JP5157386B2 - Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material - Google Patents
Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material Download PDFInfo
- Publication number
- JP5157386B2 JP5157386B2 JP2007301777A JP2007301777A JP5157386B2 JP 5157386 B2 JP5157386 B2 JP 5157386B2 JP 2007301777 A JP2007301777 A JP 2007301777A JP 2007301777 A JP2007301777 A JP 2007301777A JP 5157386 B2 JP5157386 B2 JP 5157386B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- recrystallization
- strength
- temperature
- temperature range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、靭性に優れた鋼材の製造方法に関し、特に、強度レベルがAPI−5L X70以上で、板厚20mm以上のUOEまたはプレスベンド法によって製造されるラインパイプ用鋼管用素材の製造方法として好適なものに関する。 The present invention relates to a method for producing a steel material having excellent toughness, and particularly as a method for producing a steel pipe material for a line pipe produced by a UOE or press bend method having a strength level of API-5L X70 or more and a plate thickness of 20 mm or more. It relates to a suitable one.
天然ガス供給地の遠隔化に伴い、天然ガス輸送用パイプラインの長距離化が進み、輸送効率のための操業圧増加を考慮し、ラインパイプの管厚を増大したり、高強度グレードを採用する設計が進められ、厚肉高強度ラインパイプの需要が高まっている。 As the natural gas supply area becomes remote, the pipeline for natural gas transportation has become longer, and considering the increase in operating pressure for transportation efficiency, the pipe thickness of the line pipe is increased and a high strength grade is adopted. The demand for thick high-strength line pipe is increasing.
天然ガス輸送用パイプラインの場合は、脆性亀裂伝播防止の観点から、DWTT(Drop Weight Tear Test)と呼ばれる試験における延性破面率(SA(%))の値が高いことが望まれている。 In the case of a pipeline for transporting natural gas, it is desired that the ductile fracture surface ratio (SA (%)) in a test called DWTT (Drop Weight Tear Test) is high from the viewpoint of preventing brittle crack propagation.
一般に、鋼板の強度や板厚が増加すると、靭性は低下する傾向にあるため、厚鋼板の靭性を向上させる技術として、制御圧延や制御冷却、さらには、直接焼入れ−焼戻し技術などTMCP技術、また圧延後に行うオンラインの熱処理技術が開発されてきた。 Generally, as the strength and thickness of a steel plate increase, the toughness tends to decrease. Therefore, as a technology for improving the toughness of a thick steel plate, TMCP technology such as controlled rolling, controlled cooling, and direct quenching-tempering technology, Online heat treatment techniques have been developed after rolling.
靭性の向上には、結晶粒の微細化が有効であることが従来から知られており、様々な検討がなされている。合金設計や圧延時の加熱温度や圧延温度などの調整による細粒化の場合、現状、圧延−冷却で得られる厚鋼板のγ粒径は20〜30μm程度が限界である。 It has been known that refinement of crystal grains is effective for improving toughness, and various studies have been made. In the case of grain refinement by adjusting the alloy design, the heating temperature during rolling, the rolling temperature, etc., the limit of the γ grain size of the thick steel plate obtained by rolling-cooling is about 20-30 μm.
上記粒径は、圧延後の再加熱焼入れなどで得られる結晶粒径に比べても大きく、圧延−冷却ままあるいは、圧延−冷却−焼戻しプロセスでの靭性の向上には限界があり、特に20mmを超える厚肉材の場合、DWTT試験時のSA値を満足させることは難しい。 The grain size is larger than the crystal grain size obtained by reheating and quenching after rolling, and there is a limit to improving the toughness in the rolling-cooling or rolling-cooling-tempering process, particularly 20 mm. In the case of a thicker material exceeding this, it is difficult to satisfy the SA value during the DWTT test.
厚鋼板の細粒化を促進させる手法として、例えば、特許文献1に、熱間圧延の各パス圧下時の歪速度をコントロールして1パス圧下率を増大させ、動的再結晶により、γ粒径を微細化する手法が開示されている。
しかしながら、特許文献1に記載の方法は圧延能率が著しく低下するので、ラインパイプ材などの量産材の生産には適用できず、生産性を損なわない実用的な厚板製造プロセスを用いて靭性を向上させるための新たな微細粒化技術の開発が要望されている。 However, since the rolling efficiency of the method described in Patent Document 1 is significantly reduced, it cannot be applied to the production of mass-produced materials such as line pipe materials, and the toughness can be reduced using a practical thick plate manufacturing process that does not impair the productivity. There is a demand for the development of new atomization technology for improvement.
そこで、本発明は、ラインパイプ用鋼管用素材の製造方法として好適な圧延−加速冷却ままプロセスを用いて、従来材を遥かに凌ぐγ粒の微細化を達成し、γ+αの2相域圧延によってDWTT試験時の脆性破面発生を抑制する鋼の製造方法を提供することを目的とする。 Therefore, the present invention achieves the refinement of γ grains that far surpasses that of conventional materials by using the rolling-accelerated cooling process suitable as a production method for steel pipe materials for line pipes, and by γ + α two-phase region rolling. It aims at providing the manufacturing method of steel which suppresses the generation | occurrence | production of a brittle fracture surface at the time of a DWTT test.
本発明者等は、上記課題を解決するため、γ粒径に及ぼす圧延時の加熱・冷却・圧下パターンに着目して鋭意検討し、再結晶温度域圧延後、未再結晶域圧延を行い、再度、再結晶温度域へ急速加熱した場合、微細なγが得られ、その後の圧延・冷却条件の組合せにより、優れた靭性と高強度が得られることを見いだした。 In order to solve the above-mentioned problems, the present inventors have intensively studied paying attention to the heating / cooling / reduction pattern during rolling that affects the γ grain size, and after the recrystallization temperature range rolling, perform the non-recrystallization zone rolling, It was found that, when heated again to the recrystallization temperature range, fine γ was obtained, and excellent toughness and high strength were obtained by a combination of subsequent rolling and cooling conditions.
すなわち、1.圧延時の加熱温度と再結晶域圧延により初期γ粒径の粗大化を防止して均一なγ粒を得、その後の未再結晶域圧延の累積圧下率を確保し、変態をさせずにAr3以上の温度から再結晶温度域に短時間で加熱することにより微細な再結晶γが得られること、2.さらにその後、微細なγ粒に対してγ+αの2相温度域で圧延を行うことにより、組織の微細化が図られ、加速冷却後に優れた強度・靭性が得られることを見出した。 That is: The heating temperature during rolling and recrystallization zone rolling prevent coarsening of the initial γ grain size to obtain uniform γ grains, ensuring the cumulative rolling reduction of the subsequent non-recrystallization zone rolling, Ar without transformation 1. Fine recrystallization γ is obtained by heating in a short time from a temperature of 3 or more to a recrystallization temperature range; Further, after that, by rolling the fine γ grains in a two-phase temperature range of γ + α, it was found that the structure was refined and excellent strength and toughness were obtained after accelerated cooling.
本発明の要旨は次のとおりである。
1.質量%で、C:0.03〜0.09%、
Si:0.01〜0.50%、
Mn:1.0〜3.0%、
P:0.030%以下、
S:0.010%以下、
sol.Al:0.003〜0.100%、
B:0.0005%以下、
Nb:0.005〜0.1%、
Ti:0.005〜0.05%
を含有し、さらに、
Cu:0.01〜1.0%、
Ni:0.01〜2.0%、
Cr:0.01〜1.0%、
Mo:0.01〜1.0%、
V:0.003〜0.1%
のうちから選ばれる1種または2種以上を含有し、
さらに、下記(1)式で計算されるCeq値が0.36〜0.60であり、
残部がFeおよび不可避的不純物からなる組成を有する鋼素材を、
1000℃以上1250℃以下に加熱し、再結晶温度域において圧延後、未再結晶温度域において累計圧下率40%以上の圧延を行う一次圧延を実施し、その後、Ar3変態点以上の温度から再結晶温度以上に2℃/sec以上の昇温速度で加熱後、Ar3変態点以下Ar3変態点−50℃以上の温度に冷却してから圧延を再開し、2相温度域において累計圧下率15%以上の圧延を行う二次圧延を実施し、さらに、Ar1変態点以上の温度から600℃以下に加速冷却する工程を有することを特徴とする厚肉高強度高靭性鋼管素材の製造方法。
Ceq(%)=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (1)
各元素は質量%での値とする。
2.前記鋼素材は、さらに、
Ca:0.0001〜0.0060%、
Mg:0.0001〜0.0060%、
REM:0.0001〜0.0200%、
Zr:0.0001〜0.0100%
のうちから選ばれる1種または2種以上を含有することを特徴とする、1記載の厚肉高強度高靭性鋼管素材の製造方法。
3.一次圧延において、未再結晶温度域で累積圧下率40%以上の圧延を行う前に、再結晶温度域圧延中または圧延後に水冷を実施し、未再結晶温度域まで冷却する工程を有することを特徴とする、1または2に記載の厚肉高強度高靭性鋼管素材の製造方法。
4.一次圧延後、Ar3変態点以上の温度から再結晶温度域に加熱後に得られる再結晶後平均γ粒径が15μm以下であることを特徴とする、1乃至3の何れか一つに記載の厚肉高強度高靭性鋼管素材の製造方法。
5.1乃至4の何れか一つに記載の方法により製造され、再結晶後平均γ粒径が15μm以下、降伏強度485MPa以上および引張強度565MPa以上で、−40℃におけるシャルピー吸収エネルギーが300J以上かつDWTT試験で得られた延性破面率SA値が90%以上、板厚20mm以上であることを特徴とするラインパイプ用鋼管用素材。
The gist of the present invention is as follows.
1. % By mass, C: 0.03 to 0.09%,
Si: 0.01 to 0.50%,
Mn: 1.0 to 3.0%
P: 0.030% or less,
S: 0.010% or less,
sol. Al: 0.003 to 0.100%,
B: 0.0005% or less,
Nb: 0.005 to 0.1%,
Ti: 0.005 to 0.05%
In addition,
Cu: 0.01 to 1.0%,
Ni: 0.01 to 2.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01 to 1.0%,
V: 0.003-0.1%
1 type or 2 types or more chosen from among,
Furthermore, the Ceq value calculated by the following equation (1) is 0.36 to 0.60,
A steel material having a composition comprising the balance of Fe and inevitable impurities,
Heat to 1000 ° C. or more and 1250 ° C. or less, and after rolling in the recrystallization temperature range, perform primary rolling for rolling at a cumulative reduction ratio of 40% or more in the non-recrystallization temperature range, and then from the temperature above the Ar 3 transformation point After heating at a temperature increase rate of 2 ° C / sec or more above the recrystallization temperature, after cooling to a temperature not higher than Ar 3 transformation point -50 ° C or higher after Ar 3 transformation point, rolling is resumed, and cumulative reduction is performed in the two-phase temperature range. Production of a thick-walled, high-strength, high-toughness steel pipe material characterized by having a step of performing secondary rolling for rolling at a rate of 15% or more, and further accelerated cooling from a temperature above the Ar 1 transformation point to 600 ° C. Method.
Ceq (%) = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
Each element is a value in mass%.
2. The steel material is further
Ca: 0.0001 to 0.0060%,
Mg: 0.0001 to 0.0060%,
REM: 0.0001-0.0200%,
Zr: 0.0001 to 0.0100%
The method for producing a thick-walled, high-strength, high-toughness steel pipe material according to 1, which comprises one or more selected from among the above.
3. In primary rolling, before performing rolling with a cumulative reduction ratio of 40% or more in the non-recrystallization temperature range, performing water cooling during or after the recrystallization temperature range rolling and cooling to the non-recrystallization temperature range 3. A method for producing a thick-walled, high-strength, high-toughness steel pipe material according to 1 or 2,
4). The average γ grain size after recrystallization obtained after heating to a recrystallization temperature range from a temperature equal to or higher than the Ar 3 transformation point after primary rolling is 15 μm or less, according to any one of 1 to 3, A manufacturing method for thick-walled, high-strength, high-toughness steel pipe materials.
5.1 to 4 produced by the method according to any one of claims 1 to 4, having an average γ grain size of 15 μm or less after recrystallization, a yield strength of 485 MPa or more and a tensile strength of 565 MPa or more, and a Charpy absorbed energy at −40 ° C. of 300 J or more. A steel pipe material for a line pipe, wherein the ductile fracture surface area SA value obtained by the DWTT test is 90% or more and the plate thickness is 20 mm or more.
本発明によれば、圧延−加速冷却ままプロセスを用いて、従来材と比較して、DWTT試験における85%SAが得られる温度(SATT)が20℃以上低温となる優れた靭性を備えた、20mmを超える厚肉材が生産性を損なわずに得られ、産業上極めて有用である。 According to the present invention, using the process with rolling-accelerated cooling, compared to the conventional material, the temperature (SATT) at which 85% SA in the DWTT test is obtained has excellent toughness that is a low temperature of 20 ° C. or more. Thick materials exceeding 20 mm can be obtained without impairing productivity, and are extremely useful in industry.
本発明は、再結晶域圧延後に累積圧下率40%以上の未再結晶域圧延を行い、その後、再度、再結晶温度域へ急速加熱を行うことにより、急速加熱ままで15μm以下のγ粒径とし、その後のγ+αの2相域で15%以上の圧延を行い圧延中に変態生成するフェライトのさらなる微細化を行うことを特徴とする。以下、本発明を詳細に説明する。尚、成分組成における%は質量%とする。
[成分組成]
C:0.03〜0.09%
CはAPIX70以上の強度を確保するため、少なくとも0.03%は必要である。一方、0.09%を越えて添加すると加速冷却後に形成される硬質相がマルテンサイトとなり、母材シャルピー吸収エネルギーが低下するため、0.03%以上、0.09%以下(以下、0.03〜0.09%)とする。
The present invention performs non-recrystallized zone rolling with a cumulative reduction ratio of 40% or more after recrystallization zone rolling, and then rapidly heats again to the recrystallization temperature range, so that the γ grain size of 15 μm or less remains with rapid heating. Then, 15% or more of rolling is performed in the subsequent two-phase region of γ + α, and the ferrite that undergoes transformation during rolling is further refined. Hereinafter, the present invention will be described in detail. In addition,% in a component composition shall be mass%.
[Ingredient composition]
C: 0.03-0.09%
C is required to be at least 0.03% in order to secure a strength of APIX 70 or higher. On the other hand, if added over 0.09%, the hard phase formed after accelerated cooling becomes martensite, and the Charpy absorbed energy of the base material decreases, so 0.03% or more and 0.09% or less (hereinafter,. 03 to 0.09%).
Si:0.01〜0.50%
Siは脱酸に必要な元素であるが、0.01%未満ではその効果は少なく、0.50%を越えて添加すると溶接性および母材シャルピー吸収エネルギーを著しく低下させるため、0.01〜0.50%とする。
Si: 0.01 to 0.50%
Si is an element necessary for deoxidation, but if less than 0.01%, the effect is small, and if added over 0.50%, the weldability and base metal Charpy absorbed energy are remarkably lowered, so 0.01 to 0.50%.
Mn:1.0〜3.0%
MnはCと同様に鋼板の強度を確保するために必要であり、特にAPIX70以上の強度を確保するためには1.0%以上は必要である。一方、3.0%を超えて添加すると鋳造時に不可避的に形成される偏析部に特に濃化し、その部分がDWTT特性劣化の原因となるため、1.0〜3.0%とする。
Mn: 1.0-3.0%
Mn is necessary for securing the strength of the steel sheet in the same manner as C, and in particular, 1.0% or more is necessary for securing the strength of APIX 70 or higher. On the other hand, if it exceeds 3.0%, it is particularly concentrated in the segregated part inevitably formed at the time of casting, and this part causes the deterioration of DWTT characteristics.
P:0.030%以下、S:0.010%以下
P、Sは不純物として鋼中に不可避的に含有される元素であり、鋼母材や、溶接熱影響部の靭性を劣化させるため、経済性を考慮して可能な範囲で低減する事が好ましく、P:0.030%以下、S:0.010%以下とする。
P: 0.030% or less, S: 0.010% or less P and S are elements inevitably contained in the steel as impurities, and deteriorate the toughness of the steel base material and the weld heat affected zone. It is preferable to reduce as much as possible in consideration of economy, and P: 0.030% or less and S: 0.010% or less.
Al:0.003〜0.100%
Alは脱酸元素であり、0.003%未満ではその効果は十分ではなく、過剰に添加すると靭性の劣化をもたらすため、0.003〜0.100%以下とする。尚、Alはsol.Alとする。
Al: 0.003 to 0.100%
Al is a deoxidizing element, and if it is less than 0.003%, its effect is not sufficient, and if added excessively, the toughness is deteriorated, so 0.003 to 0.100% or less. Al is sol. Al.
B:0.0005%以下
Bは不純物として鋼中に含有されることがあり、特に0.0005%以上含まれていると、熱間圧延時にγ粒界に偏析し、粒界からのフェライト変態を抑制する働きをする。本願では、後述するように、微細γ粒をさらにγ+αの2相域にて圧延することで圧延中に変態生成するフェライトをも微細化しDWTT特性の向上を図るものであるから、過剰のBが存在するとこの効果が十分得られなくなるため、Bの上限を0.0005%とする。
B: 0.0005% or less B may be contained in the steel as an impurity. In particular, when 0.0005% or more is contained, segregates at the γ grain boundary during hot rolling, and ferrite transformation from the grain boundary. It works to suppress. In the present application, as will be described later, since the fine γ grains are further rolled in a two-phase region of γ + α, the ferrite that is transformed during rolling is also refined to improve the DWTT characteristics. If it exists, this effect cannot be obtained sufficiently, so the upper limit of B is made 0.0005%.
Nb:0.005〜0.1%
Nbはオーステナイト未再結晶温度域を高温側に拡大する働きをするため、後述するオーステナイト未再結晶温度域での40%以上の累計圧下率を十分確保するために、少なくとも0.005%以上添加する必要がある。また、同時に焼入れ性向上効果があり、加速冷却後の第2相組織を変態強化するが、0.1%以上添加されていると第2相組織が硬くなりすぎて、母材シャルピー吸収エネルギーの低下をもたらすため、0.005〜0.1%とする。
Nb: 0.005 to 0.1%
Since Nb functions to expand the austenite non-recrystallization temperature range to the high temperature side, at least 0.005% or more is added in order to sufficiently secure a cumulative reduction ratio of 40% or more in the austenite non-recrystallization temperature range described later. There is a need to. At the same time, it has an effect of improving hardenability and strengthens the transformation of the second phase structure after accelerated cooling. However, when 0.1% or more is added, the second phase structure becomes too hard and the Charpy absorbed energy of the base material is increased. In order to bring about a fall, it is made 0.005 to 0.1%.
Ti:0.005〜0.05%
Tiは鋼中で窒化物を形成し、特に0.005%以上添加されていると、窒化物のピンニング効果でγ粒の粗大化を防ぐ働きをするため母材の靭性確保や溶接熱影響部での靭性確保の観点で有効である。0.05%を超えて添加すると靭性の著しい低下をもたらすため、0.005〜0.05%とする。
Ti: 0.005 to 0.05%
Ti forms nitrides in steel, and when 0.005% or more is added, it works to prevent the coarsening of γ grains due to the pinning effect of the nitride, so that the toughness of the base metal is secured and the heat affected zone of the weld This is effective from the viewpoint of securing toughness. If added over 0.05%, the toughness is significantly reduced, so 0.005 to 0.05%.
本発明では、強度調整の観点からCu,Ni,Cr,Mo,Vの1種または2種以上を選択元素として添加する。 In the present invention, one or more of Cu, Ni, Cr, Mo, and V are added as selective elements from the viewpoint of strength adjustment.
Cu:0.01〜1.0%
Cuは強度を増加させるための元素で0.01%以上でその効果を発揮し、1.0%を超えて添加すると熱間脆性により鋼板表面の性状を劣化するため、添加する場合は、0.01〜1.0%とする。
Cu: 0.01 to 1.0%
Cu is an element for increasing the strength and exerts its effect at 0.01% or more, and when added over 1.0%, the steel sheet surface properties deteriorate due to hot brittleness. 0.01 to 1.0%.
Ni:0.01〜2.0%
Niは母材の強度を増加させつつ靭性も向上させることが可能であり、0.01%以上で効果を発揮するが、2.0%を超えると効果が飽和し経済的を損なうため、添加する場合は、0.01〜2.0%とする。
Ni: 0.01 to 2.0%
Ni can improve the toughness while increasing the strength of the base metal, and is effective at 0.01% or more. However, if it exceeds 2.0%, the effect is saturated and the economy is impaired. When it does, it is made 0.01 to 2.0%.
Cr:0.01〜1.0%
Crは強度を増加するのに有効であり、0.01%以上でその効果を発揮し、1.0%を越えて添加すると靭性を劣化させるため、添加する場合は、0.01〜1.0%とする。
Cr: 0.01 to 1.0%
Cr is effective for increasing the strength, exhibits its effect at 0.01% or more, and deteriorates toughness when added over 1.0%. 0%.
Mo:0.01〜1.0%
Moは強度を増加するのに有効であり、0.01%以上でその効果を発揮し、1.0%を越えて添加すると著しく靭性を劣化させるとともに経済性を損なうため、添加する場合は、0.01〜1.0%とする。
Mo: 0.01 to 1.0%
Mo is effective for increasing the strength, exerts its effect at 0.01% or more, and adding over 1.0% significantly deteriorates toughness and impairs economy. 0.01 to 1.0%.
V:0.003〜0.1%
Vは炭化物形成により強度を増加するのに有効であり、0.003%以上の添加で効果を発揮する。ただし、0.1%を越えると過剰な炭化物量となり靭性の低下を招くおそれがあるため、添加する場合は、0.003〜0.1%とする。
V: 0.003-0.1%
V is effective in increasing the strength due to carbide formation, and exhibits an effect when added in an amount of 0.003% or more. However, if it exceeds 0.1%, the amount of carbide becomes excessive and the toughness may be lowered. Therefore, when added, the content is made 0.003 to 0.1%.
Ceq(%):0.36〜0.60
Ceq(%)=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5)、各元素は含有量(質量%)とし、板厚25mmの鋼板でAPIX70以上の強度を達成するため、0.36以上とする。一方、Ceq(%)が0.60を超えるような添加を行った場合、溶接性が劣化し特にパイプの円周溶接時の低温割れを防止できなくなるため、上限を0.60とする。尚、添加しない元素は0とする。
Ceq (%): 0.36 to 0.60
Ceq (%) = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5), each element is a content (mass%), and a steel plate having a thickness of 25 mm achieves a strength of not less than APIX 70, 0.36 or more And On the other hand, if the addition is performed such that Ceq (%) exceeds 0.60, the weldability deteriorates, and in particular, it becomes impossible to prevent low-temperature cracking during circumferential welding of the pipe, so the upper limit is set to 0.60. The element not added is 0.
本発明の基本成分組成は以上であるが、必要に応じて、Ca:0.0001〜0.0060%、Mg:0.0001〜0.0060%、REM:0.0001〜0.0200%、Zr:0.0001〜0.0100%のうちから選ばれる1種または2種以上を含有することができる。 The basic component composition of the present invention is as described above, but if necessary, Ca: 0.0001 to 0.0060%, Mg: 0.0001 to 0.0060%, REM: 0.0001 to 0.0200%, Zr: One or more selected from 0.0001 to 0.0100% can be contained.
Ca,Mg,REM,Zrは鋼中のSを固定して鋼板の靭性を向上させる働きがあり、0.0001%以上の添加で効果がある。一方、それぞれ0.0060%、0.0060%、0.0200%、0.0100%を越えて添加すると鋼中の介在物量が増加し靭性を劣化させるようになる。従って、添加する場合は、Ca:0.0001〜0.0060%、Mg:0.0001〜0.0060%、REM:0.0001〜0.0200%、Zr:0.0001〜0.0100%とする。 Ca, Mg, REM, and Zr have a function of fixing S in steel and improving the toughness of the steel sheet, and are effective when added in an amount of 0.0001% or more. On the other hand, if the addition exceeds 0.0060%, 0.0060%, 0.0200%, and 0.0100%, the amount of inclusions in the steel increases and the toughness deteriorates. Therefore, when added, Ca: 0.0001 to 0.0060%, Mg: 0.0001 to 0.0060%, REM: 0.0001 to 0.0200%, Zr: 0.0001 to 0.0100% And
上記した成分以外の残部は、Feおよび不可避的不純物からなる。 The balance other than the components described above consists of Fe and inevitable impurities.
[製造条件]
上記組成を有する溶鋼を、転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブ等の鋼素材とする。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。その後、所望の形状に特定の条件で圧延し、圧延中または圧延後に、特定の条件で冷却および加熱を行う。
[Production conditions]
The molten steel having the above composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and is made into a steel material such as a slab by a conventional method using a continuous casting method or an ingot-bundling method. The melting method and the casting method are not limited to the methods described above. Thereafter, the sheet is rolled into a desired shape under specific conditions, and cooled or heated under specific conditions during or after rolling.
1.スラブ加熱
鋳造後、スラブ温度が室温まで低下してからあるいは高温の状態で、加熱炉に挿入して1000℃以上に加熱する。
1. After slab heat casting, after the slab temperature is lowered to room temperature or in a high temperature state, it is inserted into a heating furnace and heated to 1000 ° C. or higher.
加熱温度は、靭性確保の観点からはより低温が好ましいが、1000℃未満ではスラブ厚中央の未厚着ザクが残存して1/2t性能を劣化させる可能性があり、また、Nb,Vなどを十分に固溶させるため、1000℃以上とする。 The heating temperature is preferably lower from the viewpoint of securing toughness, but if it is less than 1000 ° C., there is a possibility that unthickened zaku in the middle of the slab thickness may remain and deteriorate the 1 / 2t performance, and Nb, V, etc. In order to dissolve sufficiently, the temperature is set to 1000 ° C. or higher.
一方、1250℃を超える温度に加熱すると初期γ粒が粗大化し、靭性が劣化するので、上限を1250℃とする。 On the other hand, when heated to a temperature exceeding 1250 ° C., the initial γ grains become coarse and the toughness deteriorates, so the upper limit is set to 1250 ° C.
圧延は、Ar3以上で行う圧延(1次圧延)と、γ+αの2相域で行う圧延(2次圧延)とし、1次圧延後、急速加熱して再度、再結晶温度域まで加熱後、冷却して、2次圧延を行う。 The rolling is rolling performed at Ar 3 or higher (primary rolling) and rolling performed in a two-phase region of γ + α (secondary rolling). After the primary rolling, rapid heating and again heating to the recrystallization temperature range, Cool and perform secondary rolling.
2.1次圧延
1次圧延は、スラブ等の鋼素材を、所望の形状とするために行い、再結晶域温度で1パス以上の圧下を行い、引き続き、未再結晶温度域で累積圧下率40%以上の圧延を行う。
2.1 Primary rolling Primary rolling is performed to make a steel material such as a slab into a desired shape, and the rolling is performed for one pass or more at the recrystallization temperature, and then the cumulative rolling reduction is performed at the non-recrystallization temperature. Roll 40% or more.
再結晶域圧延は加熱時のγ粒をある程度まで均一微細化するのに必要であり、1パス以上、好ましくは累積で20%以上の圧下を行う。 Recrystallization zone rolling is necessary to uniformly refine the γ grains during heating to a certain extent, and the reduction is performed for one pass or more, preferably 20% or more cumulatively.
未再結晶域圧延は、圧下率が小さいと、その後に再結晶域まで再加熱する急速加熱後のミクロ組織微細化効果が発揮できないため、40%以上確保する。圧下率は高い方が好ましいが、工業的には80%程度が上限となる。 In the non-recrystallized zone rolling, if the rolling reduction is small, the effect of refining the microstructure after rapid heating that reheats to the recrystallized zone after that cannot be exhibited, so 40% or more is secured. A higher rolling reduction is preferable, but about 80% is the upper limit industrially.
また、再結晶域圧延後、未再結晶域圧延開始温度まで、自然放冷(空冷)で待ってもよいが、再結晶域圧延中あるいは圧延後に水冷し、未再結晶域圧延開始までの待ち時間を短縮することが、効率的にも、また、再結晶γの成長を抑制する効果の点からも好ましく、微細化により有効である。 In addition, after recrystallization zone rolling, it may wait by natural cooling (air cooling) up to the start temperature of non-recrystallization zone rolling, but it may be cooled by water during or after recrystallization zone rolling and wait until the start of non-recrystallization zone rolling. Shortening the time is preferable from the viewpoint of efficiency and the effect of suppressing the growth of recrystallization γ, and is effective by miniaturization.
3.1次圧延後急速加熱
未再結晶域圧延の後、Ar3変態点以上の温度域から、再結晶温度域までを2℃/sec以上の昇温速度で加熱する。加熱方法は特に限定しないが、高周波加熱装置が好ましい。加熱後、特に保持などは行う必要はない。
3. After primary rolling, after rapid rolling and non-recrystallization zone rolling, the temperature range from the Ar 3 transformation point to the recrystallization temperature range is heated at a rate of temperature rise of 2 ° C./sec or more. The heating method is not particularly limited, but a high-frequency heating device is preferable. There is no need to perform holding or the like after heating.
加熱開始温度がAr3変態点を下回ると、フェライト変態が起こり、再加熱時に逆変態によりγは微細化される。しかし、その後の加熱時の加熱温度代が大きくなり効率および経済性が損なわれるとともに、Nb炭化物などの析出・粗大化が促進され、混粒組織となりやすいとともに靭性低下の原因となる。 When the heating start temperature is lower than the Ar 3 transformation point, ferrite transformation occurs, and γ is refined by reverse transformation during reheating. However, the heating temperature cost at the time of subsequent heating is increased, efficiency and economy are impaired, precipitation and coarsening of Nb carbide and the like are promoted, and a mixed grain structure is easily formed and toughness is reduced.
従って、Ar3変態点以上の温度から昇温を開始する。加熱温度は再結晶温度以上が必要で、再結晶温度+100℃以下の低温が好ましい。温度が高くなるとγ粒が成長し、γ粒の微細化効果が得られないためである。 Therefore, the temperature rise is started from a temperature equal to or higher than the Ar 3 transformation point. The heating temperature needs to be higher than the recrystallization temperature, and is preferably a low temperature of the recrystallization temperature + 100 ° C. or lower. This is because γ grains grow when the temperature increases, and the effect of refinement of γ grains cannot be obtained.
昇温速度は、2℃/sec以上とする。2℃/sec以下では、再結晶の前に加工組織の回復や、NbやTiなどの炭化物の加工誘起析出が起こり、靭性が劣化する。加熱後の保持は行ってもよいが、再結晶が完了するとその後粒成長が起こるため、必要以上の保持は行うべきではなく、短時間が好ましい。 The heating rate is 2 ° C./sec or more. If it is 2 ° C./sec or less, recovery of the processed structure or processing-induced precipitation of carbides such as Nb and Ti occurs before recrystallization, and toughness deteriorates. Although holding after heating may be performed, grain re-growth occurs after completion of recrystallization. Therefore, holding more than necessary should not be performed, and a short time is preferable.
スラブ加熱温度で初期γ粒を制御した上で未再結晶域圧延の累積圧延率を確保し、再結晶温度域に急速に再加熱することにより、γの微細化が達成されるため、平均粒径15μm以下や10μm以下のγ粒が得られる。本発明では再結晶後のγ粒の平均粒径を再結晶後平均γ粒径と称する。 By controlling the initial γ grains at the slab heating temperature and securing the cumulative rolling rate of non-recrystallized zone rolling and rapidly reheating to the recrystallization temperature range, the refinement of γ is achieved. Γ grains having a diameter of 15 μm or less or 10 μm or less are obtained. In the present invention, the average grain size of γ grains after recrystallization is referred to as the average γ grain size after recrystallization.
4.2次圧延
再結晶域に急速加熱後、γ+αの2相域まで冷却して行う圧延(2次圧延)は、累積圧下率15%以上とする。まず、再結晶域までの急速加熱によって15μm以下までγ粒が細粒化した鋼板を、γ+αの2相域に空冷または水冷してから圧延を再開するが、圧延を再開する温度がAr3変態点を上回るの場合、十分な2相域圧延を行うことができず、逆に、圧延を再開する温度がAr3変態点−50℃を下回る場合、圧延荷重が著しく上昇して圧延できなくなることから、圧延を再開する温度を、Ar3変態点以下、Ar3変態点−50℃以上とする。その後、累計で少なくとも15%以上の圧下率の圧延を行うと、圧延中に変態生成したフェライト粒が微細化され、DWTT特性が向上する。
4. Secondary rolling Rolling (secondary rolling) performed after rapid heating in the recrystallization region and cooling to the two-phase region of γ + α is set to a cumulative reduction ratio of 15% or more. First, the steel sheet with γ grains refined to 15 μm or less by rapid heating to the recrystallization zone is air-cooled or water-cooled to the two-phase zone of γ + α, and then rolling is resumed, but the temperature at which rolling is resumed is Ar 3 transformation. When the temperature exceeds the point, sufficient two-phase region rolling cannot be performed, and conversely, when the temperature at which the rolling is resumed is lower than the Ar 3 transformation point −50 ° C., the rolling load is remarkably increased and the rolling cannot be performed. Therefore, the temperature at which the rolling is restarted is set to Ar 3 transformation point or lower and Ar 3 transformation point −50 ° C. or higher. Thereafter, when rolling at a rolling reduction of at least 15% in total is performed, the ferrite grains transformed during the rolling are refined and the DWTT characteristics are improved.
累積圧下率は、板厚中央にわたりフェライト粒の微細化効果を得るため、20%以上とすることが好ましい。 The cumulative rolling reduction is preferably 20% or more in order to obtain the effect of refining ferrite grains over the center of the plate thickness.
5.加速冷却
加速冷却は、APIX70以上の強度を確保するため、第2相をベイナイト組織化することが目的で、冷却開始温度をAr1変態点以上、冷却停止温度を600℃以下とする。Ar1変態点以下の温度から冷却開始した場合、圧延終了から加速冷却開始までの間に、圧延で微細化されないフェライトが変態生成し、これらのフェライトは十分細粒化されないことからDWTT特性が劣化する。
5. In the accelerated cooling and accelerated cooling, the second phase is formed into a bainite structure in order to secure the strength of APIX 70 or higher, and the cooling start temperature is set to the Ar 1 transformation point or higher and the cooling stop temperature is set to 600 ° C. or lower. When cooling is started from a temperature below the Ar 1 transformation point, ferrite that is not refined by rolling is transformed between the end of rolling and the start of accelerated cooling, and these ferrites are not sufficiently refined so that the DWTT characteristics deteriorate. To do.
一方、冷却停止温度が600℃以上の場合、第2相がパーライトとなり、APIX70以上の強度を確保することが難しくなる。冷却速度は、10℃/secの強冷却が好ましい。 On the other hand, when the cooling stop temperature is 600 ° C. or higher, the second phase becomes pearlite, and it becomes difficult to ensure the strength of APIX 70 or higher. The cooling rate is preferably strong cooling of 10 ° C./sec.
以上の説明において、鋼材温度は、鋼材の表面と中心部の平均温度とする。再結晶温度やAr3、Ar1変態点は成分によって異なり、本願で規定する鋼の化学組成の範囲内では、再結晶温度(再結晶を起こす限界温度)は概ね800〜950℃の範囲に、Ar3変態点は概ね700〜800℃の範囲に、Ar1変態点は概ね600〜700℃の範囲にある。 In the above description, the steel material temperature is the average temperature of the surface and the center of the steel material. The recrystallization temperature and the Ar 3 , Ar 1 transformation point vary depending on the components, and within the range of the chemical composition of the steel specified in the present application, the recrystallization temperature (the limit temperature causing recrystallization) is approximately in the range of 800 to 950 ° C. The Ar 3 transformation point is approximately in the range of 700 to 800 ° C., and the Ar 1 transformation point is approximately in the range of 600 to 700 ° C.
表1に示す組成の鋳片を、表2に示す熱間圧延条件により20〜38mm厚の厚鋼板とした。 The slab having the composition shown in Table 1 was formed into a thick steel plate having a thickness of 20 to 38 mm according to the hot rolling conditions shown in Table 2.
表1において、鋼種No.G,H,I,J,K,Lの供試鋼は成分組成のいずれかが本発明範囲外となっている。 In Table 1, the steel type No. One of the component compositions of the G, H, I, J, K, and L test steels is outside the scope of the present invention.
得られた厚鋼板について、API−5Lに準拠した全厚引張試験片を採取し、引張試験を実施し、降伏強度、引張強度および降伏比(降伏強度と引張強度の比)を求めた。 About the obtained thick steel plate, the full thickness tensile test piece based on API-5L was extract | collected, the tensile test was implemented, and the yield strength, the tensile strength, and the yield ratio (ratio of yield strength and tensile strength) were calculated | required.
シャルピ−衝撃試験は、板厚方向1/4の位置からJIS Z 2202(1998改訂版)に準拠したVノッチ標準寸法のシャルピ−衝撃試験片を採取して、JIS Z 2242(1998改訂版)に準拠して−40℃でシャルピー衝撃試験を実施し、吸収エネルギーを求めた。 For Charpy impact test, a V-notch standard size Charpy impact test piece conforming to JIS Z 2202 (1998 revised version) was sampled from the position in the thickness direction 1/4, and JIS Z 2242 (1998 revised version) was obtained. In accordance with the Charpy impact test at -40 ° C., the absorbed energy was determined.
また、API−5Lに準拠したDWTT試験片を採取し、−40℃で試験を行い、SA値を求めた。 Moreover, the DWTT test piece based on API-5L was extract | collected, the test was performed at -40 degreeC, and SA value was calculated | required.
未再結晶域圧延後、再結晶後平均γ粒径は、表2の圧延条件のうち、再加熱までの工程は同一で、再加熱後10秒の保持時間経過後、水焼入した鋼板の一部からγ粒径測定用小型圧延試料を採取した。 After the non-recrystallized zone rolling, the average γ grain size after recrystallization is the same as the rolling conditions in Table 2 until the reheating, and after the holding time of 10 seconds after the reheating, A small rolled sample for gamma particle size measurement was taken from a part.
当該試料の板厚1/4位置よりミクロ組織観察用試料を採取し、試料の板厚方向断面を鏡面研磨ののちピクリン酸エッチング処理を行ってから、光学顕微鏡を用いて400〜1000倍の範囲でγ粒界が見える写真を撮影し、画像解析にてその平均粒径を算出した。 A sample for microstructural observation is taken from the position of the plate thickness ¼ of the sample, and the plate thickness direction cross section of the sample is mirror-polished and then subjected to picric acid etching treatment, and then in a range of 400 to 1000 times using an optical microscope. Then, a photograph showing the γ grain boundary was taken, and the average particle size was calculated by image analysis.
表3に、調査した厚鋼板の再結晶後平均γ粒径および機械的性質を示す。 Table 3 shows the average γ grain size and mechanical properties after recrystallization of the investigated thick steel plates.
本実施例において、本発明範囲は、APIX70の下限降伏強度485MPaおよび下限引張強度565MPa以上、−40℃におけるシャルピー吸収エネルギーが300J以上かつDWTT試験で得られた延性破面率SA値が90%以上とする。 In this example, the range of the present invention is that the lower limit yield strength of APIX70 is 485 MPa and the lower limit tensile strength is 565 MPa or more, the Charpy absorbed energy at −40 ° C. is 300 J or more, and the ductile fracture surface area SA value obtained in the DWTT test is 90% or more. And
本発明に適合した発明例No.1〜9は、いずれも再結晶後平均γ粒径が15μm以下となっており、かつ、APIX70の下限降伏強度485MPaおよび下限引張強度565MPaを上回る高強度を達成しており、さらに、−40℃におけるシャルピー吸収エネルギーが300J以上かつDWTT試験で得られた延性破面率SA値が90%以上と優れた靭性が認められた。APIX70はAPI−5L X70を指すものとする。 Invention Example No. 1 suitable for the present invention. Nos. 1 to 9 all have an average γ grain size of 15 μm or less after recrystallization, and have achieved high strength exceeding the lower limit yield strength of 485 MPa and the lower limit tensile strength of 565 MPa of APIX70, and further −40 ° C. Excellent toughness with a Charpy absorbed energy of 300 J or more and a ductile fracture surface area SA value obtained by a DWTT test of 90% or more was recognized. APIX70 shall refer to API-5L X70.
一方、比較例10は、鋼の化学組成は適合しているものの、熱間圧延時の未再結晶域圧延後急速再加熱を行わずに引き続きγ+αの2相域圧延を実施し、以降加速冷却を行ったため、再結晶後平均γ粒径が本発明の範囲を超える粗いサイズとなっており、その結果シャルピー吸収エネルギーおよびDWTT試験のSA値が低い値となった。 On the other hand, in Comparative Example 10, although the chemical composition of the steel is suitable, the γ + α two-phase region rolling is subsequently performed without performing the rapid reheating after the non-recrystallization region rolling at the time of hot rolling, and thereafter accelerated cooling. As a result, the average γ grain size after recrystallization exceeded the range of the present invention. As a result, the Charpy absorbed energy and the SA value of the DWTT test were low.
比較例11は、未再結晶域圧延後の再加熱における加熱速度が本発明の範囲より遅く、再加熱中にγ粒が一部回復現象を起こし、再加熱時の再結晶が不十分であったため、再結晶後平均γ粒が粗く、シャルピー吸収エネルギーおよびDWTT試験のSA値が低い値となった。 In Comparative Example 11, the heating rate in the reheating after the non-recrystallization zone rolling was slower than the range of the present invention, and the γ grains partially recovered during the reheating, and the recrystallization during the reheating was insufficient. Therefore, the average γ grains after recrystallization were coarse, and Charpy absorbed energy and the SA value of the DWTT test were low.
比較例12は、未再結晶域圧延時の累計圧下率が本発明の下限を下回り、再加熱時にγが再結晶するのに十分な加工が加わらなかったため、再結晶後平均γ粒が粗く、同様にシャルピー吸収エネルギーおよびDWTT試験のSA値が低い値となった。 In Comparative Example 12, the cumulative reduction ratio during rolling in the non-recrystallized zone was below the lower limit of the present invention, and sufficient processing was not performed to recrystallize during reheating, so the average γ grain after recrystallization was coarse, Similarly, the Charpy absorbed energy and the SA value of the DWTT test were low.
一方、比較例13は、再加熱処理後に実施した2相域圧延時の累計圧下率が本発明の下限を下回っていたため、再結晶後平均γ粒は細かいものの、その後のフェライトの微細化が十分でなく、DWTT試験のSA値が低い値となった。 On the other hand, in Comparative Example 13, since the cumulative rolling reduction during the two-phase rolling performed after the reheating treatment was below the lower limit of the present invention, the average γ grains after recrystallization were fine, but subsequent refinement of ferrite was sufficient In addition, the SA value of the DWTT test was a low value.
比較例14は、加速冷却の冷却停止温度が本発明の上限を上回っていたため、第2相のベイナイト化が十分でなく、APIX70の強度の下限に届かなかった。 In Comparative Example 14, the cooling stop temperature of the accelerated cooling exceeded the upper limit of the present invention, so that the second phase was not sufficiently bainite, and did not reach the lower limit of the strength of APIX70.
比較例15は、鋼のC量が本発明の下限を下回り、その結果Ceq値の下限も下回っていたため、同様に強度が低かった。 In Comparative Example 15, the steel C content was lower than the lower limit of the present invention, and as a result, the lower limit of the Ceq value was also lower, so the strength was similarly low.
比較例16は、C量が本発明の上限を上回っていたため、APIX70以上の強度を示したものの、シャルピー吸収エネルギーが著しく低かった。 In Comparative Example 16, since the C amount exceeded the upper limit of the present invention, the strength of APIX70 or higher was exhibited, but the Charpy absorbed energy was extremely low.
比較例17は、鋼のSi量が本発明の上限を上回っていたためシャルピー吸収エネルギーが低い値を示した。また、比較例18は、鋼のMn量が本発明の上限を上回っていたため、DWTT試験のSA値が著しく低かった。 In Comparative Example 17, since the amount of Si in the steel exceeded the upper limit of the present invention, the Charpy absorbed energy was low. Moreover, since the Mn amount of steel exceeded the upper limit of this invention, the SA value of the DWTT test was remarkably low in the comparative example 18.
比較例19は、鋼のB量が本発明の上限を上回っていたため、フェライト変態が抑制されて、2相域での圧延時にフェライトの微細化を十分に行うことができず、DWTT試験のSA値が低い値となった。 In Comparative Example 19, since the amount of B in the steel exceeded the upper limit of the present invention, the ferrite transformation was suppressed, and ferrite could not be sufficiently refined during rolling in the two-phase region, and the SA of the DWTT test The value was low.
比較例20は、鋼のNb量が本発明の下限を下回っていたため、オーステナイト未再結晶温度域が狭く、累計圧下率を十分行っていても、圧延中に回復現象がおきてしまい、再結晶域への再加熱時のγ粒再結晶が十分でなく、粗い再結晶後平均γ粒であったため、シャルピー吸収エネルギーおよびDWTT試験のSA値が低い値となった。 In Comparative Example 20, since the Nb content of the steel was below the lower limit of the present invention, even when the austenite non-recrystallization temperature range was narrow and the cumulative rolling reduction was sufficiently performed, a recovery phenomenon occurred during rolling, and recrystallization occurred. The γ-grain recrystallization during reheating to the region was not sufficient, and the average γ-grain after coarse recrystallization resulted in low Charpy absorbed energy and SA value in the DWTT test.
Claims (5)
Si:0.01〜0.50%、
Mn:1.0〜3.0%、
P:0.030%以下、
S:0.010%以下、
sol.Al:0.003〜0.100%、
B:0.0005%以下、
Nb:0.005〜0.1%、
Ti:0.005〜0.05%
を含有し、さらに、
Cu:0.01〜1.0%、
Ni:0.01〜2.0%、
Cr:0.01〜1.0%、
Mo:0.01〜1.0%、
V:0.003〜0.1%
のうちから選ばれる1種または2種以上を含有し、
さらに、下記(1)式で計算されるCeq値が0.36〜0.60であり、
残部がFeおよび不可避的不純物からなる組成を有する鋼素材を、
1000℃以上1250℃以下に加熱し、再結晶温度域において圧延後、未再結晶温度域において累計圧下率40%以上の圧延を行う一次圧延を実施し、その後、Ar3変態点以上の温度から再結晶温度以上に2℃/sec以上の昇温速度で加熱後、Ar3変態点以下Ar3変態点−50℃以上の温度に冷却してから圧延を再開し、2相温度域において累計圧下率15%以上の圧延を行う二次圧延を実施し、さらに、Ar1変態点以上の温度から600℃以下に加速冷却する工程を有することを特徴とする厚肉高強度高靭性鋼管素材の製造方法。
Ceq(%)=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (1)
各元素は質量%での値とする。
% By mass, C: 0.03 to 0.09%,
Si: 0.01 to 0.50%,
Mn: 1.0 to 3.0%
P: 0.030% or less,
S: 0.010% or less,
sol. Al: 0.003 to 0.100%,
B: 0.0005% or less,
Nb: 0.005 to 0.1%,
Ti: 0.005 to 0.05%
In addition,
Cu: 0.01 to 1.0%,
Ni: 0.01 to 2.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01 to 1.0%,
V: 0.003-0.1%
1 type or 2 types or more chosen from among,
Furthermore, the Ceq value calculated by the following equation (1) is 0.36 to 0.60,
A steel material having a composition comprising the balance of Fe and inevitable impurities,
Heat to 1000 ° C. or more and 1250 ° C. or less, and after rolling in the recrystallization temperature range, perform primary rolling for rolling at a cumulative reduction ratio of 40% or more in the non-recrystallization temperature range, and then from the temperature above the Ar 3 transformation point After heating at a temperature increase rate of 2 ° C / sec or more above the recrystallization temperature, after cooling to a temperature not higher than Ar 3 transformation point -50 ° C or higher after Ar 3 transformation point, rolling is resumed, and cumulative reduction is performed in the two-phase temperature range. Production of a thick-walled, high-strength, high-toughness steel pipe material characterized by having a step of performing secondary rolling for rolling at a rate of 15% or more, and further accelerated cooling from a temperature above the Ar 1 transformation point to 600 ° C. Method.
Ceq (%) = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
Each element is a value in mass%.
Ca:0.0001〜0.0060%、
Mg:0.0001〜0.0060%、
REM:0.0001〜0.0200%、
Zr:0.0001〜0.0100%
のうちから選ばれる1種または2種以上を含有することを特徴とする、請求項1記載の厚肉高強度高靭性鋼管素材の製造方法。 The steel material is further
Ca: 0.0001 to 0.0060%,
Mg: 0.0001 to 0.0060%,
REM: 0.0001-0.0200%,
Zr: 0.0001 to 0.0100%
The method for producing a thick-walled, high-strength, high-toughness steel pipe material according to claim 1, comprising one or more selected from among the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007301777A JP5157386B2 (en) | 2007-11-21 | 2007-11-21 | Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007301777A JP5157386B2 (en) | 2007-11-21 | 2007-11-21 | Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009127071A JP2009127071A (en) | 2009-06-11 |
JP5157386B2 true JP5157386B2 (en) | 2013-03-06 |
Family
ID=40818306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007301777A Expired - Fee Related JP5157386B2 (en) | 2007-11-21 | 2007-11-21 | Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5157386B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5157387B2 (en) * | 2007-11-21 | 2013-03-06 | Jfeスチール株式会社 | Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability |
JP5759109B2 (en) * | 2010-03-09 | 2015-08-05 | 株式会社神戸製鋼所 | Steel material excellent in brittle crack propagation stop property and method for producing the same |
JP5510193B2 (en) * | 2010-08-30 | 2014-06-04 | Jfeスチール株式会社 | Manufacturing method of welded steel pipe with excellent weld properties |
CA2976750C (en) | 2015-03-31 | 2020-08-18 | Jfe Steel Corporation | High-strength, high-toughness steel plate, and method for producing the same |
JP6572963B2 (en) | 2017-12-25 | 2019-09-11 | Jfeスチール株式会社 | Hot-rolled steel sheet and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63223125A (en) * | 1987-03-10 | 1988-09-16 | Sumitomo Metal Ind Ltd | Manufacture of high-tensile steel plate with high-toughness |
JP3003483B2 (en) * | 1993-12-01 | 2000-01-31 | 日本鋼管株式会社 | Steel plate manufacturing method |
JP5157387B2 (en) * | 2007-11-21 | 2013-03-06 | Jfeスチール株式会社 | Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability |
-
2007
- 2007-11-21 JP JP2007301777A patent/JP5157386B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009127071A (en) | 2009-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4853575B2 (en) | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same | |
JP4358900B1 (en) | High-strength steel sheet and steel pipe excellent in low-temperature toughness and method for producing them | |
JP5348386B2 (en) | Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method | |
JP4897127B2 (en) | Manufacturing method of high strength steel sheet for welded structure | |
JP5146051B2 (en) | Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same | |
WO2013145770A1 (en) | Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same | |
JP4882251B2 (en) | Manufacturing method of high strength and tough steel sheet | |
JP6123972B2 (en) | High-strength and high-toughness steel plate and method for producing the same | |
JP2011094231A (en) | Steel sheet having low yield ratio, high strength and high toughness, and method for manufacturing the same | |
JP2009270194A (en) | PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS | |
JP2007119884A (en) | Method for producing high strength and high toughness steel material excellent in strength at intermediate temperature zone | |
JP2006291349A (en) | Line pipe steel sheet having high deformation performance and its manufacturing method | |
JP2009127069A (en) | High toughness steel plate for line pipe, and its manufacturing method | |
JP2006307324A (en) | High-strength and high-toughness steel plate excellent in resistance to crack by cutting and its manufacturing method | |
JP2009091633A (en) | High strength steel excellent in deformable performance, and its producing method | |
JP2010222680A (en) | Method for manufacturing high strength high toughness steel excellent in workability | |
JP5477089B2 (en) | Manufacturing method of high strength and high toughness steel | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JP5157386B2 (en) | Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material | |
JP2008075107A (en) | Method for manufacturing high-strength/high-toughness steel | |
JP4205922B2 (en) | High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same | |
JP5157387B2 (en) | Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability | |
CN111542621B (en) | High-strength high-toughness hot-rolled steel sheet and method for producing same | |
JP5439889B2 (en) | Thick steel plate for thick and high toughness steel pipe material and method for producing the same | |
JP6624145B2 (en) | Manufacturing method of high strength and high toughness thick steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100922 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5157386 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151221 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |