JP5082475B2 - Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance - Google Patents

Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance Download PDF

Info

Publication number
JP5082475B2
JP5082475B2 JP2007024251A JP2007024251A JP5082475B2 JP 5082475 B2 JP5082475 B2 JP 5082475B2 JP 2007024251 A JP2007024251 A JP 2007024251A JP 2007024251 A JP2007024251 A JP 2007024251A JP 5082475 B2 JP5082475 B2 JP 5082475B2
Authority
JP
Japan
Prior art keywords
less
temperature
steel sheet
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007024251A
Other languages
Japanese (ja)
Other versions
JP2008189973A (en
Inventor
正雄 柚賀
眞司 三田尾
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007024251A priority Critical patent/JP5082475B2/en
Publication of JP2008189973A publication Critical patent/JP2008189973A/en
Application granted granted Critical
Publication of JP5082475B2 publication Critical patent/JP5082475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、橋梁、貯蔵タンク、圧力容器、ラインパイプなどの溶接鋼構造物用として好適な高張力鋼板の製造方法に係り、とくに降伏強さが480MPa以上で低温靭性に優れ、かつ強度−伸びバランスに優れた高張力鋼板の製造方法に関する。   The present invention relates to a method for producing a high-strength steel sheet suitable for welded steel structures such as bridges, storage tanks, pressure vessels, and line pipes, and in particular, has a yield strength of 480 MPa or more and excellent low-temperature toughness, and strength-elongation. The present invention relates to a method for producing a high-strength steel sheet with excellent balance.

近年、橋梁、貯蔵タンク、圧力容器、ラインパイプなどの溶接鋼構造物に使用される鋼板には、高強度で、低温靭性に優れていることはもちろん、さらに、耐震性の観点から高い延性(伸び)を有することが要求されることが多い。
耐震性向上の観点からは、従来から、低降伏比し、さらには高一様伸び化して、塑性変形能を高めることが推奨されている。また、ラインパイプなどでは、全伸び(一様伸び+局部伸び)が大きいことが要求される。これは、外部応力により変形が始まってから破壊するまでに変形する量が大きいことを意味しており、鋼材に対する安全性の指標となっている。全伸びに占める一様伸びの比率は、引張試験片の標点距離が長いほど大きくなるが、長標点引張試験片であっても一般的に使用されている引張試験片の範囲内では、局部伸びの割合も40〜50%程度あることが多いため、全伸びを大きくするためには、一様伸びと局部伸びのいずれも大きくする必要がある。
In recent years, steel sheets used for welded steel structures such as bridges, storage tanks, pressure vessels, and line pipes have high strength and low temperature toughness, as well as high ductility from the viewpoint of earthquake resistance ( It is often required to have (elongation).
From the viewpoint of improving seismic resistance, it has been conventionally recommended to increase the plastic deformability by reducing the yield ratio and increasing the uniform elongation. Further, line pipes and the like are required to have a large total elongation (uniform elongation + local elongation). This means that the amount of deformation from the start of deformation to the failure due to external stress is large, and is an index of safety for steel materials. The ratio of the uniform elongation to the total elongation becomes larger as the gauge distance of the tensile test piece is longer, but within the range of the tensile test piece that is generally used even if it is a long gauge tensile test piece, Since the ratio of local elongation is often about 40 to 50%, it is necessary to increase both uniform elongation and local elongation in order to increase the total elongation.

低降伏比は、例えば建築用鋼材等では、二相域焼入れなどの手段により、マルテンサイト相またはベイナイト相主体の組織中に軟質のフェライト相を導入し、ミクロ的に不均一な組織とすることにより実現している。しかし、このような手段では、鋼材の降伏現象を早期に発生させていることになり、構造物として必要な降伏強さとのバランスをとることが難しく、また、複雑な熱処理工程を必要とするなど、実用的な大量生産品としては問題を残している。   The low yield ratio is, for example, for steel for construction, and the like by introducing a soft ferrite phase into the structure mainly composed of martensite or bainite by means of two-phase quenching, etc. It is realized by. However, with such means, the yield phenomenon of the steel material has occurred at an early stage, and it is difficult to balance the yield strength required as a structure, and a complicated heat treatment process is required. As a practical mass-produced product, it remains a problem.

また、伸び(一様伸びを含む)の向上には、複相組織化が有効であると考えられている。例えば、特許文献1には、重量%で、C:0.02〜0.20%を含み、Si、Mn、P、S、Al、Nを適正範囲に調整し、炭素当量Ceqが0.33〜0.5%、Ni当量が0.5%以上である鋼を、加熱後、オーステナイト再結晶温度域で熱間圧延し、フェライト−オーステナイト二相域で恒温保持または冷却速度を制御して冷却し、面積率で70%以上のフェライトを生成したのち、二相域の特定の温度以上から所定以上の冷却速度で冷却し、フェライト相以外の残部組織をマルテンサイト相を主として含む第二相とする、高強度鋼板の製造方法が開示されている。特許文献1に記載された技術によれば、鋼板の引張特性における一様伸びが向上するとしている。しかし、特許文献1に記載された技術では、一様伸びが向上するものの、フェライト粒が粗大化するため、低温靭性は良好とは言えない。また、ミクロ組織が不均一であり、局部伸びが著しく低下する恐れがあるという問題があった。   In addition, it is considered that multiphase organization is effective for improving elongation (including uniform elongation). For example, Patent Document 1 includes C: 0.02 to 0.20% by weight, Si, Mn, P, S, Al, and N are adjusted to an appropriate range, and the carbon equivalent Ceq is 0.33 to 0.5%, Ni equivalent. After heating, the steel with a steel content of 0.5% or more is hot-rolled in the austenite recrystallization temperature range, cooled at a constant temperature or controlled at the cooling rate in the ferrite-austenite two-phase region, and ferrite with an area ratio of 70% or more. Is produced at a cooling rate higher than a predetermined temperature from a specific temperature in a two-phase region, and the remaining structure other than the ferrite phase is a second phase mainly including a martensite phase, which is disclosed in a method for producing a high-strength steel sheet Has been. According to the technique described in Patent Document 1, the uniform elongation in the tensile properties of the steel sheet is improved. However, in the technique described in Patent Document 1, the uniform elongation is improved, but the ferrite grains are coarsened, so the low temperature toughness is not good. In addition, there is a problem that the microstructure is non-uniform and the local elongation may be significantly reduced.

また、特許文献2には、均一伸び(一様伸び)を向上させ、強度−延性バランスおよび溶接性に優れた厚鋼板の製造方法が提案されている。特許文献2に記載された技術は、質量%で、C:0.01〜0.10%、Mn:1.5〜7.0%を含み、さらにSi、Al、Ti、Nを適正範囲に調整して含有する鋼素材を、加熱して熱間圧延後に強制冷却を行い、その後、二相域の特定範囲の温度に加熱して保持する熱処理を行ない、残留オーステナイト(残留γ)の組織分率を1.0〜30%の範囲内でかつ特定条件を満足する量とする、厚鋼板の製造方法である。特許文献2に記載された技術によれば、残留γが安定化しかつ所望の量以上の残留γを確保でき、均一伸びを向上でき、優れた強度−延性バランスを確保できるとしている。しかし、特許文献2に記載された技術では、多量の合金元素を含有する必要があり、材料コストの高騰を招くうえ、溶接性が低下する。   Patent Document 2 proposes a method for producing a thick steel plate that improves uniform elongation (uniform elongation) and is excellent in strength-ductility balance and weldability. The technique described in Patent Document 2 includes a steel material containing, by mass%, C: 0.01 to 0.10%, Mn: 1.5 to 7.0%, and further adjusting Si, Al, Ti, and N to an appropriate range. Heating and forced cooling after hot rolling, followed by heat treatment to maintain the temperature in a specific range of the two-phase region, the structure fraction of residual austenite (residual γ) in the range of 1.0-30% It is the manufacturing method of a thick steel plate which makes it the quantity which satisfies specific conditions in the inside. According to the technique described in Patent Document 2, the residual γ is stabilized and the residual γ of a desired amount or more can be secured, the uniform elongation can be improved, and an excellent strength-ductility balance can be secured. However, in the technique described in Patent Document 2, it is necessary to contain a large amount of alloy elements, which leads to an increase in material cost and weldability.

また、Cuの析出を利用することにより、一様伸びが向上することが、例えば、特許文献3に記載されている。特許文献3に記載された技術は、重量%で、C:0.2%以下、Si、Mnを適正量に調整し、さらにCu:0.5〜5.0%を含む鋼を、750℃以上で圧延を終了したのち、室温まで比較的緩冷却速度で室温まで冷却するか、あるいは750℃以上で圧延を終了したのち、急速冷却し、所定の温度範囲で時効処理することにより、結晶粒内に9R構造のCu粒子と、bcc構造のCu粒子またはfcc構造のCu粒子とを複合して分散させた高強度鋼であり、一様伸びが優れるとしている。
特許第3459501号公報 特開2006-131958号公報 特許第3694383号公報
Further, for example, Patent Document 3 describes that uniform elongation is improved by utilizing precipitation of Cu. The technique described in Patent Document 3 is weight%, C: 0.2% or less, Si and Mn are adjusted to appropriate amounts, and further rolling of steel containing Cu: 0.5 to 5.0% is completed at 750 ° C. or higher. After that, it cools to room temperature at a relatively slow cooling rate to room temperature, or finishes rolling at 750 ° C. or higher, and then rapidly cools and ages within a predetermined temperature range, so that 9R structure Cu is formed in the crystal grains. It is a high-strength steel in which particles and Cu particles with bcc structure or Cu particles with fcc structure are combined and dispersed, and it is said that uniform elongation is excellent.
Japanese Patent No. 3345501 JP 2006-131958 A Japanese Patent No. 3694383

しかし、特許文献3に記載された技術では、所望の高強度と高い一様伸びを確保するためには、1%を超える多量のCu含有を必要とするため、製造コストの高騰を招くうえ、熱間加工性の低下が懸念され、生産性の著しい低下を招く恐れがあり、また、溶接性を低下させるため、実用的には問題を残していた。
本発明は、上記した従来技術の問題を有利に解決し、生産性の低下および製造コストの高騰を招くことなく、480MPa以上の降伏強さと優れた低温靭性とを有し、かつ強度−伸びバランスに優れた高張力鋼板を安定して製造できる、経済性に優れた、高張力鋼板の製造方法を提供することを目的とする。
However, in the technique described in Patent Document 3, in order to ensure the desired high strength and high uniform elongation, a large amount of Cu content exceeding 1% is required. There is a concern about a decrease in hot workability, which may lead to a significant decrease in productivity, and also has a problem in practical use because it deteriorates the weldability.
The present invention advantageously solves the above-mentioned problems of the prior art, has yield strength of 480 MPa or more and excellent low-temperature toughness without causing reduction in productivity and increase in manufacturing cost, and strength-elongation balance. An object of the present invention is to provide a method for producing a high-strength steel sheet that is capable of stably producing a high-strength steel sheet that is excellent in terms of economy and that is excellent in economy.

なお、本発明でいう「優れた低温靭性」、「高靭性」とは、シャルピー衝撃試験の破面遷移温度vTrsが−80℃以下である場合をいい、「強度−伸びバランスに優れた」とは、JIS5号引張試験片(全厚)を用いて得られた、引張強さTSと伸びElとの積、TS×Elが30,000MPa%以上の場合をいう。   In the present invention, “excellent low temperature toughness” and “high toughness” refer to the case where the fracture surface transition temperature vTrs of the Charpy impact test is −80 ° C. or lower, and “excellent in strength-elongation balance”. Means the product of tensile strength TS and elongation El obtained using JIS No. 5 tensile test specimen (total thickness), and TS × El is 30,000 MPa% or more.

本発明者らは、上記した課題を達成するために、強度、低温靭性、伸びに影響する各種要因について、鋭意研究した。その結果、降伏強さ:480MPa以上の高強度と優れた低温靭性を維持しつつ、伸び(全伸び)を向上させるには、鋼板中心部のミクロ組織、表裏層の硬さ、および表裏層の硬さの均一性を適正に調整することが肝要であることに想到した。そしてさらに、(a)鋼板組織をフェライトとベイナイトの複合組織とすることにより伸びが向上すること、(b)熱間圧延で表層に導入された加工フェライトが伸びの向上を阻害していること、
(c)表層のみを優先的に加熱する焼戻処理を施すことにより、伸びが向上すること、
(d)上記した焼戻処理により、鋼板表面硬さが低下し、鋼板内の表面硬さのばらつき、板厚方向の硬さばらつきが軽減すること、
を知見した。また、
(f)表層のみを優先的に加熱する焼戻処理には、誘導加熱装置を利用し、表層に誘導電流を集中させることが有効であること、
に想到した。
In order to achieve the above-described problems, the present inventors have intensively studied various factors that affect strength, low temperature toughness, and elongation. As a result, yield strength: 480MPa and higher strength and excellent low temperature toughness can be maintained while improving the elongation (total elongation), the microstructure of the center of the steel sheet, the hardness of the front and back layers, and the strength of the front and back layers It came to mind that it is important to properly adjust the hardness uniformity. Further, (a) the elongation is improved by making the steel sheet structure a composite structure of ferrite and bainite, (b) the processed ferrite introduced into the surface layer by hot rolling inhibits the improvement of the elongation,
(C) Elongation is improved by applying a tempering treatment that preferentially heats only the surface layer,
(D) The above-described tempering treatment reduces the steel sheet surface hardness, reduces the surface hardness variation in the steel sheet, and the hardness variation in the plate thickness direction,
I found out. Also,
(F) In the tempering process in which only the surface layer is preferentially heated, it is effective to use an induction heating device and concentrate the induced current on the surface layer.
I came up with it.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.03〜0.18%、Si:0.01〜0.55%、Mn:0.5〜2.0%、Al:0.005〜0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成の鋼素材に、該鋼素材を1000〜1350℃の範囲の温度に加熱したのち、圧延終了温度が表面温度でAr変態点未満(Ar変態点−80℃)以上の範囲の温度となる圧延を施し所望板厚の鋼板とする熱間圧延を施し、該熱間圧延終了後、空冷超えの冷却速度で、鋼板の平均温度で620℃以下の温度域まで冷却する加速冷却と、該加速冷却終了後、誘導加熱装置を用いて、鋼板の板厚中心温度が580℃以下、鋼板表面の最高到達温度が580〜700℃の範囲の温度となるように、加熱する焼戻処理と、を施すことを特徴とする、降伏強さ:480MPa以上の高強度を有し、かつ強度−伸びバランスに優れた高靭性高張力鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, including C: 0.03-0.18%, Si: 0.01-0.55%, Mn: 0.5-2.0%, Al: 0.005-0.1%, N: 0.005% or less, from the remainder Fe and inevitable impurities the composition of the steel material made, after heating the steel material to a temperature in the range of 1000-1350 ° C., a temperature in the range rolling end temperature is the surface temperature Ar less than 3 transformation point (Ar 3 transformation point -80 ° C.) or more Accelerated cooling to cool the steel sheet to a temperature range of 620 ° C. or less at the average temperature of the steel sheet at the cooling rate exceeding air cooling after completion of the hot rolling, After completion of the accelerated cooling, using an induction heating device, a tempering treatment in which the plate thickness center temperature of the steel plate is 580 ° C. or lower and the maximum reached temperature of the steel plate surface is a temperature in the range of 580 to 700 ° C. Yield strength: High toughness high tensile strength steel sheet with high strength of 480 MPa or more and excellent strength-elongation balance Manufacturing method.

(2)(1)において、前記組成に加えてさらに、質量%で、Cu:0.8%以下、Ni:2%以下、Cr:1%以下、Mo:0.8%以下、Nb:0.05%以下、V:0.1%以下、B:0.002%以下のうちから選ばれた1種または2種以上を含有することを特徴とする高靭性高張力鋼板の製造方法。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ti:0.025%以下を含有することを特徴とする高靭性高張力鋼板の製造方法。
(2) In (1), in addition to the above composition, in terms of mass%, Cu: 0.8% or less, Ni: 2% or less, Cr: 1% or less, Mo: 0.8% or less, Nb: 0.05% or less, V A method for producing a high-toughness high-tensile steel sheet, comprising one or more selected from: 0.1% or less and B: 0.002% or less.
(3) In (1) or (2), in addition to the said composition, the manufacturing method of the toughness high-tensile steel plate characterized by containing Ti: 0.025% or less further by the mass%.

(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.005%以下を含有することを特徴とする高靭性高張力鋼板の製造方法。   (4) In any one of (1) to (3), in addition to the above-described composition, the method further comprises a mass% of Ca: 0.005% or less, and a method for producing a high toughness high-tensile steel sheet.

本発明によれば、降伏強さ:480MPa以上の高強度と、優れた低温靭性とを有し、かつ強度−伸びバランスに優れた高靭性高張力鋼板を、安価にしかも生産性の低下を招くことなく、安定して製造でき、産業上格段の効果を奏する。   According to the present invention, a high-toughness high-tensile steel sheet having high yield strength: 480 MPa or more and excellent low-temperature toughness and excellent strength-elongation balance can be produced at low cost and with a decrease in productivity. It can be manufactured stably without any significant industrial effects.

本発明は、鋼素材を、加熱し所望板厚の鋼板とする熱間圧延を施したのち、該熱間圧延終了後、加速冷却と、誘導装置を利用した焼戻処理とを施し、降伏強さ:480MPa以上の高強度を有し、かつ強度−伸びバランスに優れた高靭性高張力鋼板とする、高張力鋼板の製造方法である。
まず、使用する鋼素材の組成限定理由について説明する。なお、組成における質量%は、単に%で記す。
The present invention, after hot rolling the steel material to a steel plate with a desired thickness, after the hot rolling is finished, subjected to accelerated cooling and tempering using an induction device, yield strength This is a method for producing a high-tensile steel sheet having a high strength of 480 MPa or more and a high toughness high-tensile steel sheet having an excellent strength-elongation balance.
First, the reasons for limiting the composition of the steel material used will be described. The mass% in the composition is simply expressed as%.

C:0.03〜0.18%
Cは、鋼板の母材強度を増加させる元素であり、所望の高強度を確保するために、0.03%以上の含有を必要とする。0.03%未満の含有では、Cu、Ni,Cr、Moなどの焼入性向上元素の多量含有を必要とし、製造コストの高騰、溶接性の低下を招くとともに、大入熱溶接が施される場合には、溶接金属へのCの希釈が少なくなり、所望の溶接継手部強度の確保が困難となる。一方、0.18%を超える過剰な含有は、鋼板母材の靭性および耐溶接割れ感受性の低下を招き、また溶接継手部靭性の低下を招く。このため、Cは0.03〜0.18%の範囲に限定した。
C: 0.03-0.18%
C is an element that increases the strength of the base material of the steel sheet, and needs to be contained by 0.03% or more in order to ensure a desired high strength. When the content is less than 0.03%, a large amount of hardenability-improving elements such as Cu, Ni, Cr, and Mo is required, which causes a rise in manufacturing cost, a decrease in weldability, and high heat input welding. In this case, the dilution of C into the weld metal is reduced, and it becomes difficult to ensure the desired weld joint strength. On the other hand, an excessive content exceeding 0.18% leads to a decrease in the toughness of the steel plate base metal and the resistance to weld cracking, and also a decrease in the weld joint toughness. For this reason, C was limited to the range of 0.03-0.18%.

Si:0.01〜0.55%
Siは、鋼板の母材強度および溶接継手部強度を確保するうえで有効な元素であり、本発明では0.01%以上の含有を必要とする。しかし、0.55%を超える多量の含有は、耐溶接割れ感受性の低下と、溶接継手部靭性の低下を招く。このため、Siは0.01〜0.55%の範囲に限定した。
Si: 0.01-0.55%
Si is an element effective in securing the base metal strength and weld joint strength of the steel sheet, and in the present invention, it needs to be contained in an amount of 0.01% or more. However, a large content exceeding 0.55% causes a decrease in resistance to weld cracking and a decrease in weld joint toughness. For this reason, Si was limited to the range of 0.01 to 0.55%.

Mn:0.5〜2.0%
Mn は、鋼板の母材強度および溶接継手部強度を確保するうえで有効な元素であり、本発明では、0.5%以上の含有を必要とする。しかし、2.0%を超える多量の含有は耐溶接割れ感受性を低下させるとともに、必要以上の焼入性の向上を招き母材靭性および溶接継手部靭性を低下させる。このため、Mnは0.5〜2.0%の範囲に限定した。なお、好ましくは、1.6%以下である。
Mn: 0.5-2.0%
Mn is an element effective in securing the base metal strength and weld joint strength of the steel sheet, and in the present invention, it needs to be contained at 0.5% or more. However, a large content exceeding 2.0% lowers the resistance to weld cracking and leads to an increase in hardenability more than necessary, thereby lowering the base metal toughness and weld joint toughness. For this reason, Mn was limited to the range of 0.5 to 2.0%. In addition, Preferably, it is 1.6% or less.

Al:0.005〜0.1%
Alは、鋼の脱酸剤として作用するとともに、Nと結合し結晶粒を微細化し、母材靭性の向上に寄与する元素であり、脱酸剤としての効果を確保するためには0.005%以上、また、結晶粒の微細化のためには0.01%程度以上の含有を必要とする。一方、0.1%を超える含有は、母材靭性を低下させる。このため、Alは0.005〜0.1%の範囲に限定した。
Al: 0.005-0.1%
Al is an element that acts as a deoxidizer for steel and combines with N to refine crystal grains and contribute to the improvement of the toughness of the base metal. To ensure the effect as a deoxidizer, 0.005% or more In addition, the content of about 0.01% or more is required for crystal grain refinement. On the other hand, the content exceeding 0.1% lowers the base metal toughness. For this reason, Al was limited to the range of 0.005 to 0.1%.

N:0.005%以下
Nは、Al、Nb等と反応し析出物を形成し、結晶粒を微細化し、母材靭性を向上させるとともに、鋼板の母材強度向上に寄与する。このような効果は、N:0.0005%以上の含有で顕著となるが、0.005%を超える含有は、母材靭性および大入熱溶接継手部靭性を低下させる。このため、Nは0.005%以下、好ましくは0.0005%以上に限定した。
N: 0.005% or less N reacts with Al, Nb and the like to form precipitates, refines crystal grains, improves the base material toughness, and contributes to the improvement of the base material strength of the steel sheet. Such an effect becomes remarkable when the content of N is 0.0005% or more. However, when the content exceeds 0.005%, the base metal toughness and the high heat input welded joint toughness are deteriorated. For this reason, N was limited to 0.005% or less, preferably 0.0005% or more.

上記した成分が基本成分であるが、基本成分に加えてさらに、Cu:0.8%以下、Ni:2%以下、Cr:1%以下、Mo:0.8%以下、Nb:0.05%以下、V:0.1%以下、B:0.002%以下のうちから選ばれた1種または2種以上、および/または、Ti:0.025%以下、および/または、Ca:0.005%以下を、必要に応じて選択して含有できる。
Cu:0.8%以下、Ni:2%以下、Cr:1%以下、Mo:0.8%以下、Nb:0.05%以下、V:0.1%以下、B:0.002%以下のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Mo、Nb、V、Bは、いずれも、鋼板強度の増加に寄与する作用を有する元素であり、更なる高強度が要求される場合など、必要に応じて1種または2種以上を含有できる。
The above components are basic components. In addition to the basic components, Cu: 0.8% or less, Ni: 2% or less, Cr: 1% or less, Mo: 0.8% or less, Nb: 0.05% or less, V: 0.1 % Or less, B: One or more selected from 0.002% or less, and / or Ti: 0.025% or less, and / or Ca: 0.005% or less, optionally selected and contained it can.
One selected from Cu: 0.8% or less, Ni: 2% or less, Cr: 1% or less, Mo: 0.8% or less, Nb: 0.05% or less, V: 0.1% or less, B: 0.002% or less 2 or more types
Cu, Ni, Cr, Mo, Nb, V, and B are all elements that have an effect of contributing to an increase in the strength of the steel sheet. Two or more kinds can be contained.

Cuは、上記した作用に加えて耐候性を向上させる作用を有する。このような効果を確保するためには、0.05%以上含有することが望ましいが、0.8%を超える含有は、熱間加工性の低下や、溶接性の低下を招く。このため、含有する場合には、Cuは0.8%以下に限定することが好ましい。
Niは、焼入れ性向上を介して、上記した鋼板強度の増加に寄与するとともに、耐候性、靭性を向上させる作用を有する。このような効果を確保するためには、0.05%以上含有することが望ましいが、2%を超える含有は、材料コストの高騰を招く。このため、含有する場合には、Niは2%以下に限定することが好ましい。
Cu has the effect of improving the weather resistance in addition to the above-described effects. In order to ensure such an effect, it is desirable to contain 0.05% or more. However, if it exceeds 0.8%, hot workability and weldability are deteriorated. For this reason, when it contains, it is preferable to limit Cu to 0.8% or less.
Ni contributes to the increase in steel plate strength as described above through improvement in hardenability, and has the effect of improving weather resistance and toughness. In order to ensure such an effect, it is desirable to contain 0.05% or more, but inclusion exceeding 2% causes a rise in material cost. For this reason, when it contains, it is preferable to limit Ni to 2% or less.

Crは、焼入れ性向上を介して、上記した鋼板強度の増加に寄与するとともに、耐候性を向上させる作用を有する元素であり、必要に応じて添加できるが、1%を超える含有は、溶接性を低下させる。このため、含有する場合には、Crは1%以下に限定することが好ましい。
Moは、焼入れ性の向上、さらに析出物の形成を介して上記した鋼板強度の増加に寄与する元素であり、必要に応じて添加できるが、一方、0.8%を超える含有は必要以上の焼入れ性の増加を招くとともに、溶接性を低下させる。このため、含有する場合には、Moは0.8%以下に限定することが好ましい。
Cr is an element that has the effect of improving the weather resistance and contributes to the increase in strength of the steel sheet through the improvement of hardenability, and can be added as necessary. Reduce. For this reason, when contained, Cr is preferably limited to 1% or less.
Mo is an element that contributes to the increase in steel sheet strength through the improvement of hardenability and the formation of precipitates, and can be added as necessary. On the other hand, the content exceeding 0.8% is harder than necessary. Increase the weldability. For this reason, when it contains, it is preferable to limit Mo to 0.8% or less.

Nbは、析出物の形成を介して、上記した鋼板強度の増加に寄与する元素であり、このような効果を確保するためには0.005%以上含有することが好ましいが、0.05%を超える多量の含有は、却って鋼板強度の増加に寄与しないうえ、溶接熱影響部靭性を低下させる。このため、含有する場合には、Nbは0.05%以下に限定することが好ましい。なお、より好ましくは0.03%以下である。   Nb is an element that contributes to the increase in the steel sheet strength described above through the formation of precipitates. In order to ensure such an effect, Nb is preferably contained in an amount of 0.005% or more, but a large amount exceeding 0.05%. Containing does not contribute to an increase in steel sheet strength, and lowers the toughness of the heat affected zone. For this reason, when it contains, it is preferable to limit Nb to 0.05% or less. More preferably, it is 0.03% or less.

Vは、析出物の形成を介して、上記した鋼板強度の増加、さらには溶接継手部強度の確保に有効に寄与する元素であり、このような効果を得るためには0.01%以上含有することが好ましいが、0.1%を超える含有は、耐溶接割れ感受性を低下させる。このため、含有する場合には、Vは0.1%以下に限定することが好ましい。
Bは、ごく微量の添加で焼入性を高め、焼入性向上を介して上記した鋼板強度の増加に有効に寄与する元素であり、このような効果を得るためには0.0005%以上含有することが好ましい。一方、0.002%を超える含有は、BNの形成が顕著となり、焼入性が低下するとともに、溶接熱影響部の硬化が著しくなる。このため、含有する場合には、Bは0.002%以下に限定することが好ましい。
V is an element that contributes effectively to the increase of the steel sheet strength and the securing of the weld joint strength through the formation of precipitates. To obtain such an effect, V is contained in an amount of 0.01% or more. However, the content exceeding 0.1% lowers the weld cracking resistance. For this reason, when it contains, it is preferable to limit V to 0.1% or less.
B is an element that enhances hardenability by addition of a very small amount and contributes effectively to the increase in steel sheet strength as described above through improvement of hardenability. To obtain such an effect, B is contained in an amount of 0.0005% or more. It is preferable. On the other hand, if the content exceeds 0.002%, the formation of BN becomes remarkable, the hardenability decreases, and the weld heat affected zone becomes hardened. For this reason, when it contains, it is preferable to limit B to 0.002% or less.

Ti:0.025%以下
Tiは、析出物を形成し、組織を微細化させる作用を有するとともに、TiNを形成し、BがNと結合するのを防止して、焼入性に有効なB量の確保に有効に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには0.005%以上含有することが好ましいが、0.025%を超える含有は、鋼板靭性を低下させる。このため、含有する場合には、Tiは0.025%以下に限定することが好ましい。
Ti: 0.025% or less
Ti has the effect of forming precipitates and refining the structure, forming TiN, preventing B from binding with N, and contributing effectively to securing B content effective for hardenability. It can be contained as needed. In order to acquire such an effect, it is preferable to contain 0.005% or more, but inclusion exceeding 0.025% reduces the toughness of the steel sheet. For this reason, when it contains, it is preferable to limit Ti to 0.025% or less.

Ca:0.005%以下
Caは、MnS等の、靭性に悪影響を及ぼす硫化物の形態を、靭性向上に有利な球状に近い形態に制御する作用を有する元素であり、必要に応じて含有することができる。このような効果を得るためには0.001%以上含有することが好ましいが、0.005%を超える含有は、鋼の清浄性を低下させる。このため、含有する場合には、Caは0.005%以下に限定することが好ましい。
Ca: 0.005% or less
Ca is an element having an action of controlling the form of sulfide that adversely affects toughness, such as MnS, to a nearly spherical form that is advantageous for improving toughness, and can be contained as necessary. In order to acquire such an effect, it is preferable to contain 0.001% or more, but inclusion exceeding 0.005% reduces the cleanliness of steel. For this reason, when it contains, it is preferable to limit Ca to 0.005% or less.

上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、P:0.015%以下、S:0.015%以下が許容できる。
上記した組成の鋼素材の製造方法は、本発明ではとくに限定する必要はなく、通常公知の方法がいずれも適用できる。上記した組成の溶鋼を、転炉等の公知の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等の公知の方法でスラブ等の鋼素材とすることが好ましい。
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, P: 0.015% or less and S: 0.015% or less are acceptable.
The manufacturing method of the steel material having the above-described composition is not particularly limited in the present invention, and any generally known method can be applied. It is preferable that the molten steel having the above composition is melted by a known melting method such as a converter and used as a steel material such as a slab by a known method such as a continuous casting method or an ingot-bundling rolling method.

本発明では、上記した組成の鋼素材を出発素材として、該鋼素材を加熱し、所望板厚の鋼板とする熱間圧延と、該熱間圧延終了後直ちに、該鋼板を冷却する加速冷却と、該加速冷却終了後、誘導加熱装置を用いた焼戻処理を施す。
熱間圧延の加熱温度:1000〜1350℃
鋼素材の加熱温度は、1000〜1350℃とする。加熱温度が1000℃未満では、鋼素材中の合金元素を均一化し、Mo、Nb、V等の析出物強化元素を固溶させることが不十分となり、所望の強度、靭性を確保できなくなる。一方、加熱温度が1350℃を超えると、結晶粒が粗大化し母材の靭性低下を招く恐れがある。このため、鋼素材の加熱温度は1000〜1350℃の範囲の温度に限定した。なお、好ましくは1250℃以下である。
In the present invention, the steel material having the above composition is used as a starting material, the steel material is heated to form a steel plate having a desired thickness, and accelerated cooling is performed immediately after the hot rolling to cool the steel plate. After the accelerated cooling, a tempering process using an induction heating device is performed.
Hot rolling heating temperature: 1000-1350 ° C
The heating temperature of the steel material is 1000-1350 ° C. When the heating temperature is less than 1000 ° C., the alloying elements in the steel material are made uniform and the precipitate strengthening elements such as Mo, Nb, and V are not sufficiently dissolved, and the desired strength and toughness cannot be secured. On the other hand, when the heating temperature exceeds 1350 ° C., the crystal grains are coarsened and the toughness of the base material may be lowered. For this reason, the heating temperature of the steel material was limited to a temperature in the range of 1000 to 1350 ° C. In addition, Preferably it is 1250 degrees C or less.

熱間圧延の圧延終了温度:Ar変態点未満(Ar変態点−80℃)以上
本発明では、オーステナイト(γ)粒の微細化のために、熱間圧延の圧延終了温度を、表面温度で、Ar変態点未満(Ar変態点−80℃)以上の範囲に限定する。圧延終了温度が、表面温度で、Ar変態点以上では、γ粒が粗大化し靭性が低下する。一方、圧延終了温度が(Ar変態点−80℃)未満と低温となると、板厚中心部近傍まで加工されたフェライトが形成され、伸びが低下する。このようなことから、熱間圧延の圧延終了温度はAr変態点未満(Ar変態点−80℃)以上に限定した。
Rolling end temperature of hot rolling: less than Ar 3 transformation point (Ar 3 transformation point−80 ° C.) or more In the present invention, the rolling end temperature of hot rolling is defined as the surface temperature in order to refine austenite (γ) grains. Thus, it is limited to a range below the Ar 3 transformation point (Ar 3 transformation point−80 ° C.) or more. When the rolling end temperature is not less than the Ar 3 transformation point at the surface temperature, the γ grains become coarse and the toughness decreases. On the other hand, when the rolling end temperature is as low as less than (Ar 3 transformation point −80 ° C.), ferrite processed to the vicinity of the center of the plate thickness is formed, and the elongation is lowered. For this reason, the rolling finishing temperature of hot rolling is limited to more than Ar less than 3 transformation point (Ar 3 transformation point -80 ° C.).

なお、Ar変態点は、例えば、次(1)式
Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo ……(1)
(ここで、C、Mn、Cu、Cr、Ni、Mo:各元素の含有量(質量%))
により、含有する合金元素量から算出することもできる。なお、上記した(1)式においては、含まれない元素については、式中の当該元素の含有量を零として計算するものとする。
The Ar 3 transformation point is, for example, the following formula (1)
Ar 3 (° C.) = 910−310C−80Mn−20Cu−15Cr−55Ni−80Mo (1)
(Here, C, Mn, Cu, Cr, Ni, Mo: content of each element (mass%))
Thus, it can be calculated from the amount of alloying elements contained. In addition, in the above-described equation (1), for elements not included, the content of the element in the equation is assumed to be zero.

なお、母材靭性を向上させ、安定的に維持するという観点からは、熱間圧延における累積圧下率を50%以上とすることが好ましく、更なる効果を得るためには、1050℃以下の温度域での累積圧下率を20%以上とすることが望ましい。これにより、オーステナイト粒の再結晶が促進され、得られる組織が微細化し、母材靭性が安定的に向上する。また、母材靭性を向上させ、安定的に維持するという観点からは、各圧延パスの圧下率を5%以上とすることが好ましい。なお、より好ましくは10%以上である。   In addition, from the viewpoint of improving the base material toughness and maintaining it stably, the cumulative rolling reduction in hot rolling is preferably 50% or more, and in order to obtain further effects, a temperature of 1050 ° C. or less It is desirable that the cumulative rolling reduction in the region is 20% or more. Thereby, recrystallization of austenite grains is promoted, the resulting structure is refined, and the base material toughness is stably improved. Further, from the viewpoint of improving the base material toughness and maintaining it stably, it is preferable that the rolling reduction of each rolling pass is 5% or more. More preferably, it is 10% or more.

加速冷却の冷却停止温度:620℃以下
加速冷却は、熱間圧延終了後、直ちに(好ましくは180s以内に)、空冷超えの冷却速度で冷却を開始し、鋼板の平均温度で620℃以下の温度域まで冷却する処理とする。このような加速冷却を施すことにより、生成したフェライト粒の成長を抑制しフェライト粒の微細化を図るとともに、未変態γのベイナイトへの変態(ベイナイト変態)が促進される。これにより、所望の鋼板強度と優れた母材靭性が確保できる。
Cooling stop temperature of accelerated cooling: 620 ° C or less Accelerated cooling starts immediately after hot rolling is finished (preferably within 180 s) and starts cooling at a cooling rate exceeding air cooling, and the average temperature of the steel sheet is 620 ° C or less. It is set as the process which cools to an area. By performing such accelerated cooling, the growth of the produced ferrite grains is suppressed and the ferrite grains are refined, and the transformation of untransformed γ to bainite (bainite transformation) is promoted. Thereby, desired steel plate strength and excellent base material toughness can be ensured.

加速冷却の冷却停止温度が、鋼板の平均温度で、620℃を超えると、ベイナイト変態が十分進行しないため、所望の高強度を確保することが困難となる。また、停止温度が低く、例えば400℃未満では、冷却後の表面の復熱が小さく、表面が硬化し、その後の焼戻しによる軟化の効果が小さい。このようなことから、加速冷却の冷却停止温度は620℃以下、好ましくは400〜620℃の温度域の温度に限定した。なお、加速冷却は、空冷超えの冷却速度とする。好ましくは冷却開始から冷却停止までの平均で5℃/s以上である。なお、冷却速度が空冷以下では、所望の鋼板強度を確保できなくなる。   If the cooling stop temperature of accelerated cooling exceeds 620 ° C., which is the average temperature of the steel sheet, the bainite transformation does not proceed sufficiently, so that it is difficult to ensure a desired high strength. Further, when the stop temperature is low, for example, less than 400 ° C., the recuperation of the surface after cooling is small, the surface is cured, and the effect of softening by subsequent tempering is small. For this reason, the cooling stop temperature for accelerated cooling is limited to 620 ° C. or lower, preferably 400 to 620 ° C. The accelerated cooling is performed at a cooling rate exceeding air cooling. Preferably, it is 5 ° C./s or more on average from the start of cooling to the stop of cooling. Note that when the cooling rate is equal to or lower than air cooling, a desired steel plate strength cannot be secured.

また、加速冷却の冷却停止温度、冷却速度は、鋼板板厚方向の平均温度で規定した。平均温度は、鋼板の全体的な材質と最も関連深い温度であり、本発明では加速冷却の条件を規定する基準とした。なお、鋼板板厚方向の平均温度は、板厚、表面温度および冷却条件等が与えられた場合に、シミュレーション計算等により求められることができる。例えば、差分法を用いて、板厚方向の温度分布を平均化することにより得られた温度を、平均温度とすることができる。   Moreover, the cooling stop temperature and cooling rate of accelerated cooling were defined by the average temperature in the steel sheet thickness direction. The average temperature is the temperature most closely related to the overall material of the steel sheet, and in the present invention, the average temperature is used as a standard for defining accelerated cooling conditions. The average temperature in the steel plate thickness direction can be obtained by simulation calculation or the like when the plate thickness, surface temperature, cooling conditions, and the like are given. For example, the temperature obtained by averaging the temperature distribution in the thickness direction using the difference method can be set as the average temperature.

加速冷却を施された鋼板は、ついで、誘導加熱装置を利用して、焼戻処理を施される。
本発明における焼戻処理では、鋼板の表層のみを優先的に加熱する処理とする。表層のみを優先的に加熱することにより、熱間圧延で表層近傍に多量に導入された加工フェライト中の転位が消滅して加工フェライトが回復し、鋼板の伸びが向上する。また、表層の加工フェライトとベイナイトが焼戻され軟質化されることにより、鋼板表層の硬さが低下し、鋼板板厚方向の硬さ分布が均一化される。また、鋼板表面のスケール性状等の相違による加速冷却時の冷却速度ばらつきに起因し、同一鋼板内でも表面の硬さにばらつきが存在するが、鋼板の表層のみを優先的に加熱することにより、鋼板内の表面硬さのばらつきが軽減される。本発明では、このような鋼板の表層のみを優先的に加熱する焼戻処理を、例えば、図1に示すような、誘導加熱装置10を利用して行うことができる。誘導加熱装置を利用することにより、表層に誘導電流を集中させ急速加熱することができ、鋼板中心部に比べて表層の温度が高くなる温度分布を与え、表層のみを優先的に加熱することができる。
The steel sheet subjected to accelerated cooling is then tempered using an induction heating device.
In the tempering process in the present invention, only the surface layer of the steel sheet is preferentially heated. By preferentially heating only the surface layer, dislocations in the processed ferrite introduced in a large amount in the vicinity of the surface layer by hot rolling disappear, the processed ferrite recovers, and the elongation of the steel sheet is improved. Further, the processed ferrite and bainite of the surface layer are tempered and softened, whereby the hardness of the steel plate surface layer is lowered and the hardness distribution in the steel plate thickness direction is made uniform. Moreover, due to the cooling rate variation at the time of accelerated cooling due to differences in scale properties etc. of the steel sheet surface, there is a variation in surface hardness even within the same steel sheet, but by heating only the surface layer of the steel sheet, Variations in surface hardness within the steel sheet are reduced. In the present invention, such a tempering process in which only the surface layer of the steel sheet is preferentially heated can be performed using, for example, an induction heating apparatus 10 as shown in FIG. By using an induction heating device, the induction current can be concentrated on the surface layer and heated rapidly, giving a temperature distribution in which the temperature of the surface layer is higher than the center of the steel sheet, and preferentially heating only the surface layer it can.

また、誘導加熱装置の配置場所は、オンライン上としても、あるいはオフライン上としてもよく、とくに限定されないが、エネルギーコストや生産能率の観点からは、加速冷却終了直後に加熱が可能なように、オンライン上とすることが好ましい。
本発明の焼戻処理においては、目標特性に応じて、鋼板の板厚中心温度が580℃以下、鋼板表面の最高到達温度が580〜700℃の範囲内の温度となるように、加熱温度を設定して、加熱する。このような加熱の制御は、誘導加熱装置の投入電力、周波数等の制御により行うことができる。
In addition, the location of the induction heating device may be on-line or off-line, and is not particularly limited. However, from the viewpoint of energy cost and production efficiency, on-line so that heating can be performed immediately after completion of accelerated cooling. It is preferable to be on.
In the tempering treatment of the present invention, the heating temperature is set so that the center thickness of the steel sheet is 580 ° C. or less and the maximum temperature reached on the steel sheet surface is in the range of 580 to 700 ° C. according to the target characteristics. Set and heat. Such heating control can be performed by controlling input power, frequency, and the like of the induction heating apparatus.

焼戻処理における、鋼板表面の最高到達温度が580℃未満では、表層の加工フェライトの軟質化が十分でなく、伸びの向上度合不十分で、所望の強度‐伸びバランスを確保することができなくなる。一方、700℃を超えると鋼板内部の温度上昇も大きくなり、鋼板全体での強度低下が著しくなる恐れがあるとともに、炭化物が粗大化し靭性が低下する。このため、焼戻処理における鋼板表面の最高到達温度は580〜700℃の範囲の温度とすることとした。なお、好ましくは620℃以上である。   In the tempering process, if the maximum temperature reached on the surface of the steel sheet is less than 580 ° C, the surface layer processed ferrite is not sufficiently softened, the degree of elongation is insufficient, and the desired strength-elongation balance cannot be secured. . On the other hand, when the temperature exceeds 700 ° C., the temperature rise inside the steel sheet also increases, and the strength of the steel sheet as a whole may decrease significantly, and the carbides become coarse and the toughness decreases. For this reason, the maximum temperature reached on the surface of the steel sheet in the tempering process is set to a temperature in the range of 580 to 700 ° C. In addition, Preferably it is 620 degreeC or more.

また、焼戻処理における加熱で、鋼板の板厚中心温度が580℃超となると、鋼板内部の強度低下が著しくなり、所望の鋼板強度を確保することができなくなる。このため、焼戻処理においては、鋼板の板厚中心温度は580℃以下に限定した。なお、好ましくは560℃以下である。ここで、鋼板の板厚中心温度とは、誘導装置による加熱を行った後に、鋼板内部の温度分布がほぼ均一になった時の板厚中心における最高到達温度を指す。   Moreover, when the plate thickness center temperature of the steel sheet exceeds 580 ° C. by heating in the tempering treatment, the strength of the steel sheet is significantly reduced, and the desired steel sheet strength cannot be ensured. For this reason, in the tempering process, the plate thickness center temperature of the steel plate was limited to 580 ° C. or less. In addition, Preferably it is 560 degrees C or less. Here, the plate thickness center temperature of the steel plate refers to the highest temperature reached at the plate thickness center when the temperature distribution inside the steel plate becomes substantially uniform after heating by the induction device.

以下さらに、実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1に示す組成の鋼素材に、表2に示す条件で、熱間圧延、加速冷却、焼戻処理を、順次施し表2に示す板厚の厚鋼板とした。なお、加速冷却は、熱間圧延終了後直ちに表2に示す冷却開始温度(表面温度)から水冷を開始し、表2に示す温度(平均温度)で冷却を停止し、空冷した。また、焼戻処理は、誘導加熱装置を用いて、表2に示す鋼板表面の最高到達温度、板厚中心温度となるように、加熱した。なお、一部は、加速冷却停止後、焼戻処理を省略した。表に示すAr変態点は(1)式を用いて算出した。 The steel material having the composition shown in Table 1 was subjected to hot rolling, accelerated cooling, and tempering treatment under the conditions shown in Table 2 to obtain a thick steel plate having the thickness shown in Table 2. In the accelerated cooling, water cooling was started from the cooling start temperature (surface temperature) shown in Table 2 immediately after the end of hot rolling, the cooling was stopped at the temperature (average temperature) shown in Table 2, and air cooling was performed. Moreover, the tempering process was heated using the induction heating apparatus so that it might become the highest ultimate temperature of a steel plate surface shown in Table 2, and plate | board thickness center temperature. In some cases, the tempering process was omitted after the accelerated cooling was stopped. The Ar 3 transformation point shown in the table was calculated using equation (1).

得られた厚鋼板から、試験片を採取して、引張試験、シャルピー衝撃試験、硬さ試験を実施した。試験方法は次の通りとした。
(1)引張試験
得られた各鋼板の板厚1/2t部から、引張試験片(JIS5号全厚試験片)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYS、引張強さTS、伸びElを求めた。さらに、得られた引張強さTS、伸びElから、TS×Elを算出し、強度−伸びバランスを評価した。
Test pieces were collected from the obtained thick steel plates and subjected to a tensile test, a Charpy impact test, and a hardness test. The test method was as follows.
(1) Tensile test Tensile test pieces (JIS No. 5 full-thickness test pieces) were taken from 1 / 2t part of the thickness of each steel plate obtained and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to yield. Strength YS, tensile strength TS, and elongation El were determined. Furthermore, TS × El was calculated from the obtained tensile strength TS and elongation El, and the strength-elongation balance was evaluated.

(2)シャルピー衝撃試験
得られた各鋼板の板厚1/2tの位置を中心として、シャルピー衝撃試験片(Vノッチ試験片)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、破面遷移温度vTrsを求め、低温靭性を評価した。
(3)硬さ試験
得られた厚鋼板の幅方向中央部で、長さ方向中央部から、硬さ試験片(t×15mm×20mm)を採取し、圧延方向に直交する板厚方向断面を研磨し、ビッカース硬度計(試験力:98N)で板厚方向に1mmピッチでビッカース硬さHV10を測定し、板厚方向硬さ分布を求め、最高硬さと最低硬さとの差、ΔHVを算出した。ΔHVが45HV以上である場合を硬さ分布が不均一であるとして評価した。
(2) Charpy impact test Charpy impact test specimens (V-notch test specimens) were sampled around the position of the thickness 1 / 2t of each steel plate obtained, and Charpy impact tests were conducted in accordance with the provisions of JIS Z 2242. The fracture surface transition temperature vTrs was obtained and the low temperature toughness was evaluated.
(3) Hardness test At the central part in the width direction of the obtained thick steel plate, a hardness test piece (t x 15 mm x 20 mm) is taken from the central part in the length direction, and a cross section in the thickness direction perpendicular to the rolling direction is taken. After polishing, measure the Vickers hardness HV10 at a pitch of 1mm in the thickness direction with a Vickers hardness tester (test force: 98N), obtain the hardness distribution in the thickness direction, and calculate the difference between the maximum hardness and the minimum hardness, ΔHV . A case where ΔHV was 45 HV or higher was evaluated as nonuniform hardness distribution.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005082475
Figure 0005082475

Figure 0005082475
Figure 0005082475

Figure 0005082475
本発明例はいずれも、降伏強さ:480MPa以上の高強度と、破面遷移温度vTrs:−80℃以下の優れた低温靭性と、TS×Elが30000MPa以上の優れた強度−伸びバランスを有し、かつΔHVが45HV未満の均一な板厚方向の硬さ分布を有する高靭性高張力鋼板となっている。一方、本発明の範囲を外れる条件で製造された厚鋼板は、強度が不足するか、低温靭性が低下しているか、あるいは強度−伸びバランスが低下しているか、さらには板厚方向の硬さ分布が不均一となっていた。
Figure 0005082475
Each of the inventive examples has a high yield strength of 480 MPa or more, an excellent low temperature toughness of fracture surface transition temperature vTrs of −80 ° C. or less, and an excellent strength-elongation balance of TS × El of 30000 MPa or more. In addition, a high toughness and high strength steel sheet having a uniform thickness distribution in the thickness direction with ΔHV of less than 45 HV. On the other hand, a thick steel plate manufactured under conditions outside the scope of the present invention has insufficient strength, low-temperature toughness, low strength-elongation balance, and hardness in the thickness direction. Distribution was uneven.

熱間圧延の圧延終了温度が本発明範囲を高く外れる比較例(鋼板No.2)は、低温靭性が低下している。また、焼戻処理を施さない比較例(鋼板No.3)は、伸びの向上が認められず、強度‐伸びバランスが低下している。また、焼戻処理の板厚中心温度が本発明範囲を高く外れる比較例(鋼板No.4)は、低温靭性が低下している。また、鋼素材のC、Mn含有量が本発明範囲を低く外れる比較例(鋼板No.7、No.15)は、所望の高強度が得られていない。   In the comparative example (steel plate No. 2) in which the rolling end temperature of the hot rolling deviates from the range of the present invention is high, the low temperature toughness is lowered. Further, in the comparative example (steel plate No. 3) not subjected to the tempering treatment, no improvement in elongation was observed, and the strength-elongation balance was lowered. Moreover, the low-temperature toughness of the comparative example (steel plate No. 4) in which the plate thickness center temperature in the tempering treatment is outside the range of the present invention is low. Further, in the comparative examples (steel plates No. 7 and No. 15) in which the C and Mn contents of the steel material are out of the scope of the present invention, the desired high strength is not obtained.

本発明の焼戻処理に好適な誘導加熱装置の一例を模式的に示す説明図である。(a)は平面図、(b)は側面図、(c)正面図である。It is explanatory drawing which shows typically an example of the induction heating apparatus suitable for the tempering process of this invention. (A) is a top view, (b) is a side view, (c) is a front view.

符号の説明Explanation of symbols

1 鋼板
10 誘導加熱装置
30 テーブルローラ
1 Steel plate 10 Induction heating device 30 Table roller

Claims (4)

質量%で、
C:0.03〜0.18%、 Si:0.01〜0.55%、
Mn:0.5〜2.0%、 Al:0.005〜0.1%、
N:0.005%以下
を含み、残部Feおよび不可避的不純物からなる組成の鋼素材に、該鋼素材を1000〜1350℃の範囲の温度に加熱したのち、圧延終了温度が表面温度でAr3変態点未満(Ar3変態点−80℃)以上の範囲の温度となる圧延を施し所望板厚の鋼板とする熱間圧延を施し、該熱間圧延終了後、空冷超えの冷却速度で、鋼板の平均温度で620℃以下の温度域まで冷却する加速冷却と、該加速冷却終了後、誘導加熱装置を用いて、鋼板の板厚中心温度が580℃以下、鋼板表面の最高到達温度が580〜700℃の範囲の温度となるように、加熱する焼戻処理と、を施すことを特徴とする、降伏強さ:480MPa以上の高強度を有し、かつ強度−伸びバランスに優れた高靭性高張力鋼板の製造方法。
% By mass
C: 0.03-0.18%, Si: 0.01-0.55%,
Mn: 0.5-2.0%, Al: 0.005-0.1%,
N: A steel material containing 0.005% or less, the balance being Fe and inevitable impurities, and heating the steel material to a temperature in the range of 1000 to 1350 ° C., the rolling end temperature is the surface temperature and the Ar 3 transformation point Less than (Ar 3 transformation point −80 ° C.) or higher, and hot rolling to obtain a steel sheet with a desired plate thickness. After the hot rolling is completed, the average of the steel sheets is cooled at a cooling rate exceeding air cooling. Accelerated cooling that cools to a temperature range of 620 ° C. or less at the temperature, and after completion of the accelerated cooling, using an induction heating device, the plate thickness center temperature of the steel plate is 580 ° C. or less, and the maximum reached temperature of the steel plate surface is 580 to 700 ° C. A high toughness, high-tensile steel sheet having a high strength of 480 MPa or more and excellent strength-elongation balance. Manufacturing method.
前記組成に加えてさらに、質量%で、Cu:0.8%以下、Ni:2%以下、Cr:1%以下、Mo:0.8%以下、Nb:0.05%以下、V:0.1%以下、B:0.002%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の高靭性高張力鋼板の製造方法。   In addition to the above composition, Cu: 0.8% or less, Ni: 2% or less, Cr: 1% or less, Mo: 0.8% or less, Nb: 0.05% or less, V: 0.1% or less, B: 0.002 The method for producing a high-toughness high-tensile steel sheet according to claim 1, comprising one or more selected from 1% or less. 前記組成に加えてさらに、質量%で、Ti:0.025%以下を含有することを特徴とする請求項1または2に記載の高靭性高張力鋼板の製造方法。   The method for producing a high-toughness high-tensile steel sheet according to claim 1 or 2, further comprising Ti: 0.025% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Ca:0.005%以下を含有することを特徴とする請求項1ないし3のいずれかに記載の高靭性高張力鋼板の製造方法。   The method for producing a high-toughness high-tensile steel sheet according to any one of claims 1 to 3, further comprising Ca: 0.005% or less by mass% in addition to the composition.
JP2007024251A 2007-02-02 2007-02-02 Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance Active JP5082475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024251A JP5082475B2 (en) 2007-02-02 2007-02-02 Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024251A JP5082475B2 (en) 2007-02-02 2007-02-02 Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance

Publications (2)

Publication Number Publication Date
JP2008189973A JP2008189973A (en) 2008-08-21
JP5082475B2 true JP5082475B2 (en) 2012-11-28

Family

ID=39750342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024251A Active JP5082475B2 (en) 2007-02-02 2007-02-02 Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance

Country Status (1)

Country Link
JP (1) JP5082475B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082500B2 (en) * 2007-02-27 2012-11-28 Jfeスチール株式会社 Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP5476763B2 (en) * 2009-03-30 2014-04-23 Jfeスチール株式会社 High tensile steel plate with excellent ductility and method for producing the same
JP5487683B2 (en) * 2009-03-31 2014-05-07 Jfeスチール株式会社 High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
JP5487682B2 (en) * 2009-03-31 2014-05-07 Jfeスチール株式会社 High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
KR101586922B1 (en) * 2014-06-27 2016-01-19 현대제철 주식회사 Steel for inverted angle and method of manufacturing the same
CN110144518A (en) * 2019-05-10 2019-08-20 舞阳钢铁有限责任公司 A kind of high alloy American Standard container chrome molybdenum steel plate and its production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172331A (en) * 1997-09-30 1999-06-29 Nkk Corp Manufacture of steel excellent in weld cracking sensitivity and having low yield ratio and high tensile strength
JP3906779B2 (en) * 2002-10-25 2007-04-18 Jfeスチール株式会社 Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance
JP2004218081A (en) * 2002-12-25 2004-08-05 Jfe Steel Kk Method for producing high-tension steel plate
JP4892978B2 (en) * 2005-06-08 2012-03-07 Jfeスチール株式会社 Method for producing high-tensile steel plate with excellent SSC resistance
JP4677883B2 (en) * 2005-11-16 2011-04-27 Jfeスチール株式会社 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP5082500B2 (en) * 2007-02-27 2012-11-28 Jfeスチール株式会社 Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance

Also Published As

Publication number Publication date
JP2008189973A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4940882B2 (en) Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP2022507379A (en) Hot-rolled strip steel and its manufacturing method
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP5082475B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP5028785B2 (en) High toughness high tensile steel sheet and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2007177325A (en) High tensile strength thick steel plate having low yield ratio and its production method
JP5786720B2 (en) High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same
JP4978146B2 (en) Thick high-strength hot-rolled steel sheet and manufacturing method thereof
TW201508069A (en) Thick steel plate and manufacturing method for the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5082500B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
JP5655598B2 (en) High tensile steel plate and method for manufacturing the same
JP4951938B2 (en) Manufacturing method of high toughness high tensile steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5082475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250