JP5348386B2 - Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method - Google Patents

Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method Download PDF

Info

Publication number
JP5348386B2
JP5348386B2 JP2008273905A JP2008273905A JP5348386B2 JP 5348386 B2 JP5348386 B2 JP 5348386B2 JP 2008273905 A JP2008273905 A JP 2008273905A JP 2008273905 A JP2008273905 A JP 2008273905A JP 5348386 B2 JP5348386 B2 JP 5348386B2
Authority
JP
Japan
Prior art keywords
bainite
steel
plate thickness
low yield
vickers hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008273905A
Other languages
Japanese (ja)
Other versions
JP2010100903A (en
Inventor
光浩 岡津
純二 嶋村
茂 遠藤
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008273905A priority Critical patent/JP5348386B2/en
Publication of JP2010100903A publication Critical patent/JP2010100903A/en
Application granted granted Critical
Publication of JP5348386B2 publication Critical patent/JP5348386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel plate which has a low yield ratio and excellent brittle crack generation resistance, and is suitable for a high strength line pipe having a pipe thickness of &ge;20 mm and a tensile strength of &gt;600 MPa, and to provide a method for producing the same. <P>SOLUTION: The steel is composed of a Cu-Ni-Nb-Ti system as the fundamental component system and, as necessary, comprises one or two kinds selected from Mo, Cr, V, B, Ca, rare earth metals, Zr and Mg, and the balance Fe with inevitable impurities, and in which the Vickers hardness Hvm of the central part in the plate thickness part satisfies Hvm&le;1.05 Hva to the average Hva of the Vickers hardness in the plate thickness direction, a microstructure is essentially composed of bainite, and insular martensite is dispersed in the bainite at an area ratio of 5 to 15% as a second phase. The steel having the above composition is reheated to a specified temperature, is subjected to hot rolling including a cumulative draft of &ge;30% in the temperature range of &le;1,000 to &ge;950&deg;C, is subjected to accelerated cooling after the completion of the rolling, is reheated to a specified temperature, and is air-cooled. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、厚肉高張力鋼板およびその製造方法に関し、管厚20mm以上で、引張強度600MPaを超える高強度ラインパイプ用として好適な、降伏比が80%以下の優れた変形能と母材CTOD(Crack Tip Open Displacement)試験の限界開口変位量δc(mm)が試験温度−20℃で0.20mm以上と耐脆性き裂発生特性に優れるものに関する。   The present invention relates to a thick high-strength steel sheet and a method for producing the same, and is suitable for a high-strength line pipe having a pipe thickness of 20 mm or more and a tensile strength exceeding 600 MPa, and an excellent deformability with a yield ratio of 80% or less and a base material CTOD (Critical Tip Open Displacement) The critical opening displacement amount δc (mm) of the test is 0.20 mm or more at a test temperature of −20 ° C., which is excellent in brittle crack resistance.

近年、天然ガスや原油の輸送用として使用されるラインパイプは、高圧化による輸送効率の向上や薄肉化による現地溶接施工効率の向上のため、年々高強度化されている。   In recent years, line pipes used for transportation of natural gas and crude oil have been strengthened year by year in order to improve transportation efficiency by increasing pressure and to improve local welding construction efficiency by thinning.

同時に、大地震や凍土地帯における地盤変動を原因として、ラインパイプに大変形が生じても、延性亀裂発生にいたらないための高変形能の要求もなされるようになってきた。   At the same time, there has been a demand for high deformability to prevent the occurrence of ductile cracks even if large deformations occur in the line pipe due to large earthquakes and ground deformation in the frozen land zone.

高変形能の指標として、降伏強度を引張強度で割った降伏比(YR)が使われ、低YR化されるほど亀裂発生の限界歪が向上する。   As an index of high deformability, the yield ratio (YR) obtained by dividing the yield strength by the tensile strength is used, and the lower the YR, the higher the limit strain for crack generation.

鋼材のミクロ組織を軟質なフェライト相と、硬質なベイナイトやマルテンサイトなどが適度に分散した硬質相の2相組織とすることで、低YRとなることが知られており、例えば特許文献1には、上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼き入れ(Q’)を施す熱処理方法が開示されている。   It is known that a low YR is obtained by making the microstructure of a steel material a two-phase structure of a soft ferrite phase and a hard phase in which hard bainite and martensite are appropriately dispersed. Is a method for obtaining a structure in which a hard phase is appropriately dispersed in a soft phase as described above, and quenching from a two-phase region of ferrite and austenite between quenching (Q) and tempering (T) ( A heat treatment method for applying Q ′) is disclosed.

また、特許文献2には、軟質相を加工フェライトとしたフェライト+ベイナイト+マルテンサイト組織により低YR化が達成されることが開示されている。   Patent Document 2 discloses that a low YR can be achieved by a ferrite + bainite + martensite structure in which a soft phase is processed ferrite.

さらに、特許文献3には、ベイナイト中に島状マルテンサイトを分散させて低YRと高シャルピー吸収エネルギーを両立させることが開示されている。   Further, Patent Document 3 discloses that island-like martensite is dispersed in bainite to achieve both low YR and high Charpy absorbed energy.

一方、パイプラインシステムの安全化を向上させるため、操業異常が起きても母材部での脆性破壊を発生させないため、CTOD試験を実施し、高い限界開口変位量δcを備えていることを要求するケースも増えてきている。
特開昭55−97425号公報 特開平08―209291号公報 特開平2006―265577号公報
On the other hand, in order to improve the safety of the pipeline system, even if an operational abnormality occurs, it does not cause brittle fracture in the base metal part, so a CTOD test is performed and it is required to have a high limit opening displacement amount δc Increasing cases are also taking place.
JP-A-55-97425 Japanese Patent Laid-Open No. 08-209291 Japanese Patent Application Laid-Open No. 2006-265577


しかしながら、特許文献1記載の技術では多数回の熱処理を行う必要があり、生産性が低下し、製造コストが上昇する。

However, in the technique described in Patent Document 1, it is necessary to perform heat treatment a number of times, which decreases productivity and increases manufacturing cost.

特許文献2記載の技術による高靱性化は延性−脆性破面率の改善のために、フェライトの集合組織を積極的に発達させることによって得られるもので、シャルピー衝撃試験片の破面にはセパレーションが発生し、シャルピー衝撃試験での吸収エネルギー(シャルピー衝撃値)はむしろ低下する。   High toughness by the technique described in Patent Document 2 is obtained by actively developing a texture of ferrite in order to improve the ductility-brittle fracture surface ratio. The fracture surface of a Charpy impact test piece is separated. And the absorbed energy (Charpy impact value) in the Charpy impact test is rather lowered.

特許文献3記載の技術による低YRとシャルピー吸収エネルギーは両立できるものの、板厚が20mmを超えるような厚肉材における母材CTOD試験を実施した場合、限界開口変位量δc値が顕著に低下する。すなわち、特に厚肉高強度鋼において低YRと耐脆性亀裂発生特性を両立させることが困難であった。   Although low YR and Charpy absorbed energy by the technique described in Patent Document 3 can be compatible, when the base material CTOD test is performed on a thick material having a plate thickness exceeding 20 mm, the critical opening displacement amount δc value is significantly reduced. . That is, it has been difficult to achieve both low YR and brittle crack initiation characteristics particularly in thick-walled high-strength steel.

そこで、本発明は、生産性および製造コストの上昇を伴わず、高強度、低YR、および耐脆性亀裂発生特性を両立させる厚鋼板、およびその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a thick steel plate that achieves both high strength, low YR, and brittle crack resistance without increasing productivity and manufacturing cost, and a method for manufacturing the same.


発明者等はベイナイトと島状マルテンサイトの2相組織鋼板を製造するにあたり、特に厚肉化に伴い母材CTOD特性が著しく低下する原因について鋭意研究を行った。

The inventors have conducted intensive research on the cause of the remarkable decrease in the base metal CTOD characteristics as the thickness of the steel sheet is increased, particularly when manufacturing a bainite-island martensite duplex steel sheet.

その結果、偏析部のMnおよびPの濃化に伴い、板厚中央部で顕著に島状マルテンサイトが多数生成し、板厚中央部の硬さが上昇し、その部位で脆性亀裂が容易に発生しやすくなるため、母材CTOD試験における限界開口変位量δcが低下することを見出した。   As a result, with the concentration of Mn and P in the segregated part, a large number of island martensites are generated in the central part of the plate thickness, the hardness of the central part of the plate thickness is increased, and brittle cracks are easily generated at that site. Since it becomes easy to generate | occur | produce, it discovered that the limiting opening displacement amount (delta) c in a base material CTOD test fell.

さらに、ビッカース硬さ試験で得られる板厚中央部硬さが、板厚方向の硬さ平均値の1.05倍以下とすることができれば、低YR化を得るためにベイナイト組織中に島状マルテンサイトを分散させていても、脆性破壊の発生を抑制しCTOD特性が改善されることを見出した。   Furthermore, if the plate thickness central portion hardness obtained by the Vickers hardness test can be 1.05 times or less of the average hardness value in the plate thickness direction, an island shape is formed in the bainite structure in order to obtain a low YR. It has been found that even when martensite is dispersed, the occurrence of brittle fracture is suppressed and the CTOD characteristics are improved.

本発明は得られた知見を基に、更に検討を加えてなされたもので、すなわち、
1.質量%で、
C:0.04〜0.08%
Si:0.05〜0.2%
Mn:1.5〜2.0%
P≦0.006%
S≦0.0006%
Al:0.01〜0.05%
Cu:0.1〜0.7%
Ni:0.1〜1.0%
Nb:0.01〜0.06%
Ti:0.005〜0.020%
N:0.001〜0.006%
を含有し、残部Feおよび不可避的不純物からなり、
板厚中央部のビッカース硬さHvmが板厚方向のビッカース硬さの平均Hvaに対し、
Hvm≦1.05Hva
を満足し、
ミクロ組織がベイナイトの面積率が85%以上とし、第2相として島状マルテンサイトがベイナイト中に全ミクロ組織に対する面積率5〜15%で分散していることを特徴とする、
低降伏比かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板。
2.さらに、質量%で、
Mo:0.01〜1%
Cr:0.01〜1%
V:0.01〜0.1%
B:0.0005〜0.005%
の1種または2種以上を含有することを特徴とする、1記載の低降伏比かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板。
3.さらに、質量%で、
Ca:0.0005〜0.01%
REM:0.0005〜0.02%
Zr:0.0005〜0.03%
Mg:0.0005〜0.01%
の1種または2種以上を含有することを特徴とする、1または2記載の、低降伏比
かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板。
4.1乃至3のいずれか一つに記載の組成を有し、連続鋳造法にて製造された鋼片を、1000〜1100℃に再加熱後、熱間圧延を開始し、1000℃以下950℃以上の温度域で累積圧下率≧30%、950℃未満の温度域で累積圧下率≧70%となるよう圧延を行い、圧延終了後700℃以上から冷却速度20〜80℃/sで冷却を開始し、450〜650℃の温度域で冷却停止後、600〜700℃に再加熱し、空冷することを特徴とする、板厚中央部のビッカース硬さHvmが板厚方向のビッカース硬さの平均Hvaに対し、Hvm≦1.05Hvaを満足し、ミクロ組織がベイナイトの面積率が85%以上とし、第2相として島状マルテンサイトがベイナイト中に全ミクロ組織に対する面積率5〜15%で分散している低降伏比かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板の製造方法。
The present invention has been made based on the obtained knowledge and further studies, that is,
1. % By mass
C: 0.04 to 0.08%
Si: 0.05 to 0.2%
Mn: 1.5 to 2.0%
P ≦ 0.006%
S ≦ 0.0006%
Al: 0.01 to 0.05%
Cu: 0.1 to 0.7%
Ni: 0.1 to 1.0%
Nb: 0.01 to 0.06%
Ti: 0.005-0.020%
N: 0.001 to 0.006%
Comprising the balance Fe and inevitable impurities,
The Vickers hardness Hvm at the center of the plate thickness is the average Hva of the Vickers hardness in the plate thickness direction.
Hvm ≦ 1.05Hva
Satisfied,
The microstructure is characterized in that the area ratio of bainite is 85% or more, and the island-like martensite is dispersed in the bainite at an area ratio of 5 to 15% with respect to the entire microstructure as the second phase.
Thick high-tensile steel plate with low yield ratio and excellent brittle crack resistance.
2. Furthermore, in mass%,
Mo: 0.01 to 1%
Cr: 0.01 to 1%
V: 0.01 to 0.1%
B: 0.0005 to 0.005%
A thick high-tensile steel sheet having a low yield ratio and excellent brittle cracking characteristics, according to claim 1, wherein
3. Furthermore, in mass%,
Ca: 0.0005 to 0.01%
REM: 0.0005 to 0.02%
Zr: 0.0005 to 0.03%
Mg: 0.0005 to 0.01%
A thick high-tensile steel sheet having a low yield ratio and excellent brittle cracking characteristics, characterized by containing one or more of the following.
After reheating the steel slab having the composition according to any one of 4.1 to 3 and manufactured by a continuous casting method to 1000 to 1100 ° C, hot rolling is started, and 1000 ° C or less 950 Rolling is performed so that the cumulative rolling reduction is ≧ 30% in the temperature range of ℃ or higher, and the cumulative rolling reduction is ≧ 70% in the temperature range of less than 950 ° C. The Vickers hardness Hvm at the center of the plate thickness is Vickers hardness in the plate thickness direction , characterized in that after cooling is stopped in the temperature range of 450 to 650 ° C., reheating to 600 to 700 ° C. and air cooling is performed. Hvm ≦ 1.05Hva is satisfied with respect to the average Hva, and the area ratio of bainite is 85% or more in the microstructure, and the area ratio of island-like martensite in the bainite is 5 to 15% with respect to the entire microstructure. low yield ratio are dispersed in One brittle manufacturing method of cracking characteristics superior thick high tensile steel.

本発明によれば、板厚20mmを超える、80%以下の低降伏比と母材CTOD試験(試験温度ー20℃)において0.2mmを超える高い限界開口変位量δcを達成する引張強度600MPa以上の厚肉高張力鋼板の製造が可能となり、産業上極めて有用である。   According to the present invention, a tensile strength of 600 MPa or more which achieves a low yield ratio of 80% or less exceeding 20 mm and a high limit opening displacement δc exceeding 0.2 mm in the base material CTOD test (test temperature—20 ° C.). This makes it possible to produce a thick, high-strength steel sheet, which is extremely useful industrially.

本発明では成分組成、ミクロ組織および製造方法を規定する。     In the present invention, the component composition, microstructure and manufacturing method are defined.

[成分組成]%は質量%とする。   [Component composition]% is mass%.

C:0.04〜0.08%
Cは低温変態組織においては過飽和固溶することで強度上昇に寄与する。この効果を得るためには0.04%以上の添加が必要であるが、0.08%を超えて添加すると、板厚中央偏析部の島状マルテンサイトが増加し、母材CTOD特性の劣化を引き起こすため、上限を0.08%とする。
C: 0.04 to 0.08%
C contributes to an increase in strength by being supersaturated in a low temperature transformation structure. In order to obtain this effect, addition of 0.04% or more is necessary. However, if the addition exceeds 0.08%, island martensite in the center segregation portion of the plate thickness increases, and the base material CTOD characteristics deteriorate. Therefore, the upper limit is made 0.08%.

Si:0.05〜0.2%
Siは0.05%以上の添加で変態強化によらず固溶強化するため、母材、HAZの強度上昇に有効である。しかし、0.2%を超えて添加すると母材およびHAZにおいて島状マルテンサイトが生成しやすくなる。特に、板厚中央偏析部のような、Mn,Pが濃化した領域でこの効果は顕著であり、偏析部の硬度上昇を通じて母材CTOD値の劣化を引き起こすため、上限を0.20%とする。
Si: 0.05 to 0.2%
Si is effective in increasing the strength of the base material and HAZ because addition of 0.05% or more causes solid solution strengthening regardless of transformation strengthening. However, if it exceeds 0.2%, island martensite is likely to be formed in the base material and HAZ. In particular, this effect is remarkable in a region where Mn and P are concentrated, such as a plate thickness central segregation portion, and the upper limit is set to 0.20% because the base material CTOD value is deteriorated through an increase in hardness of the segregation portion. To do.

Mn:1.5〜2.0%
Mnは焼入性向上元素として作用する。さらに、多量に添加することで、フェライト相に固溶できるC量を低減する効果があり、鋼のオーステナイト域から加速冷却でベイナイト変態させる際、未変態オーステナイト領域へのC濃化を大きくするので、島状マルテンサイトの生成量を増加させることができる。
Mn: 1.5 to 2.0%
Mn acts as a hardenability improving element. Furthermore, by adding a large amount, there is an effect of reducing the amount of C that can be dissolved in the ferrite phase, and when the bainite transformation is performed by accelerated cooling from the austenite region of steel, the C concentration in the untransformed austenite region is increased. The amount of island martensite produced can be increased.

後述のように、島状マルテンサイトの面積率を5%以上とするためには、少なくとも1.5%以上の添加が必要である。一方、連続鋳造プロセスでは中心偏析部の濃度上昇が著しく、2.0%を超える添加を行うと、母材CTOD特性の劣化の原因となるため、上限を2.0%とする。   As will be described later, in order to make the area ratio of island martensite 5% or more, it is necessary to add at least 1.5% or more. On the other hand, in the continuous casting process, the concentration in the central segregation part is remarkably increased, and if the addition exceeds 2.0%, the base material CTOD characteristics are deteriorated, so the upper limit is made 2.0%.

P:≦0.006%
Pは鋼中に不可避不純物として存在する。特に中心偏析部での偏析が著しい元素であり、島状マルテンサイトの増加を引き起こし、母材CTOD特性を著しく劣化させるため、上限を0.006%とする。好ましくは、0.004%以下とする。
P: ≦ 0.006%
P exists as an inevitable impurity in steel. In particular, segregation at the center segregation part is an element, which causes an increase in island-like martensite and remarkably deteriorates the base material CTOD characteristic, so the upper limit is made 0.006%. Preferably, it is 0.004% or less.

S:≦0.0006%
Sもまた鋼中に不可避不純物として存在する。特に介在物として存在し、鋼の清浄度を低下させ、母材CTOD特性に悪影響を及ぼすため、上限を0.0006%とする。好ましくは、0.0004%以下とする。
S: ≦ 0.0006%
S is also present as an inevitable impurity in the steel. In particular, the upper limit is set to 0.0006% because it exists as inclusions and lowers the cleanliness of steel and adversely affects the base material CTOD characteristics. Preferably, it is 0.0004% or less.

Al:0.01〜0.05%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが、0.05%超えて添加すると偏析部も含めて鋼の清浄度が低下し、靭性低下の原因となるため、上限を0.05%とする。
Al: 0.01 to 0.05%
Al acts as a deoxidizing element. A sufficient deoxidation effect can be obtained with addition of 0.01% or more, but if added over 0.05%, the cleanliness of the steel, including the segregation part, is reduced and the toughness is reduced. .05%.

Cu:0.1〜0.7%
Cuは0.1%以上の添加によって焼入性向上元素として作用し、多量のMn添加の代替とすることができる。しかし、0.7%を超えて添加すると、過飽和に固溶したCuが加速冷却後の再加熱時に析出し、特に鋼の降伏強度が析出硬化によって上昇する結果、低YRとすることが困難となるため、上限を0.7%とする。
Cu: 0.1 to 0.7%
Cu acts as a hardenability improving element when added in an amount of 0.1% or more, and can be used as a substitute for adding a large amount of Mn. However, if added over 0.7%, Cu dissolved in supersaturation precipitates during reheating after accelerated cooling, and in particular, the yield strength of steel increases due to precipitation hardening, which makes it difficult to achieve low YR. Therefore, the upper limit is made 0.7%.

Ni:0.1〜1.0%
Niもまた、焼入性向上元素として作用するほか、添加しても靱性劣化を起こさないため、有用な元素である。この効果を得るために、0.1%以上の添加が必要であるが、高価な元素であるため、上限を1.0%とする。
Ni: 0.1 to 1.0%
Ni is also a useful element because it acts as a hardenability improving element and does not cause toughness deterioration when added. In order to obtain this effect, addition of 0.1% or more is necessary, but since it is an expensive element, the upper limit is made 1.0%.

Nb:0.01〜0.06%
Nbは炭化物を形成することで、特に2回以上の熱サイクルを受ける溶接熱影響部(HAZ)の焼戻し軟化を防止して、引張強度600MPaを超える高強度ラインパイプ用鋼板として必要なHAZ強度を得るために必要な元素である。
Nb: 0.01 to 0.06%
Nb forms carbides to prevent temper softening of the weld heat-affected zone (HAZ) that is subjected to two or more thermal cycles, and to provide the HAZ strength necessary for a steel plate for high-strength line pipes with a tensile strength exceeding 600 MPa. It is an element necessary for obtaining.

また、熱間圧延時のオーステナイト未再結晶領域を高温側に拡大する効果もあり、特に950℃まで未再結晶領域とするためには0.01%以上の添加が必要である。一方、0.06%を超えて添加すると、HAZの靱性を著しく損ねることから上限を0.06%とする。   Moreover, there is also an effect of expanding the austenite non-recrystallized region at the time of hot rolling to the high temperature side, and in order to make the non-recrystallized region up to 950 ° C., addition of 0.01% or more is necessary. On the other hand, if added over 0.06%, the toughness of the HAZ is significantly impaired, so the upper limit is made 0.06%.

Ti:0.005〜0.020%
Tiは窒化物を形成し、鋼中の固溶N量低減に有効であるほか、析出したTiNがピンニング効果でオーステナイト粒の粗大化を抑制をすることで、母材、HAZの靱性向上に寄与する。
Ti: 0.005-0.020%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. Precipitated TiN suppresses austenite grain coarsening due to the pinning effect, contributing to improved toughness of the base metal and HAZ. To do.

必要なピンニング効果を得るためには0.005%以上の添加が必要であるが、0.020%を超えて添加すると炭化物を形成するようになり、その析出硬化で靱性が著しく劣化するため、上限を0.020%とする。   Addition of 0.005% or more is necessary to obtain the required pinning effect, but if added over 0.020%, carbides are formed, and the toughness deteriorates significantly due to precipitation hardening, The upper limit is 0.020%.

N:0.001〜0.006%
Nは通常鋼中の不可避不純物として存在するが、前述の通りTi添加を行うことで、オーステナイト粒の粗大化を抑制するTiNを形成する。必要とするピンニング効果を得るためには0.001%以上鋼中に存在することが必要であるが、0.006%を超える場合、溶接部、特に溶融線近傍の1450℃以上に加熱された領域でTiNが分解すると固溶Nの悪影響が著しいため、上限を0.006%とする。
N: 0.001 to 0.006%
N is usually present as an inevitable impurity in steel, but TiN is added to form TiN that suppresses the coarsening of austenite grains as described above. In order to obtain the required pinning effect, it is necessary to be present in the steel in an amount of 0.001% or more, but when it exceeds 0.006%, it was heated to 1450 ° C. or more in the vicinity of the weld, particularly in the vicinity of the melting line When TiN decomposes in the region, the solute N has a bad influence, so the upper limit is made 0.006%.

以上が本発明の基本成分組成であるが、更に特性を向上させる場合、Mo,Cr,V,B,Ca,REM,Zr,Mgの一種または二種以上を添加することが可能である。   The above is the basic component composition of the present invention, but when further improving the characteristics, it is possible to add one or more of Mo, Cr, V, B, Ca, REM, Zr, and Mg.

Mo,Cr,V,B:
Mo,Cr,V,Bは強度上昇の目的で1種または2種以上の添加を行うことができる。
Mo, Cr, V, B:
Mo, Cr, V, and B can be added alone or in combination of two or more for the purpose of increasing the strength.

Mo:0.01〜1%
Moは0.01%以上の添加によって焼入性向上元素として作用し、多量のMn添加の代替とすることができる。しかし、高価な元素であり、かつ1%を超えて添加しても強度上昇は飽和するため、添加する場合は、上限を1%とする。
Mo: 0.01 to 1%
Mo acts as a hardenability improving element when added in an amount of 0.01% or more, and can be used as a substitute for adding a large amount of Mn. However, since it is an expensive element and the increase in strength is saturated even if it is added in excess of 1%, when it is added, the upper limit is made 1%.

Cr:0.01〜1%
Crもまた0.01%以上の添加によって焼入性向上元素として作用し、多量のMn添加の代替とすることができる。しかし、1%を超えて添加するとHAZ靱性が著しく劣化するため、添加する場合は、上限を1%とする。
Cr: 0.01 to 1%
Cr also acts as a hardenability improving element when added in an amount of 0.01% or more, and can be used as a substitute for adding a large amount of Mn. However, if added over 1%, the HAZ toughness deteriorates remarkably, so when added, the upper limit is made 1%.

V:0.01〜0.1%
VはNbとの複合添加により、多重溶接熱サイクル時に析出硬化し、HAZ軟化防止に寄与する。0.01%以上添加することで、軟化防止効果が発現するが、0.1%を超えて添加すると析出硬化が著しくHAZ靱性を劣化させるため、添加する場合は、上限を0.1%とする。
V: 0.01 to 0.1%
V is precipitation-hardened during multiple welding thermal cycles due to the combined addition with Nb, contributing to the prevention of HAZ softening. When added in an amount of 0.01% or more, the effect of preventing softening is manifested. However, if added over 0.1%, precipitation hardening remarkably deteriorates the HAZ toughness. To do.

B:0.0005〜0.005%
Bはオーステナイト粒界に偏析し、フェライト変態を抑制することで、特にHAZの強度低下防止に寄与する。この効果を得るために、0.0005%以上の添加を必要とするが、0.005%を超えて添加してもその効果は飽和するため、添加する場合は、上限を0.005%とする。
B: 0.0005 to 0.005%
B segregates at the austenite grain boundaries and suppresses ferrite transformation, thereby contributing particularly to prevention of HAZ strength reduction. In order to obtain this effect, addition of 0.0005% or more is required, but even if added over 0.005%, the effect is saturated, so when added, the upper limit is 0.005%. To do.

Ca,REM,Zr,Mg
Ca,REM,Zr,Mgは鋼中の非金属介在物であるMnSの形態制御、あるいは酸化物あるいは窒化物を形成し、主に溶接熱影響部におけるオーステナイト粒の粗大化をピンニング効果で抑制するなど、溶接部を含む鋼の靱性向上の目的で添加することができる。
Ca, REM, Zr, Mg
Ca, REM, Zr, and Mg control the morphology of MnS, which is a non-metallic inclusion in steel, or form oxides or nitrides, and suppress the coarsening of austenite grains mainly in the weld heat affected zone by the pinning effect. Etc., for the purpose of improving the toughness of the steel including the weld.

Ca:0.0005〜0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上添加することで靱性に有害なMnSの生成を抑制する。しかし、0.01%を超えて添加すると、CaO−CaSのクラスターを形成して、靱性を劣化させるようになるので、添加する場合は、上限を0.01%とする。
Ca: 0.0005 to 0.01%
Ca is an element effective for controlling the form of sulfide in steel, and the addition of 0.0005% or more suppresses the generation of MnS harmful to toughness. However, if added over 0.01%, a CaO-CaS cluster is formed and the toughness is deteriorated. Therefore, when added, the upper limit is made 0.01%.

REM:0.0005〜0.02%
REMもまた鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上添加することで靱性に有害なMnSの生成を抑制する。しかし、高価な元素であり、かつ0.02%を超えて添加しても効果が飽和するため、添加する場合は、上限を0.02%とする。
REM: 0.0005 to 0.02%
REM is also an element effective for controlling the form of sulfide in steel, and by adding 0.0005% or more, the generation of MnS harmful to toughness is suppressed. However, since it is an expensive element and the effect is saturated even if it is added over 0.02%, when it is added, the upper limit is made 0.02%.

Zr:0.0005〜0.03%
Zrは鋼中で炭窒化物を形成し、とくに溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.03%を超えて添加すると、鋼中の清浄度が著しく低下し、靱性が低下するようになるので、添加する場合は、上限を0.03%とする。
Zr: 0.0005 to 0.03%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses the coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary. However, when the addition exceeds 0.03%, the cleanliness in the steel is remarkably lowered and the toughness is lowered. Therefore, when added, the upper limit is made 0.03%.

Mg:0.0005〜0.01%
Mgは製鋼過程で鋼中に微細な酸化物を生成し、特に、溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.01%を超えて添加すると、鋼中の清浄度が低下し、靱性を低下させるようになるので、添加する場合は、上限を0.01%とする。
Mg: 0.0005 to 0.01%
Mg produces fine oxides in the steel during the steelmaking process, and in particular, has a pinning effect that suppresses the austenite grain coarsening in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but if added over 0.01%, the cleanliness in the steel is lowered and the toughness is lowered. When added, the upper limit is made 0.01%.

[ミクロ組織および硬さ]
ミクロ組織はベイナイトを主体とし、第2相として、島状マルテンサイトがベイナイト中に面積率5〜15%となるように均一に分散した組織とする。尚、ミクロ組織中にセメンタイト、残留γを、強度、靭性を損なわない範囲で含むことを許容する。セメンタイト、残留γの量は、個々にあるいは両者を合わせても面積率10%未満であることが望ましい。
[Microstructure and hardness]
The microstructure is mainly composed of bainite, and the second phase is a structure in which island martensite is uniformly dispersed in the bainite so as to have an area ratio of 5 to 15%. It should be noted that cementite and residual γ are allowed to be included in the microstructure as long as the strength and toughness are not impaired. The amount of cementite and residual γ is desirably less than 10% in area ratio individually or in combination.

加速冷却の冷却速度不足等でフェライト主体の組織となった場合、600MPa以上の引張強度の達成が困難となる。一方、マルテンサイト組織化すると、強度は十分確保できるものの、靱性が低下するため、ベイナイト主体の組織とする。   When the structure is mainly composed of ferrite due to insufficient cooling rate of accelerated cooling, it becomes difficult to achieve a tensile strength of 600 MPa or more. On the other hand, when the martensite structure is formed, although the strength can be sufficiently secured, the toughness is lowered, so that the structure is mainly composed of bainite.

低降伏比を達成させるため、ベイナイト中に母相となるベイナイトより硬い相(第2相)として、島状マルテンサイトを均一に分散して生成させる。島状マルテンサイトの面積率5%未満では、十分降伏比が低くならないため、島状マルテンサイトの面積率の下限を5%とする。一方、面積率が15%を超えた場合、母材靱性が著しく劣化するため、上限を15%とする。   In order to achieve a low yield ratio, island martensite is uniformly dispersed and generated as a harder phase (second phase) than bainite as a parent phase in bainite. If the area ratio of island martensite is less than 5%, the yield ratio is not sufficiently lowered. Therefore, the lower limit of the area ratio of island martensite is set to 5%. On the other hand, if the area ratio exceeds 15%, the toughness of the base metal is remarkably deteriorated, so the upper limit is made 15%.

さらに、母材CTOD試験における試験温度−20℃での限界開口変位δc≧0.20mmを達成するために、ビッカース硬さ試験(荷重10kg)で得られる、板厚中央部硬さHvmと、板厚方向のビッカース硬さの平均値HvaをHvm≦1.05×Hvaとする。   Furthermore, in order to achieve the limit opening displacement δc ≧ 0.20 mm at the test temperature of −20 ° C. in the base material CTOD test, the plate thickness central portion hardness Hvm obtained in the Vickers hardness test (load 10 kg), The average value Hva of the Vickers hardness in the thickness direction is set to Hvm ≦ 1.05 × Hva.

連続鋳造材では、板厚中央部に不可避的に形成されるC,Mn,P,Sの偏析部において、島状マルテンサイト量が増加し、その他の領域よりも硬さが上昇する。板全厚の平均硬さに対して1.05倍を超えると、限界開口変位δcの低下が著しいことから、板厚中央部の硬さを規定する。好ましくは、Hvm≦1.02×Hvaとする。   In the continuous cast material, the amount of island martensite is increased in the segregated portion of C, Mn, P, and S inevitably formed in the central portion of the plate thickness, and the hardness is increased as compared with other regions. If it exceeds 1.05 times the average hardness of the total thickness of the plate, the critical opening displacement δc is remarkably reduced, so the hardness of the central portion of the thickness is defined. Preferably, Hvm ≦ 1.02 × Hva.

[製造方法]
本発明の厚鋼板は、以下の製造方法により製造することができる。
[Production method]
The thick steel plate of the present invention can be manufactured by the following manufacturing method.

鋳造方法:連続鋳造法
ラインパイプ用鋼としての経済性,生産性の観点から厚鋼板用の鋼片の製造は連続鋳造法とする。
Casting method: Continuous casting method From the viewpoint of economy and productivity as steel for line pipes, the production of steel slabs for thick steel plates is a continuous casting method.

鋼片加熱温度:1000〜1100℃
熱間圧延を行う際、鋼片をオーステナイト化するため1000℃以上に加熱する。一方1100℃を超えて加熱を行うと、結晶粒粗大化が著しく、母材シャルピーおよび母材CTOD特性に悪影響を及ぼすため、上限を1100℃とする。
Billet heating temperature: 1000-1100 ° C
When hot rolling is performed, the steel slab is heated to 1000 ° C. or higher in order to austenite. On the other hand, if heating is performed at a temperature exceeding 1100 ° C., the crystal grains become extremely coarse and adversely affect the base metal Charpy and base material CTOD characteristics, so the upper limit is set to 1100 ° C.

熱間圧延:1000℃以下950℃以上での累積圧下率≧30%
板厚中央部におけるC,Mn,P,S等の偏析を軽減するため、本発明鋼は、製造条件において1000℃以下950℃以上での熱間圧延での累積圧下率≧30%と規定する。
Hot rolling: Cumulative rolling reduction at 1000 ° C. or lower and 950 ° C. or higher ≧ 30%
In order to reduce segregation of C, Mn, P, S, etc. in the center of the plate thickness, the steel of the present invention is specified as a cumulative rolling reduction ratio ≧ 30% in hot rolling at 1000 ° C. or less and 950 ° C. or more in production conditions. .

連続鋳造による鋼片をオーステナイト化すると、板厚中心偏析部でMn,P,S等がオーステナイト粒界に偏析し、未再結晶域圧延および加速冷却を行うと、粒界偏析したMn,P,Sが変態後の組織に受け継がれる。   When the steel slab by continuous casting is austenitized, Mn, P, S, etc. segregate at the austenite grain boundaries at the center thickness segregation part, and when non-recrystallization zone rolling and accelerated cooling are performed, the grain boundary segregated Mn, P, S is inherited by the transformed organization.

そのため、オーステナイト再結晶域である1000℃以下950℃以上で累積圧下率≧30%の熱間圧延を施し、再結晶を促進させることでMn,P,Sのオーステナイト粒界への偏析を軽減させる。   Therefore, hot rolling is performed at a cumulative reduction of ≧ 30% at 1000 ° C. or lower and 950 ° C. or higher, which is an austenite recrystallization region, and the recrystallization is promoted to reduce segregation of Mn, P and S to austenite grain boundaries. .

当該温度域での累積圧下率が30%未満の場合、再結晶は部分的となるため、累積圧下率は30%以上とし、鋼片全体を再結晶組織とする。なお、再結晶の観点から圧下率の上限に制約がないが、鋼片サイズと、後述の未再結晶域での圧延に必要な圧下率確保の観点から、多くとも70%とする。     When the cumulative rolling reduction in the temperature range is less than 30%, recrystallization becomes partial. Therefore, the cumulative rolling reduction is set to 30% or more, and the entire steel piece has a recrystallized structure. In addition, although there is no restriction | limiting in the upper limit of a rolling reduction from a viewpoint of recrystallization, it sets it to 70% at the maximum from a viewpoint of steel-plate size and ensuring the rolling reduction required for rolling in the below-mentioned non-recrystallization area | region.

熱間圧延:950℃未満での累積圧下率≧70%
オーステナイト未再結晶域である950℃未満で、累積で大圧下を行い、オーステナイト粒を伸展させ、その後の加速冷却で変態生成するベイナイトを微細化する。
Hot rolling: Cumulative rolling reduction below 950 ° C. ≧ 70%
At a temperature below 950 ° C., which is an austenite non-recrystallized region, cumulative large pressure reduction is performed, austenite grains are expanded, and bainite that is transformed and formed by subsequent accelerated cooling is refined.

本発明鋼は低降伏比化のため、ベイナイト中に硬質な島状マルテンサイトを分散させるため、母相となるベイナイト相の靱性を十分高くしておく必要がある。累積圧下率70%未満では、ベイナイトの細粒化が不十分で島状マルテンサイトにより靱性が低下するため、累積圧下率を70%以上とする。好適には75%以上の累積圧下率とする。   In the steel according to the present invention, in order to reduce the yield ratio, hard island martensite is dispersed in bainite. Therefore, it is necessary to sufficiently increase the toughness of the bainite phase as a parent phase. If the cumulative rolling reduction is less than 70%, bainite is not sufficiently refined and the toughness is lowered by island martensite. Therefore, the cumulative rolling reduction is set to 70% or more. Preferably, the cumulative rolling reduction is 75% or more.

加速冷却:冷却開始温度≧700℃、冷却速度:20〜80℃/s、冷却停止温度:450〜650℃
引張強度600MPa以上の高強度を達成するため、ミクロ組織をベイナイト主体の組織にする必要がある。このため、熱間圧延後加速冷却を実施する。冷却開始温度が700℃未満となると、熱間圧延後、冷却開始までの空冷過程においてオーステナイト粒界から初析フェライトが生成し、母材強度が低下するため、加速冷却を開始する温度の下限温度を700℃とする。
Accelerated cooling: cooling start temperature ≧ 700 ° C., cooling rate: 20-80 ° C./s, cooling stop temperature: 450-650 ° C.
In order to achieve a high strength of a tensile strength of 600 MPa or more, the microstructure needs to be a bainite-based structure. For this reason, accelerated cooling is performed after hot rolling. When the cooling start temperature is less than 700 ° C., proeutectoid ferrite is generated from the austenite grain boundaries in the air cooling process after hot rolling until the start of cooling, and the base material strength is reduced. Therefore, the lower limit temperature for starting accelerated cooling Is 700 ° C.

冷却速度が20℃/s未満の場合、比較的高温で変態するので、十分な強度を得ることができない。   When the cooling rate is less than 20 ° C./s, since the transformation is performed at a relatively high temperature, sufficient strength cannot be obtained.

一方、80℃/sを超えた冷却速度の場合、後述の冷却停止温度に制御することが難しく、特に表面近傍でマルテンサイト変態が生じ、母材靱性が著しく低下するため、上限を80℃/sとする。   On the other hand, in the case of a cooling rate exceeding 80 ° C./s, it is difficult to control to a cooling stop temperature, which will be described later, and martensitic transformation occurs in the vicinity of the surface and the base material toughness is significantly reduced. Let s.

本発明において、加速冷却の冷却停止温度の規定は所望のミクロ組織を得るため重要である。加速冷却の停止後に行う再加熱処理で生成させた、Cの濃縮した未変態オーステナイトをその後の空冷時に島状マルテンサイトへと変態させるため、ベイナイト変態途中で未変態オーステナイトが存在する温度域で冷却を停止する必要がある。   In the present invention, the definition of the cooling stop temperature for accelerated cooling is important for obtaining a desired microstructure. In order to transform C-concentrated untransformed austenite, which is generated by reheating treatment after the stop of accelerated cooling, into island-like martensite during subsequent air cooling, it is cooled in the temperature range where untransformed austenite exists during bainite transformation. Need to stop.

冷却停止温度が450℃未満では、ベイナイト変態が完了するため空冷時に島状マルテンサイトが生成せず低降伏比化が達成できない。一方、650℃を超えると冷却中に析出するパーライトにCが消費され島状マルテンサイトが生成しないため、上限を650℃とする。   If the cooling stop temperature is less than 450 ° C., the bainite transformation is completed, so that island-like martensite is not generated during air cooling, and a low yield ratio cannot be achieved. On the other hand, if the temperature exceeds 650 ° C., C is consumed by the pearlite that precipitates during cooling, and no island-like martensite is generated, so the upper limit is set to 650 ° C.

冷却停止後の再加熱:再加熱温度:600〜700℃
加速冷却後ただちに再加熱することで、未変態オーステナイトにCを濃縮させその後の空冷過程で島状マルテンサイトを生成させることができる。再加熱開始までの時間が長い場合、その間の温度低下によって未変態オーステナイトが減少し、加熱後の空冷過程で生成する島状マルテンサイト量が少なくなるため、300秒以内で再加熱を行うことが望ましい。好ましくは100秒以内である。
Reheating after stopping cooling: Reheating temperature: 600-700 ° C
By reheating immediately after accelerated cooling, C can be concentrated in untransformed austenite and island martensite can be generated in the subsequent air cooling process. When the time until the start of reheating is long, untransformed austenite decreases due to the temperature drop during that time, and the amount of island martensite generated in the air cooling process after heating decreases, so reheating can be performed within 300 seconds. desirable. Preferably, it is within 100 seconds.

さらに、再加熱温度が600℃未満では、十分にオーステナイトへのC濃化が起こらず、必要とする島状マルテンサイト量を確保することができない。一方、再加熱温度が700℃を超えると、加速冷却で変態させたベイナイトが再びオーステナイト化し十分な強度が得られないため、再加熱温度を600℃以上、700℃以下に規定する。   Furthermore, if the reheating temperature is less than 600 ° C., C concentration to austenite does not occur sufficiently, and the required amount of island martensite cannot be ensured. On the other hand, when the reheating temperature exceeds 700 ° C., the bainite transformed by accelerated cooling is austenitized again and sufficient strength cannot be obtained, so the reheating temperature is specified to be 600 ° C. or more and 700 ° C. or less.

再加熱温度において、温度保持時間を設定する必要はない。また、再加熱後の冷却過程においては、冷却速度によらず島状マルテンサイトが生成するため、再加熱後の冷却条件は特に規定しないが、基本的には空冷とすることが好ましい。   It is not necessary to set the temperature holding time at the reheating temperature. Further, in the cooling process after reheating, island martensite is generated regardless of the cooling rate, and thus the cooling condition after reheating is not particularly defined, but basically it is preferably air cooling.

なお、鋼の製鋼方法については特に限定しないが、ラインパイプ用鋼としての経済性を確保するため、転炉法による製鋼プロセスが望ましい。   In addition, although it does not specifically limit about the steel making method of steel, In order to ensure the economical efficiency as steel for line pipes, the steel making process by a converter method is desirable.

表1に示す化学組成の鋼を用い、表2に示す熱間圧延・加速冷却・焼戻し条件で鋼板A〜Iを作製した。   Steel plates A to I were produced under the hot rolling / accelerated cooling / tempering conditions shown in Table 2 using steel having the chemical composition shown in Table 1.

Figure 0005348386
Figure 0005348386

Figure 0005348386
Figure 0005348386

得られた鋼板の板幅中央部よりミクロ組織観察用サンプルを採取し、圧延長手方向と平行な板厚断面を鏡面研磨したあと、2段エッチング法を用いて島状マルテンサイトを現出させた。   A sample for microstructural observation is collected from the center of the plate width of the obtained steel plate, and after mirror-polishing the plate thickness section parallel to the rolling longitudinal direction, island-like martensite is revealed using a two-step etching method. It was.

その後、面走査型顕微鏡(SEM)を用い2000倍の倍率で無作為に10視野ミクロ組織写真を撮影し、写真中の島状マルテンサイトの面積率を画像解析装置にて測定した。   Thereafter, a 10-view microstructure photograph was randomly taken at a magnification of 2000 using a surface scanning microscope (SEM), and the area ratio of island martensite in the photograph was measured with an image analyzer.

次に、それぞれの鋼板よりAPI−5Lに準拠した全厚引張試験片、JIS Z2244(1998改訂版)のビッカース硬さ試験用全厚試料、BS7448に準拠したB(板厚)×2Bサイズの3点曲げCTOD試験片、および板厚中央位置からJIS Z2202(1980改訂版)のVノッチシャルピー衝撃試験片を採取し、鋼板の引張試験、鋼板板厚方向のビッカース硬さ試験、3点曲げCTOD試験およびシャルピー衝撃試験を実施して、強度と靱性を評価した。尚、ビッカース硬さ試験の荷重は10kgで測定は1mmピッチとし、3点曲げCTOD試験およびシャルピー衝撃試験の試験温度は−20℃で、3本の平均値を求めた。   Next, a full thickness tensile test piece based on API-5L from each steel plate, a full thickness sample for Vickers hardness test of JIS Z2244 (1998 revised edition), B (plate thickness) × 2B size 3 based on BS7448 A point-bending CTOD test piece and a V-notch Charpy impact test piece of JIS Z2202 (1980 revised edition) were collected from the center position of the plate thickness, and a steel plate tensile test, a Vickers hardness test in the plate thickness direction, and a three-point bend CTOD test. And Charpy impact test was performed to evaluate strength and toughness. The load of the Vickers hardness test was 10 kg, the measurement was 1 mm pitch, the test temperature of the three-point bending CTOD test and the Charpy impact test was −20 ° C., and the average value of the three samples was obtained.

母材のミクロ組織の画像解析結果および強度・靱性調査結果をまとめて表3に示す。なお、表3におけるHvmは、板厚中央位置でのビッカース硬さ、Hvaは板厚方向1mmピッチで測定した全ビッカース硬さの平均値、CTOD−20(mm)は−20℃での限界開口変位量δc(mm)を示す。板厚中央位置でのビッカース硬さは板厚1/2を中心に厚さ方向±0.5mm内を長手方向に1mmピッチで10点測定したビッカース硬さの平均値とした。   Table 3 summarizes the results of image analysis of the microstructure of the base metal and the results of the strength / toughness investigation. In Table 3, Hvm is the Vickers hardness at the center of the plate thickness, Hva is the average value of all Vickers hardnesses measured at a pitch of 1 mm in the plate thickness direction, and CTOD-20 (mm) is the limit opening at -20 ° C. The displacement amount δc (mm) is shown. The Vickers hardness at the center position of the plate thickness was the average value of Vickers hardness measured at 10 points at a pitch of 1 mm in the thickness direction ± 0.5 mm around the plate thickness 1/2.

Figure 0005348386
Figure 0005348386

本発明例1〜6は、いずれも本発明の鋼板化学組成、圧延・加速冷却・再加熱条件範囲内であり、板厚中央硬さが、板厚方向の平均硬さに対し、1.05倍以下であり、かつミクロ組織がベイナイトと島状マルテンサイトからなり、さらに島状マルテンサイトの面積率が5〜15%であるため、目標とする引張強度600MPa以上、降伏比≦80%、シャルピー吸収エネルギー300J以上、およびCTOD−20で0.20mm以上を満足した。   Invention Examples 1 to 6 are all within the chemical composition of steel sheet, rolling / accelerated cooling / reheating condition range of the present invention, and the thickness central hardness is 1.05 relative to the average hardness in the sheet thickness direction. The microstructure is composed of bainite and island martensite, and the area ratio of island martensite is 5 to 15%. Therefore, the target tensile strength is 600 MPa or more, the yield ratio is ≦ 80%, Charpy. The absorbed energy was 300 J or more, and CTOD-20 was 0.20 mm or more.

一方、950℃未満での累積圧下率および冷却停止温度が、本発明の下限を下回った比較例7は、YR,シャルピー吸収エネルギーおよびCTOD値が目標を下回った。スラブ加熱温度および冷却後の再加熱温度が本発明の範囲外であった比較例8は、YRおよびCTOD値が目標を下回った。   On the other hand, in Comparative Example 7 in which the cumulative rolling reduction and cooling stop temperature at less than 950 ° C. were below the lower limit of the present invention, the YR, Charpy absorbed energy, and CTOD values were below the target. In Comparative Example 8 in which the slab heating temperature and the reheating temperature after cooling were outside the scope of the present invention, the YR and CTOD values were below the target.

1000℃以下950℃以上での累積圧下率が本発明の下限を下回った比較例9は、オーステナイトの再結晶が不十分であったため、オーステナイト粒界におけるMn,P,Sの偏析を起因とする島状マルテンサイト増加による硬度上昇で、板厚中央部硬さが平均硬さを大きく上回った結果、CTOD値が目標を下回った。   Comparative Example 9 in which the cumulative rolling reduction at 1000 ° C. or lower and 950 ° C. or higher was lower than the lower limit of the present invention was caused by segregation of Mn, P, and S at austenite grain boundaries because recrystallization of austenite was insufficient. As a result of the increase in hardness due to the increase in island-shaped martensite, the hardness at the center of the plate thickness greatly exceeded the average hardness, and as a result, the CTOD value fell below the target.

また、母材成分のMn量,P量,Si量が本発明の上限を超えた比較例10,11,13はいずれも板厚中央での合金元素の偏析あるいは偏析による島状マルテンサイト生成の助長を生じ、板厚中央部硬さが平均硬さを大きく上回った結果、シャルピー吸収エネルギー、CTOD値とも目標を下回った。   In Comparative Examples 10, 11 and 13 in which the Mn content, P content, and Si content of the base material component exceeded the upper limit of the present invention, all of the alloy elements were segregated at the center of the plate thickness or island martensite was formed by segregation. As a result of the promotion and the fact that the hardness at the center of the plate thickness greatly exceeded the average hardness, both Charpy absorbed energy and CTOD value were below the target.

母材成分のSが本発明の上限を超えた比較例12は、鋼中介在物が多いため、シャルピー吸収エネルギー、CTOD値とも目標を下回った。   In Comparative Example 12, in which S of the base material component exceeded the upper limit of the present invention, since there were many inclusions in the steel, both Charpy absorbed energy and CTOD value were below the target.

Claims (4)

質量%で、
C:0.04〜0.08%
Si:0.05〜0.2%
Mn:1.5〜2.0%
P≦0.006%
S≦0.0006%
Al:0.01〜0.05%
Cu:0.1〜0.7%
Ni:0.1〜1.0%
Nb:0.01〜0.06%
Ti:0.005〜0.020%
N:0.001〜0.006%
を含有し、残部Feおよび不可避的不純物からなり、
板厚中央部のビッカース硬さHvmが板厚方向のビッカース硬さの平均Hvaに対し、
Hvm≦1.05Hva
を満足し、
ミクロ組織がベイナイトの面積率が85%以上とし、第2相として島状マルテンサイトがベイナイト中に全ミクロ組織に対する面積率5〜15%で分散していることを特徴とする、
低降伏比かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板。
% By mass
C: 0.04 to 0.08%
Si: 0.05 to 0.2%
Mn: 1.5 to 2.0%
P ≦ 0.006%
S ≦ 0.0006%
Al: 0.01 to 0.05%
Cu: 0.1 to 0.7%
Ni: 0.1 to 1.0%
Nb: 0.01 to 0.06%
Ti: 0.005-0.020%
N: 0.001 to 0.006%
Comprising the balance Fe and inevitable impurities,
The Vickers hardness Hvm at the center of the plate thickness is the average Hva of the Vickers hardness in the plate thickness direction.
Hvm ≦ 1.05Hva
Satisfied,
The microstructure is characterized in that the area ratio of bainite is 85% or more, and the island-like martensite is dispersed in the bainite at an area ratio of 5 to 15% with respect to the entire microstructure as the second phase.
Thick high-tensile steel plate with low yield ratio and excellent brittle crack resistance.
さらに、質量%で、
Mo:0.01〜1%
Cr:0.01〜1%
V:0.01〜0.1%
B:0.0005〜0.005%
の1種または2種以上を含有することを特徴とする、請求項1記載の低降伏比かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板。
Furthermore, in mass%,
Mo: 0.01 to 1%
Cr: 0.01 to 1%
V: 0.01 to 0.1%
B: 0.0005 to 0.005%
The thick-walled, high-tensile steel sheet having a low yield ratio and excellent brittle cracking characteristics, according to claim 1.
さらに、質量%で、
Ca:0.0005〜0.01%
REM:0.0005〜0.02%
Zr:0.0005〜0.03%
Mg:0.0005〜0.01%
の1種または2種以上を含有することを特徴とする、請求項1または2記載の、低降伏比
かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板。
Furthermore, in mass%,
Ca: 0.0005 to 0.01%
REM: 0.0005 to 0.02%
Zr: 0.0005 to 0.03%
Mg: 0.0005 to 0.01%
The thick-walled high-tensile steel sheet having a low yield ratio and excellent brittle cracking characteristics according to claim 1 or 2, characterized by containing at least one of the following.
請求項1乃至3のいずれか一つに記載の組成を有し、連続鋳造法にて製造された鋼片を、1000〜1100℃に再加熱後、熱間圧延を開始し、1000℃以下950℃以上の温度域で累積圧下率≧30%、950℃未満の温度域で累積圧下率≧70%となるよう圧延を行い、圧延終了後700℃以上から冷却速度20〜80℃/sで冷却を開始し、450〜650℃の温度域で冷却停止後、600〜700℃に再加熱し、空冷することを特徴とする、板厚中央部のビッカース硬さHvmが板厚方向のビッカース硬さの平均Hvaに対し、Hvm≦1.05Hvaを満足し、ミクロ組織がベイナイトの面積率が85%以上とし、第2相として島状マルテンサイトがベイナイト中に全ミクロ組織に対する面積率5〜15%で分散している低降伏比かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板の製造方法。 The steel slab having the composition according to any one of claims 1 to 3 and manufactured by a continuous casting method is reheated to 1000 to 1100 ° C, and then hot rolling is started, and 1000 ° C or less 950 Rolling is performed so that the cumulative rolling reduction is ≧ 30% in the temperature range of ℃ or higher, and the cumulative rolling reduction is ≧ 70% in the temperature range of less than 950 ° C. The Vickers hardness Hvm at the center of the plate thickness is Vickers hardness in the plate thickness direction , characterized in that after cooling is stopped in the temperature range of 450 to 650 ° C., reheating to 600 to 700 ° C. and air cooling is performed. Hvm ≦ 1.05Hva is satisfied with respect to the average Hva, and the area ratio of bainite is 85% or more in the microstructure, and the area ratio of island-like martensite in the bainite is 5 to 15% with respect to the entire microstructure. in the dispersion to have low yield And method for producing a superior thick high tensile steel in brittle cracking characteristics.
JP2008273905A 2008-10-24 2008-10-24 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method Active JP5348386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273905A JP5348386B2 (en) 2008-10-24 2008-10-24 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273905A JP5348386B2 (en) 2008-10-24 2008-10-24 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2010100903A JP2010100903A (en) 2010-05-06
JP5348386B2 true JP5348386B2 (en) 2013-11-20

Family

ID=42291790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273905A Active JP5348386B2 (en) 2008-10-24 2008-10-24 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5348386B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5425702B2 (en) 2010-02-05 2014-02-26 株式会社神戸製鋼所 High-strength thick steel plate with excellent drop weight characteristics
CN102884217A (en) * 2010-05-12 2013-01-16 株式会社神户制钢所 High-strength thick steel plate with excellent drop weight characteristics
JP5621478B2 (en) * 2010-09-29 2014-11-12 Jfeスチール株式会社 High toughness and high deformation steel plate for high strength steel pipe and method for producing the same
JP5741016B2 (en) * 2011-01-28 2015-07-01 Jfeスチール株式会社 Method for producing high-strength thick steel plate with excellent weldability and base metal toughness
JP5796379B2 (en) * 2011-07-11 2015-10-21 Jfeスチール株式会社 Steel for welded structure excellent in CTOD characteristics of high heat input weld heat affected zone
JP5842577B2 (en) * 2011-11-30 2016-01-13 Jfeスチール株式会社 High toughness, low yield ratio, high strength steel with excellent strain aging resistance
JP5516785B2 (en) * 2012-03-29 2014-06-11 Jfeスチール株式会社 Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5516784B2 (en) * 2012-03-29 2014-06-11 Jfeスチール株式会社 Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5958428B2 (en) * 2012-07-30 2016-08-02 Jfeスチール株式会社 Manufacturing method of steel plates for high heat input welding
EP2894235B1 (en) * 2012-09-06 2019-01-09 JFE Steel Corporation Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
JP6327186B2 (en) * 2015-03-25 2018-05-23 Jfeスチール株式会社 Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
KR101726082B1 (en) * 2015-12-04 2017-04-12 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR101736611B1 (en) * 2015-12-04 2017-05-17 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
JP6809524B2 (en) * 2018-01-10 2021-01-06 Jfeスチール株式会社 Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method
KR102209561B1 (en) * 2018-11-30 2021-01-28 주식회사 포스코 Ultra thick steel excellent in brittle crack arrestability and manufacturing method for the same
CN112342458B (en) * 2020-09-01 2022-01-11 南京钢铁股份有限公司 Low-yield-ratio stress corrosion cracking resistant high-strength steel and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793478B2 (en) * 2002-04-01 2006-07-05 新日本製鐵株式会社 Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness
JP4193757B2 (en) * 2004-06-08 2008-12-10 住友金属工業株式会社 Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe
JP4475023B2 (en) * 2004-06-10 2010-06-09 住友金属工業株式会社 Ultra high strength bend pipe with excellent low temperature toughness
JP4655670B2 (en) * 2005-02-24 2011-03-23 Jfeスチール株式会社 Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP5092358B2 (en) * 2006-11-09 2012-12-05 Jfeスチール株式会社 Manufacturing method of high strength and tough steel sheet
JP5223511B2 (en) * 2007-07-31 2013-06-26 Jfeスチール株式会社 Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP5391542B2 (en) * 2007-10-10 2014-01-15 Jfeスチール株式会社 High strength steel excellent in deformation performance and tensile strength exceeding 750 MPa and method for producing the same

Also Published As

Publication number Publication date
JP2010100903A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5348386B2 (en) Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
KR101603461B1 (en) High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP5146051B2 (en) Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same
US10767250B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5433964B2 (en) Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JP2010196164A (en) Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor
JP5621478B2 (en) High toughness and high deformation steel plate for high strength steel pipe and method for producing the same
JP5391542B2 (en) High strength steel excellent in deformation performance and tensile strength exceeding 750 MPa and method for producing the same
JP5768603B2 (en) High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
JP5157072B2 (en) Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance
JP2014218707A (en) Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP5742750B2 (en) Thick steel plate and manufacturing method thereof
JP7082669B2 (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP5157386B2 (en) Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material
JP2010222681A (en) Thick high toughness steel pipe stock and method for producing the same
JP5055899B2 (en) Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP5842473B2 (en) High strength welded steel pipe with high uniform elongation characteristics and excellent weld toughness, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5348386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250