JP5741016B2 - Method for producing high-strength thick steel plate with excellent weldability and base metal toughness - Google Patents

Method for producing high-strength thick steel plate with excellent weldability and base metal toughness Download PDF

Info

Publication number
JP5741016B2
JP5741016B2 JP2011016211A JP2011016211A JP5741016B2 JP 5741016 B2 JP5741016 B2 JP 5741016B2 JP 2011016211 A JP2011016211 A JP 2011016211A JP 2011016211 A JP2011016211 A JP 2011016211A JP 5741016 B2 JP5741016 B2 JP 5741016B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
rolling
steel plate
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011016211A
Other languages
Japanese (ja)
Other versions
JP2012153964A (en
Inventor
岡津 光浩
光浩 岡津
石川 信行
信行 石川
三田尾 眞司
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011016211A priority Critical patent/JP5741016B2/en
Publication of JP2012153964A publication Critical patent/JP2012153964A/en
Application granted granted Critical
Publication of JP5741016B2 publication Critical patent/JP5741016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築、橋梁、造船、海洋構造物、ラインパイプ、建設機械などの溶接構造物として広く利用可能な、湿潤低温環境下での溶接割れ感受性が低く、かつ低温靭性に優れた700MPa級以上の引張強度を有する高強度溶接構造物用高靭性鋼の製造方法に関するものである。   The present invention can be widely used as a welded structure such as a building, a bridge, a shipbuilding, an offshore structure, a line pipe, and a construction machine, has a low weld cracking susceptibility in a humid low temperature environment, and is excellent in low temperature toughness. The present invention relates to a method for producing a high strength toughness steel for welded structures having the above tensile strength.

溶接構造物の大型化に伴い、部材の高張力化によって鋼材重量を低減しコストダウンを図る目的から高張力鋼の需要が増加している。特に、制御圧延、加速冷却を組み合わせたTMCP(加工熱処理)技術によって省合金で高強度、高靱性の鋼が開発されてきた。例えば、特許文献1には制御圧延と制御冷却の組合せによる強度、靱性、溶接性に優れた鋼板の製造方法が開示されている。また、特許文献2には鋼のC量を極限まで低減することにより溶接性を向上させた高強度鋼の製造方法が開示されている。   With the increase in size of welded structures, the demand for high-tensile steel is increasing for the purpose of reducing the weight of the steel material and reducing the cost by increasing the tension of the members. In particular, alloy-saving, high-strength, high-toughness steel has been developed by TMCP (mechanical heat treatment) technology that combines controlled rolling and accelerated cooling. For example, Patent Document 1 discloses a method for manufacturing a steel sheet having excellent strength, toughness, and weldability by a combination of controlled rolling and controlled cooling. Patent Document 2 discloses a method for producing high-strength steel with improved weldability by reducing the amount of C in the steel to the limit.

特公平01−27128号公報Japanese Patent Publication No. 01-27128 特開平08−144019号公報Japanese Patent Laid-Open No. 08-144019

しかしながら、近年の溶接環境の苛酷化、低温靱性要求の厳格化に対し従来技術での対応が困難となってきている。例えば、特許文献1記載の技術は、低温靱性向上のためオーステナイト+フェライト2相域のような低温での圧延を実施することで、鋼の延性-脆性遷移温度は向上するものの、シャルピー衝撃試験における破面上にセパレーションが生じ、吸収エネルギーが著しく低下するため、高吸収エネルギーの要求を満足できない。   However, it has become difficult to cope with the recent severe welding environment and strict requirements for low temperature toughness. For example, in the technique described in Patent Document 1, although the ductile-brittle transition temperature of steel is improved by rolling at a low temperature such as austenite + ferrite two-phase region in order to improve low temperature toughness, in the Charpy impact test Separation occurs on the fracture surface and the absorbed energy is remarkably reduced, so that the requirement for high absorbed energy cannot be satisfied.

一方、特許文献2記載の技術は、溶接性向上のために低C化する代わりに高強度を達成するため、Cu、Niといった合金元素の多量添加を必要とするので、高強度鋼の製造コストが高くなってしまう。そこで、本発明では過度な合金元素添加を行うことなく、溶接性および低温靱性に優れる高強度鋼を提供することを目的とする。   On the other hand, the technique described in Patent Document 2 requires a large amount of alloying elements such as Cu and Ni to achieve high strength instead of lowering C for improving weldability. Becomes higher. Accordingly, an object of the present invention is to provide a high-strength steel excellent in weldability and low-temperature toughness without adding excessive alloying elements.

発明者らは、合金元素として未再結晶域拡大効果、焼入性向上効果を発揮するNbに着目し、従来になく大量のNbを添加した場合のTMPC材の挙動について鋭意研究を行い、以下の知見を得た。
(1)Nb添加量の増大に伴い鋳片にNb炭化物が多数晶出し、スラブ加熱時のオーステナイト粒の成長を抑制する。
(2)適正なスラブ加熱条件では、一部のNb炭化物が溶解し、未再結晶域拡大効果をもたらす。特に0.10質量%以上のNb添加の際に、拡大効果が顕著で950℃以上でもオーステナイト再結晶抑制効果が認められる。
(3)さらに、固溶Nbは加速冷却時のベイナイト変態の低温化をもたらし、NiやMoといった高価な合金元素を多量に添加したり、析出強化を目的としたCuの多量添加をしたりしなくても鋼の高強度化を容易に行うことができ、溶接割れ感受性指数Pcm値を大幅に低減できる。
The inventors pay attention to Nb that exhibits the effect of expanding the non-recrystallized region and improving the hardenability as an alloy element, and intensively researches the behavior of the TMPC material when a large amount of Nb is added. I got the knowledge.
(1) A large number of Nb carbides crystallize in the slab as the amount of Nb added increases, suppressing the growth of austenite grains during slab heating.
(2) Under appropriate slab heating conditions, some Nb carbides dissolve and bring about an effect of expanding the non-recrystallized region. In particular, when 0.10% by mass or more of Nb is added, the expansion effect is remarkable, and an austenite recrystallization suppressing effect is recognized even at 950 ° C. or more.
(3) Further, solid solution Nb brings about a low temperature of bainite transformation during accelerated cooling, and a large amount of expensive alloy elements such as Ni and Mo are added, or a large amount of Cu is added for the purpose of precipitation strengthening. Even without this, the strength of the steel can be easily increased, and the weld crack sensitivity index Pcm value can be greatly reduced.

本発明は、以上の知見に基づいてなされたものであって、その要旨は以下の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

第一の発明は、質量%で、C:0.04〜0.08%、Si:0.01〜0.5%、Mn:1.0〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.005〜0.08%、Nb:0.10〜0.20%、Ti:0.005〜0.020%、を含有し、更に、Cu:0.1〜0.3%、Ni:0.1〜0.3%、B:0.0005〜0.004%の中から選ばれる一種または二種以上を含有し、残部Feおよび不可避的不純物からなり式(1)で計算されるPcm値が0.15以上0.18以下である鋼を1100〜1300℃に再加熱後、熱間圧延を開始し、950〜1000℃の温度域での累積圧下率を70%以上として、900℃以上で圧延を終了し、圧延終了後800℃以上の温度域から冷却速度10〜50℃/sの加速冷却を開始し、600℃以下の温度で冷却を停止して以後空冷することを特徴とする溶接性および母材靱性に優れた高強度厚鋼板の製造方法である。   1st invention is the mass%, C: 0.04-0.08%, Si: 0.01-0.5%, Mn: 1.0-2.0%, P: 0.02% or less , S: 0.01% or less, Al: 0.005 to 0.08%, Nb: 0.10 to 0.20%, Ti: 0.005 to 0.020%, and Cu: It contains one or more selected from 0.1 to 0.3%, Ni: 0.1 to 0.3%, B: 0.0005 to 0.004%, and the balance Fe and inevitable impurities After reheating the steel having a Pcm value of 0.15 or more and 0.18 or less calculated from the formula (1) to 1100 to 1300 ° C., hot rolling was started, and the steel in the temperature range of 950 to 1000 ° C. Rolling is completed at 900 ° C. or higher, with a cumulative reduction rate of 70% or higher, and accelerated at a cooling rate of 10 to 50 ° C./s from a temperature range of 800 ° C. or higher after the end of rolling Retirement was started a high-strength steel plate manufacturing method having excellent weldability and base material toughness, characterized by subsequently cooled to stop the cooling at 600 ° C. or lower.

Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5×B・・・・・・(1)
ここで、各成分元素は、質量%を意味する。
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5 × B (1)
Here, each component element means mass%.

第二の発明は、質量%で、C:0.04〜0.08%、Si:0.01〜0.5%、Mn:1.0〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.005〜0.08%、Nb:0.10〜0.20%、Ti:0.005〜0.020%、を含有し、更に、Ca:0.0005〜0.004%、REM:0.0005〜0.02%の一種または二種を含有し、残部Feおよび不可避的不純物からなり式(1)で計算されるPcm値が0.15以上0.18以下である鋼を1100〜1300℃に再加熱後、熱間圧延を開始し、950〜1000℃の温度域での累積圧下率を70%以上として、900℃以上で圧延を終了し、圧延終了後800℃以上の温度域から冷却速度10〜50℃/sの加速冷却を開始し、600℃以下の温度で冷却を停止して以後空冷することを特徴とする溶接性および母材靱性に優れた高強度厚鋼板の製造方法である。   2nd invention is the mass%, C: 0.04-0.08%, Si: 0.01-0.5%, Mn: 1.0-2.0%, P: 0.02% or less , S: 0.01% or less, Al: 0.005 to 0.08%, Nb: 0.10 to 0.20%, Ti: 0.005 to 0.020%, and Ca: It contains one or two of 0.0005 to 0.004%, REM: 0.0005 to 0.02%, and consists of the balance Fe and inevitable impurities, and the Pcm value calculated by the formula (1) is 0.15. After reheating the steel of 0.18 or less to 1100 to 1300 ° C, hot rolling is started, and the cumulative reduction in the temperature range of 950 to 1000 ° C is set to 70% or more, and the rolling is finished at 900 ° C or more. Then, after the end of rolling, accelerated cooling is started at a cooling rate of 10 to 50 ° C./s from a temperature range of 800 ° C. or higher, and the temperature is 600 ° C. or lower. In stopping cooling is a manufacturing method of weldability and high strength thick steel plate superior in base material toughness, characterized by subsequent air cooling.

Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5×B・・・・・・(1)
ここで、各成分元素は、質量%を意味する。
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5 × B (1)
Here, each component element means mass%.

第三の発明は、質量%で、更に、Ca:0.0005〜0.004%、REM:0.0005〜0.02%の一種または二種を含有することを特徴とする第一の発明に記載の溶接性および母材靱性に優れた高強度厚鋼板の製造方法である。   3rd invention is 1st invention characterized by containing the 1 type (s) or 2 types of Ca: 0.0005-0.004% and REM: 0.0005-0.02% by the mass%. Is a method for producing a high-strength thick steel plate having excellent weldability and base material toughness.

第四の発明は、更に、加速冷却停止後、直ちに再加熱を行い、600〜700℃の温度域に到達後、空冷することを特徴とする第一乃至第三の発明の何れかに記載の溶接性および母材靱性に優れた高強度厚鋼板の製造方法である。   The fourth aspect of the invention is further characterized in that after accelerated cooling is stopped, reheating is performed immediately, and after reaching a temperature range of 600 to 700 ° C., air cooling is performed. This is a method for producing a high-strength thick steel plate excellent in weldability and base metal toughness.

本発明によれば、湿潤環境での溶接が可能な、優れた低温靱性を有する引張強度700MPa級以上の高張力鋼の提供が可能となり、産業上極めて有用である。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the high strength steel with the tensile strength of 700 MPa class or more which has the excellent low temperature toughness which can be welded in a humid environment, and is very useful industrially.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

1.成分組成について
成分における%はすべて質量%とする。
1. Ingredient composition All percentages in the ingredients are mass%.

C:0.04〜0.08%
Cは加速冷却で得られるベイナイト組織において過飽和固溶することで強度上昇に寄与する。この効果を得るためには0.04%以上含有することが必要であるが、0.08%を超えて含有すると、低温、湿潤環境での溶接割れの危険が高まるため、C量は0.04〜0.08%の範囲とする。
C: 0.04 to 0.08%
C contributes to an increase in strength by being supersaturated in a bainite structure obtained by accelerated cooling. In order to acquire this effect, it is necessary to contain 0.04% or more, but if it exceeds 0.08%, the risk of weld cracking in a low temperature and wet environment increases, so the C content is 0.8. The range is 04 to 0.08%.

Si:0.01〜0.5%
Siは0.01%以上含有することにより変態強化によらず固溶強化するため、強度上昇に有効である。しかし、0.5%を超えて含有すると靱性が著しく低下するため、Si量は0.01〜0.5%の範囲とする。
Si: 0.01 to 0.5%
By containing 0.01% or more, Si is strengthened by solid solution regardless of transformation strengthening, and is effective in increasing the strength. However, if the content exceeds 0.5%, the toughness is remarkably lowered, so the Si content is in the range of 0.01 to 0.5%.

Mn:1.0〜2.0%
Mnは焼入性向上元素として作用し、1.0%以上含有することで加速冷却中のフェライト生成を抑制し、ベイナイト組織を得ることができる。一方、2.0%を超えて含有すると、中心偏析部の硬化を助長し、母材靱性の低下を引き起こすため、Mn量は1.0〜2.0%の範囲とする。
Mn: 1.0-2.0%
Mn acts as a hardenability improving element, and by containing 1.0% or more, formation of ferrite during accelerated cooling can be suppressed and a bainite structure can be obtained. On the other hand, if the content exceeds 2.0%, hardening of the central segregation part is promoted and the toughness of the base material is reduced, so the Mn content is set to a range of 1.0 to 2.0%.

P:0.02%以下
Pは鋼中に不可避不純物として存在する。特に板厚中央部やその近傍での偏析が著しい元素であり、島状マルテンサイトの増加を引き起こし、その結果、板厚中央部のシャルピー吸収エネルギーを著しく低下させるため、P量は0.02%以下とする。好ましくは、0.008%以下である。
P: 0.02% or less P is present as an inevitable impurity in steel. In particular, segregation at the central portion of the plate thickness and in the vicinity thereof is an element that causes an increase in island-like martensite. As a result, the Charpy absorbed energy at the central portion of the plate thickness is significantly reduced, so the P content is 0.02%. The following. Preferably, it is 0.008% or less.

S:0.01%以下
Sもまた鋼中に不可避不純物として存在する。特に介在物として存在し、鋼の清浄度を低下させ、靭性に悪影響を及ぼすため、S量は0.01%以下とする。好ましくは、0.003%以下である。
S: 0.01% or less S is also present as an inevitable impurity in the steel. In particular, it exists as inclusions, lowers the cleanliness of steel and adversely affects toughness, so the S content is 0.01% or less. Preferably, it is 0.003% or less.

Al:0.005〜0.08%
Alは脱酸元素として作用する。0.005%以上含有することにより十分な脱酸効果が得られるが、0.08%超えて含有すると偏析部も含めて鋼の清浄度が低下し、靭性低下の原因となるため、Al量は0.005〜0.08%の範囲とする。
Al: 0.005 to 0.08%
Al acts as a deoxidizing element. A sufficient deoxidation effect can be obtained by containing 0.005% or more. However, if the content exceeds 0.08%, the cleanliness of the steel including the segregation part is lowered and the toughness is reduced. Is in the range of 0.005 to 0.08%.

Nb:0.10〜0.20%
Nb量の規定は本発明の根幹である。Nbを0.10%以上含有することは、スラブ加熱時のオーステナイト粒成長を抑制しつつ、圧延時のオーステナイトの再結晶を遅延させる効果を有する。これにより、従来では制御圧延ができなかった950℃以上の温度域においても制御圧延の効果を得ることができる。一般に、オーステナイト単相域、例えば、900℃以上の温度域で熱間圧延を終了すれば、シャルピー試験片の破面状にセパレーションが発生しないが、低温靭性向上の観点からは必ずしも有利な条件ではなかった。しかしながら、本発明においては、上述の効果によって、シャルピー試験片の破面上にセパレーションが発生しない900℃以上での熱間圧延条件でも十分な低温靱性が得られる。一方、0.20%を超えるNbを含有すると、鋳造段階で粗大なNb炭化物が晶出し、スラブ加熱時に固溶しきれずに残ったものが鋼の清浄度の劣化原因となり、靱性が低下するため、Nb量は0.10〜0.20%の範囲とする。
Nb: 0.10 to 0.20%
The definition of the Nb amount is the basis of the present invention. Containing 0.10% or more of Nb has an effect of delaying recrystallization of austenite during rolling while suppressing austenite grain growth during slab heating. Thereby, the effect of controlled rolling can be obtained even in a temperature range of 950 ° C. or higher, which could not be controlled rolling conventionally. In general, if hot rolling is completed in an austenite single phase region, for example, a temperature range of 900 ° C. or higher, separation does not occur in the shape of the fracture surface of the Charpy specimen, but it is not always advantageous from the viewpoint of improving low temperature toughness. There wasn't. However, in the present invention, sufficient low-temperature toughness can be obtained even under hot rolling conditions at 900 ° C. or higher where separation does not occur on the fracture surface of the Charpy specimen due to the above-described effects. On the other hand, if Nb exceeds 0.20%, coarse Nb carbides crystallize in the casting stage, and what remains without being completely dissolved during slab heating causes deterioration of the cleanliness of the steel, and toughness decreases. , Nb amount is in the range of 0.10 to 0.20%.

Ti:0.005〜0.020%
Tiは窒化物を形成し、鋼中の固溶N量低減に有効であるほか、析出したTiNがピンニング効果を発揮しオーステナイト粒の粗大化を抑制防止することにより、母材の靱性向上にも寄与する。十分なピンニング効果を得るためには0.005%以上含有することが必要であるが、0.020%を超えて含有すると炭化物を形成するようになり、その析出硬化で靱性が著しく劣化するため、Ti量は0.005〜0.020%の範囲とする。
Ti: 0.005-0.020%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. In addition, the precipitated TiN exerts a pinning effect and prevents the austenite grains from coarsening, thereby improving the toughness of the base metal. Contribute. In order to obtain a sufficient pinning effect, it is necessary to contain 0.005% or more, but if it exceeds 0.020%, carbides are formed, and the toughness is significantly deteriorated by precipitation hardening. The Ti content is in the range of 0.005 to 0.020%.

以上が本発明の基本成分組成であるが、更に強度を向上させる場合は、Cu、Ni、Bの中から選ばれる一種または二種以上を、靱性を向上させる場合は、Ca、REMの一種または二種以上を添加することが可能である。強度と靭性との両方を向上させる場合には、Cu、Ni、Bの中から選ばれる一種または二種以上、および、Ca、REMの一種または二種以上を添加することが可能である。   The above is the basic component composition of the present invention. When further improving the strength, one or more selected from Cu, Ni, and B, and when improving toughness, one of Ca and REM or Two or more kinds can be added. In the case of improving both strength and toughness, it is possible to add one or more selected from Cu, Ni, and B, and one or more selected from Ca and REM.

Cu:0.1〜0.3%
Cuは0.1%以上含有することによって焼入性向上元素として作用し、多量のMn添加の代替とすることができる。しかし、0.3%を超えて含有しても効果が飽和し、さらに鋼板表面でのCu割れの原因にもなるため、Cuを含有する場合、その量は0.1〜0.3%の範囲とすることが好ましい。
Cu: 0.1 to 0.3%
When Cu is contained in an amount of 0.1% or more, it acts as a hardenability improving element and can replace a large amount of Mn addition. However, even if it contains more than 0.3%, the effect is saturated, and also causes Cu cracking on the steel sheet surface, so when containing Cu, the amount is 0.1-0.3% It is preferable to be in the range.

Ni:0.1〜0.3%
Niもまた、焼入性向上元素として作用するほか、添加しても靱性劣化を起こさないため、有用な元素である。この焼入性向上効果を得るために、0.1%以上含有することが好ましいが、高価な元素であるため、Niを含有する場合は、その量は、0.1〜0.3%の範囲とすることが好ましい。
Ni: 0.1 to 0.3%
Ni is also a useful element because it acts as a hardenability improving element and does not cause toughness deterioration when added. In order to acquire this hardenability improvement effect, it is preferable to contain 0.1% or more, but since it is an expensive element, when it contains Ni, the amount is 0.1-0.3%. It is preferable to be in the range.

B:0.0005〜0.004%
Bはオーステナイト粒界に偏析し、フェライト変態を抑制することで、強度低下防止に寄与する。この効果を得るためには、0.0005%以上含有することが好ましいが、0.004%を超えて含有してもその効果は飽和するため、Bを含有する場合、その量は0.0005〜0.004%の範囲とすることが好ましい。
B: 0.0005 to 0.004%
B segregates at austenite grain boundaries and suppresses ferrite transformation, thereby contributing to prevention of strength reduction. In order to acquire this effect, it is preferable to contain 0.0005% or more, but even if it contains exceeding 0.004%, since the effect is saturated, when it contains B, the amount is 0.0005%. It is preferable to make it into the range of -0.004%.

Ca:0.0005〜0.004%
Caは鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上含有することで靱性に有害なMnSの生成を抑制する。しかし、0.004%を超えて含有すると、CaO−CaSのクラスターを形成し、かえって靱性を劣化させるので、Caを含有する場合は、その量は0.0005〜0.004%の範囲とすることが好ましい。
Ca: 0.0005 to 0.004%
Ca is an element effective for controlling the form of sulfide in steel, and containing 0.0005% or more suppresses the generation of MnS harmful to toughness. However, if the content exceeds 0.004%, a CaO-CaS cluster is formed and the toughness is deteriorated. Therefore, when Ca is contained, the amount is in the range of 0.0005 to 0.004%. It is preferable.

REM:0.005〜0.02%
REMもまた鋼中の硫化物の形態制御に有効な元素であり、0.005%以上含有することで靱性に有害なMnSの生成を抑制する。しかし、高価な元素であり、かつ0.02%を超えて含有しても効果が飽和するため、REMを含有する場合は、その量は0.005〜0.02%の範囲とすることが好ましい。
REM: 0.005-0.02%
REM is also an element effective for controlling the form of sulfides in steel, and containing 0.005% or more suppresses the generation of MnS harmful to toughness. However, since it is an expensive element and the effect is saturated even if it contains more than 0.02%, when REM is contained, the amount should be in the range of 0.005 to 0.02%. preferable.

Pcm:0.15〜0.18
式(1)で計算されるPcmは溶接時の割れ感受性を示すものである。特に、高張力鋼において、溶接環境が気温10℃、湿度90%といった過酷な環境下でも予熱なしで割れ発生を防止するためには、Pcmを0.18以下とする必要がある。一方、Pcmが0.15を下回るような低合金設計の場合には、母材強度の確保が難しくなるため、Pcmは、0.15〜0.18の範囲とする。
Pcm: 0.15-0.18
Pcm calculated by the equation (1) indicates the crack sensitivity at the time of welding. In particular, in high-tensile steel, Pcm needs to be 0.18 or less in order to prevent cracking without preheating even in a severe environment where the welding environment is a temperature of 10 ° C. and a humidity of 90%. On the other hand, in the case of a low alloy design in which Pcm is less than 0.15, it becomes difficult to ensure the strength of the base material, so Pcm is set to a range of 0.15 to 0.18.

Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5×B・・・・・・(1)
ここで、元素記号Mは元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5 × B (1)
Here, the element symbol M indicates the content (mass%) of the element M, and when the element M is not added, it is calculated as 0%.

なお、上記した成分以外の残部は、Feおよび不可避不純物からなる。   The balance other than the components described above consists of Fe and inevitable impurities.

2.製造条件について
上記した組成を有する鋼を、転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。また、連続鋳造法によるスラブの鋼片加熱炉への装入は熱片、温片、冷片のいずれも用いることができる。その後、性能所望の形状に圧延し、圧延中または圧延後に、冷却および加熱を行う。
2. Manufacturing conditions Steel having the above-described composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and a steel material such as a slab is formed by a conventional method such as a continuous casting method or an ingot-bundling method. It is preferable to do. The melting method and the casting method are not limited to the methods described above. Moreover, any of a hot piece, a hot piece, and a cold piece can be used for charging the slab into the steel piece heating furnace by the continuous casting method. Thereafter, the product is rolled into a desired shape, and cooled and heated during or after rolling.

(1)加熱温度:1100〜1300℃
熱間圧延を行う際、鋼片をオーステナイト化するとともに、添加したNbの一部を固溶状態とするために1100℃以上に加熱する。一方、1300℃を超える温度まで鋼片を加熱すると、TiNでピンニングを行っていても、オーステナイト粒成長が著しく、最終的に得られる鋼板の母材靱性が劣化するため、加熱温度の範囲は1100〜1300℃とする。
(1) Heating temperature: 1100-1300 ° C
When hot rolling is performed, the steel slab is austenitized and heated to 1100 ° C. or higher in order to bring a part of the added Nb into a solid solution state. On the other hand, when the steel slab is heated to a temperature exceeding 1300 ° C., even if pinning is performed with TiN, austenite grain growth is remarkable, and the base material toughness of the finally obtained steel sheet deteriorates. ˜1300 ° C.

(2)圧延終了温度:900℃以上
本発明では、900℃未満まで圧延を行うと、セパレーションの発生によりシャルピー吸収エネルギーの低下を招くため、圧延終了温度は900℃以上とする。
(2) Rolling end temperature: 900 ° C. or higher In the present invention, when rolling to less than 900 ° C., Charpy absorbed energy is reduced due to the occurrence of separation, so the rolling end temperature is 900 ° C. or higher.

(3)950〜1000℃の温度域での累積圧下率:70%以上
本発明では、前述のようにNb含有量を多くすることによって、オーステナイト未再結晶温度域が従来よりも高温側に広がっており、950〜1000℃の温度域まではオーステナイト未再結晶域での圧延が可能である。特に良好な低温靭性として、−100℃以下のvTrsを得るためには、累積圧下率は70%以上とする。
(3) Cumulative rolling reduction in the temperature range of 950 to 1000 ° C .: 70% or more In the present invention, the austenite non-recrystallization temperature range expands to a higher temperature side than before by increasing the Nb content as described above. Up to a temperature range of 950 to 1000 ° C., rolling in the austenite non-recrystallized region is possible. In order to obtain vTrs of −100 ° C. or less as particularly good low temperature toughness, the cumulative rolling reduction is 70% or more.

(4)加速冷却の冷却開始温度:800℃以上
熱間圧延後、加速冷却を開始する温度が低いと、その空冷過程においてオーステナイト粒界から初析フェライトが生成し、母材強度低下の原因となるため、加速冷却を開始する温度は800℃以上とする。
(4) Cooling start temperature of accelerated cooling: 800 ° C. or higher After hot rolling, if the temperature at which accelerated cooling is started is low, proeutectoid ferrite is generated from the austenite grain boundaries in the air cooling process, which causes the base material strength to decrease. Therefore, the temperature at which the accelerated cooling is started is set to 800 ° C. or higher.

(5)加速冷却の冷却速度:10〜50℃/s
引張強度700MPa以上の高強度を得るには、ミクロ組織をベイナイト主体の組織にする必要がある。このため、熱間圧延後加速冷却を行う。冷却速度が10℃/s未満では、比較的高温で変態開始するので、十分な強度を得ることができない。
一方、50℃/sを超えた冷却速度の場合、高冷却速度化による強度上昇効果が飽和するため、加速冷却の冷却速度は、10〜50℃/sの範囲とする。
(5) Cooling rate of accelerated cooling: 10 to 50 ° C./s
In order to obtain a high strength of 700 MPa or higher, the microstructure needs to be a bainite-based structure. For this reason, accelerated cooling is performed after hot rolling. When the cooling rate is less than 10 ° C./s, transformation starts at a relatively high temperature, and thus sufficient strength cannot be obtained.
On the other hand, in the case of a cooling rate exceeding 50 ° C./s, since the effect of increasing the strength by increasing the cooling rate is saturated, the cooling rate of accelerated cooling is set to a range of 10 to 50 ° C./s.

(6)加速冷却の冷却停止温度:600℃以下
冷却停止温度が600℃を超える場合、ベイナイト変態が不十分となり、その後、未変態オーステナイトが残ったまま空冷されてしまい、強度が低い中間変態組織となるので、強度確保の観点から冷却停止温度は600℃以下とする。好ましくは、350℃以上500℃以下である。
(6) Cooling stop temperature of accelerated cooling: 600 ° C. or less When the cooling stop temperature exceeds 600 ° C., the bainite transformation becomes insufficient, and then the air is cooled with untransformed austenite remaining, and the intermediate transformation structure having low strength. Therefore, the cooling stop temperature is set to 600 ° C. or less from the viewpoint of securing the strength. Preferably, it is 350 degreeC or more and 500 degrees C or less.

(7)冷却停止後の再加熱温度:600〜700℃
加速冷却後、直ちに再加熱することで、変態生成したベイナイト中に微細なNb炭化物を析出させ、さらに強度を上昇させることができる。再加熱温度が600℃未満では、Nb炭化物の析出開始温度に満たないため強度上昇効果が認められないことから、再加熱温度は600℃以上とするのが好ましい。一方、再加熱温度が700℃を超えると、加速冷却で変態させたベイナイトが再びオーステナイト化してしまい十分な強度が得られないため、冷却停止後に再加熱を実施する場合には再加熱温度を600℃以上700℃以下とするのが好ましい。
(7) Reheating temperature after stopping cooling: 600 to 700 ° C
By reheating immediately after accelerated cooling, fine Nb carbides can be precipitated in the transformed bainite, and the strength can be further increased. When the reheating temperature is less than 600 ° C., the effect of increasing the strength is not observed because the temperature does not reach the precipitation start temperature of Nb carbide. Therefore, the reheating temperature is preferably 600 ° C. or higher. On the other hand, if the reheating temperature exceeds 700 ° C., the bainite transformed by accelerated cooling is austenite again and sufficient strength cannot be obtained. Therefore, when reheating is performed after cooling is stopped, the reheating temperature is set to 600. It is preferable that the temperature is not lower than 700 ° C and not higher than 700 ° C.

再加熱において、鋼板の昇温速度は特に機械的性質に大きく影響しないが、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化することから、昇温速度は0.5℃/s以上とすることが好ましい。特に温度保持時間を設定する必要はない。また、再加熱後の冷却過程においては、冷却速度によらずNb炭化物が得られるため、再加熱後の冷却は特に規定しないが、基本的には空冷とするのが好ましい。   In the reheating, the heating rate of the steel sheet does not particularly affect the mechanical properties, but since it takes a long time to reach the target reheating temperature, the production efficiency deteriorates. / S or more is preferable. In particular, there is no need to set the temperature holding time. In the cooling process after reheating, Nb carbide is obtained regardless of the cooling rate, and thus cooling after reheating is not particularly defined, but basically it is preferably air cooling.

ここで、冷却停止後、直ちに再加熱するとは、加速冷却により鋼板温度が600℃を下回ってから2分以内に上述の再加熱処理を実施することを指すものとする。   Here, reheating immediately after stopping cooling refers to performing the above-described reheating treatment within 2 minutes after the steel plate temperature falls below 600 ° C. by accelerated cooling.

なお上記した鋼板の温度は板厚方向平均温度とする。鋼板の板厚方向平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより算出できる。また、冷却速度は前記板厚方向平均温度をもとに計算される値とする   In addition, let the temperature of an above-described steel plate be plate thickness direction average temperature. The plate thickness direction average temperature of the steel plate is determined by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, it can be calculated by calculating the temperature distribution in the plate thickness direction using a difference method. The cooling rate is a value calculated based on the average thickness direction temperature.

表1に示す組成の鋼を転炉で溶製し、連続鋳造法で250mm厚のスラブ(鋼素材)とし、表2に示す熱間圧延条件、加速冷却、再加熱条件により15〜30mm厚の鋼板を作成した。表1において、鋼種I、J、K、Lは本発明の範囲外である。   The steel having the composition shown in Table 1 is melted in a converter and made into a slab (steel material) having a thickness of 250 mm by a continuous casting method. The thickness is 15 to 30 mm depending on the hot rolling conditions, accelerated cooling, and reheating conditions shown in Table 2. A steel plate was created. In Table 1, steel types I, J, K, and L are outside the scope of the present invention.

Figure 0005741016
Figure 0005741016

Figure 0005741016
Figure 0005741016

得られた鋼板の板厚方向中央部より圧延方向と直交する方向にJISZ2201に記載の4号引張試験片と、JISZ2202に記載のシャルピーVノッチ試験片を採取し、鋼板の引張試験、および試験温度:−20℃におけるシャルピー衝撃試験を実施して、強度と靱性を評価した。また、別途JISZ3158に記載のy形溶接割れ試験板を採取し、JISZ3158の要領に従って試験板を作製した。このy形溶接試験板について、溶接環境を30℃×60%RH(RHは相対湿度を指す、以下同じ)湿度、20℃×80%RH、および10℃×90%RHの3水準とした恒温恒湿試験槽内で、それぞれ予熱なし、50℃予熱、100℃予熱を行ってから繰り返し3体ずつ試験溶接を行った。   The No. 4 tensile test piece described in JISZ2201 and the Charpy V-notch test piece described in JISZ2202 are collected from the central portion of the obtained steel plate in the thickness direction in the direction perpendicular to the rolling direction. : A Charpy impact test at −20 ° C. was performed to evaluate strength and toughness. Separately, a y-type weld crack test plate described in JISZ3158 was collected, and a test plate was prepared according to the procedure of JISZ3158. For this y-type welded test plate, the welding environment was set to three levels of 30 ° C. × 60% RH (RH is relative humidity, the same applies hereinafter), 20 ° C. × 80% RH, and 10 ° C. × 90% RH. In each of the constant humidity test tanks, the test welding was repeated three by three after preheating, 50 ° C preheating and 100 ° C preheating.

なお、溶接方法は被覆アーク溶接法とし、溶接棒はJISZ3212記載の低水素系溶接棒を、各溶接環境に設定した恒温恒湿試験槽内に1時間放置してから使用した。試験溶接部の割れ判定は、JISZ3158に従い、溶接部5断面を観察した。そして、予熱条件各3体ずつの試験板について5断面全ての断面割れ率が0%であった、最も低い予熱条件の温度を割れ防止予熱温度とした。なお、予熱なしでも溶接割れが発生しなかった場合は割れ防止予熱温度は0℃と表示される。   The welding method was a coated arc welding method, and the welding rod was a low-hydrogen welding rod described in JISZ3212, which was used after being left in a constant temperature and humidity test tank set in each welding environment for 1 hour. The determination of cracks in the test weld zone was made by observing the cross section of the weld zone 5 in accordance with JISZ3158. And the temperature of the lowest preheating condition in which the cross-sectional crack rate of all five cross sections was 0% about the test plate of 3 each for preheating conditions was made into crack prevention preheating temperature. If no weld cracking occurs even without preheating, the crack preventing preheating temperature is displayed as 0 ° C.

母材のミクロ組織の画像解析結果および強度、靱性、溶接性調査結果をまとめて表3に示す。   Table 3 summarizes the results of image analysis of the microstructure of the base metal and the results of the strength, toughness, and weldability investigations.

Figure 0005741016
Figure 0005741016

発明例であるNo.1〜8は成分組成、圧延、加速冷却、再加熱条件が発明の範囲内であり、目標とする引張強度:700MPa以上、−20℃におけるシャルピー吸収エネルギーvE−20:350J以上、かつ、延性-脆性破面遷移温度(vTrs):−100℃以下を満足し、溶接環境を30℃×60%RH、20℃×80%RH、および10℃×90%RHのいずれの条件でも割れ防止予熱温度が0℃であった。   Inventive example No. Nos. 1 to 8 have component compositions, rolling, accelerated cooling, and reheating conditions within the scope of the invention. Target tensile strength: 700 MPa or more, Charpy absorbed energy at −20 ° C. vE-20: 350 J or more, and ductility— Brittle fracture surface transition temperature (vTrs): satisfying −100 ° C. or less, crack prevention preheating temperature under any of the conditions of 30 ° C. × 60% RH, 20 ° C. × 80% RH, and 10 ° C. × 90% RH Was 0 ° C.

一方、比較例であるNo.9は累積圧下率が不足し、No.10は圧延終了温度が900℃未満であること、No.11は冷却停止温度が600℃を超えていること、No.12〜No.15は成分組成が発明の範囲外であることより、強度、靱性、溶接性のいずれか1以上が目標を満足しなかった。   On the other hand, No. which is a comparative example. No. 9 lacks the cumulative rolling reduction. No. 10 has a rolling end temperature of less than 900 ° C. No. 11 is that the cooling stop temperature exceeds 600 ° C. 12-No. No. 15 had a component composition outside the scope of the invention, and therefore one or more of strength, toughness, and weldability did not satisfy the target.

Claims (4)

質量%で、C:0.04〜0.08%、Si:0.01〜0.5%、Mn:1.0〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.005〜0.08%、Nb:0.10〜0.20%、Ti:0.005〜0.020%、を含有し、更に、Cu:0.1〜0.3%、Ni:0.1〜0.3%、B:0.0005〜0.004%の中から選ばれる一種または二種以上を含有し、残部Feおよび不可避的不純物からなり式(1)で計算されるPcm値が0.15以上0.18以下である鋼を1100〜1300℃に再加熱後、熱間圧延を開始し、950〜1000℃の温度域での累積圧下率を70%以上として、900℃以上で圧延を終了し、圧延終了後800℃以上の温度域から冷却速度10〜50℃/sの加速冷却を開始し、350〜600℃の温度で冷却を停止して以後空冷することを特徴とする溶接性および母材靱性に優れた高強度厚鋼板の製造方法。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5×B・・・・・・(1)
ここで、各元素記号は含有量(質量%)を意味する。
なお、鋼板の温度は板厚方向平均温度とし、冷却速度は前記板厚方向平均温度をもとに計算される値とする。
In mass%, C: 0.04 to 0.08%, Si: 0.01 to 0.5%, Mn: 1.0 to 2.0%, P: 0.02% or less, S: 0.01 %: Al: 0.005-0.08%, Nb: 0.10-0.20%, Ti: 0.005-0.020%, and Cu: 0.1-0. 1% or more selected from 3%, Ni: 0.1 to 0.3%, B: 0.0005 to 0.004%, the balance consisting of Fe and unavoidable impurities (1) After reheating the steel having a Pcm value of 0.15 or more and 0.18 or less to 1100 to 1300 ° C., hot rolling was started, and the cumulative rolling reduction in the temperature range of 950 to 1000 ° C. was 70%. As described above, rolling is finished at 900 ° C. or higher, and accelerated cooling is started at a cooling rate of 10 to 50 ° C./s from a temperature range of 800 ° C. or higher after the rolling is finished. High strength thick steel plate manufacturing method having excellent weldability and base material toughness, characterized by subsequently cooled to stop the cooling at a temperature of 350 to 600 ° C..
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5 × B (1)
Here, each element symbol means content (mass%).
In addition, let the temperature of a steel plate be plate thickness direction average temperature, and let a cooling rate be a value calculated based on the said plate thickness direction average temperature.
質量%で、C:0.04〜0.08%、Si:0.01〜0.5%、Mn:1.0〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.005〜0.08%、Nb:0.10〜0.20%、Ti:0.005〜0.020%、を含有し、更に、Ca:0.0005〜0.004%、REM:0.0005〜0.02%の一種または二種を含有し、残部Feおよび不可避的不純物からなり式(1)で計算されるPcm値が0.15以上0.18以下である鋼を1100〜1300℃に再加熱後、熱間圧延を開始し、950〜1000℃の温度域での累積圧下率を70%以上として、900℃以上で圧延を終了し、圧延終了後800℃以上の温度域から冷却速度10〜50℃/sの加速冷却を開始し、350〜600℃の温度で冷却を停止して以後空冷することを特徴とする溶接性および母材靱性に優れた高強度厚鋼板の製造方法。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5×B・・・・・・(1)
ここで、各元素記号は含有量(質量%)を意味する。
なお、鋼板の温度は板厚方向平均温度とし、冷却速度は前記板厚方向平均温度をもとに計算される値とする。
In mass%, C: 0.04 to 0.08%, Si: 0.01 to 0.5%, Mn: 1.0 to 2.0%, P: 0.02% or less, S: 0.01 %: Al: 0.005-0.08%, Nb: 0.10-0.20%, Ti: 0.005-0.020%, and Ca: 0.0005-0. 004%, REM: 0.0005 to 0.02% of one kind or two kinds, comprising the balance Fe and unavoidable impurities, the Pcm value calculated by the formula (1) is 0.15 or more and 0.18 or less A certain steel is reheated to 1100 to 1300 ° C., and then hot rolling is started, the cumulative rolling reduction in the temperature range of 950 to 1000 ° C. is set to 70% or more, the rolling is finished at 900 ° C. or more, and after the rolling is finished, 800 from a temperature range of not lower than ° C. begins the accelerated cooling of the cooling rate of 10 to 50 ° C. / s, cooling at a temperature of 350 to 600 ° C. High strength thick steel plate manufacturing method having excellent weldability and base material toughness, characterized by subsequently cooling down.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5 × B (1)
Here, each element symbol means content (mass%).
In addition, let the temperature of a steel plate be plate thickness direction average temperature, and let a cooling rate be a value calculated based on the said plate thickness direction average temperature.
質量%で、更に、Ca:0.0005〜0.004%、REM:0.0005〜0.02%の一種または二種を含有することを特徴とする請求項1に記載の溶接性および母材靱性に優れた高強度厚鋼板の製造方法。   2. The weldability and mother material according to claim 1, further comprising one or two of Ca: 0.0005 to 0.004% and REM: 0.0005 to 0.02% in mass%. A method for producing a high-strength thick steel plate with excellent material toughness. 更に、加速冷却停止後、直ちに再加熱を行い、600〜700℃の温度域に到達後、空冷することを特徴とする請求項1乃至3の何れかに記載の溶接性および母材靱性に優れた高強度厚鋼板の製造方法。   Further, after accelerated cooling is stopped, reheating is performed immediately, and after reaching a temperature range of 600 to 700 ° C, air cooling is performed and excellent weldability and base material toughness according to any one of claims 1 to 3 A method for manufacturing high strength thick steel plates.
JP2011016211A 2011-01-28 2011-01-28 Method for producing high-strength thick steel plate with excellent weldability and base metal toughness Active JP5741016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016211A JP5741016B2 (en) 2011-01-28 2011-01-28 Method for producing high-strength thick steel plate with excellent weldability and base metal toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016211A JP5741016B2 (en) 2011-01-28 2011-01-28 Method for producing high-strength thick steel plate with excellent weldability and base metal toughness

Publications (2)

Publication Number Publication Date
JP2012153964A JP2012153964A (en) 2012-08-16
JP5741016B2 true JP5741016B2 (en) 2015-07-01

Family

ID=46835998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016211A Active JP5741016B2 (en) 2011-01-28 2011-01-28 Method for producing high-strength thick steel plate with excellent weldability and base metal toughness

Country Status (1)

Country Link
JP (1) JP5741016B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108929990B (en) * 2018-07-24 2020-05-22 南京钢铁股份有限公司 S460ML thick plate and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361321A (en) * 1989-07-29 1991-03-18 Nippon Steel Corp Production of steel stock having superior toughness at low temperature
JPH11264017A (en) * 1998-03-16 1999-09-28 Kawasaki Steel Corp Production of non-heat treated high tensile strength steel with small quality deviation and excellent in weldability
JP4264296B2 (en) * 2003-05-14 2009-05-13 新日本製鐵株式会社 Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
JP5045073B2 (en) * 2005-11-30 2012-10-10 Jfeスチール株式会社 Non-tempered high-tensile steel plate with low yield ratio and method for producing the same
JP5348386B2 (en) * 2008-10-24 2013-11-20 Jfeスチール株式会社 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
JP5672658B2 (en) * 2009-03-30 2015-02-18 Jfeスチール株式会社 High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same

Also Published As

Publication number Publication date
JP2012153964A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP4874434B1 (en) Thick steel plate manufacturing method
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5267048B2 (en) Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP2013139610A (en) HIGH-TENSILE STRENGTH THICK STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE, AND METHOD FOR MANUFACTURING THE SAME
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP7082669B2 (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP6624145B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2021509144A (en) Structural high-strength steel with excellent fatigue crack propagation suppression characteristics and its manufacturing method
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP5477457B2 (en) High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250