper limit of the amount of EM added was 0.005%.

【0047】次に、鋼板の製造条件を限定した理由を述
べる。本発明は溶接部疲労強度に優れた軟鋼から引張強
さが50kgf/mm2 級の溶接構造用厚鋼板を提供す
るものであり、鋼板の強度として、軟鋼クラスでは降伏
応力が24kgf/mm2 以上、引張強さが41kgf
/mm2 以上、50kgf/mm2 級高張力鋼では降伏
応力が36kgf/mm2 以上、引張強さが48kgf
/mm2 以上を主として対象とする。しかし、上記軟鋼
の強度レベルを下回る鋼についても本発明による溶接部
疲労強度向上は実現できる。
Next, the reasons for limiting the steel sheet manufacturing conditions will be described. The present invention provides a thick steel plate for welded structure having a tensile strength of 50 kgf / mm 2 grade from mild steel having excellent weld fatigue strength, and as the strength of the steel plate, the yield stress is 24 kgf / mm 2 or more in the mild steel class. , Tensile strength is 41kgf
/ Mm 2 or more, 50 kgf / mm 2 grade high-strength steel, yield stress is 36 kgf / mm 2 or more, tensile strength is 48 kgf
/ Mm 2 or more is mainly targeted. However, the improvement of the weld fatigue strength according to the present invention can be realized even for the steel having a strength level lower than that of the above mild steel.

【0048】上記の降伏応力と引張強さを有する軟鋼お
よび50kgf/mm2 級高張力鋼を製造しようとする
場合、常法の熱間圧延法を採用することは可能である
が、上で定義した炭素当量値が0.24%以下の範囲で
特に低い場合や、板厚が大きい場合には、常法の熱間圧
延法では必要とする強度が得られない場合がある。この
ような場合には、制御圧延法、制御圧延・加速冷却法に
より母材強度を上昇させることができる。
When a mild steel having the above-mentioned yield stress and tensile strength and a 50 kgf / mm 2 class high-strength steel are to be produced, it is possible to adopt a conventional hot rolling method, but the above definition is used. When the carbon equivalent value is particularly low in the range of 0.24% or less, or when the plate thickness is large, the required strength may not be obtained by the conventional hot rolling method. In such a case, the base material strength can be increased by the controlled rolling method or the controlled rolling / accelerated cooling method.

【0049】常法の熱間圧延・制御圧延ともに、圧延に
先立ち、鋼塊を100%オーステナイト化する必要があ
り、このためには鋼塊をAc3 点以上の温度に加熱する
必要がある。しかし、1250℃を超えて加熱するとオ
ーステナイト粒が粗大化するために圧延後微細粒が得ら
れなくなるので、加熱温度は1250℃以下とすること
が必要である。
In both conventional hot rolling and controlled rolling, it is necessary to convert the steel ingot to 100% austenite prior to rolling. For this purpose, the steel ingot needs to be heated to a temperature of Ac 3 point or higher. However, if the heating temperature exceeds 1250 ° C., the austenite grains become coarse and fine particles cannot be obtained after rolling. Therefore, it is necessary to set the heating temperature to 1250 ° C. or lower.

【0050】鋼塊の加熱によりオーステナイト粒は粗大
化するので、常法の熱間圧延・制御圧延ともに、再結晶
温度域で圧延することによりオーステナイト粒径を小さ
くすることが必要である。制御圧延法を用いて強度上昇
と靱性向上を計る場合には、さらに未再結晶温度域で圧
延することによりオーステナイト粒内に変形帯を導入
し、フェライト生成核を増加させることが有効である。
未再結晶域での累積圧下率が40%未満では変形帯が十
分に形成されないので、未再結晶温度域での累積圧下率
の下限値を40%とした。しかし、累積圧下率が90%
を超えると、母材シャルピー試験における上部棚衝撃値
の低下が著しくなり、低サイクル疲労特性が低下するの
で、未再結晶温度域での累積圧下率の上限を90%とし
た。
Since the austenite grains are coarsened by heating the steel ingot, it is necessary to reduce the austenite grain size by rolling in the recrystallization temperature range in both the conventional hot rolling and controlled rolling. When the strength increase and the toughness improvement are measured by the controlled rolling method, it is effective to introduce a deformation zone into the austenite grains by further rolling in the non-recrystallization temperature range to increase the ferrite formation nuclei.
If the cumulative rolling reduction in the non-recrystallization region is less than 40%, the deformation zone is not sufficiently formed, so the lower limit of the cumulative rolling reduction in the non-recrystallization temperature region was set to 40%. However, the cumulative reduction rate is 90%
When it exceeds, the upper shelf impact value in the base material Charpy test remarkably decreases and the low cycle fatigue property deteriorates. Therefore, the upper limit of the cumulative rolling reduction in the non-recrystallization temperature range was set to 90%.

【0051】仕上圧延温度に関する限定は特に必要では
なく、Ar3 点以上で圧延を終了してもよいし、Ar3
点以下においてフェライトとオーステナイトの共存域、
あるいはフェライト域で圧延しても差し支えない。圧延
後、自然空冷する場合にはオーステナイト粒界と粒内変
形帯よりフェライトが生成し、未再結晶温度域での圧延
がない常法圧延に比べて細粒フェライトを得ることがで
き、母材強度の上昇と靱性向上が達成できる。
The limitations on the finish rolling temperature is not particularly necessary, it may be terminated rolling at Ar 3 point or more, Ar 3
Below the point, the coexistence region of ferrite and austenite,
Alternatively, it may be rolled in the ferrite region. After rolling, in the case of natural air cooling, ferrite is generated from the austenite grain boundaries and the intragranular deformation zone, and fine-grained ferrite can be obtained compared to conventional rolling without rolling in the non-recrystallization temperature range. Increased strength and toughness can be achieved.

【0052】自然空冷よりさらに強度を上昇させるため
には加速冷却が必要である。冷却速度が1℃/sec未
満では、過冷度が小さいために変態後のフェライトの微
細化が不十分であると同時に変態中のCの拡散が容易な
ためにフェライト中のC濃度が低下し、十分な強度を得
ることができない。逆に、冷却速度が60℃/sec超
ではベイナイト主体組織が生成するために母材の靱性が
低下する。従って、冷却速度を1〜60℃/secに限
定した。母材の強度と靱性のバランスを考慮すると、5
〜30℃/secの範囲とすることが望ましい。
Accelerated cooling is required to further increase the strength compared to natural air cooling. When the cooling rate is less than 1 ° C./sec, the degree of supercooling is small and the ferrite after transformation is not sufficiently refined. At the same time, the diffusion of C during transformation is easy and the C concentration in ferrite decreases. , Can not get enough strength. On the other hand, if the cooling rate exceeds 60 ° C./sec, the toughness of the base material decreases because a bainite-based structure is generated. Therefore, the cooling rate is limited to 1 to 60 ° C./sec. Considering the balance between strength and toughness of the base metal, 5
It is desirable to set it in the range of -30 ° C / sec.

【0053】本発明においては母材の強度を得るために
変態が終了するまで加速冷却を継続する必要がある。こ
のため、冷却停止温度の上限を600℃とした。600
℃超の停止温度では変態が終了しないために、十分な強
度が得られない。通常、加速冷却は水を冷却媒体として
用いる。この場合、実際上の冷却停止温度の下限は0℃
となるので、下限値を0℃とした。
In the present invention, in order to obtain the strength of the base material, it is necessary to continue the accelerated cooling until the transformation is completed. Therefore, the upper limit of the cooling stop temperature is set to 600 ° C. 600
At a stopping temperature above 0 ° C, the transformation does not end, so sufficient strength cannot be obtained. Generally, accelerated cooling uses water as the cooling medium. In this case, the actual lower limit of the cooling stop temperature is 0 ° C.
Therefore, the lower limit was set to 0 ° C.

【0054】圧延・冷却に引き続き実施する焼戻し熱処
理は回復による母材組織の靱性向上を目的としたもので
あるから、加熱温度は逆変態が生じない温度域であるA
1点以下でなければならない。回復は転位の消滅・合
体により格子欠陥密度を減少させるものであり、これを
実現するためには300℃以上に加熱することが必要で
ある。このため、加熱温度の下限を300℃とした。ま
た、既に述べたように、Cu、Mo、Nb、Vの析出硬
化元素を含有する場合には、熱処理により微細析出物を
生成させることにより母材強度を向上させることができ
る。この効果は炭素当量値が低い本発明鋼の母材強度向
上に極めて効果を発揮するものである。析出硬化を最も
有効に作用させるための加熱温度は析出硬化元素に依存
するが、概ね500〜650℃の範囲である。圧延後冷
却の停止温度が600℃以下の範囲で比較的高温の場合
には自己焼戻しを期待できるため、この焼戻し熱処理を
省略することも可能である。
Since the tempering heat treatment carried out after rolling and cooling is intended to improve the toughness of the base metal structure by recovery, the heating temperature is in the temperature range where reverse transformation does not occur.
c 1 or less The recovery is to reduce the lattice defect density due to the disappearance and coalescence of dislocations, and in order to realize this, it is necessary to heat to 300 ° C. or higher. Therefore, the lower limit of the heating temperature is set to 300 ° C. Further, as described above, when the precipitation hardening elements of Cu, Mo, Nb, and V are contained, the base material strength can be improved by forming fine precipitates by heat treatment. This effect is extremely effective in improving the base metal strength of the steel of the present invention having a low carbon equivalent value. The heating temperature for causing the precipitation hardening to act most effectively depends on the precipitation hardening element, but is generally in the range of 500 to 650 ° C. When the temperature after stopping the cooling after rolling is relatively high in the range of 600 ° C. or lower, self-tempering can be expected, and therefore this tempering heat treatment can be omitted.

【0055】[0055]

【実施例】以下に、本発明の実施例を述べる。連続鋳造
により製造したスラブから板厚が20〜40mmの鋼板
を製造した。表1、表2(表2のつづき)に化学成分を
示す。鋼1〜24が本発明鋼、鋼25〜29が比較鋼で
ある。
EXAMPLES Examples of the present invention will be described below. A steel plate having a plate thickness of 20 to 40 mm was manufactured from the slab manufactured by continuous casting. The chemical components are shown in Table 1 and Table 2 (continued from Table 2). Steels 1 to 24 are steels of the present invention, and steels 25 to 29 are comparative steels.

【0056】表3、表4(表3のつづき)に鋼板の製造
条件と引張特性を示す。本発明鋼1、2、7、16およ
び17は本発明請求項11に示した制御圧延法で製造
し、本発明鋼8〜13、18〜24、および比較鋼2
7、29は請求項12または13に示した制御圧延・制
御冷却法で製造した。他の鋼板は常法の熱間圧延により
製造した。加熱温度は全ての鋼でAc3 変態点以上であ
る。また、制御圧延・制御冷却後焼戻し熱処理を実施し
た鋼の焼戻し温度は全て600℃以下で、Ac1 変態点
以下である。
Tables 3 and 4 (continued from Table 3) show the steel plate manufacturing conditions and tensile properties. The invention steels 1, 2, 7, 16 and 17 were produced by the controlled rolling method according to the invention claim 11, and the invention steels 8 to 13, 18 to 24 and the comparative steel 2 were manufactured.
Nos. 7 and 29 were produced by the controlled rolling / controlled cooling method according to claim 12 or 13. The other steel sheets were manufactured by a conventional hot rolling method. The heating temperature is above the Ac 3 transformation point in all steels. Further, the tempering temperature of the steels that have been subjected to tempering heat treatment after controlled rolling and controlled cooling is 600 ° C. or lower and is Ac 1 transformation point or lower.

【0057】これら供試鋼を用いてT字隅肉溶接継手を
作成した。表5に溶接条件を示す。溶接継手の疲労強度
は板厚依存性を示す。板厚依存性を取り除くために、板
厚が20mm超の鋼板は裏面を切削して20mm厚とし
てから溶接を実施した。図4にT字隅肉溶接継手から作
成した3点曲げ疲労試験片形状を示す。繰り返し最大荷
重と最低荷重の比が0.1の条件で疲労試験を実施し
た。
T-shaped fillet welded joints were prepared using these test steels. Table 5 shows the welding conditions. Fatigue strength of welded joints shows thickness dependence. In order to remove the plate thickness dependency, the back surface of a steel plate having a plate thickness of more than 20 mm was cut to a thickness of 20 mm and then welded. FIG. 4 shows the shape of a 3-point bending fatigue test piece prepared from a T-shaped fillet welded joint. A fatigue test was carried out under the condition that the ratio of the maximum load and the minimum load was 0.1.

【0058】表6に疲労試験結果を示す。また、同表に
溶接融合線直近のHAZのミクロ組織写真からポイント
カウンティング法により測定したフェライト面積率を示
す。鋼1〜13はSi添加量が1.0%未満で、上で定
義した炭素当量値が0.24%以下であり、HAZのフ
ェライト面積率も60%以上である。また、鋼14〜2
4はSi添加量が1.0%以上で、上で定義した炭素当
量値が0.275%以下であり、HAZのフェライト面
積率も60%以上である。フェライト以外の組織は全て
の本発明鋼で上部ベイナイトであった。溶接継手疲労強
度は106 回疲労強度および疲労限を指標として比較し
た。本発明鋼は両疲労強度ともに比較鋼より向上してい
る。比較鋼25〜29は炭素当量が0.275%超であ
り、HAZのフェライト面積率も60%未満であり、フ
ェライト以外に一部下部ベイナイトとマルテンサイトを
含む。溶接継手疲労強度も本発明鋼より低い。
Table 6 shows the fatigue test results. Further, in the same table, the ferrite area ratio measured by the point counting method from the microstructure photograph of the HAZ in the vicinity of the welding fusion line is shown. In Steels 1 to 13, the Si addition amount is less than 1.0%, the carbon equivalent value defined above is 0.24% or less, and the ferrite area ratio of HAZ is 60% or more. Also, steel 14-2
In No. 4, the Si addition amount is 1.0% or more, the carbon equivalent value defined above is 0.275% or less, and the HAZ ferrite area ratio is 60% or more. The structures other than ferrite were upper bainite in all the steels of the present invention. The fatigue strength of welded joints was compared using the fatigue strength at 10 6 times and the fatigue limit as indexes. The steel of the present invention has improved both fatigue strengths as compared with the comparative steel. The comparative steels 25 to 29 have a carbon equivalent of more than 0.275%, a HAZ ferrite area ratio of less than 60%, and partially contain lower bainite and martensite in addition to ferrite. The fatigue strength of the welded joint is also lower than that of the steel of the present invention.

【0059】以上の試験により本発明鋼の溶接継手疲労
強度は比較鋼の疲労強度より向上することが確認され
た。
From the above test, it was confirmed that the fatigue strength of the welded joint of the present invention steel is higher than that of the comparative steel.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【表4】 [Table 4]

【0064】[0064]

【表5】 [Table 5]

【0065】[0065]

【表6】 [Table 6]

【0066】[0066]

【発明の効果】以上説明したように、本発明鋼はHAZ
ミクロ組織をフェライト主体組織となるように制御する
ことにより、付加的溶接による応力集中低減などによら
ずに溶接継手の疲労強度を向上することが可能であり、
本発明鋼を用いることにより溶接構造用物の疲労破壊に
対する信頼性を向上させることが可能である。
As described above, the steel of the present invention has the HAZ
By controlling the microstructure to have a ferrite-based structure, it is possible to improve the fatigue strength of the welded joint without reducing the stress concentration by additional welding.
By using the steel of the present invention, it is possible to improve the reliability of the welded structure for fatigue fracture.

【図面の簡単な説明】[Brief description of drawings]

【図1】切欠付き再現HAZ材の疲労試験における疲労
限度比の引張強度およびミクロ組織依存性を示す図であ
る。
FIG. 1 is a diagram showing tensile strength and microstructure dependence of a fatigue limit ratio in a fatigue test of a notched reproduced HAZ material.

【図2】切欠付き再現HAZ材の疲労試験における疲労
限度比のフェライト面積率依存性を示す図である。
FIG. 2 is a diagram showing a ferrite area ratio dependency of a fatigue limit ratio in a fatigue test of a notched reproduced HAZ material.

【図3】再現HAZ材のフェライト面積率の炭素当量依
存性を示す図である。
FIG. 3 is a diagram showing a carbon equivalent dependency of a ferrite area ratio of a reproduced HAZ material.

【図4】T字隅肉溶接継手疲労試験片の形状を示す図で
ある。
FIG. 4 is a view showing the shape of a T-shaped fillet welded joint fatigue test piece.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 0.015≦C≦0.15、 0.01≦Si<1.0、 0.2≦Mn≦1.5、 P≦0.03、 S≦0.01、 Ceq≦0.24、 残部Feおよび不可避的不純物よりなることを特徴とす
る溶接継手の疲労強度に優れた溶接構造用厚鋼板。ただ
し、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/5+Nb/3
1. By weight%, 0.015 ≦ C ≦ 0.15, 0.01 ≦ Si <1.0, 0.2 ≦ Mn ≦ 1.5, P ≦ 0.03, S ≦ 0.01 , Ceq ≦ 0.24, balance Fe and unavoidable impurities, and a thick steel plate for welded structure excellent in fatigue strength of a welded joint. However, Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 5 + Nb / 3
【請求項2】 重量%で、 0.015≦C≦0.15、 1.0≦Si≦2.0、 0.2≦Mn≦1.5、 P≦0.03、 S≦0.01、 Ceq≦0.275、 残部Feおよび不可避的不純物よりなることを特徴とす
る溶接継手の疲労強度に優れた溶接構造用厚鋼板。ただ
し、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/5+Nb/3
2. In weight%, 0.015 ≦ C ≦ 0.15, 1.0 ≦ Si ≦ 2.0, 0.2 ≦ Mn ≦ 1.5, P ≦ 0.03, S ≦ 0.01 , Ceq ≦ 0.275, balance Fe and unavoidable impurities, and a thick steel plate for welded structure excellent in fatigue strength of a welded joint. However, Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 5 + Nb / 3
【請求項3】 重量%で、 0.005≦Al≦0.10 を含有することを特徴とする請求項1または2記載の溶
接継手の疲労強度に優れた溶接構造用厚鋼板。
3. The thick steel plate for welded structure having excellent fatigue strength of the welded joint according to claim 1, which contains 0.005 ≦ Al ≦ 0.10 in weight%.
【請求項4】 重量%で、 0.1≦Cu≦2.0 を含有することを特徴とする請求項1〜3のいずれか1
項に記載の溶接継手の疲労強度に優れた溶接構造用厚鋼
板。
4. The composition according to any one of claims 1 to 3, characterized in that, by weight%, 0.1 ≦ Cu ≦ 2.0 is contained.
A thick steel plate for a welded structure having excellent fatigue strength of the welded joint according to the item.
【請求項5】 重量%で、 0.1≦Ni≦2.0 を含有することを特徴とする請求項1〜4のいづれか1
項に記載の溶接継手の疲労強度に優れた溶接構造用厚鋼
板。
5. The composition according to any one of claims 1 to 4, characterized in that it contains 0.1 ≦ Ni ≦ 2.0 in weight%.
A thick steel plate for a welded structure having excellent fatigue strength of the welded joint according to the item.
【請求項6】 重量%で、 0.05≦Cr≦1.0、 0.02≦Mo≦1.0 の1種または2種を含有することを特徴とする請求項1
〜5のいづれか1項に記載の溶接継手の疲労強度に優れ
た溶接構造用厚鋼板。
6. The composition according to claim 1, which contains, in wt%, one or two of 0.05 ≦ Cr ≦ 1.0 and 0.02 ≦ Mo ≦ 1.0.
A thick steel plate for a welded structure having excellent fatigue strength of the welded joint according to any one of 1 to 5.
【請求項7】 重量%で、 0.005≦Nb≦0.08、 0.005≦ V≦0.10 の1種または2種を含有することを特徴とする請求項1
〜6のいづれか1項に記載の溶接継手の疲労強度に優れ
た溶接構造用厚鋼板。
7. The composition according to claim 1, which contains, by weight, one or two of 0.005 ≦ Nb ≦ 0.08 and 0.005 ≦ V ≦ 0.10.
7. A thick steel plate for welded structure having excellent fatigue strength of the welded joint according to any one of 1 to 6.
【請求項8】 重量%で、 0.005≦Ti≦0.025、 0.001≦ N≦0.010、 Ti/N≦5.0 を含有することを特徴とする請求項1〜7のいづれか1
項に記載の溶接継手の疲労強度に優れた溶接構造用厚鋼
板。
8. The composition according to claim 1, wherein the content of 0.005 ≦ Ti ≦ 0.025, 0.001 ≦ N ≦ 0.010, and Ti / N ≦ 5.0 is included by weight. Which one 1
A thick steel plate for a welded structure having excellent fatigue strength of the welded joint according to the item.
【請求項9】 重量%で、 0.0005≦ Ca≦0.005、 0.0005≦REM≦0.005 の1種または2種を含有することを特徴とする請求項1
〜8のいづれか1項に記載の溶接継手の疲労強度に優れ
た溶接構造用厚鋼板。
9. The composition according to claim 1, which contains, by weight, one or two of 0.0005 ≦ Ca ≦ 0.005 and 0.0005 ≦ REM ≦ 0.005.
A thick steel plate for welded structure having excellent fatigue strength of the welded joint according to any one of 1 to 8.
【請求項10】 請求項1〜9のいずれか1項に記載の
鋼と同一成分を有する鋼塊をAc3 点以上、1250℃
以下に加熱後、再結晶温度域で熱間圧延した後、自然冷
却することを特徴とする溶接継手の疲労強度に優れた溶
接構造用厚鋼板の製造方法。
10. A steel ingot having the same composition as that of the steel according to any one of claims 1 to 9 has an Ac 3 point or more at 1250 ° C.
A method for producing a thick steel plate for welded structure excellent in fatigue strength of a welded joint, characterized by comprising heating to the following, hot rolling in a recrystallization temperature range, and natural cooling.
【請求項11】 請求項1〜9のいずれか1項に記載の
鋼と同一成分を有する鋼塊をAc3 点以上、1250℃
以下に加熱後、再結晶温度域で熱間圧延し、引き続き未
再結晶温度域において累積圧下率で40〜90%の熱間
圧延をした後、自然冷却することを特徴とする溶接継手
の疲労強度に優れた溶接構造用厚鋼板の製造方法。
11. A steel ingot having the same composition as that of the steel according to any one of claims 1 to 9 has an Ac 3 point or more at 1250 ° C.
After heating below, hot rolling in a recrystallization temperature range, followed by hot rolling at a cumulative rolling reduction of 40 to 90% in a non-recrystallization temperature range, and then natural cooling fatigue of a welded joint A method of manufacturing a thick steel plate for a welded structure having excellent strength.
【請求項12】 請求項1〜9のいずれか1項に記載の
鋼と同一成分を有する鋼塊をAc3 点以上、1250℃
以下に加熱後、再結晶温度域で熱間圧延し、引き続き未
再結晶温度域において累積圧下率で40〜90%の熱間
圧延をした後、1〜60℃/secの冷却速度で0〜6
00℃まで冷却することを特徴とする溶接継手の疲労強
度に優れた溶接構造用厚鋼板の製造方法。
12. A steel ingot having the same composition as that of the steel according to any one of claims 1 to 9 has an Ac 3 point or more at 1250 ° C.
After heating below, hot rolling is performed in a recrystallization temperature range, and subsequently hot rolling is performed at a cumulative reduction of 40 to 90% in a non-recrystallization temperature range, and then 0 to 0 at a cooling rate of 1 to 60 ° C./sec. 6
A method for producing a thick steel plate for welded structure, which is excellent in fatigue strength of a welded joint, characterized by cooling to 00 ° C.
【請求項13】 請求項1〜9のいずれか1項に記載の
鋼と同一成分を有する鋼塊をAc3 点以上、1250℃
以下に加熱後、再結晶温度域で熱間圧延し、引き続き未
再結晶温度域において累積圧下率で40〜90%の熱間
圧延をした後、1〜60℃/secの冷却速度で0〜6
00℃まで冷却し、さらに300℃〜Ac1 点に加熱し
て焼戻し熱処理することを特徴とする溶接継手の疲労強
度に優れた溶接構造用厚鋼板の製造方法。
13. A steel ingot having the same composition as that of the steel according to any one of claims 1 to 9 has an Ac 3 point or more at 1250 ° C.
After heating below, hot rolling is performed in a recrystallization temperature range, and subsequently hot rolling is performed at a cumulative reduction of 40 to 90% in a non-recrystallization temperature range, and then 0 to 0 at a cooling rate of 1 to 60 ° C./sec. 6
A method for producing a thick steel plate for welded structure excellent in fatigue strength of a welded joint, which comprises cooling to 00 ° C., further heating to 300 ° C. to Ac 1 point and tempering heat treatment.
JP20779494A 1994-08-31 1994-08-31 Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same Expired - Fee Related JP3569314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20779494A JP3569314B2 (en) 1994-08-31 1994-08-31 Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20779494A JP3569314B2 (en) 1994-08-31 1994-08-31 Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0873983A true JPH0873983A (en) 1996-03-19
JP3569314B2 JP3569314B2 (en) 2004-09-22

Family

ID=16545608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20779494A Expired - Fee Related JP3569314B2 (en) 1994-08-31 1994-08-31 Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3569314B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026274A1 (en) * 1998-07-16 2000-08-09 Nippon Steel Corporation High-strength steel plate reduced in softening in weld heat-affected zone
JP2003064442A (en) * 2001-08-21 2003-03-05 Sumitomo Metal Ind Ltd Steel sheet having excellent fatigue crack propagation resistance
JP2003089844A (en) * 2001-09-19 2003-03-28 Nippon Steel Corp Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor
WO2007074989A1 (en) * 2005-12-26 2007-07-05 Posco Thick steel plate for welded structure having excellent strength and toughness in central region of thickness and small variation of properties through thickness and method of producing the same
JP2008248292A (en) * 2007-03-29 2008-10-16 Nippon Steel Corp High strength steel for welded structure having excellent surface crack resistance, and method for producing the same
CN100447285C (en) * 2006-03-27 2008-12-31 宝山钢铁股份有限公司 Soft magnetic structural steel plate with excellent welding performance and its making process
JP2009242849A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for producing high toughness steel
KR101482341B1 (en) * 2012-12-26 2015-01-13 주식회사 포스코 Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
US10604817B2 (en) 2014-12-24 2020-03-31 Posco High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
KR20210079691A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Steel welding joint having excellent low-temperature toughness and crack resistance

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026274A1 (en) * 1998-07-16 2000-08-09 Nippon Steel Corporation High-strength steel plate reduced in softening in weld heat-affected zone
EP1026274A4 (en) * 1998-07-16 2005-01-19 Nippon Steel Corp High-strength steel plate reduced in softening in weld heat-affected zone
JP2003064442A (en) * 2001-08-21 2003-03-05 Sumitomo Metal Ind Ltd Steel sheet having excellent fatigue crack propagation resistance
JP2003089844A (en) * 2001-09-19 2003-03-28 Nippon Steel Corp Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor
JP4559673B2 (en) * 2001-09-19 2010-10-13 新日本製鐵株式会社 Thick steel plate for welded structure excellent in fatigue strength of welded joint and method for producing the same
WO2007074989A1 (en) * 2005-12-26 2007-07-05 Posco Thick steel plate for welded structure having excellent strength and toughness in central region of thickness and small variation of properties through thickness and method of producing the same
CN100447285C (en) * 2006-03-27 2008-12-31 宝山钢铁股份有限公司 Soft magnetic structural steel plate with excellent welding performance and its making process
JP2008248292A (en) * 2007-03-29 2008-10-16 Nippon Steel Corp High strength steel for welded structure having excellent surface crack resistance, and method for producing the same
JP2009242849A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for producing high toughness steel
KR101482341B1 (en) * 2012-12-26 2015-01-13 주식회사 포스코 Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
US10604817B2 (en) 2014-12-24 2020-03-31 Posco High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
KR20210079691A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Steel welding joint having excellent low-temperature toughness and crack resistance

Also Published As

Publication number Publication date
JP3569314B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
KR0157540B1 (en) High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
KR101846759B1 (en) Steel plate and method for manufacturing same
KR101603461B1 (en) High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
EP1978121B1 (en) HIGH-STRENGTH STEEL SHEET OF 450 MPa OR HIGHER YIELD STRESS AND 570 MPa OR HIGHER TENSILE STRENGTH HAVING LOW ACOUSTIC ANISOTROPY AND HIGH WELDABILITY AND PROCESS FOR PRODUCING THE SAME
JP6616006B2 (en) High-strength steel material excellent in low-temperature strain aging impact characteristics and impact characteristics of weld heat-affected zone and its manufacturing method
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
US5964964A (en) Welded joint of high fatigue strength
US20190352749A1 (en) Steel material for high heat input welding
MXPA97007729A (en) Solded gasket that has excellent resistance to the fat
JPH05186823A (en) Production of cu-containing high tensile strength steel with high toughness
JP2009235548A (en) Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld affected zone, and method for producing the same
JP3569314B2 (en) Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same
JP5668668B2 (en) Steel with excellent toughness of weld heat affected zone, welded joint, and method for manufacturing welded joint
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2002047531A (en) High tensile strength steel for welded structure having excellent fatigue characteristic and its production method
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JPH06235044A (en) High tensile strength steel for welding structure excellent in fatigue strength and toughness at weld heat-affected zone
JP4559673B2 (en) Thick steel plate for welded structure excellent in fatigue strength of welded joint and method for producing the same
JP2688312B2 (en) High strength and high toughness steel plate
JPH09227988A (en) High tensile strength steel plate for welding structure excellent in fatigue strength in weld zone and its production
JP3462943B2 (en) Steel sheet having high fatigue strength at welded portion and method for producing the same
JP3444244B2 (en) High tensile strength steel excellent in toughness and method of manufacturing the same
JP4456292B2 (en) Welded structural steel with excellent fatigue properties of welded parts and method for producing the same
JP2003171731A (en) High tensile strength steel sheet for welded structure having excellent fatigue strength of welded joint, and welded joint

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees