JP2009242849A - Method for producing high toughness steel - Google Patents

Method for producing high toughness steel Download PDF

Info

Publication number
JP2009242849A
JP2009242849A JP2008089512A JP2008089512A JP2009242849A JP 2009242849 A JP2009242849 A JP 2009242849A JP 2008089512 A JP2008089512 A JP 2008089512A JP 2008089512 A JP2008089512 A JP 2008089512A JP 2009242849 A JP2009242849 A JP 2009242849A
Authority
JP
Japan
Prior art keywords
temperature
rolling
steel
toughness
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008089512A
Other languages
Japanese (ja)
Other versions
JP5256818B2 (en
Inventor
Tomoyuki Yokota
智之 横田
Kenji Hayashi
謙次 林
Shigeru Endo
茂 遠藤
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008089512A priority Critical patent/JP5256818B2/en
Publication of JP2009242849A publication Critical patent/JP2009242849A/en
Application granted granted Critical
Publication of JP5256818B2 publication Critical patent/JP5256818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel excellent in a low temperature toughness without increasing the adding quantity of micro-alloy. <P>SOLUTION: A method for producing the high toughness steel includes the following process. A steel blank having composition composed of, by mass%, 0.01-0.20% C, 0.01-0.80% Si, 0.20-2.0% Mn, ≤0.020% P, ≤0.0070% S, 0.003-0.100% sol.Al and the balance Fe with inevitable impurities is heated to the temperature in the austenite temperature range and ≤1200°C, and after rolling the blank in the austenite-crystallizing temperature range, and when the rolling is performed in the temperature range of non-recrystallizing upper limit temperature or lower to Ar<SB>3</SB>point or higher, the rolling is divided into two or more stages, and before the secondary and thereafter rolling is performed, the rapid-heating of 2°C/sec, is applied by an induction-heating apparatus near the rolling-mill to perform the temperature compensation, and the accumulated rolling-reduction at ≥70% in the temperature range of the non-recrystallizing upper limit temperature or lower to the Ar<SB>3</SB>point or higher, is applied and the accelerated cooling from the Ar<SB>3</SB>temperature or higher to ≤600°C, is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、オンライン加工熱処理による高靭性鋼の製造方法に関するものであり、特に、高靭性鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high toughness steel by online machining heat treatment, and particularly relates to a method for producing a high toughness steel plate.

鋼の特性に関する要求は、近年ますます厳しくなっており、一層の高強度、高靭性化が望まれており、このような要求に対し、従来から制御圧延、制御冷却を組み合わせた加工熱処理技術が広く行われている。加工熱処理技術の基本思想は鋼の成分、加熱条件、圧延条件、冷却条件の最適化により微細なフェライトもしくはベイナイト組織を得ることにあり、この組織の微細化により高強度化、高靭性化を共に図ろうとするものである。   In recent years, the requirements regarding the characteristics of steel have become more and more demanding, and further enhancement of strength and toughness is desired. To meet such demands, there has been a conventional heat treatment technology that combines controlled rolling and controlled cooling. Widely done. The basic idea of thermomechanical processing technology is to obtain a fine ferrite or bainite structure by optimizing the steel composition, heating conditions, rolling conditions, and cooling conditions. It is intended to be illustrated.

その基本思想の中心は、オーステナイト低温域の、オーステナイトが再結晶を起こさない温度域(以下、未再結晶温度域と呼ぶ)での圧延において、累積圧下率をできるだけ高く確保し、オーステナイト粒の伸展度を増し、多数の変形帯を導入することと、その後の制御冷却におけるオーステナイト/フェライト変換比の調整によるフェライトの細粒化もしくはベイナイトの微細化である。   The basic idea is that in rolling in the low temperature range of austenite where austenite does not recrystallize (hereinafter referred to as the non-recrystallization temperature range), the cumulative rolling reduction is ensured as high as possible to expand the austenite grains. This is to increase the degree, introduce a large number of deformation bands, and refine the ferrite or bainite by adjusting the austenite / ferrite conversion ratio in the subsequent controlled cooling.

しかし、従来の制御圧延では、仕上板厚と仕上温度が決まると圧延中の温度降下挙動は一義的に決定されてしまい、制御圧延において、最も重要な因子であるオーステナイト未再結晶温度域における最大累積圧下率が決定される。そのため、オーステナイト未再結晶温度域で70%以上の高い累積圧下率を得るような圧延は困難であった。   However, in conventional controlled rolling, if the finish plate thickness and finishing temperature are determined, the temperature drop behavior during rolling is uniquely determined, and the most important factor in controlled rolling is the maximum in the austenite non-recrystallization temperature range. Cumulative rolling reduction is determined. Therefore, it has been difficult to perform rolling to obtain a high cumulative reduction ratio of 70% or more in the austenite non-recrystallization temperature range.

そこで、このオーステナイト未再結晶温度域を広げて、該領域での累積圧下率を増加させる方法としては、Nb、Ti等のマイクロアロイを添加し、未再結晶上限温度を上昇させる方法が知られている。現状0.06%以下のNb、または0.10%以下のTi添加が行われており、未再結晶温度域が高温側に50℃程度広がっており、工業的にも広く普及している方法である。   Therefore, as a method for expanding the austenite non-recrystallization temperature range and increasing the cumulative reduction rate in this region, a method of increasing the maximum non-recrystallization temperature by adding a microalloy such as Nb or Ti is known. ing. Currently 0.06% or less of Nb or 0.10% or less of Ti is added, and the non-recrystallization temperature range is expanded to about 50 ° C. on the high temperature side, which is widely used industrially. It is.

一方、合金元素添加によらない技術としては、特許文献1および特許文献2の技術が開示されている。両技術とも、本発明と同様、オンラインでの保温システムを活用して、特定温度域における所定の累積圧下率を確保する圧延により鋼の高靭性化を図ったものである。
特開平5−43934号公報 特開平5−295432号公報
On the other hand, as a technique that does not depend on the addition of alloy elements, the techniques of Patent Document 1 and Patent Document 2 are disclosed. In both technologies, as in the present invention, an on-line heat retention system is utilized to increase the toughness of steel by rolling to ensure a predetermined cumulative rolling reduction in a specific temperature range.
Japanese Patent Laid-Open No. 5-43934 JP-A-5-295432

しかしながら、Nb、Ti等のマイクロアロイを添加し、未再結晶上限温度を上昇させる方法においては、現状以上に、これらマイクロアロイの添加量を増加しても、その効果が飽和すること、また溶接性が著しく低下するという問題がある。   However, in the method of adding microalloys such as Nb and Ti to increase the upper limit temperature of non-recrystallization, the effect is saturated even if the amount of microalloy added is increased more than the current state, and welding is also performed. There is a problem that the performance is significantly reduced.

一方、合金元素の添加によらない方法である特許文献1に開示された技術においては、圧延後の鋼板の冷却速度は、空冷〜10℃/秒程度であり、かつその制御冷却の目的は高強度化である。従って、冷却速度を変化させても、靭性の変化は起こらず、本発明のような成分系で、高強度化と高靭性化の両立を図ることはできないという問題がある。   On the other hand, in the technique disclosed in Patent Document 1 which is a method that does not depend on the addition of alloy elements, the cooling rate of the steel sheet after rolling is about 10 to 10 ° C./second, and the purpose of the controlled cooling is high. Strengthening. Accordingly, there is a problem that even if the cooling rate is changed, the change in toughness does not occur, and it is impossible to achieve both high strength and high toughness with the component system as in the present invention.

また、特許文献2に開示された技術においても、本願発明と同様にオーステナイト未再結晶温度域での温度低下を抑制しながら圧延した後、加速冷却を施しているが、本発明とは異なり、圧延途中で急速加熱を行うものではないので、加熱中に未再結晶オーステナイトの回復が進行しやすく、制御圧延効果や加工されたオーステナイトからのフェライト粒核生成促進による微細化効果を十分に発揮することができないという問題がある。   Also, in the technique disclosed in Patent Document 2, accelerated rolling is performed after rolling while suppressing temperature drop in the austenite non-recrystallization temperature range as in the present invention, but unlike the present invention, Since rapid heating is not performed during rolling, recovery of unrecrystallized austenite is likely to proceed during heating, and the effect of controlled rolling and refinement of ferrite grain nucleation from processed austenite are fully exhibited. There is a problem that can not be.

発明者等は、上記したような従来技術の問題点を解決するために鋭意研究を重ねて本発明に至ったものであって、炭素鋼及び低合金鋼の熱間圧延、特に、厚鋼板の熱間圧延において、圧延機に近接した誘導加熱装置による急速加熱によって、圧延中の鋼の温度降下を補償しながら、未再結晶上限温度以下、Ar3 点以上で高い累積圧下を加え、更に圧延後Ar点以上の温度から600℃以下に加速冷却し、鋼の強度・靭性を大幅に向上させることに成功したものである。その要旨は、以下の通りである。 The inventors have conducted extensive research to solve the problems of the prior art as described above, and have reached the present invention. The present inventors have conducted hot rolling of carbon steel and low alloy steel, In hot rolling, rapid heating by an induction heating device close to the rolling mill compensates for the temperature drop of the steel during rolling, while applying a high cumulative reduction below the non-recrystallization upper limit temperature, above the Ar 3 point, and further rolling. It was succeeded in greatly improving the strength and toughness of the steel by accelerating cooling from the temperature of the rear Ar 3 point or higher to 600 ° C. or lower. The summary is as follows.

第一の発明は、質量%で、C:0.01〜0.20%、Si:0.01〜0.80%、Mn:0.20〜2.0%、P:0.020%以下、S:0.0070%以下、sol.Al:0.003〜0.100%を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材を、オーステナイト温度域でかつ1200℃以下に加熱し、オーステナイト再結晶温度域において圧延後、未再結晶上限温度以下、Ar点以上の温度域での圧延を行うにあたり、当該圧延を2回以上の工程に分け、2回目およびそれ以降の圧延前に、圧延機に近接した誘導加熱装置により、2℃/sec以上の急速加熱を実施して温度補償することにより、未再結晶上限温度以下、Ar点以上の温度域で70%以上の累積圧下を加え、Ar点以上の温度から600℃以下に加速冷却することを特徴とする高靱性鋼の製造方法である。 1st invention is the mass%, C: 0.01-0.20%, Si: 0.01-0.80%, Mn: 0.20-2.0%, P: 0.020% or less , S: 0.0070% or less, sol. A steel material having a composition containing Al: 0.003 to 0.100% and the balance being Fe and inevitable impurities is heated to 1200 ° C. or less in the austenite temperature range, and after rolling in the austenite recrystallization temperature range When rolling in the temperature range below the upper limit of non-recrystallization temperature and 3 points of Ar or more, the rolling is divided into two or more processes, and induction heating close to the rolling mill before the second and subsequent rolling. By performing rapid heating at 2 ° C./sec or more with an apparatus to compensate for temperature, a cumulative reduction of 70% or more is applied in a temperature range below the non-recrystallization upper limit temperature, Ar 3 points or more, and Ar 3 points or more It is a method for producing high toughness steel, characterized by accelerated cooling from temperature to 600 ° C. or less.

第二の発明は、鋼組成に、更に、質量%で、Cu:0.01〜2.0%、Ni:0.01〜2.0%、Cr:0.01〜2.0%、Mo:0.01〜1.0%、Nb:0.003〜0.1%、V:0.003〜0.5%、Ti:0.005〜0.10%、B:0.0005〜0.0040%の中から選ばれる1種または2種以上を含有することを特徴とする第一の発明に記載の高靱性鋼の製造方法である。   According to the second aspect of the present invention, the steel composition further includes, in mass%, Cu: 0.01 to 2.0%, Ni: 0.01 to 2.0%, Cr: 0.01 to 2.0%, Mo : 0.01-1.0%, Nb: 0.003-0.1%, V: 0.003-0.5%, Ti: 0.005-0.10%, B: 0.0005-0 The method for producing high-toughness steel according to the first invention, characterized by containing one or more selected from .0040%.

本発明によれば、炭素鋼、低合金鋼の鋼材、特に、厚鋼板の製造において、適正な成分、加熱温度、未再結晶温度以下、Ar点以上の温度範囲での70%以上の累積圧下率、圧延Ar点以上の温度からの加速冷却を行うことにより、従来法に比較して、靭性が大幅に向上した鋼材、特に厚鋼板を適切に製造し得るものであって、工業的にその効果が大きい発明である。 According to the present invention, in the production of carbon steel and low alloy steel, in particular, thick steel sheets, the proper components, heating temperature, non-recrystallization temperature or less, and accumulation of 70% or more in a temperature range of Ar 3 points or more. By performing accelerated cooling from a rolling reduction, a temperature of 3 or more rolling Ars, steel materials, in particular thick steel plates, with significantly improved toughness compared to conventional methods can be produced appropriately. It is an invention that has a great effect.

前述のように、従来の技術においては、Nb、Ti等のマイクロアロイ添加により、オーステナイト未再結晶温度域を拡大することに重点が置かれていたのに対し、本発明は、上述したような課題を解決するため、従来とは全く別の観点から検討を加えたものであって、以下に、本発明の効果を得るための成分組成、製造条件について詳細に説明する。   As described above, in the conventional technique, the emphasis was placed on expanding the austenite non-recrystallization temperature range by adding microalloys such as Nb and Ti. In order to solve the problems, studies have been made from a completely different point of view, and the component composition and production conditions for obtaining the effects of the present invention will be described in detail below.

1.成分組成について
本発明に係る高靱性鋼の成分組成の限定理由は以下の通りである。なお、本明細書において、鋼の成分を表す%は、全て質量%を意味する。
1. About component composition The reason for limitation of the component composition of the high toughness steel which concerns on this invention is as follows. In addition, in this specification,% showing the component of steel means mass% altogether.

C:0.01〜0.20%
Cは鋼板の強度を確保するため、少なくとも0.01%は必要であり、0.20%を越えて添加すると、著しく靭性が劣化するとともに、溶接性を低下させるため、C量は、0.01%以上、0.20%以下とする。
C: 0.01 to 0.20%
In order to ensure the strength of the steel sheet, C needs to be at least 0.01%, and if added over 0.20%, the toughness is significantly deteriorated and weldability is lowered. 01% or more and 0.20% or less.

Si:0.01〜0.80%
Siは脱酸に必要な元素であるが、0.01%未満ではその効果は少なく、0.80%を越えて添加すると、溶接性および母材靭性を著しく低下させるため、Si量は、0.01%以上、0.80%以下とする。
Si: 0.01-0.80%
Si is an element necessary for deoxidation, but the effect is small if it is less than 0.01%, and if added over 0.80%, the weldability and the base metal toughness are remarkably lowered. 0.01% or more and 0.80% or less.

Mn:0.20〜2.0%
Mnは、Cと同様に、鋼板の強度を確保するために必要であり、過剰に添加すると溶接性を損なうため、Mn量は0.20%以上、2.0%以下とする。
Mn: 0.20 to 2.0%
Similar to C, Mn is necessary to ensure the strength of the steel sheet, and if added excessively, weldability is impaired, so the amount of Mn is set to 0.20% or more and 2.0% or less.

P:0.020%以下
S:0.0070%以下
P、Sは不純物として、鋼中に不可避的に含有される元素であり、鋼母材や、溶接熱影響部の靭性を劣化させるため、経済性を考慮して、可能な範囲で、低減する事が好ましく、P量の上限は、0.020%、S量の上限は、0.0070%とする。
P: 0.020% or less S: 0.0070% or less P and S are elements inevitably contained in the steel as impurities, and deteriorate the toughness of the steel base material and the weld heat affected zone. In consideration of economic efficiency, it is preferable to reduce the amount as much as possible. The upper limit of the P amount is 0.020%, and the upper limit of the S amount is 0.0070%.

sol.Al:0.003〜0.100%
Alは脱酸元素であり、0.003%未満ではその効果は十分ではなく、過剰に添加すると、靭性の劣化をもたらすため、sol.Al量は、0.003%以上、0.100%以下とする。
sol. Al: 0.003 to 0.100%
Al is a deoxidizing element, and its effect is not sufficient if it is less than 0.003%, and if added in excess, it causes deterioration of toughness. The Al content is 0.003% or more and 0.100% or less.

本発明の基本成分組成は以上であるが、さらに強度や靱性などの特性を向上させる場合、Cu、Ni、Cr、Mo、Nb、V、Ti、Bの中から選ばれる1種または2種以上を選択元素として添加することができる。   The basic component composition of the present invention is as described above. When further improving properties such as strength and toughness, one or more selected from Cu, Ni, Cr, Mo, Nb, V, Ti, and B are used. Can be added as a selective element.

Cu:0.01〜2.0%
Cuは強度を増加させるための元素であり、0.01%以上でその効果を発揮し、2.0%を超えて添加すると、熱間脆性により鋼板表面の性状を劣化するため、添加する場合は、0.01〜2.0%の範囲とする。
Cu: 0.01 to 2.0%
Cu is an element for increasing the strength. When it is added in an amount of 0.01% or more and added over 2.0%, the steel surface deteriorates due to hot brittleness. Is in the range of 0.01 to 2.0%.

Ni:0.01〜2.0%
Niは母材の強度を増加させつつ靭性も向上させることが可能な元素であり、0.01%以上で効果を発揮し、2.0%超えでは効果が飽和し経済的を損なうため、添加する場合は、0.01〜2.0%の範囲とする。
Ni: 0.01 to 2.0%
Ni is an element that can improve the toughness while increasing the strength of the base metal. It is effective at 0.01% or more, and if it exceeds 2.0%, the effect is saturated and the economy is impaired. If so, the content is made 0.01 to 2.0%.

Cr:0.01〜2.0%
Crは強度を増加するのに有効な元素であり、0.01%以上でその効果を発揮し、2.0%を超えて添加すると靭性を劣化させるため、添加する場合は、0.01〜2.0%の範囲とする。
Cr: 0.01 to 2.0%
Cr is an element effective for increasing the strength, exhibits its effect at 0.01% or more, and deteriorates toughness when added over 2.0%. The range is 2.0%.

Mo:0.01〜1.0%
Moは強度を増加するのに有効な元素であり、0.01%以上でその効果を発揮し、1.0%を超えて添加すると、著しく靭性を劣化させるとともに経済性を損なうため、添加する場合は、0.01〜1.0%の範囲とする。
Mo: 0.01 to 1.0%
Mo is an element effective for increasing the strength. The effect is exhibited at 0.01% or more, and if added over 1.0%, the toughness is remarkably deteriorated and the economical efficiency is impaired. In the case, it is made 0.01 to 1.0% of range.

Nb:0.003〜0.1%
V:0.003〜0.5%
Nb、Vは母材の強度と靭性を向上させる元素であり、0.003%以上の添加で効果を発揮する。またそれぞれ0.1%,0.5%を超えるとかえって靭性の低下を招くおそれがあるため、添加する場合は、Nb:0.003〜0.1%、V:0.003〜0.5%の範囲とする。
Nb: 0.003 to 0.1%
V: 0.003-0.5%
Nb and V are elements that improve the strength and toughness of the base material, and exhibit an effect when added in an amount of 0.003% or more. Further, if it exceeds 0.1% and 0.5%, respectively, the toughness may be lowered. Therefore, when added, Nb: 0.003-0.1%, V: 0.003-0.5 % Range.

Ti:0.005〜0.10%
Tiは母材の靭性確保や溶接熱影響部での靭性確保の観点から有効な元素であるが、0.10%を超えて添加すると靭性の著しい低下をもたらすため、添加する場合は、0.005〜0.10%の範囲とする。
Ti: 0.005-0.10%
Ti is an effective element from the viewpoint of ensuring the toughness of the base metal and ensuring the toughness in the heat affected zone, but if added over 0.10%, the toughness is significantly reduced. The range is 005 to 0.10%.

B:0.0005〜0.0040%
Bは焼入れ性の向上によって強度を増加させることができる元素である。この効果は0.0005%以上で顕著になり0.0040%を超えて添加しても効果は飽和するため、添加する場合は、0.0005〜0.0040%の範囲とする。
B: 0.0005 to 0.0040%
B is an element that can increase the strength by improving the hardenability. This effect becomes prominent at 0.0005% or more, and the effect is saturated even if added over 0.0040%. Therefore, when added, the content is made 0.0005 to 0.0040%.

なお、本発明の効果が損なわれない限り、上記した成分以外に、Ca、Mg、REMなどの元素を含有してもよい。これらの元素には、鋼中のSを固定して鋼板の靭性を向上させる働きがあり、0.0001%以上の添加で効果がある。しかし、それぞれ0.0060%、0.0060%、0.0200%を超えて添加すると、鋼中の介在物量が増加し、靭性をかえって劣化させる。よってこれらの元素を添加する場合は、Ca:0.0001〜0.0060%、Mg:0.0001〜0.0060%、REM:0.0001〜0.0200%の範囲とする。   In addition, unless the effect of this invention is impaired, you may contain elements, such as Ca, Mg, and REM, besides the above-mentioned component. These elements have a function of fixing S in steel and improving the toughness of the steel sheet, and are effective when added in an amount of 0.0001% or more. However, if added over 0.0060%, 0.0060%, and 0.0200%, respectively, the amount of inclusions in the steel increases and deteriorates the toughness. Therefore, when adding these elements, it is set as the range of Ca: 0.0001-0.0060%, Mg: 0.0001-0.0060%, REM: 0.0001-0.0200%.

なお、本発明の鋼の上記した成分以外の残部は、Feおよび不可避的不純物からなる。   In addition, the remainder other than the above-mentioned component of the steel of this invention consists of Fe and an unavoidable impurity.

2.製造条件について
上記した組成を有する溶鋼を、転炉、電気炉等の溶製手段で、常法により溶製し、連続鋳造法または造塊〜分塊法等で、常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではないく、通常公知の方法がすべて適用できる。そして、その後、次に述べる条件にて圧延・加熱・冷却を行う。
2. Manufacturing conditions Molten steel having the above composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and steel such as a slab by a conventional method, such as a continuous casting method or an ingot-bundling method. It is preferable to use a raw material. In addition, the melting method and the casting method are not limited to the above-described methods, and all known methods can be applied. Thereafter, rolling, heating, and cooling are performed under the following conditions.

(1)スラブ加熱について
鋳造後、スラブ温度が室温まで低下してから、あるいは高温の状態で、加熱炉に挿入してオーステナイト温度域に加熱する。スラブの加熱温度は、靭性確保の観点からは、より低温が好ましく、加熱温度上限は、最終的に得られる組織を出来るだけ微細なフェライトもしくは均質微細ベイナイトとするため、加熱オーステナイト粒径の粗大化を抑制するため、1200℃以下とする。一方、加熱温度が1000℃未満では、スラブ厚中央部の未圧着ザクが残存して、鋼板の板厚1/2t部の性能を劣化させる可能性があること、及び、Nb,Vなどを添加した場合には、これらの元素が十分に固溶しないため、スラブ加熱温度は1000℃以上とするのが好ましい。
(1) About slab heating After casting, after the slab temperature is lowered to room temperature or in a high temperature state, it is inserted into a heating furnace and heated to an austenite temperature range. The heating temperature of the slab is preferably lower from the viewpoint of securing toughness, and the upper limit of the heating temperature is to make the finally obtained structure as fine as possible ferrite or homogeneous fine bainite. In order to suppress this, it shall be 1200 degrees C or less. On the other hand, when the heating temperature is less than 1000 ° C., there is a possibility that an uncompressed zack at the center part of the slab thickness may remain, and the performance of the steel sheet thickness 1/2 t part may be deteriorated, and Nb, V, etc. are added. In such a case, since these elements are not sufficiently dissolved, the slab heating temperature is preferably 1000 ° C. or higher.

(2)熱間圧延について
まず、オーステナイト再結晶域圧延は、加熱時のオーステナイト粒をある程度まで均一微細化するのに必要であり、1パス以上、好ましくは累積で20%以上の圧下を行う。オーステナイト再結晶域圧延から未再結晶域圧延を開始するまでの間は、空冷で待ってもよいが、オーステナイト再結晶域圧延中あるいは圧延後に水冷により冷却を行い、未再結晶域圧延までの時間を空冷するよりも短縮する方が効率的にも好ましく、また、再結晶オーステナイトの成長を抑制する効果があり、組織の微細化にとって、より有効である。
(2) About Hot Rolling First, austenite recrystallization zone rolling is necessary for uniformly refining austenite grains during heating to a certain degree, and a reduction of 1% or more, preferably 20% or more is performed cumulatively. You may wait by air cooling from the austenite recrystallization zone rolling to the start of the non-recrystallization zone rolling, but the time until the non-recrystallization zone rolling is cooled by water cooling during or after the austenite recrystallization zone rolling. It is more efficient to reduce the length than air cooling, and it has the effect of suppressing the growth of recrystallized austenite, which is more effective for refining the structure.

次に、本発明においては、未再結晶温度域における累積圧下率を70%以上とする。未再結晶温度域における累積圧下率の増加に伴い高冷却速度域で強度・靭性が連続的に向上するのは、次に述べる作用によるものである。   Next, in the present invention, the cumulative rolling reduction in the non-recrystallization temperature region is set to 70% or more. The continuous improvement of strength and toughness in the high cooling rate region as the cumulative rolling reduction in the non-recrystallization temperature region increases is due to the following action.

すなわち、オーステナイト粒の伸展度及び変形帯の密度が累積圧下率の増加に伴い上昇し、変態時の核生成サイトとなりうるオーステナイト粒界及び変形帯の単位体積当たりの面積(有効界面積:Sv)が増加し、変態後の組織が微細化されるためである。ただし、未再結晶温度域での累積圧下率が70%以上でないと、加速冷却後に得られる変態後の組織が十分細かくならず、靭性は顕著には向上しない。   That is, the extent of austenite grains and the density of deformation bands increase with increasing cumulative rolling reduction, and the area per unit volume of austenite grain boundaries and deformation bands that can be nucleation sites during transformation (effective interfacial area: Sv) This is because the texture increases and the structure after transformation is refined. However, if the cumulative rolling reduction in the non-recrystallization temperature region is not 70% or more, the structure after transformation obtained after accelerated cooling is not sufficiently fine, and the toughness is not significantly improved.

未再結晶温度域における累積圧下率を70%以上確保するために、圧延機に近接した誘導加熱装置による2℃/sec以上の急速加熱で、圧延中の鋼板の温度降下を補償する。具体的には、累積圧下率40%程度以上の未再結晶域圧延の後、温度がAr点を下回ることのない温度域から、未再結晶温度域範囲内で誘導加熱装置により2℃/sec以上の昇温速度で加熱する。加熱後、特に保持などは行う必要はない。 In order to ensure a cumulative reduction ratio of 70% or more in the non-recrystallization temperature range, the temperature drop of the steel sheet during rolling is compensated by rapid heating at 2 ° C./sec or more by an induction heating device close to the rolling mill. Specifically, after rolling in the non-recrystallized region where the cumulative rolling reduction is about 40% or more, the temperature does not fall below the Ar 3 point, and the non-recrystallized temperature region is 2 ° C / Heat at a heating rate of sec or more. There is no need to perform holding or the like after heating.

加熱開始温度がAr点を下回れば、フェライト変態が起こり、再加熱時に逆変態によりオーステナイトは微細化されるが、その後の加熱時の加熱温度代が大きくなり効率および経済性を損なうとともに、Nb炭化物などの析出・粗大化が促進され、混粒組織となりやすいとともに靭性低下の原因となるので、Ar点以上の温度から昇温を開始する。 If the heating start temperature is lower than the Ar 3 point, ferrite transformation occurs, and austenite is refined by reverse transformation at the time of reheating, but the heating temperature cost at the time of subsequent heating becomes large and the efficiency and economy are impaired. Precipitation and coarsening of carbide and the like are promoted, and a mixed grain structure is likely to be formed and toughness is reduced. Therefore, the temperature rise is started from a temperature of Ar 3 or higher.

また、昇温速度は、2℃/sec以下では、オーステナイト加工組織の回復や、NbやTiなどの炭化物の加工誘起析出が起こり、靭性を劣化させるため、2℃/sec以上とする。加熱後の保持は行ってもよいが、オーステナイト加工組織の回復が起こるため、必要以上の保持は行うべきではなく、短時間が好ましい。   Further, when the rate of temperature rise is 2 ° C./sec or less, recovery of the austenite processed structure and processing-induced precipitation of carbides such as Nb and Ti occur and the toughness is deteriorated, so that it is 2 ° C./sec or more. Although holding after heating may be performed, since recovery of the austenite processed structure occurs, holding more than necessary should not be performed, and a short time is preferable.

(3)加速冷却について
加速冷却は、未再結晶温度以下、Ar点以上で70%以上の累積圧下を行った鋼板に対して行い、Ar点以上の温度から600℃以下の温度まで行う。
(3) Accelerated cooling Accelerated cooling is performed on a steel sheet that has been subjected to a cumulative reduction of not less than the non-recrystallization temperature and not less than Ar 3 points and 70% or more, and is performed from the temperature not less than Ar 3 points to a temperature of 600 ° C. or less. .

Ar点未満の温度から加速冷却を行った場合には、一部、加速冷却前からフェライトが生成するため、所定の強度が得られない。また、600℃以上で冷却を停止した場合も同様である。 When accelerated cooling is performed from a temperature below Ar 3 points, ferrite is partially generated before accelerated cooling, and thus a predetermined strength cannot be obtained. The same applies when cooling is stopped at 600 ° C. or higher.

冷却速度は、空冷以上の冷却速度が必要であり、10℃/secの強冷却が好ましい。冷却方法は特に限定しないが、水冷による冷却が好ましい。   The cooling rate requires a cooling rate higher than that of air cooling, and strong cooling of 10 ° C./sec is preferable. The cooling method is not particularly limited, but cooling by water cooling is preferable.

ここで、本発明における鋼材温度は、鋼材の表面と中心部との平均温度を示している。   Here, the steel material temperature in this invention has shown the average temperature of the surface and center part of steel materials.

再結晶温度やAr点は成分によって異なり、再結晶温度(再結晶を起こす温度)は概ね800〜950℃の範囲にある。 The recrystallization temperature and the Ar 3 point vary depending on the components, and the recrystallization temperature (temperature at which recrystallization occurs) is generally in the range of 800 to 950 ° C.

Ar点は下記式(1)によっても求めることができる。ただし、各式において、各元素は含有量(質量%表示)を示す。
Ar=910−310C−80Mn−55Ni−15Cr−80Mo−20Cu
・・・・・(1)
本発明は厚鋼板、形鋼、棒鋼など種々の形状の鋼製品に適用可能である。「厚鋼板」とは、板厚6mm以上の鋼板を指すものとする。
Ar 3 points can also be obtained by the following equation (1). However, in each formula, each element shows content (mass% display).
Ar 3 = 910-310C-80Mn-55Ni-15Cr-80Mo-20Cu
(1)
The present invention is applicable to steel products having various shapes such as thick steel plates, section steels, and steel bars. The “thick steel plate” refers to a steel plate having a thickness of 6 mm or more.

表1に示す成分組成を有する種々の鋼を溶製した。得られた鋼片を使って、表2に示す製造条件にて板厚12mmの厚鋼板を作製した。   Various steels having the composition shown in Table 1 were melted. Using the obtained steel piece, a thick steel plate having a thickness of 12 mm was produced under the production conditions shown in Table 2.

このようにして得られた厚鋼板について機械的性質を調査するための試料を採取して、以下に記載の試験片によって引張試験、シャルピー試験を行った。   A sample for investigating the mechanical properties of the thick steel plate thus obtained was collected and subjected to a tensile test and a Charpy test using the test pieces described below.

引張強度は、JISZ2201に規定された1A号の全厚試験片を板幅方向に採取した引張試験により求めた。   The tensile strength was determined by a tensile test in which a 1A full thickness test piece defined in JISZ2201 was taken in the plate width direction.

靭性は、JISZ2202の規定に準拠して、板厚中心より、試験片の長手軸の方向が圧延方向と平行になるようにシャルピー衝撃試験片を採取して、Vノッチシャルピー衝撃試験を実施し、延性脆性遷移温度(vTrsと呼ぶ)を求めことにより評価した。
なお、本発明において靱性の目標値は、延性脆性遷移温度(vTrs)が−140℃未満であることとする。
As for toughness, in accordance with JISZ2202, the Charpy impact test piece was sampled from the center of the plate thickness so that the longitudinal axis direction of the test piece was parallel to the rolling direction, and a V-notch Charpy impact test was performed. The ductile brittle transition temperature (referred to as vTrs) was evaluated and determined.
In the present invention, the target value of toughness is that the ductile brittle transition temperature (vTrs) is less than −140 ° C.

引張試験およびシャルピー衝撃試験の結果を同じく表2に示す。   The results of the tensile test and Charpy impact test are also shown in Table 2.

Figure 2009242849
Figure 2009242849

Figure 2009242849
Figure 2009242849

成分、製造方法を本発明規定の範囲内としたNo.1〜No.5の鋼板は、いずれにおいても、延性脆性遷移温度(vTrs)が−140℃未満であり、優れた靭性を有していることがわかる。   The components and production methods are within the scope of the present invention. 1-No. It can be seen that all the steel sheets No. 5 have a ductile brittle transition temperature (vTrs) of less than −140 ° C. and excellent toughness.

一方、C添加量が本発明の範囲を超えたNo.6の鋼板では靭性が劣化した。加熱温度が本発明の範囲(1200℃以下)よりも高いNo.7の鋼板では、最終的に得られる組織が十分に微細化しないため、靭性が劣化した。No.8の鋼板では、未再結晶温度域での累積圧下量を確保するための急速加熱を行っていないため、未再結晶温度域での累積圧下率が、本発明の範囲よりも小さくなり、靱性が劣化した。圧延途中の加熱速度が本発明の範囲よりも遅く、加工オーステナイトの回復が顕著となったNo.9の鋼板、および、圧延途中加熱温度が本発明の範囲よりも高く、オーステナイトが再結晶したNo.10の鋼板においても、いずれも、靭性が劣化した。また、圧延終了温度がAr点より低くなりフェライト/オーステナイト二相域にかかっているNo.11の鋼板、冷却開始温度がフェライト/オーステナイト二相域にかかっているNo.12の鋼板、また冷却停止温度が高いNo.13の鋼板については、粗大フェライトが存在し、靭性が劣化した。 On the other hand, No. C addition amount exceeded the scope of the present invention. In the steel plate No. 6, the toughness deteriorated. No. whose heating temperature is higher than the range of the present invention (1200 ° C. or less). In the steel plate No. 7, since the finally obtained structure was not sufficiently refined, the toughness deteriorated. No. In the steel plate No. 8, since the rapid heating for ensuring the cumulative reduction amount in the non-recrystallization temperature range is not performed, the cumulative reduction rate in the non-recrystallization temperature range becomes smaller than the range of the present invention, and the toughness Deteriorated. The heating rate during rolling was slower than the range of the present invention, and the recovery of processed austenite became remarkable. No. 9 in which the heating temperature during rolling was higher than the range of the present invention and austenite was recrystallized. In all ten steel plates, the toughness deteriorated. In addition, the rolling end temperature is lower than the Ar 3 point, and it is applied to the ferrite / austenite two-phase region. No. 11 steel, No. 11 whose cooling start temperature is in the ferrite / austenite two-phase region. No. 12 steel, and No. 1 with a high cooling stop temperature. About the steel plate of 13, the coarse ferrite existed and toughness deteriorated.

本発明による鋼は、強度と低温靱性に優れているので、高い材質均一性と低温仕様が要求される鋼構造物に適用することができる。   Since the steel according to the present invention is excellent in strength and low temperature toughness, it can be applied to steel structures that require high material uniformity and low temperature specifications.

Claims (2)

質量%で、C:0.01〜0.20%、Si:0.01〜0.80%、Mn:0.20〜2.0%、P:0.020%以下、S:0.0070%以下、sol.Al:0.003〜0.100%を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材を、オーステナイト温度域でかつ1200℃以下に加熱し、オーステナイト再結晶温度域において圧延後、未再結晶上限温度以下、Ar点以上の温度域での圧延を行うにあたり、当該圧延を2回以上の工程に分け、2回目およびそれ以降の圧延前に、圧延機に近接した誘導加熱装置により、2℃/sec以上の急速加熱を実施して温度補償することにより、未再結晶上限温度以下、Ar点以上の温度域で70%以上の累積圧下を加え、Ar点以上の温度から600℃以下に加速冷却することを特徴とする高靱性鋼の製造方法。 In mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.80%, Mn: 0.20 to 2.0%, P: 0.020% or less, S: 0.0070 % Or less, sol. A steel material having a composition containing Al: 0.003 to 0.100% and the balance being Fe and inevitable impurities is heated to 1200 ° C. or less in the austenite temperature range, and after rolling in the austenite recrystallization temperature range When rolling in the temperature range below the upper limit of non-recrystallization temperature and at 3 or more points of Ar, the rolling is divided into two or more processes, and induction heating close to the rolling mill before the second and subsequent rolling. By performing rapid heating at 2 ° C./sec or more with an apparatus to compensate for temperature, a cumulative reduction of 70% or more is applied in a temperature range below the non-recrystallization upper limit temperature, Ar 3 points or more, and Ar 3 points or more A method for producing high toughness steel, characterized by accelerated cooling from temperature to 600 ° C. or lower. 鋼組成に、更に、質量%で、Cu:0.01〜2.0%、Ni:0.01〜2.0%、Cr:0.01〜2.0%、Mo:0.01〜1.0%、Nb:0.003〜0.1%、V:0.003〜0.5%、Ti:0.005〜0.10%、B:0.0005〜0.0040%の中から選ばれる1種または2種以上を含有することを特徴とする請求項1記載の高靱性鋼の製造方法。   In addition to steel composition, Cu: 0.01-2.0%, Ni: 0.01-2.0%, Cr: 0.01-2.0%, Mo: 0.01-1 0.0%, Nb: 0.003-0.1%, V: 0.003-0.5%, Ti: 0.005-0.10%, B: 0.0005-0.0040% The method for producing a high toughness steel according to claim 1, comprising one or more selected.
JP2008089512A 2008-03-31 2008-03-31 Method for producing high toughness steel Expired - Fee Related JP5256818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089512A JP5256818B2 (en) 2008-03-31 2008-03-31 Method for producing high toughness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089512A JP5256818B2 (en) 2008-03-31 2008-03-31 Method for producing high toughness steel

Publications (2)

Publication Number Publication Date
JP2009242849A true JP2009242849A (en) 2009-10-22
JP5256818B2 JP5256818B2 (en) 2013-08-07

Family

ID=41305081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089512A Expired - Fee Related JP5256818B2 (en) 2008-03-31 2008-03-31 Method for producing high toughness steel

Country Status (1)

Country Link
JP (1) JP5256818B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078135A1 (en) * 2010-03-29 2013-03-28 Joachim Antonissen Steel Product with Improved Weathering Characteristics in Saline Environment
WO2016157863A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 High strength/high toughness steel sheet and method for producing same
WO2016157862A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 High strength/high toughness steel sheet and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543934A (en) * 1991-08-15 1993-02-23 Nkk Corp Method of thermomechanical treatment for steel
JPH05295432A (en) * 1992-04-21 1993-11-09 Nkk Corp Production of steel plate having high strength and high toughness by online thermomechanical treatment
JPH0873983A (en) * 1994-08-31 1996-03-19 Nippon Steel Corp Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JP2005029840A (en) * 2003-07-14 2005-02-03 Nippon Steel Corp High strength steel for welded structure excellent in both of base metal toughness and weld part haz toughness, and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543934A (en) * 1991-08-15 1993-02-23 Nkk Corp Method of thermomechanical treatment for steel
JPH05295432A (en) * 1992-04-21 1993-11-09 Nkk Corp Production of steel plate having high strength and high toughness by online thermomechanical treatment
JPH0873983A (en) * 1994-08-31 1996-03-19 Nippon Steel Corp Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JP2005029840A (en) * 2003-07-14 2005-02-03 Nippon Steel Corp High strength steel for welded structure excellent in both of base metal toughness and weld part haz toughness, and its production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078135A1 (en) * 2010-03-29 2013-03-28 Joachim Antonissen Steel Product with Improved Weathering Characteristics in Saline Environment
WO2016157863A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 High strength/high toughness steel sheet and method for producing same
WO2016157862A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 High strength/high toughness steel sheet and method for producing same
JPWO2016157862A1 (en) * 2015-03-31 2017-06-08 Jfeスチール株式会社 High-strength and high-toughness steel plate and method for producing the same
JPWO2016157863A1 (en) * 2015-03-31 2017-06-15 Jfeスチール株式会社 High-strength and high-toughness steel plate and method for producing the same
CN107532253A (en) * 2015-03-31 2018-01-02 杰富意钢铁株式会社 High intensity/ductility steel plate and its manufacture method
CN107532253B (en) * 2015-03-31 2019-06-21 杰富意钢铁株式会社 High intensity/ductility steel plate and its manufacturing method
US10544478B2 (en) 2015-03-31 2020-01-28 Jfe Steel Corporation High-strength, high-toughness steel plate, and method for producing the same
US10640841B2 (en) 2015-03-31 2020-05-05 Jfe Steel Corporation High-strength, high-toughness steel plate and method for producing the same

Also Published As

Publication number Publication date
JP5256818B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP4410836B2 (en) Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4897127B2 (en) Manufacturing method of high strength steel sheet for welded structure
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP2006002186A (en) Method for producing high strength cold-rolled steel sheet excellent in ductility and pore-expandability
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2010222680A (en) Method for manufacturing high strength high toughness steel excellent in workability
JP6311633B2 (en) Stainless steel and manufacturing method thereof
JP2008297570A (en) Low yield ratio steel sheet
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP5157386B2 (en) Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP5256818B2 (en) Method for producing high toughness steel
JP2002363649A (en) Method for producing high strength cold rolled steel sheet
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2007138203A (en) High tensile strength thick steel plate having excellent weldability and its production method
JP5589335B2 (en) Manufacturing method of high toughness steel
JP2004052063A (en) METHOD FOR PRODUCING 780 MPa-CLASS NON-HEAT REFINING THICK STEEL PLATE
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP4311226B2 (en) Manufacturing method of high-tensile steel sheet
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP2005220379A (en) Method for producing non-heat treated high strength thick steel plate excellent in toughness at extra-large heat input weld heat-affected zone
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5256818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees