JP6327186B2 - Non-tempered low-yield ratio high-tensile steel plate and method for producing the same - Google Patents

Non-tempered low-yield ratio high-tensile steel plate and method for producing the same Download PDF

Info

Publication number
JP6327186B2
JP6327186B2 JP2015062305A JP2015062305A JP6327186B2 JP 6327186 B2 JP6327186 B2 JP 6327186B2 JP 2015062305 A JP2015062305 A JP 2015062305A JP 2015062305 A JP2015062305 A JP 2015062305A JP 6327186 B2 JP6327186 B2 JP 6327186B2
Authority
JP
Japan
Prior art keywords
less
temperature
phase
steel plate
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015062305A
Other languages
Japanese (ja)
Other versions
JP2016180171A (en
Inventor
室田 康宏
康宏 室田
徹 川中
徹 川中
龍至 平井
龍至 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015062305A priority Critical patent/JP6327186B2/en
Publication of JP2016180171A publication Critical patent/JP2016180171A/en
Application granted granted Critical
Publication of JP6327186B2 publication Critical patent/JP6327186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、建築等の溶接鋼構造物用として好適な、高張力厚鋼板に係り、とくにサブマージアーク溶接あるいはエレクトロスラグ溶接で入熱50〜400kJ/cm程度の中入熱溶接を施されても、溶接熱影響部(HAZ)靭性に優れ、また、0℃近傍の低温域で、入熱20kJ/cm以下の低入熱溶接を行なっても予熱作業が不要である、耐溶接割れ性にも優れた、非調質低降伏比高張力厚鋼板に関する。なお、ここでいう「厚鋼板」は、板厚12mm以上50mm以下である場合をいうものとする。なお、ここでいう「溶接熱影響部靭性に優れる」とは、溶接熱影響部(ボンドから1mmの位置の)におけるシャルピー衝撃試験の試験温度:0℃での吸収エネルギーが70J以上である場合をいうものとする。   The present invention relates to a high-strength thick steel plate suitable for a welded steel structure such as a building, and in particular, even if medium heat input welding with a heat input of about 50 to 400 kJ / cm is performed by submerged arc welding or electroslag welding. Excellent weld heat-affected zone (HAZ) toughness, and requires no preheating work even when low heat input welding at a heat input of 20 kJ / cm or less in a low temperature range near 0 ° C. The present invention relates to an excellent non-tempered low yield ratio high tensile steel plate. The “thick steel plate” here refers to a case where the plate thickness is 12 mm or more and 50 mm or less. “Excellent weld heat affected zone toughness” as used herein refers to the case where the absorbed energy at 0 ° C. in the Charpy impact test at the weld heat affected zone (at 1 mm from the bond) is 70 J or more. It shall be said.

建築構造物等の溶接鋼構造物は、一般に、厚鋼板等の鋼材を、溶接接合して所望の形状に組み立てられている。このような溶接鋼構造物においては、安全性の観点から、使用する鋼材に、母材靭性はもちろん、溶接熱影響部靭性にも優れることが要求されてきた。   A welded steel structure such as a building structure is generally assembled in a desired shape by welding and joining steel materials such as thick steel plates. In such a welded steel structure, from the viewpoint of safety, it has been required that the steel to be used is excellent not only in the base metal toughness but also in the weld heat affected zone toughness.

さらに、近年、建築鋼構造物には、耐震性の向上が要求されている。そのため、建築鋼構造物用として使用される鋼材には、塑性変形能を確保するために、降伏比YR(降伏強さYS/引張強さTS)が80%以下となる低降伏比を有することが要求されている。さらに、地震のような大きな負荷荷重を受けると、溶接鋼構造物では、塑性変形が生じる前に溶接部から脆性破壊が発生する場合がある。このため、とくに溶接継手部において、高い靱性が要求されるようになっている。   Furthermore, in recent years, building steel structures have been required to improve earthquake resistance. Therefore, steel materials used for building steel structures have a low yield ratio where the yield ratio YR (yield strength YS / tensile strength TS) is 80% or less in order to ensure plastic deformability. Is required. Furthermore, when subjected to a large load such as an earthquake, in a welded steel structure, brittle fracture may occur from the weld before plastic deformation occurs. For this reason, high toughness is required especially in the welded joint.

しかも最近では、溶接鋼構造物の施工能率の向上と施工コストの低減という観点から、溶接効率の向上が求められ、大入熱溶接の適用範囲が拡大されている。例えば、高層建築物に用いられるボックス柱や冷間成形角形鋼管、あるいは、円形鋼管の溶接部で、サブマージアーク溶接などによる400kJ/cmを超える大入熱溶接が適用されている。なお、板厚が50mm以下の鋼材(厚鋼板)では、施工される溶接の入熱量は、たかだか400kJ/cm程度までである。   Moreover, recently, from the viewpoint of improving the construction efficiency of the welded steel structure and reducing the construction cost, improvement in welding efficiency is required, and the application range of large heat input welding has been expanded. For example, large heat input welding exceeding 400 kJ / cm, such as submerged arc welding, is applied to welded parts of box columns, cold-formed square steel pipes or circular steel pipes used in high-rise buildings. In addition, in steel materials (thick steel plates) with a plate thickness of 50 mm or less, the heat input of welding to be performed is up to about 400 kJ / cm.

しかし、入熱量が400kJ/cm以下(50kJ/cm以上)程度の溶接部においても、溶接熱影響部(以下、HAZともいう)の靭性劣化が問題となる。これは、溶接により融点近傍まで加熱された領域では、冷却が遅いため高温域での滞留時間が長く、オーステナイト粒が粗大化しやすいうえ、さらにその後の冷却の際に、MA(島状マルテンサイトともいう)等の硬質な脆化相が生じやすいことに起因する。このようなHAZの靭性劣化は、鋼材の強度が増加するにしたがい、顕著となり、とくに、引張強さTS590MPa級鋼材では、問題となることが多い。   However, even in a weld zone having a heat input of about 400 kJ / cm or less (50 kJ / cm or more), deterioration of the toughness of the weld heat affected zone (hereinafter also referred to as HAZ) becomes a problem. This is because in the region heated to the vicinity of the melting point by welding, since the cooling is slow, the residence time in the high temperature region is long, and the austenite grains are likely to coarsen.In addition, during the subsequent cooling, MA (island martensite) This is because hard brittle phases such as Such toughness degradation of HAZ becomes remarkable as the strength of the steel material increases, and in particular, it is often a problem with a tensile strength TS590 MPa class steel material.

このような問題に対し、例えば特許文献1には、C:0.05〜0.11%、Si:0.5%以下、Mn:0.6〜1.6%を含み、P、Sを適正範囲内に調整し、さらに、Cu:0.80〜1.60%、Ni:0.30〜1.0%、Nb:0.005〜0.02%、Ti:0.005〜0.025%、N:0.001〜0.004%、O:0.001〜0.006%を含み、Al:0.005%以下と実質的にAlを含有しない鋼を熱間圧延後、Ac3変態点〜1000℃の温度範囲に再加熱、焼入れし、さらに700〜850℃の二相域に再加熱し、焼入れし、Ac1変態点以下の温度範囲で焼戻処理を行う、大入熱溶接熱影響部靭性の優れた建築用低降伏比600N/mm2級鋼板の製造方法が記載されている。特許文献1に記載された技術では、低Cとし、B無添加でTi酸化物を利用して大入熱溶接熱影響部靭性を向上させるとともに、二相域加熱焼入れとCuによる析出硬化を利用して、低降伏比で、600N/mm2級の高強度を有する鋼板の製造が可能になるとしている。 For such a problem, for example, Patent Document 1 includes C: 0.05 to 0.11%, Si: 0.5% or less, Mn: 0.6 to 1.6%, and P and S are adjusted within an appropriate range. : 0.80 to 1.60%, Ni: 0.30 to 1.0%, Nb: 0.005 to 0.02%, Ti: 0.005 to 0.025%, N: 0.001 to 0.004%, O: 0.001 to 0.006%, Al: substantially less than 0.005% After hot rolling steel that does not contain Al in general, it is reheated and quenched to a temperature range of Ac3 transformation point to 1000 ° C, and further reheated to a two-phase region of 700 to 850 ° C, quenched, and below the Ac1 transformation point. Describes a method for producing a low yield ratio 600 N / mm grade 2 steel sheet for construction, which is tempered in the above temperature range and has excellent high heat input weld heat affected zone toughness. In the technique described in Patent Document 1, low C is added, B oxide is added and Ti oxide is used to improve the high heat input heat affected zone toughness, and two-phase region heating quenching and precipitation hardening by Cu are used. According to the report, it is possible to produce a steel sheet having a high yield of 600 N / mm 2 with a low yield ratio.

また、特許文献2には、C:0.03〜0.15%、Si:0.05〜0.5%、Mn:0.5〜3.0%を含み、Al、P、Sを適正範囲に調整して含有し、さらに、Ti:0.004〜0.03%、B:0.0005〜0.0030%、Ca:0.0005〜0.0030%、N:0.0020〜0.0070%、O:0.0050%以下を含み、さらに、Cu:1.5%以下、Ni:2.0%以下のうちから選ばれた1種または2種を、炭素当量Ceqが0.35%以上、ACRが0.3〜0.8%を満足する範囲で含む鋼素材に、1000〜1300℃に加熱し熱間圧延を施したのち、空冷する熱延工程を施し厚鋼板としたのち、該厚鋼板に、Ac3変態点以上の加熱温度に再加熱し、保持してから1℃/s以上の平均冷却速度で焼入れする再加熱焼入れ工程と、ついで、(Ac1変態点+10℃)〜(Ac1変態点+50℃)の二相域の温度に加熱し、保持してから1℃/s以上の平均冷却速度で焼入れする二相域加熱焼入れ工程と、さらにAc1変態点以下の温度で焼戻しする焼戻し工程とを施す、超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板の製造方法が記載されている。特許文献2に記載された技術では、超大入熱溶接部靭性を向上するために、TiNを利用してHAZでのオーステナイト粒の粗大化を抑制しつつ、ACRを0.3〜0.8を満足するようにCa、O、Sを調整して、CaS上にMnSが析出した複合硫化物を析出させ、フェライト変態核として作用させ、粒内フェライトの核生成を促進させてHAZ組織の微細化を図り、超大入熱溶接部靭性を向上させるとしている。さらに、特許文献2に記載された技術では、固溶強化に有効なCu、Ni量を適正化して、二相域加熱し、焼入れる処理により、引張強さTS590MPa以上の高強度化と、80%以下の低降伏比を、超大入熱溶接HAZ靭性の劣化を招くことなく、達成できるとしている。   Patent Document 2 includes C: 0.03-0.15%, Si: 0.05-0.5%, Mn: 0.5-3.0%, and contains Al, P, and S adjusted to an appropriate range, and further contains Ti: 0.004 to 0.03%, B: 0.0005 to 0.0030%, Ca: 0.0005 to 0.0030%, N: 0.0020 to 0.0070%, O: 0.0050% or less, Cu: 1.5% or less, Ni: 2.0% or less A steel material containing one or two selected materials in a range that satisfies a carbon equivalent Ceq of 0.35% or more and an ACR of 0.3 to 0.8% is heated to 1000 to 1300 ° C, hot-rolled, and then air-cooled. A reheating and quenching step in which the steel plate is subjected to a hot rolling step to be reheated to a heating temperature not lower than the Ac3 transformation point and held and then quenched at an average cooling rate of 1 ° C./s or higher. Next, heat the two-phase region from (Ac1 transformation point + 10 ° C) to (Ac1 transformation point + 50 ° C), hold it, and quench it at an average cooling rate of 1 ° C / s or more. Re a step, subjected to a tempering step of tempering further at a temperature of Ac1 transformation point, the production method of the low yield ratio high-strength thick steel plate superior in ultra high heat input welding heat affected zone toughness is described. In the technique described in Patent Document 2, in order to improve super tough heat input weld toughness, TiN is used to suppress coarsening of austenite grains in HAZ, while satisfying ACR of 0.3 to 0.8. Adjusting Ca, O, and S to precipitate a composite sulfide with MnS deposited on CaS, causing it to act as a ferrite transformation nucleus, promoting nucleation of intragranular ferrite, and miniaturizing the HAZ structure. The heat input weld toughness is improved. Furthermore, in the technique described in Patent Document 2, the strength of Cu and Ni effective for solid solution strengthening is optimized, the two-phase region heating and quenching are performed to increase the tensile strength of TS590 MPa or more, and 80 % Yield ratio can be achieved without causing deterioration of the super large heat input welding HAZ toughness.

また、特許文献3には、C:0.05〜0.15%、Si:0.05〜0.50%、Mn:0.6〜1.6%を含み、P、S、Alを適正範囲に調整して含有し、さらに、Cu:0.1〜1.0%、Ni:0.1〜2.0%、Ti:0.005〜0.030%、B:0.0003〜0.0050%、Ca:0.0005〜0.0050%、N:0.0030〜0.0060%、O:0.0010〜0.0030%を、ACRが0.2〜0.8%、Ceqが0.47%以下となる範囲で含む鋼素材を、1000〜1300℃の範囲の温度に加熱し、圧延終了温度を900℃以上とする熱間圧延を施した後、1℃/s以上の冷却速度で600℃以下まで加速冷却を行ない、厚鋼板としたのち、さらに(Ac1変態点+10℃)〜(Ac1変態点+70℃)の二相域の再加熱温度に加熱したのち、急冷する再加熱焼入れを行ない、ついで焼戻しを行なう再加熱焼入れ−焼戻処理を施す、超大入熱溶接熱影響部靭性に優れる建築構造用低降伏比高強度厚鋼板の製造方法が記載されている。特許文献3に記載された技術では、超大入熱溶接部靭性の向上のためには、高温に加熱された領域におけるオーステナイト粒の粗大化抑制と、冷却時にフェライト変態を促進する変態核の微細分散が、重要であるとしている。そしてそのために、特許文献3に記載された技術では、TiNの利用と、ACRが適正範囲となるようにCa、O、Sを調整して含有させ、形態を最適化したCa酸化物または硫化物を鋼中に分散させて、粒内フェライトの核生成を促進させてHAZ組織を微細化させるとしている。   Patent Document 3 includes C: 0.05 to 0.15%, Si: 0.05 to 0.50%, Mn: 0.6 to 1.6%, and contains P, S, and Al adjusted to an appropriate range, and further Cu: 0.1-1.0%, Ni: 0.1-2.0%, Ti: 0.005-0.030%, B: 0.0003-0.0050%, Ca: 0.0005-0.0050%, N: 0.0030-0.0060%, O: 0.0010-0.0030%, ACR A steel material containing 0.2 to 0.8% and Ceq in a range of 0.47% or less is heated to a temperature in the range of 1000 to 1300 ° C and subjected to hot rolling with a rolling end temperature of 900 ° C or higher, and then 1 ° C. After accelerating cooling to 600 ° C or less at a cooling rate of at least / s, the steel plate is further heated to the reheating temperature in the two-phase region (Ac1 transformation point + 10 ° C) to (Ac1 transformation point + 70 ° C). Manufacturing of low-yield ratio high-strength steel sheets for building structures with excellent super-high heat input welding heat-affected zone toughness, with rapid re-cooling and quenching, followed by re-tempering and tempering The law has been described. In the technique described in Patent Document 3, in order to improve the toughness of the super high heat input weld zone, the coarsening of austenite grains in the region heated to a high temperature is suppressed, and the fine dispersion of transformation nuclei that promote ferrite transformation during cooling is performed. However, it is important. For that purpose, in the technique described in Patent Document 3, the use of TiN and the inclusion of Ca, O, and S so that the ACR is within the proper range, and the Ca oxide or sulfide optimized in form. Is dispersed in steel to promote nucleation of intragranular ferrite and refine the HAZ structure.

特開平06−128635号公報Japanese Unexamined Patent Publication No. 06-128635 特開2005−68478号公報JP 2005-68478 特開2005−68519号公報JP-A-2005-68519

しかしながら、特許文献1〜3に記載された技術は、二相域熱処理を行うことや溶接部靭性の改善のために、複雑な成分調整を行うことが必要であり、生産性、製造コストに問題を残していた。さらに、特許文献1〜3に記載された技術はいずれも、溶接入熱が400kJ/cmを超えるような超大入熱に対応した技術であり、溶接入熱400kJ/cm以下(50kJ/cm以上)程度の中入熱溶接の場合の溶接熱影響部特性についてまでの言及はない。   However, the techniques described in Patent Documents 1 to 3 require complicated component adjustments for performing two-phase region heat treatment and improving weld toughness, which is problematic in productivity and manufacturing cost. Was leaving. Furthermore, all of the techniques described in Patent Documents 1 to 3 are techniques corresponding to super large heat input in which the welding heat input exceeds 400 kJ / cm, and the welding heat input is 400 kJ / cm or less (50 kJ / cm or more). There is no mention of the characteristics of the heat affected zone in the case of moderate heat input welding.

本発明は、かかる従来技術の問題を解決し、焼入れ焼戻等の調質熱処理を施すことなく非調質で、引張強さTS:590MPa以上で、降伏比:80%以下を有し、溶接入熱400kJ/cm以下(50kJ/cm以上)程度の中入熱溶接を施された場合でも、溶接熱影響部靭性に優れ、かつ0℃近傍の低温域で、入熱20kJ/cm以下の低入熱溶接を行なっても予熱作業が不要である、耐溶接割れ性にも優れた、非調質低降伏比高張力厚鋼板およびその製造方法を提供することを目的とする。   The present invention solves the problems of the prior art, is not tempered without tempering heat treatment such as quenching and tempering, has a tensile strength TS: 590 MPa or more, a yield ratio: 80% or less, and is welded. Even when medium heat input welding with a heat input of 400 kJ / cm or less (50 kJ / cm or more) is applied, it has excellent weld heat affected zone toughness and low heat input of 20 kJ / cm or less in a low temperature range near 0 ° C. It is an object of the present invention to provide a non-tempered low yield ratio high-tensile thick steel plate that does not require preheating work even when heat-input welding is performed, has excellent weld crack resistance, and a method for producing the same.

本発明者らは、上記した目的を達成するために、中入熱溶接の溶接熱影響部靭性に及ぼす各種要因の影響について、鋭意研究した。その結果、C、Si、Mo、Nb等の合金元素を適正範囲内に調整し、熱間圧延、加速冷却条件を適切な範囲に調整することにより、組織を、ベイナイトを主相とし、面積率で30%以下の第二相からなり、第二相が面積率で5%以上のMA相を含む組織とすることができ、これにより、所望の高強度(引張強さTS:590MPa以上)を保持したまま、降伏比:80%以下の低降伏比を有し、中入熱溶接熱影響靭性および耐溶接割れ性に優れた厚鋼板を得ることが可能となることを見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied the influence of various factors on the weld heat-affected zone toughness of medium heat input welding. As a result, by adjusting the alloy elements such as C, Si, Mo, Nb, etc. within an appropriate range, and adjusting the hot rolling and accelerated cooling conditions to an appropriate range, the structure is mainly composed of bainite and the area ratio The second phase can be made into a structure containing the MA phase with an area ratio of 5% or more, and the desired high strength (tensile strength TS: 590 MPa or more) can be obtained. It has been found that it is possible to obtain a thick steel plate having a low yield ratio of 80% or less and excellent in heat input heat-affected toughness and resistance to weld cracking while maintaining it.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.04〜0.08%、Si:0.15〜0.30%、Mn:1.0〜1.7%、P:0.015%以下、S:0.003%以下、Al:0.05%以下、N:0.0040%以下、Ti:0.005〜0.020%、Mo:0.10〜0.20%、Nb:0.005〜0.025%、Cr:0.10〜0.50%、B:0.0003%以下(0%を含む)を、次(1)式
PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ‥‥(1)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%))
で定義される溶接割れ感受性指数PCMが0.18以下を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成と、板厚1/4位置において、ベイナイト相を主相とし、面積率で30%以下の第二相からなり、前記第二相が面積率で5%以上のMA相を含む組織と、を有し、引張強さ:590MPa以上で、降伏比:80%以下で、溶接熱影響部靭性および耐溶接割れ性に優れることを特徴とする非調質低降伏比高張力厚鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、V:0.070%以下、Cu:0.50%以下、Ni:0.50%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする非調質低降伏比高張力厚鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする非調質低降伏比高張力厚鋼板。
(4)鋼素材を、加熱し熱間圧延を施したのち、加速冷却を施す高張力厚鋼板の製造方法であって、前記鋼素材が、質量%で、C:0.04〜0.08%、Si:0.15〜0.30%、Mn:1.0〜1.7%、P:0.015%以下、S:0.003%以下、Al:0.05%以下、N:0.0040%以下、Ti:0.005〜0.020%、Mo:0.10〜0.20%、Nb:0.005〜0.025%、Cr:0.10〜0.50%、B:0.0003%以下(0%を含む)を、次(1)式
PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ‥‥(1)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%))
で定義される溶接割れ感受性指数PCMが0.18以下を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材であり、前記加熱が、加熱温度:1050〜1200℃とする加熱であり、前記熱間圧延が、表面温度で950℃以下の温度域での累積圧下率が30%以上で、圧延終了温度が表面温度で900〜760℃となる熱間圧延とし、前記加速冷却が、表面温度で760℃以上の温度から、板厚1/4t位置での平均冷却速度で2℃/s以上の冷却速度で、板厚1/4t位置の温度で、次(2)式
Bs温度(℃)=830−270×C−90×Mn−37Ni−70Cr−83Mo ‥‥(2)
(ここで、C、Mn、Ni、Cr、Mo:各元素の含有量(質量%))
で定義されるBs温度(℃)で表示してBs温度〜(Bs温度−100℃)の温度域の冷却停止温度まで冷却する加速冷却であることを特徴とする非調質低降伏比高張力厚鋼板の製造方法。
(5)(4)において、前記加速冷却を施したのち、さらに、焼戻温度:400〜700℃で焼戻処理を施すことを特徴とする非調質低降伏比高張力厚鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、V:0.070%以下、Cu:0.50%以下、Ni:0.50%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする非調質低降伏比高張力厚鋼板の製造方法。
(7)(4)ないし(6)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする非調質低降伏比高張力厚鋼板の製造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.04-0.08%, Si: 0.15-0.30%, Mn: 1.0-1.7%, P: 0.015% or less, S: 0.003% or less, Al: 0.05% or less, N: 0.0040% Ti: 0.005 to 0.020%, Mo: 0.10 to 0.20%, Nb: 0.005 to 0.025%, Cr: 0.10 to 0.50%, B: 0.0003% or less (including 0%), the following formula (1)
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%))
In comprising Adjust so weld cracking sensitivity index P CM defined satisfies 0.18 or less, and a composition comprising the balance Fe and unavoidable impurities, at a thickness 1/4 position, bainite phase as a main phase, the area A second phase having an area ratio of 30% or less, wherein the second phase has a structure containing an MA phase of 5% or more in area ratio, tensile strength: 590 MPa or more, yield ratio: 80% or less A non-tempered, low yield ratio, high-tensile steel plate characterized by excellent weld heat-affected zone toughness and weld crack resistance.
(2) In (1), in addition to the above composition, the composition further contains, in mass%, one or more selected from V: 0.070% or less, Cu: 0.50% or less, Ni: 0.50% or less A non-tempered, low yield ratio, high-tensile thick steel plate characterized by having a composition of:
(3) In (1) or (2), in addition to the above composition, the composition further contains one or two kinds selected from Ca: 0.0005 to 0.0050% and REM: 0.0010 to 0.0050% by mass%. A non-tempered low yield ratio high tensile thick steel plate characterized by having a composition.
(4) A method for producing a high-tensile thick steel plate, in which a steel material is heated and hot-rolled and then subjected to accelerated cooling, wherein the steel material is in mass%, C: 0.04 to 0.08%, Si: 0.15-0.30%, Mn: 1.0-1.7%, P: 0.015% or less, S: 0.003% or less, Al: 0.05% or less, N: 0.0040% or less, Ti: 0.005-0.020%, Mo: 0.10-0.20%, Nb: 0.005 to 0.025%, Cr: 0.10 to 0.50%, B: 0.0003% or less (including 0%), the following formula (1)
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%))
In comprising Adjust so weld cracking sensitivity index P CM defined satisfies 0.18 or less, a steel material having a composition the balance being Fe and unavoidable impurities, wherein the heating is heating temperature: 1050 to 1200 ° C. The hot rolling is a hot rolling in which the cumulative rolling reduction in the temperature range of 950 ° C. or less at the surface temperature is 30% or more and the rolling end temperature is 900 to 760 ° C. at the surface temperature, The accelerated cooling is performed at a surface temperature of 760 ° C. or higher, a cooling rate of 2 ° C./s or higher at an average cooling rate at a thickness of 1/4 t, and a temperature of a thickness of 1/4 t (2 )formula
Bs temperature (℃) = 830−270 × C−90 × Mn−37Ni−70Cr−83Mo (2)
(Where C, Mn, Ni, Cr, Mo: content of each element (mass%))
Non-tempered low yield ratio high tension characterized by accelerated cooling that is cooled to the cooling stop temperature in the temperature range of Bs temperature to (Bs temperature – 100 ° C) expressed in Bs temperature (° C) defined by Manufacturing method of thick steel plate.
(5) A method for producing a non-tempered low yield ratio high-tensile thick steel plate, characterized in that after accelerating cooling in (4), tempering is further performed at a tempering temperature of 400 to 700 ° C. .
(6) In (4) or (5), in addition to the above-mentioned composition, in addition to mass, one or two selected from V: 0.070% or less, Cu: 0.50% or less, Ni: 0.50% or less A method for producing a non-tempered low yield ratio high-tensile thick steel sheet, characterized by comprising a composition containing at least a seed.
(7) In any one of (4) to (6), in addition to the above composition, one or two selected from Ca: 0.0005 to 0.0050% and REM: 0.0010 to 0.0050% by mass% A method for producing a non-tempered, low yield ratio, high-tensile thick steel plate, characterized by comprising a composition containing:

本発明によれば、焼入れ焼戻等の調質熱処理を施すことなく非調質で、合金元素の多量含有を行なうことなく、引張強さTS:590MPa以上、降伏比:80%以下を有し、溶接入熱400kJ/cm以下(50kJ/cm以上)程度の中入熱溶接の溶接熱影響部靭性に優れ、かつ0℃近傍の低温域で低入熱溶接を行なっても溶接割れの発生が抑制され、耐溶接割れ性に優れた、非調質低降伏比高張力厚鋼板を容易にしかも安定して製造でき、産業上格段の効果を奏する。   According to the present invention, it is non-tempered without tempering heat treatment such as quenching and tempering, and has a tensile strength TS of 590 MPa or more and a yield ratio of 80% or less without containing a large amount of alloy elements. Excellent weld heat-affected zone toughness for medium heat input welding with a heat input of 400 kJ / cm or less (50 kJ / cm or more), and weld cracking occurs even when low heat input welding is performed at low temperatures near 0 ° C. A non-tempered, low yield ratio, high-tensile thick steel plate that is suppressed and has excellent weld crack resistance can be manufactured easily and stably, and has a remarkable industrial effect.

また、本発明になる非調質低降伏比高張力厚鋼板は、鋼構造物の軽量化や、鋼構造物の耐震性の向上に大きく寄与するという効果もある。   Moreover, the non-tempered low yield ratio high-tensile thick steel plate according to the present invention also has an effect of greatly contributing to the weight reduction of the steel structure and the improvement of the earthquake resistance of the steel structure.

まず、本発明高張力厚鋼板の組成限定理由について説明する。以下、組成における質量%は、単に%で記す。   First, the reasons for limiting the composition of the high-strength thick steel plate of the present invention will be described. Hereinafter, the mass% in the composition is simply expressed as%.

C:0.04〜0.08%
Cは、鋼の強度を増加させ、構造物用鋼材として必要な強度を確保するのに有用な元素である。さらにCは、硬質相の体積率を増加させ、降伏比を低下させる作用を有する。このような効果を得るためには、0.04%以上の含有を必要とする。一方、0.08%を超える含有は、溶接性と靭性を顕著に低下させる。このため、Cは0.04〜0.08%の範囲に限定した。なお、好ましくは0.05〜0.07%である。
C: 0.04-0.08%
C is an element useful for increasing the strength of steel and ensuring the strength necessary for structural steel. Furthermore, C has the effect of increasing the volume fraction of the hard phase and decreasing the yield ratio. In order to obtain such an effect, a content of 0.04% or more is required. On the other hand, if the content exceeds 0.08%, the weldability and toughness are significantly reduced. For this reason, C was limited to the range of 0.04 to 0.08%. In addition, Preferably it is 0.05 to 0.07%.

Si:0.15〜0.30%
Siは、加速冷却時にMA相を生成させ、低降伏比を達成するのに有効に寄与する。このような効果を得るためには、0.15%以上の含有を必要とする。一方、0.30%を超える含有は、中入熱程度の溶接入熱であっても、溶接熱影響部(HAZともいう)靱性を顕著に低下させる。このため、Siは0.15〜0.30%の範囲に限定した。なお、好ましくは、0.15〜0.25%である。
Si: 0.15-0.30%
Si produces an MA phase during accelerated cooling and contributes effectively to achieve a low yield ratio. In order to obtain such an effect, the content of 0.15% or more is required. On the other hand, the content exceeding 0.30% significantly reduces the toughness of the weld heat affected zone (also referred to as HAZ) even if the welding heat input is about the middle heat input. For this reason, Si was limited to the range of 0.15-0.30%. In addition, Preferably, it is 0.15-0.25%.

Mn:1.0〜1.7%
Mnは、固溶して鋼の強度を増加させる作用を有する安価な元素であり、高価な合金元素の含有を最小限に抑えるために、含有させる。このような効果を得て、所望の高強度(引張強さ590MPa以上)を確保するためには、1.0%以上の含有を必要とする。一方、1.7%を超える含有は、母材の靱性を低下させる。このため、Mnは1.0〜1.7%の範囲に限定した。なお、好ましくは1.0〜1.5%である。
Mn: 1.0-1.7%
Mn is an inexpensive element that has the effect of increasing the strength of steel by solid solution, and is included in order to minimize the inclusion of expensive alloy elements. In order to obtain such an effect and secure a desired high strength (tensile strength of 590 MPa or more), it is necessary to contain 1.0% or more. On the other hand, the content exceeding 1.7% lowers the toughness of the base material. For this reason, Mn was limited to the range of 1.0 to 1.7%. In addition, Preferably it is 1.0 to 1.5%.

P:0.015%以下
Pは、不純物元素であり、母材靭性に悪影響を及ぼすが、0.015%以下であれば、その悪影響は許容できる。なお、Pは好ましくは0.010%以下である。また、Pは、加速冷却時にMA相を生成させ、低降伏比の実現にも寄与する。このような効果を得るためには0.005%以上含有することが望ましい。このようなことから、Pは0.015%以下に限定した。
P: 0.015% or less
P is an impurity element and adversely affects the base material toughness. However, if it is 0.015% or less, the adverse effect is acceptable. P is preferably 0.010% or less. P also contributes to the realization of a low yield ratio by generating an MA phase during accelerated cooling. In order to acquire such an effect, it is desirable to contain 0.005% or more. Therefore, P is limited to 0.015% or less.

S:0.003%以下
Sは、鋼中ではMnS等の硫化物系介在物として存在し、母材および溶接部の靱性を低下させるとともに、鋳片の中央偏析部などに多量に偏在して、鋳片等における欠陥を発生しやすくする。このような傾向は、0.003%を超える含有で顕著となる。このため、Sは0.003%以下に限定した。なお、Sはできるだけ低減することが望ましいが、過度のS低減は、精錬コストを高騰させ、経済的に不利となるため、Sは0.001%程度以上とすることが望ましい。
S: 0.003% or less
S is present in the steel as sulfide inclusions such as MnS, and lowers the toughness of the base metal and the welded part, and is unevenly distributed in a large amount in the central segregation part of the slab, thereby causing defects in the slab and the like. Make it easier to occur. Such a tendency becomes remarkable when the content exceeds 0.003%. For this reason, S was limited to 0.003% or less. It is desirable to reduce S as much as possible, but excessive S reduction increases the refining cost and is economically disadvantageous, so S is preferably about 0.001% or more.

Al:0.05%以下
Alは、脱酸剤として作用する元素であり、脱酸剤として、高張力鋼の溶鋼脱酸プロセスにおいては、もっとも汎用的に使われる。このような効果を得るためには、0.010%以上含有することが望ましいが、0.05%を超える含有は、母材の靱性を低下させるとともに、溶接時に溶接金属に混入して溶接金属部靱性を低下させる。このため、Alは0.05%以下に限定した。なお、好ましくは0.045%以下である。
Al: 0.05% or less
Al is an element that acts as a deoxidizer, and is most commonly used as a deoxidizer in the molten steel deoxidation process of high-strength steel. In order to obtain such an effect, it is desirable to contain 0.010% or more. However, if the content exceeds 0.05%, the toughness of the base metal is reduced, and the toughness of the weld metal part is reduced by mixing with the weld metal during welding. Let For this reason, Al was limited to 0.05% or less. In addition, Preferably it is 0.045% or less.

N:0.0040%以下
Nは、鋼中に固溶して、冷間加工後に歪時効を誘起させ、靭性を低下させる作用を有する元素であり、本発明では、できるだけ低減することが望ましい。0.0040%を超えて含有すると、靭性の劣化が著しくなる。このため、Nは0.0040%以下に限定した。
N: 0.0040% or less
N is an element having a function of dissolving in steel and inducing strain aging after cold working to lower toughness. In the present invention, N is desirably reduced as much as possible. If the content exceeds 0.0040%, the toughness deteriorates remarkably. For this reason, N was limited to 0.0040% or less.

Ti:0.005〜0.020%
Tiは、Nとの親和力が強く、溶鋼凝固時にTiNとして析出し、鋼中の固溶N量を減少させ、冷間加工後の歪時効による靭性低下を軽減する作用を有する。また、Tiは、HAZの組織改善を介して、HAZ靭性の向上にも寄与する。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.020%を超えて含有すると、TiN粒子が粗大化し、上記した効果が期待できなくなる。このため、Tiは0.005〜0.020%の範囲に限定した。なお、好ましくは0.007〜0.015%である。
Ti: 0.005-0.020%
Ti has a strong affinity for N and precipitates as TiN during solidification of the molten steel, thereby reducing the amount of solute N in the steel and reducing the toughness due to strain aging after cold working. Ti also contributes to the improvement of HAZ toughness through the improvement of the HAZ structure. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.020%, the TiN particles become coarse and the above-described effects cannot be expected. For this reason, Ti was limited to the range of 0.005-0.020%. In addition, Preferably it is 0.007 to 0.015%.

Mo:0.10〜0.20%
Moは、強度増加に有効に寄与する元素である。所望の強度(引張強さ:590MPa以上)を安定して確保するためには0.10%以上の含有を必要とする。一方、0.20%を超えて含有すると、効果が飽和するうえ、材料コスト増による製造コストの高騰を招く。このため、Moは0.10〜0.20%の範囲に限定した。
Mo: 0.10-0.20%
Mo is an element that contributes effectively to an increase in strength. In order to stably secure a desired strength (tensile strength: 590 MPa or more), a content of 0.10% or more is required. On the other hand, if the content exceeds 0.20%, the effect is saturated and the manufacturing cost increases due to an increase in material cost. For this reason, Mo was limited to the range of 0.10 to 0.20%.

Nb:0.005〜0.025%
Nbは、ミクロ組織の細粒化を介して、鋼材の靭性向上に寄与する元素である。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.025%を超える多量の含有は、析出物が多量に析出し、析出強化により、所望の低降伏比を確保できなくなる。このため、Nbは0.005〜0.025%の範囲に限定した。なお、好ましくは0.005〜0.020%である。
Nb: 0.005-0.025%
Nb is an element that contributes to the improvement of the toughness of the steel material through the refinement of the microstructure. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.025%, a large amount of precipitates precipitate, and the desired low yield ratio cannot be secured due to precipitation strengthening. For this reason, Nb was limited to the range of 0.005-0.025%. In addition, Preferably it is 0.005-0.020%.

Cr:0.10〜0.50%
Crは、強度増加に有効に寄与する元素である。所望の強度(引張強さ:590MPa以上)を安定して確保するためには、0.10%以上の含有を必要とする。一方、0.50%を超えて含有すると溶接性が低下する。このため、Crは0.10〜0.50%の範囲に限定した。
Cr: 0.10 to 0.50%
Cr is an element that contributes effectively to an increase in strength. In order to ensure a desired strength (tensile strength: 590 MPa or more) stably, the content needs to be 0.10% or more. On the other hand, if the content exceeds 0.50%, the weldability decreases. For this reason, Cr was limited to the range of 0.10 to 0.50%.

B:0.0003%以下(0%を含む)
Bは、溶接性を低下させるため、本発明ではその含有量をできるだけ低減することが望ましく、全く含有しなくてもよい(含有量が零%)。とくに、0℃近傍で予熱を実施せずに溶接施工を実施することができるような耐溶接割れ性を保持させるためには、Bは0.0003%以下に調整することを必要とする。このようなことから、Bは0.0003%以下(0%を含む)に限定した。なお、好ましくは、0.0002%以下である。
B: 0.0003% or less (including 0%)
In order to reduce weldability, it is desirable to reduce the content of B as much as possible in the present invention, and B may not be contained at all (the content is 0%). In particular, B must be adjusted to 0.0003% or less in order to maintain weld crack resistance that allows welding to be performed without preheating near 0 ° C. Therefore, B is limited to 0.0003% or less (including 0%). In addition, Preferably, it is 0.0002% or less.

PCM=:0.18以下
溶接割れ感受性指数PCMは、次(1)式
PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ‥‥(1)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%))
で定義される。なお、(1)式の右辺値を計算するに際しては、(1)式に記載された元素のうち、含有しない元素は「零」%として算出するものとする。
P CM =: 0.18 or less Weld crack susceptibility index P CM is the following formula (1)
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%))
Defined by In calculating the right side value of the equation (1), among the elements described in the equation (1), the elements not contained are calculated as “zero”%.

PCMが、0.18を超えて大きくなると、0℃近傍で、入熱20kJ/cm程度の低入熱溶接で溶接施工を行なう際に、溶接割れを防止するために、予熱が必要となる。このため、予熱なしで低入熱溶接を実施することを目的とする本発明では、各元素の含有量をPCMが0.18以下となるように調整することとした。 P CM becomes larger beyond 0.18, at 0 ℃ vicinity, when performing welding with low heat input welding about heat input 20 kJ / cm, in order to prevent weld cracking, preheating is required. Therefore, in the present invention for the purpose of implementing the low heat input welding without preheating, it was decided to adjust the content of each element as P CM is 0.18 or less.

上記した成分が基本の成分であるが、基本成分に加えてさらに、選択元素として、V:0.070%以下、Cu:0.50%以下、Ni:0.50%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%のうちから選ばれた1種または2種、を含有できる。   The above-mentioned components are basic components, but in addition to the basic components, one or two elements selected from V: 0.070% or less, Cu: 0.50% or less, Ni: 0.50% or less as a selection element It can contain 1 type or 2 types chosen from the above and / or Ca: 0.0005-0.0050%, REM: 0.0010-0.0050%.

V:0.070%以下、Cu:0.50%以下、Ni:0.50%以下のうちから選ばれた1種または2種以上
V、Cu、Niはいずれも、強度増加に寄与する元素であり、必要に応じて、選択して含有できる。このような効果を得て、所望の強度(TS:590MPa以上)を確保するためには、V:0.030%以上、Cu:0.20%以上、Ni:0.20%以上含有することが望ましい。一方、V:0.070%、Cu:0.50%、Ni:0.50%を超える多量の含有は、溶接性の低下を招く。なお、Vは0.070%を超えて含有するとHAZ靭性が低下する。また、Cu、Niが0.50%を超えて含有するとコストが上昇する。このため、含有する場合、V:0.070%以下、Cu:0.50%以下、Ni:0.50%以下に、それぞれ限定することが好ましい。
One or two or more selected from V: 0.070% or less, Cu: 0.50% or less, Ni: 0.50% or less
V, Cu, and Ni are all elements that contribute to an increase in strength, and can be selected and contained as necessary. In order to obtain such an effect and ensure a desired strength (TS: 590 MPa or more), it is desirable to contain V: 0.030% or more, Cu: 0.20% or more, and Ni: 0.20% or more. On the other hand, a large content exceeding V: 0.070%, Cu: 0.50%, Ni: 0.50% causes deterioration of weldability. Note that if V exceeds 0.070%, the HAZ toughness decreases. Moreover, when Cu and Ni contain exceeding 0.50%, cost will rise. For this reason, when it contains, it is preferable to limit to V: 0.070% or less, Cu: 0.50% or less, and Ni: 0.50% or less, respectively.

Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%のうちから選ばれた1種または2種
Ca、REMはいずれも、Sと結合し硫化物系介在物の形状を球状化し、母材の延性および靭性の向上、母材の板厚方向靭性の向上に寄与する。このような効果を得るためには、Ca:0.0005%以上、REM:0.0010%以上含有することが好ましい。一方、Ca:0.0050%、REM:0.0050%をそれぞれ超える過剰な含有は、母材の靭性低下を招く。このため、含有する場合には、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%、の範囲にそれぞれ限定することが好ましい。
One or two selected from Ca: 0.0005-0.0050%, REM: 0.0010-0.0050%
Both Ca and REM combine with S to make the shape of the sulfide inclusions spherical, contributing to the improvement of the base material ductility and toughness and the base material thickness direction toughness. In order to acquire such an effect, it is preferable to contain Ca: 0.0005% or more and REM: 0.0010% or more. On the other hand, an excessive content exceeding Ca: 0.0050% and REM: 0.0050% respectively causes a decrease in toughness of the base material. For this reason, when it contains, it is preferable to limit to Ca: 0.0005-0.0050% and REM: 0.0010-0.0050%, respectively.

上記した成分以外の残部は、Feおよび不可避的不純物である。   The balance other than the above components is Fe and inevitable impurities.

つぎに、本発明厚鋼板の組織限定理由について説明する。   Next, the reason for limiting the structure of the steel plate of the present invention will be described.

本発明高張力厚鋼板は、板厚1/4位置において、ベイナイト相を主相とし、面積率で30%以下の第二相からなり、前記第二相が面積率で5%以上のMA相を含む組織と、を有する。なお、ここでいう「主相」とは、面積率で70%以上を占有する相をいうものとし、第二相は主相以外の相(単一の相でなく複数の相であってもよい)とする。   The high-strength thick steel plate of the present invention has a bainite phase as a main phase at a thickness of 1/4 position, and consists of a second phase with an area ratio of 30% or less, and the second phase is an MA phase with an area ratio of 5% or more. And an organization including The “main phase” here refers to a phase that occupies 70% or more in area ratio, and the second phase is a phase other than the main phase (even if it is not a single phase but a plurality of phases). Good).

本発明高張力厚鋼板では、所望の強度(TS:590MPa以上)を確保するためベイナイト相を主相とする。主相以外の第二相は、MA相、およびフェライト相、パーライトのうちの1種または2種の相からなる。第二相は、合計で面積率で30%以下とする。第二相が合計で面積率で30%を超えると、所望の強度(TS:590MPa以上)を確保することができなくなる。なお、組織は、板厚1/4t位置で測定するものとする。少なくとも板厚1/4t位置で上記した組織を確保できれば、所望の強度(TS:590MPa以上)を確保することができることを確認している。なお、MA相は、ベイナイト相のベイナイトラス間に存在するものも第二相に含めるものとする。また、ベイナイト相の面積率の算定においては、ベイナイトラス間に存在するMA相の面積をベイナイトの面積に含まないものとして算定する。   In the high-tensile thick steel plate of the present invention, the bainite phase is the main phase in order to ensure a desired strength (TS: 590 MPa or more). The second phase other than the main phase is composed of one or two of the MA phase, ferrite phase, and pearlite. The total amount of the second phase is 30% or less. When the total amount of the second phase exceeds 30%, the desired strength (TS: 590 MPa or more) cannot be ensured. In addition, a structure | tissue shall be measured in plate | board thickness 1 / 4t position. It has been confirmed that the desired strength (TS: 590 MPa or more) can be secured if the above-described structure can be secured at least at a position of 1/4 t. Note that the MA phase includes those existing between the bainite laths of the bainite phase in the second phase. In calculating the area ratio of the bainite phase, the area of the MA phase existing between the bainite laths is calculated as not including the area of the bainite.

本発明高張力厚鋼板では、第二相として、面積率で5%以上のMA相を含む組織とする。MA相は周囲のベイナイトと比べ硬質であり、周囲のベイナイトに可動転位を導入して降伏強さYSを低下させるとともに、引張強さTSを上昇させる。このため、第二相としてMA相(Martensite-Austenite Constituent)を5%以上含有する組織とすることにより、所望の強度(TS:590MPa以上)を維持したまま、所望の低降伏比を確保することができるようになる。MA相が面積率で5%未満では、所望の低降伏比を確保することができなくなる。また、MA相は微細で比較的母材靭性に悪影響を及ぼさないが、しかし、MA相が面積率で10%を超えると、母材靭性が低下する。このため、MA相は5%以上に限定した。好ましくは10%以下である。なお、より好ましく面積率で5〜8%である。   In the high-strength thick steel plate of the present invention, the second phase has a structure including an MA phase having an area ratio of 5% or more. The MA phase is harder than the surrounding bainite and introduces movable dislocations into the surrounding bainite to decrease the yield strength YS and increase the tensile strength TS. For this reason, a desired low yield ratio can be ensured while maintaining the desired strength (TS: 590 MPa or more) by making the structure containing MA phase (Martensite-Austenite Constituent) 5% or more as the second phase. Will be able to. If the MA phase is less than 5% in area ratio, a desired low yield ratio cannot be ensured. In addition, the MA phase is fine and relatively does not adversely affect the base material toughness. However, if the MA phase exceeds 10% in terms of area ratio, the base material toughness decreases. For this reason, the MA phase is limited to 5% or more. Preferably it is 10% or less. The area ratio is more preferably 5 to 8%.

つぎに、本発明高張力厚鋼板の製造方法について説明する。   Below, the manufacturing method of this invention high-tensile thick steel plate is demonstrated.

本発明高張力厚鋼板の製造方法では、上記した組成の鋼素材を、加熱し熱間圧延を施したのち、加速冷却を施す。   In the manufacturing method of the high-strength thick steel sheet of the present invention, the steel material having the above composition is heated and subjected to hot rolling, and then accelerated cooling is performed.

本発明の製造方法で使用する鋼素材は、とくにその製造方法を限定する必要はなく、常用の製造方法がいずれも適用できるが、転炉等の常用の溶製方法で、上記した組成の溶鋼を溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋳片とし、鋼素材とすることが、生産性向上の観点から好ましい。   The steel material used in the production method of the present invention is not particularly limited to the production method, and any conventional production method can be applied. From the viewpoint of improving productivity, it is preferable to form a slab or other slab by a conventional casting method such as a continuous casting method.

得られた鋼素材は、ついで加熱温度:1050〜1200℃に加熱される。   The obtained steel material is then heated to a heating temperature of 1050 to 1200 ° C.

加熱温度:1050〜1200℃
鋼素材の加熱温度が、1050℃未満では、鋼素材中に析出した炭化物、窒化物等の粗大な析出物の溶解が不十分となり、所望の強度を確保できなくなる。一方、1200℃を超えて高温となると、組織が粗大となり、母材靭性が劣化する。このため、鋼素材の加熱温度は1050〜1200℃の範囲の温度に限定した。
Heating temperature: 1050 ~ 1200 ℃
When the heating temperature of the steel material is less than 1050 ° C., the dissolution of coarse precipitates such as carbides and nitrides precipitated in the steel material becomes insufficient, and the desired strength cannot be ensured. On the other hand, when the temperature is higher than 1200 ° C., the structure becomes coarse and the base material toughness deteriorates. For this reason, the heating temperature of the steel material was limited to a temperature in the range of 1050 to 1200 ° C.

加熱された鋼素材は、表面温度で950℃以下の温度域での累積圧下率が30%以上で、圧延終了温度が表面温度で900〜760℃となる熱間圧延(厚板圧延)を施される。なお、熱間圧延(厚板圧延)は、圧延終了温度が上記した温度域の温度であれば、粗圧延と仕上圧延との2段階に分けても何ら問題はない。   The heated steel material is subjected to hot rolling (thick plate rolling) with a cumulative rolling reduction of 30% or more at a surface temperature of 950 ° C or less and a rolling end temperature of 900 to 760 ° C at the surface temperature. Is done. In addition, if hot rolling (thick plate rolling) is divided into two stages of rough rolling and finish rolling as long as the rolling end temperature is in the above temperature range, there is no problem.

950℃以下の温度域での累積圧下率:30%以上
表面温度で950℃以下の温度域での累積圧下率が30%未満では、未再結晶温度域での圧下量が不足し、組織の微細化を達成できず、所望の強度、母材靭性を確保できなくなる。このため、表面温度で950℃以下の温度域での累積圧下率は30%以上に限定した。当該温度域での累積圧下率は、累積圧下率が高くなりすぎると、結晶粒が伸展しシャルピー衝撃試験でセパレーションが発生し、低温靭性が低下しやすくなることから、50%以下とすることが好ましい。なお、より好ましくは40%以下である。
Cumulative rolling reduction in the temperature range of 950 ° C or lower: 30% or more If the cumulative rolling reduction in the temperature range of 950 ° C or lower at the surface temperature is less than 30%, the rolling reduction in the non-recrystallization temperature range is insufficient. Refinement cannot be achieved, and desired strength and base material toughness cannot be ensured. For this reason, the cumulative rolling reduction in the temperature range of 950 ° C. or less at the surface temperature is limited to 30% or more. The cumulative rolling reduction in the temperature range may be 50% or less because if the cumulative rolling reduction becomes too high, the crystal grains will stretch and separation will occur in the Charpy impact test, and the low temperature toughness will tend to decrease. preferable. More preferably, it is 40% or less.

圧延終了温度:900〜760℃
圧延終了温度が、表面温度で900℃を超えて高温では、組織が粗大化し、その後の加速冷却によっても、所望の組織を確保できず、所望の強度、母材靭性を確保できなくなる。一方、圧延終了温度が、表面温度で760℃未満では、圧延中にフェライトが析出し、析出したフェライトが加工され、所望の組織を確保できず、所望の強度、母材靭性を確保できなくなる。このため、熱間圧延の圧延終了温度は、900〜760℃の範囲の温度に限定した。なお、好ましくは850〜780℃である。
Rolling end temperature: 900 ~ 760 ℃
If the rolling end temperature exceeds 900 ° C. at the surface temperature, the structure becomes coarse, and the desired structure cannot be ensured and the desired strength and base material toughness cannot be ensured even by the subsequent accelerated cooling. On the other hand, if the rolling end temperature is less than 760 ° C. at the surface temperature, ferrite precipitates during rolling, and the precipitated ferrite is processed, so that a desired structure cannot be ensured and desired strength and base material toughness cannot be ensured. For this reason, the rolling end temperature of hot rolling was limited to a temperature in the range of 900 to 760 ° C. In addition, Preferably it is 850-780 degreeC.

熱間圧延(厚板圧延)を終了した後、加速冷却を施される。加速冷却は、表面温度で760℃以上の温度から、板厚1/4t位置での平均冷却速度で2℃/s以上の冷却速度で、板厚1/4t位置の温度で、Bs温度〜(Bs温度−100℃)の温度域の冷却停止温度まで冷却する処理とする。   After finishing the hot rolling (thick plate rolling), accelerated cooling is performed. Accelerated cooling starts at a surface temperature of 760 ° C or higher, with an average cooling rate of 2 ° C / s or higher at a plate thickness of 1/4 t, and at a temperature of a plate thickness of 1/4 t, from the Bs temperature to ( It is set as the process which cools to the cooling stop temperature of the temperature range of Bs temperature-100 degreeC.

加速冷却開始温度:表面温度で760℃以上
加速冷却の開始温度が、表面温度で760℃未満では、加速冷却の開始前にフェライト相(ポリゴナルフェライト相)が析出し、その後の冷却によっても、組織の微細化が達成できず、所望の強度、母材靭性を確保できなくなる。このため、加速冷却の開始温度は760℃以上の温度に限定した。
Accelerated cooling start temperature: 760 ° C or more at the surface temperature If the start temperature of the accelerated cooling is less than 760 ° C at the surface temperature, the ferrite phase (polygonal ferrite phase) precipitates before the start of the accelerated cooling, and even after cooling, Refinement of the structure cannot be achieved, and desired strength and base material toughness cannot be ensured. For this reason, the start temperature of accelerated cooling was limited to a temperature of 760 ° C. or higher.

加速冷却の冷却速度:板厚1/4t位置での平均冷却速度で2℃/s以上
加速冷却の冷却速度が、板厚1/4t位置での平均冷却速度で2℃/s未満では、冷却が遅すぎて、第二相分率が高くなり、所望の組織を確保することができず、所望の強度、母材靭性を確保できなくなる。このため、加速冷却の冷却速度は板厚1/4t位置での平均冷却速度で2℃/s以上に限定した。なお、好ましくは4〜15℃/sである。
Accelerated cooling rate: 2 ° C / s or more at an average cooling rate at a thickness of 1/4 t The cooling rate is less than 2 ° C / s at an average cooling rate at a thickness of 1/4 t. Is too late, the second phase fraction becomes high, the desired structure cannot be secured, and the desired strength and base material toughness cannot be secured. For this reason, the cooling rate of the accelerated cooling is limited to 2 ° C./s or more in terms of the average cooling rate at the thickness of 1/4 t. In addition, Preferably it is 4-15 degrees C / s.

加速冷却停止温度:Bs温度〜(Bs温度−100℃)の温度域の温度
Bs温度は、次(2)式
Bs温度(℃)=830−270×C−90×Mn−37Ni−70Cr−83Mo ‥‥(2)
(ここで、C、Mn、Ni、Cr、Mo:各元素の含有量(質量%))
で定義される。加速冷却の冷却停止温度がBs温度を超えて高温となると、ベイナイトの生成量が減少し、所望の組織を確保することができず、所望の強度、母材靭性を確保できなくなる。一方、(Bs温度−100℃)未満では、MA相の分率が少なくなり、所望の低降伏比を確保できなくなる。このため、加速冷却停止温度は、Bs温度〜(Bs温度−100℃)の温度域の温度に限定した。
Accelerated cooling stop temperature: Temperature in the temperature range from Bs temperature to (Bs temperature – 100 ° C)
Bs temperature is the following formula (2)
Bs temperature (℃) = 830−270 × C−90 × Mn−37Ni−70Cr−83Mo (2)
(Where C, Mn, Ni, Cr, Mo: content of each element (mass%))
Defined by When the cooling stop temperature for accelerated cooling exceeds the Bs temperature and becomes high, the amount of bainite produced decreases, and the desired structure cannot be secured, and the desired strength and base material toughness cannot be secured. On the other hand, if it is less than (Bs temperature−100 ° C.), the fraction of the MA phase decreases, and the desired low yield ratio cannot be ensured. For this reason, the accelerated cooling stop temperature is limited to a temperature in the temperature range from Bs temperature to (Bs temperature−100 ° C.).

なお、上記した加速冷却を施したのち、そのまま製品板としてもよいが、必要に応じて、焼戻温度:400〜700℃で焼戻処理を施してもよい。   In addition, although it is good also as a product board as it is after performing the above-mentioned accelerated cooling, you may temper at a tempering temperature: 400-700 degreeC as needed.

焼戻温度:400〜700℃
焼戻処理は、更なる靭性の向上のために、必要に応じて実施するが、焼戻温度が400℃未満では、温度が低すぎて、所望の目的を達成できなくなる。一方、700℃を超えて高くなると、強度が低下しすぎて、所望の強度を確保できなくなる。このため、焼戻温度は400〜700℃の範囲の温度に限定することが好ましい。
Tempering temperature: 400-700 ° C
The tempering treatment is performed as necessary to further improve the toughness, but if the tempering temperature is less than 400 ° C., the temperature is too low to achieve the desired purpose. On the other hand, if the temperature exceeds 700 ° C., the strength decreases too much and the desired strength cannot be ensured. For this reason, it is preferable to limit the tempering temperature to a temperature in the range of 400 to 700 ° C.

以下、実施例に基づき、さらに本発明について説明する。   Hereinafter, based on an Example, this invention is demonstrated further.

表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法でスラブ(肉厚:250mm)とし、鋼素材とした。得られた鋼素材を、表2に示す加熱温度に加熱し、表2に示す条件で熱間圧延(厚板圧延)を施し、熱間圧延終了後、表2に示す条件で加速冷却を施し、表2に示す板厚の厚鋼板とした。なお、一部では、加速冷却終了後に、表2に示す焼戻温度で焼戻処理を行った。   Molten steel having the composition shown in Table 1 was melted in a converter and slab (wall thickness: 250 mm) was formed by a continuous casting method to obtain a steel material. The obtained steel material is heated to the heating temperature shown in Table 2, subjected to hot rolling (thick plate rolling) under the conditions shown in Table 2, and after completion of hot rolling, accelerated cooling is performed under the conditions shown in Table 2. The thick steel plates shown in Table 2 were used. In some cases, tempering treatment was performed at the tempering temperatures shown in Table 2 after the completion of accelerated cooling.

得られた厚鋼板から試験片を採取し、組織観察、引張試験、衝撃試験、溶接性試験、溶接継手試験を実施した。試験方法は次の通りとした。
(1)組織観察
得られた厚鋼板から組織観察用試験片を採取し、圧延方向断面(L方向断面)を板厚方向全厚にわたり研磨し、ナイタール液で腐食し、光学顕微鏡(倍率:400倍)または走査型電子顕微鏡(倍率:2000倍)を用いて、組織を観察し、板厚1/4t位置で各3視野以上撮像した。得られた組織写真について、画像解析により、組織の種類、および組織分率(面積率)を測定した。なお、研磨した組織観察用試験片について、ビレラ液で腐食し、同様に組織を観察し撮像して、画像解析により、MA相の組織分率(面積率)を求めた。
(2)引張試験
得られた厚鋼板から、JIS Z 2241の規定に準拠して、引張方向が圧延方向と平行な方向(L方向)となるように、引張試験片を採取した。なお、板厚:32mm未満の厚鋼板では、JIS 1A号全厚引張試験片を、板厚32mm以上の厚鋼板では、板厚1/4t位置より、JIS 4号引張試験片を、それぞれ採取した。これら引張試験片を用いて、JIS Z 2241の規定に準拠して、引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。また、得られた測定値から、降伏比YR(=(YS/TS)×100%)を算出した。
(3)衝撃試験
得られた厚鋼板の板厚の1/4t位置から、JIS Z 2242の規定に準拠して、試験片の長手方向が圧延方向に垂直な方向(C方向)となるように、Vノッチシャルピー衝撃試験片を採取し、JIS Z 2242の規定に準拠して、シャルピー衝撃試験を実施し、破面遷移温度vTrs(℃)を求めた。なお、vTrsが−40℃以下である場合を、「靭性に優れる」と評価した。
(4)溶接性試験
得られた厚鋼板からy形溶接割れ試験片を採取し、JISの規定に準拠して、y形溶接割れ試験を実施した。試験溶接は、雰囲気温度:0℃で、入熱:17kJ/cmのGMAWにより実施した。試験溶接後、割れの有無を調査した。
(5)溶接継手試験
得られた厚鋼板から、溶接継手作製用試験片を採取し、V開先となるように開先を機械加工した。そして、板厚19mmの厚鋼板では入熱:72kJ/cm、板厚50mmの厚鋼板では入熱:380kJ/cm、のサブマージアーク溶接(SAW)により、それぞれ溶接継手を作製した。得られた溶接継手部の溶接熱影響部HAZからシャルピー衝撃試験片(Vノッチ)を採取し、試験温度:0℃でシャルピー衝撃試験を実施し、各3本の吸収エネルギーを求め、算術平均して、各厚鋼板の吸収エネルギーvE(J)とした。なお、ノッチ位置は、ボンドから1mmのHAZとした。
Test pieces were collected from the obtained thick steel plates and subjected to structure observation, tensile test, impact test, weldability test, and welded joint test. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation was taken from the obtained thick steel plate, the cross section in the rolling direction (cross section in the L direction) was polished over the entire thickness in the thickness direction, corroded with the nital solution, and the optical microscope (magnification: 400). Magnification) or a scanning electron microscope (magnification: 2000 times), the tissue was observed, and three or more fields of view were imaged at a position of 1/4 t thickness. About the obtained structure | tissue photograph, the kind of structure | tissue and the tissue fraction (area ratio) were measured by image analysis. In addition, about the grind | polished specimen for structure | tissue observation, it corroded with Villera liquid, the structure | tissue was observed and imaged similarly, and the structure fraction (area ratio) of MA phase was calculated | required by image analysis.
(2) Tensile test Tensile test pieces were sampled from the obtained thick steel plate so that the tensile direction was parallel to the rolling direction (L direction) in accordance with the provisions of JIS Z 2241. In addition, JIS 1A full-thickness tensile test specimens were collected for thick steel sheets with a thickness of less than 32 mm, and JIS No. 4 tensile test specimens were collected from the position of 1/4 t thickness for thick steel sheets with a thickness of 32 mm or more. . Using these tensile test pieces, a tensile test was performed in accordance with the provisions of JIS Z 2241 to determine tensile properties (yield strength YS, tensile strength TS). Moreover, the yield ratio YR (= (YS / TS) × 100%) was calculated from the obtained measured values.
(3) Impact test From the 1 / 4t position of the thickness of the obtained thick steel plate, in accordance with the provisions of JIS Z 2242, the longitudinal direction of the test piece is the direction perpendicular to the rolling direction (C direction). A V-notch Charpy impact test piece was collected and subjected to a Charpy impact test in accordance with the provisions of JIS Z 2242 to determine the fracture surface transition temperature vTrs (° C.). A case where vTrs was −40 ° C. or lower was evaluated as “excellent toughness”.
(4) Weldability test A y-type weld crack test piece was collected from the obtained thick steel plate, and a y-type weld crack test was performed in accordance with JIS regulations. The test welding was performed by GMAW with an ambient temperature of 0 ° C. and a heat input of 17 kJ / cm. After test welding, the presence or absence of cracks was investigated.
(5) Welded joint test From the obtained thick steel plate, a test piece for producing a welded joint was collected, and the groove was machined so as to be a V groove. A welded joint was prepared by submerged arc welding (SAW) with a heat input of 72 kJ / cm for a thick steel plate with a thickness of 19 mm and with a heat input of 380 kJ / cm for a thick steel plate with a thickness of 50 mm. A Charpy impact test piece (V notch) was taken from the weld heat affected zone HAZ of the obtained welded joint, and a Charpy impact test was conducted at a test temperature of 0 ° C., and the absorbed energy of each three was obtained, and the arithmetic average was obtained. The absorbed energy vE 0 (J) of each thick steel plate. The notch position was 1 mm HAZ from the bond.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0006327186
Figure 0006327186

Figure 0006327186
Figure 0006327186

Figure 0006327186
Figure 0006327186

本発明例はいずれも、降伏比:80%以下の低降伏比で、引張強さTS:590MPa以上の強度を有し、vTrsが−40℃以下と優れた母材靭性を示し、さらに、溶接入熱72〜380kJ/cmの中入熱溶接のHAZでの吸収エネルギーvEが70J以上と、中入熱溶接の溶接熱影響部靭性に優れ、かつ0℃での低入熱溶接時にも溶接割れの発生が抑制され、耐溶接割れ性にも優れた、高張力厚鋼板となっている。一方、本発明の範囲を外れた比較例は、降伏比が高いか、所望の強度を確保できていないか、あるいは0℃での低入熱溶接時に溶接割れが発生し、耐溶接割れ性が低下しているか、あるいは中入熱溶接継手部のHAZ靭性が低下している。 Each of the inventive examples has a low yield ratio of 80% or less, a tensile strength TS of 590 MPa or more, vTrs of −40 ° C. or less and excellent base material toughness, and further welding Heat absorption 72-380kJ / cm medium heat input welding HAZ absorbed energy vE 0 is 70J or more, excellent in heat affected zone toughness of medium heat input welding, and welding even at low heat input welding at 0 ° C It is a high-tensile thick steel plate with suppressed cracking and excellent weld crack resistance. On the other hand, the comparative example out of the scope of the present invention has a high yield ratio, the desired strength cannot be ensured, or a weld crack occurs during low heat input welding at 0 ° C., and the weld crack resistance is low. The HAZ toughness of the intermediate heat input welded joint is reduced.

Claims (7)

質量%で、
C :0.04〜0.08%、 Si:0.15〜0.30%、
Mn:1.0〜1.7%、 P :0.015%以下、
S :0.003%以下、 Al:0.05%以下、
N :0.0040%以下、 Ti:0.005〜0.020%、
Mo:0.10〜0.20%、 Nb:0.005〜0.025%、
Cr:0.10〜0.50%、 B :0.0003%以下(0%を含む)
を、下記(1)式で定義される溶接割れ感受性指数PCMが0.18以下を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成と、
板厚1/4位置において、面積率で70%以上を占有するベイナイト相を主相とし、面積率で30%以下の第二相からなり、前記第二相が面積率で5%以上のMA相を含む組織と、
を有し、引張強さ:590MPa以上で、降伏比:80%以下で、溶接熱影響部靭性および耐溶接割れ性に優れることを特徴とする非調質低降伏比高張力厚鋼板。

PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ‥‥(1)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%)
% By mass
C: 0.04-0.08%, Si: 0.15-0.30%,
Mn: 1.0 to 1.7%, P: 0.015% or less,
S: 0.003% or less, Al: 0.05% or less,
N: 0.0040% or less, Ti: 0.005-0.020%,
Mo: 0.10-0.20%, Nb: 0.005-0.025%,
Cr: 0.10 to 0.50%, B: 0.0003% or less (including 0%)
And a composition weld crack sensitivity index P CM which is defined by the following formula (1) includes adjusted to satisfy 0.18 or less, the balance being Fe and unavoidable impurities,
A bainite phase that occupies 70% or more in area ratio at the thickness 1/4 position is the main phase and consists of a second phase with area ratio of 30% or less, and the second phase is MA with area ratio of 5% or more. An organization containing phases,
A non-tempered, low yield ratio, high strength thick steel plate having a tensile strength of 590 MPa or more, a yield ratio of 80% or less, and excellent weld heat affected zone toughness and weld crack resistance.
Record
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%)
前記組成に加えてさらに、質量%で、V:0.070%以下、Cu:0.50%以下、Ni:0.50%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の非調質低降伏比高張力厚鋼板。   In addition to the above composition, the composition further comprises, in mass%, one or more selected from V: 0.070% or less, Cu: 0.50% or less, Ni: 0.50% or less. The non-tempered low yield ratio high tensile thick steel plate according to claim 1. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1または2に記載の非調質低降伏比高張力厚鋼板。   2. In addition to the above composition, the composition further comprises one or two selected from Ca: 0.0005 to 0.0050% and REM: 0.0010 to 0.0050% by mass%. The non-tempered low yield ratio high-tensile thick steel plate according to 2. 鋼素材を、加熱し熱間圧延を施したのち、加速冷却を施す高張力鋼板の製造方法であって、
前記鋼素材が、質量%で、
C :0.04〜0.08%、 Si:0.15〜0.30%、
Mn:1.0〜1.7%、 P :0.015%以下、
S :0.003%以下、 Al:0.05%以下、
N :0.0040%以下、 Ti:0.005〜0.020%、
Mo:0.10〜0.20%、 Nb:0.005〜0.025%、
Cr:0.10〜0.50%、 B :0.0003%以下(0%を含む)
を、下記(1)式で定義される溶接割れ感受性指数PCMが0.18以下を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成と、板厚1/4位置において、面積率で70%以上を占有するベイナイト相を主相とし、面積率で30%以下の第二相からなり、前記第二相が面積率で5%以上のMA相を含む組織と、を有する鋼素材であり、
前記加熱が、加熱温度:1050〜1200℃とする加熱であり、
前記熱間圧延が、表面温度で950℃以下の温度域での累積圧下率が30%以上で、圧延終了温度が表面温度で900〜760℃となる熱間圧延とし、
前記加速冷却が、表面温度で760℃以上の温度から、板厚1/4t位置での平均冷却速度で2℃/s以上の冷却速度で、板厚1/4t位置の温度で、下記(2)式で定義されるBs温度(℃)で表示してBs温度〜(Bs温度−100℃)の温度域の冷却停止温度まで冷却する加速冷却である
ことを特徴とする非調質低降伏比高張力厚鋼板の製造方法。

PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ‥‥(1)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%)
Bs温度(℃)=830−270×C−90×Mn−37Ni−70Cr−83Mo ‥‥(2)
ここで、C、Mn、Ni、Cr、Mo:各元素の含有量(質量%)
It is a method for producing a high-tensile steel sheet that is subjected to accelerated cooling after heating and hot rolling a steel material,
The steel material is mass%,
C: 0.04-0.08%, Si: 0.15-0.30%,
Mn: 1.0 to 1.7%, P: 0.015% or less,
S: 0.003% or less, Al: 0.05% or less,
N: 0.0040% or less, Ti: 0.005-0.020%,
Mo: 0.10-0.20%, Nb: 0.005-0.025%,
Cr: 0.10 to 0.50%, B: 0.0003% or less (including 0%)
And wherein by adjusting as follows (1) weld crack sensitivity index P CM defined by the equation satisfies 0.18 or less, the composition comprising a balance of Fe and unavoidable impurities, at a thickness 1/4 position, area A steel having a bainite phase occupying 70% or more of the main phase, a second phase having an area ratio of 30% or less, and the second phase including an MA phase having an area ratio of 5% or more. Material,
The heating is a heating temperature: 1050 to 1200 ° C.,
The hot rolling is a hot rolling in which the cumulative rolling reduction in the temperature range of 950 ° C. or less at the surface temperature is 30% or more, and the rolling end temperature is 900 to 760 ° C. in the surface temperature,
The accelerated cooling is performed at a surface temperature of 760 ° C. or higher, a cooling rate of 2 ° C./s or higher at an average cooling rate at a thickness of 1/4 t, and a temperature of a thickness of 1/4 t (2 Non-tempered low yield ratio characterized by accelerated cooling, which is expressed as the Bs temperature (° C) defined by the formula, and cooled to the cooling stop temperature in the temperature range from Bs temperature to (Bs temperature – 100 ° C) Manufacturing method of high-tensile thick steel plate.
Record
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%)
Bs temperature (℃) = 830−270 × C−90 × Mn−37Ni−70Cr−83Mo (2)
Here, C, Mn, Ni, Cr, Mo: Content of each element (mass%)
前記加速冷却を施したのち、さらに、焼戻温度:400〜700℃で焼戻処理を施すことを特徴とする請求項4に記載の非調質低降伏比高張力厚鋼板の製造方法。   5. The method for producing a non-tempered low yield ratio high-tensile thick steel plate according to claim 4, further comprising performing a tempering treatment at a tempering temperature of 400 to 700 ° C. after the accelerated cooling. 前記組成に加えてさらに、質量%で、V:0.070%以下、Cu:0.50%以下、Ni:0.50%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4または5に記載の非調質低降伏比高張力厚鋼板の製造方法。   In addition to the above composition, the composition further comprises, in mass%, one or more selected from V: 0.070% or less, Cu: 0.50% or less, Ni: 0.50% or less. The manufacturing method of the non-tempered low yield ratio high-tensile thick steel plate of Claim 4 or 5. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項4ないし6のいずれかに記載の非調質低降伏比高張力厚鋼板の製造方法。
5. In addition to the above composition, the composition further comprises one or two kinds selected from Ca: 0.0005 to 0.0050% and REM: 0.0010 to 0.0050% by mass%. 6. The method for producing a non-tempered low yield ratio high tension thick steel plate according to any one of 6 above.
JP2015062305A 2015-03-25 2015-03-25 Non-tempered low-yield ratio high-tensile steel plate and method for producing the same Active JP6327186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015062305A JP6327186B2 (en) 2015-03-25 2015-03-25 Non-tempered low-yield ratio high-tensile steel plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015062305A JP6327186B2 (en) 2015-03-25 2015-03-25 Non-tempered low-yield ratio high-tensile steel plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016180171A JP2016180171A (en) 2016-10-13
JP6327186B2 true JP6327186B2 (en) 2018-05-23

Family

ID=57132528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015062305A Active JP6327186B2 (en) 2015-03-25 2015-03-25 Non-tempered low-yield ratio high-tensile steel plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP6327186B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6795048B2 (en) * 2018-05-15 2020-12-02 Jfeスチール株式会社 Non-treated low yield ratio high-strength thick steel sheet and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117745A (en) * 1991-10-23 1993-05-14 Kobe Steel Ltd Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JP5245414B2 (en) * 2008-01-07 2013-07-24 Jfeスチール株式会社 Steel plate for low yield ratio high strength steel pipe, its manufacturing method and low yield ratio high strength steel pipe
JP2009161811A (en) * 2008-01-07 2009-07-23 Jfe Steel Corp Steel sheet for low yield ratio high strength steel pipe, method for producing the same, and low yield ratio high strength steel pipe
JP5146051B2 (en) * 2008-03-27 2013-02-20 Jfeスチール株式会社 Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same
JP5348386B2 (en) * 2008-10-24 2013-11-20 Jfeスチール株式会社 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method

Also Published As

Publication number Publication date
JP2016180171A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5928374B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP6725020B2 (en) Valve plate and method for manufacturing valve plate
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
US20200080179A1 (en) High-strength steel having excellent fracture initiation resistance and fracture propagation arrestability at low temperature and method of manufacturing the same
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
US20190352749A1 (en) Steel material for high heat input welding
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2007177325A (en) High tensile strength thick steel plate having low yield ratio and its production method
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP6308151B2 (en) Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5842359B2 (en) Non-tempered low yield ratio high tensile steel sheet and method for producing the same
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP5082475B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250