JP5672658B2 - High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same - Google Patents

High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same Download PDF

Info

Publication number
JP5672658B2
JP5672658B2 JP2009083610A JP2009083610A JP5672658B2 JP 5672658 B2 JP5672658 B2 JP 5672658B2 JP 2009083610 A JP2009083610 A JP 2009083610A JP 2009083610 A JP2009083610 A JP 2009083610A JP 5672658 B2 JP5672658 B2 JP 5672658B2
Authority
JP
Japan
Prior art keywords
less
strength
temperature
affected zone
hic resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009083610A
Other languages
Japanese (ja)
Other versions
JP2010235987A (en
Inventor
仁 末吉
仁 末吉
石川 信行
信行 石川
伸夫 鹿内
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009083610A priority Critical patent/JP5672658B2/en
Publication of JP2010235987A publication Critical patent/JP2010235987A/en
Application granted granted Critical
Publication of JP5672658B2 publication Critical patent/JP5672658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、耐水素誘起割れ性(耐HIC性)と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板とその製造方法に関するものである。   The present invention relates to a high-strength steel sheet for line pipes excellent in hydrogen-induced crack resistance (HIC resistance) and weld heat affected zone toughness, and a method for producing the same.

硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性の他に、耐水素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SCC性)などのいわゆる耐サワー性が必要とされる。鋼材の水素誘起割れ(HIC)は、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積し、その内圧により割れを生ずるものとされている。   Line pipes used to transport crude oil and natural gas containing hydrogen sulfide have strength, toughness and weldability, as well as hydrogen-induced crack resistance (HIC resistance) and stress corrosion crack resistance (SCC resistance). So-called sour resistance is required. In hydrogen induced cracking (HIC) of steel, hydrogen ions from the corrosion reaction are adsorbed on the surface of the steel, penetrate into the steel as atomic hydrogen, and include non-metallic inclusions such as MnS in the steel and hard second phase structure. It is said that it diffuses and accumulates around, and cracks occur due to its internal pressure.

このような水素誘起割れを防ぐために、特許文献1には、CaやCeをS量に対して適量添加することにより、針状のMnSの生成を抑制し、応力集中の小さい微細に分散した球状の介在物に形態を変えて割れの発生・伝播を抑制する、耐HIC性の優れたラインパイプ用鋼の製造方法が開示されている。また、特許文献2,3には、偏析傾向の高い元素(C、Mn、P等)の低減や、スラブ加熱段階での均熱処理、冷却時の変態途中での加速冷却により、中心偏析部での割れの起点となる島状マルテンサイト、割れの伝播経路となるマルテンサイトやベイナイトなどの硬化組織の生成を抑制した、耐HIC性に優れた鋼が開示されている。   In order to prevent such hydrogen-induced cracking, in Patent Document 1, by adding an appropriate amount of Ca or Ce to the amount of S, the formation of acicular MnS is suppressed, and the finely dispersed spherical shape with a small stress concentration A method for producing steel for line pipes having excellent HIC resistance is disclosed in which the shape of the inclusions is changed to suppress the generation and propagation of cracks. In Patent Documents 2 and 3, the central segregation part is reduced by reducing elements that have a high segregation tendency (C, Mn, P, etc.), soaking in the slab heating stage, and accelerated cooling during transformation during cooling. Steel having excellent HIC resistance is disclosed that suppresses the formation of hardened structures such as island martensite, which is the starting point of cracks, and martensite, bainite, which is the propagation path of cracks.

また、ミクロ組織が割れ感受性の高いブロック状ベイナイトやマルテンサイトを含まない耐HIC性に優れた高強度鋼として、特許文献4には、フェライト−ベイナイト2相組織である、APIX80グレードの耐HIC性に優れた高強度鋼材が開示されている。また、特許文献5,6には、ミクロ組織をフェライト単相組織とすることで耐SCC(SSCC)性や耐HIC性を改善し、MoまたはTiの多量添加によって得られる炭化物の析出強化を利用した高強度鋼が開示されている。   In addition, as a high-strength steel excellent in HIC resistance that does not contain block-like bainite or martensite whose microstructure is highly susceptible to cracking, Patent Document 4 describes the HIC resistance of APIX 80 grade, which is a ferrite-bainite two-phase structure. A high-strength steel material excellent in the above is disclosed. In Patent Documents 5 and 6, SCC (SSCC) resistance and HIC resistance are improved by making the microstructure a ferrite single phase structure, and the precipitation strengthening of carbide obtained by adding a large amount of Mo or Ti is used. A high strength steel is disclosed.

一方、溶接鋼構造物の大型化、またコスト削減の観点から、より高強度、高靭性を有する鋼板の需要が高まっている。通常、高強度高靭性鋼板は、焼入れ焼戻し処理や制御圧延・制御冷却を用いる、いわゆるTMCP法により製造されるが、焼入れ焼戻し処理は時間と手間を要し、製造コスト高である。また、TMCP法を用いて鋼材の高強度化を行う際には、鋼材への多量の合金元素の添加が必要であり、合金元素添加によるコスト上昇、溶接熱影響部靭性の劣化が問題となる。   On the other hand, the demand for steel sheets having higher strength and higher toughness is increasing from the viewpoint of increasing the size of welded steel structures and reducing costs. Usually, a high-strength and high-toughness steel sheet is manufactured by a so-called TMCP method using quenching and tempering treatment or controlled rolling / controlled cooling. However, the quenching and tempering treatment requires time and labor and is expensive to manufacture. Moreover, when increasing the strength of steel materials using the TMCP method, it is necessary to add a large amount of alloy elements to the steel materials, which raises costs due to the addition of alloy elements and deteriorates the toughness of the weld heat affected zone. .

特開昭54−110119号公報Japanese Patent Laid-Open No. 54-110119 特開昭61−60866号公報JP 61-60866 A 特開昭61−165207号公報JP-A-61-165207 特開平7−216500号公報JP 7-216500 A 特開昭61−227129号公報Japanese Patent Laid-Open No. 61-227129 特開平7−70697号公報JP-A-7-70697

特許文献1〜3に記載の耐HIC性を改善する方法は、いずれも中心偏析部が対象である。APIX70グレードを超える高強度鋼板は加速冷却または直接焼入れによって製造される場合が多いため、冷却速度の速い鋼板表面部が内部に比べ硬化し、表面近傍から水素誘起割れが発生する。また、加速冷却によって得られるこれらの高強度鋼板のミクロ組織は、表面のみならず内部までベイナイトまたはアシキュラーフェライトの比較的割れ感受性の高い組織となるため、APIX70グレードを超える高強度鋼の耐HIC性に対しては、さらなる厳格な偏析抑制が必要となるだけでなく、硫化物系または酸化物系介在物を起点としたHICへの対策が必要である。したがって、これらの高強度鋼板の耐HIC性を問題にする場合は、強度を確保しつつも厳格な偏析抑制を可能とする成分設計・ミクロ組織制御に加えて、鋼板の表面部のHICや、硫化物系や酸化物介在物を起点としたHICの対策が必要である。   The methods for improving the HIC resistance described in Patent Documents 1 to 3 are all about the center segregation part. Since high strength steel plates exceeding the APIX 70 grade are often manufactured by accelerated cooling or direct quenching, the steel plate surface portion having a high cooling rate is hardened compared to the inside, and hydrogen-induced cracks are generated from the vicinity of the surface. In addition, the microstructure of these high-strength steel sheets obtained by accelerated cooling is a structure with relatively high susceptibility to cracking of bainite or acicular ferrite not only on the surface but also inside, so that the HIC resistance of high-strength steel exceeding APIX 70 grade is high. In addition to the need for further strict segregation suppression, it is necessary to take measures against HIC starting from sulfides or oxide inclusions. Therefore, when considering the HIC resistance of these high-strength steel sheets, in addition to the component design and microstructure control that enables strict segregation suppression while ensuring the strength, the HIC of the surface part of the steel sheet, It is necessary to take measures against HIC starting from sulfides and oxide inclusions.

特許文献4に記載の高強度鋼のベイナイト組織は、ブロック状ベイナイトやマルテンサイト程ではないが比較的割れ感受性の高い組織であり、SおよびMn量を厳しく制限して、Ca処理を必須として耐HIC性を向上させる必要があるため、製造コストが高い。また、特許文献4に記載の圧延・冷却方法を用いてフェライト−ベイナイト2相組織を安定的に得ることは難しい。
一方、特許文献5,6に記載の鋼のフェライト相は延性に富んだ組織であり、割れ感受性が極めて低いため、ベイナイト組織またはアシキュラーフェライト組織の鋼に比べ耐HIC性が大幅に改善される。しかし、フェライト単相では強度が低いため、特許文献5ではCおよびMoを多量に添加し、炭化物を多量に析出させることによって高強度化し、一方、特許文献6ではTi添加鋼を特定の温度で鋼帯に巻き取り、TiCの析出強化を利用して高強度化している。
The bainite structure of high-strength steel described in Patent Document 4 is a structure that is not as high as block bainite or martensite but is relatively high in cracking sensitivity. S and Mn amounts are severely limited, and Ca treatment is essential. Since it is necessary to improve the HIC property, the manufacturing cost is high. Moreover, it is difficult to stably obtain a ferrite-bainite two-phase structure using the rolling / cooling method described in Patent Document 4.
On the other hand, since the ferrite phase of the steels described in Patent Documents 5 and 6 is a structure rich in ductility and has extremely low cracking susceptibility, the HIC resistance is greatly improved compared to steels having a bainite structure or an acicular ferrite structure. . However, since the strength of the ferrite single phase is low, Patent Document 5 increases the strength by adding a large amount of C and Mo and precipitates a large amount of carbide, while Patent Document 6 increases the strength of Ti-added steel at a specific temperature. It is rolled up on a steel strip and strengthened using TiC precipitation strengthening.

ところが、特許文献5に記載のMo炭化物が分散したフェライト組織を得るためには、焼入れ焼戻し処理の後に冷間加工を行い、さらに再度焼戻し処理を行う必要があり、製造コストが上昇する。また、Mo炭化物の粒径が約0.1μmと大きく、強度上昇効果が低いため、CおよびMoの含有量を高め、炭化物の量を増やすことによって所定の強度を得る必要がある。また、特許文献6に記載の高強度鋼で利用しているTiCはMo炭化物に比べ微細であり、析出強化に有効な炭化物であるが、析出時の温度の影響を受けて粗大化しやすい。特許文献6では、このような析出物粗大化に対する対策がなされておらず、このため析出強化が十分ではなく、多量のTi添加が必要となる。多量の合金元素を添加することは、素材コストが上昇するだけでなく、溶接熱影響部靭性を劣化させるため、高靭性が要求される場合には望ましくない。   However, in order to obtain the ferrite structure in which the Mo carbides described in Patent Document 5 are dispersed, it is necessary to perform cold working after quenching and tempering, and then perform tempering again, which increases the manufacturing cost. Moreover, since the particle size of Mo carbide is as large as about 0.1 μm and the effect of increasing the strength is low, it is necessary to obtain a predetermined strength by increasing the content of C and Mo and increasing the amount of carbide. In addition, TiC used in the high-strength steel described in Patent Document 6 is finer than Mo carbide and is an effective carbide for precipitation strengthening, but is easily coarsened under the influence of temperature during precipitation. In Patent Document 6, no countermeasure is taken against such coarsening of precipitates. For this reason, precipitation strengthening is not sufficient, and a large amount of Ti is required. Adding a large amount of alloy elements not only increases the material cost but also degrades the weld heat-affected zone toughness, which is undesirable when high toughness is required.

したがって本発明の目的は、このような従来技術の課題を解決し、APIX70グレード以上(引張強度580MPa以上)の強度を有するラインパイプ用高強度鋼板であって、中央偏析部のHICおよび表面近傍や介在物から発生するHICに対して、優れた耐HIC特性を有するとともに、優れた溶接熱影響部靭性を有し、しかも多量の合金元素を添加することなく低コストに製造することができるラインパイプ用高強度鋼板を提供することにある。
また、本発明の他の目的は、そのような優れた性能を有するラインパイプ用高強度鋼板を安定して製造することができる製造方法を提供することにある。
Accordingly, an object of the present invention is to solve such problems of the prior art, and is a high-strength steel sheet for line pipes having a strength of APIX 70 grade or higher (tensile strength of 580 MPa or higher). A line pipe that has excellent HIC resistance against HIC generated from inclusions, has excellent weld heat affected zone toughness, and can be manufactured at low cost without adding a large amount of alloying elements. It is to provide a high strength steel sheet for use.
Moreover, the other object of this invention is to provide the manufacturing method which can manufacture stably the high strength steel plate for line pipes which has such the outstanding performance.

このような課題を解決するための本発明の特徴は以下の通りである。
[1]質量%で、C:0.02〜0.08%、Si:0.01〜0.5%、Mn:0.5〜1.8%、P:0.01%以下、S:0.002%以下、Ca:0.0005〜0.005%、Nb:0.05〜0.15%、Al:0.01〜0.08%を含有し、さらに、V:0.005〜0.15%、Ti:0.005〜0.04%の1種または2種を含有し、残部がFeおよび不可避的不純物からなり、且つ原子%でのC量とNb、VおよびTiの合計量の比であるC/(Nb+V+Ti)が1.0〜5.0、下記(1)式で表されるCP値(質量%)が0.98以下、下記(2)式で表されるPCM値(質量%)が0.15以下である成分組成を有し、
金属組織が、フェライト相とベイナイト相の合計が体積分率で95%以上である実質的な2相組織であり、且つNbと、V、Tiの1種または2種を含む炭化物が分散析出し、引張強度が580MPa以上であることを特徴とする、耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板。
CP=4.46C(%)+2.37Mn(%)/6+{1.74Cu(%)+1.7Ni(%)}/15+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+22.36P(%) …(1)
CM=C(%)+Si(%)/30+Mn(%)/20+Cu(%)/20+Ni(%)/60+Cr(%)/20+Mo(%)/15+V(%)/10+B(%)*5 …(2)
但し、(1)式、(2)式において、添加しない元素は0とする。
The features of the present invention for solving such problems are as follows.
[1] By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 0.5 to 1.8%, P: 0.01% or less, S: 0.002% or less, Ca: 0.0005 to 0.005%, Nb: 0.05 to 0.15%, Al: 0.01 to 0.08%, and further, V: 0.005 to 0.15%, Ti: 0.005 to 0.04% of one or two kinds, the balance being Fe and inevitable impurities, and the amount of C in atomic% and the sum of Nb, V and Ti C / (Nb + V + Ti) which is the ratio of the amount is 1.0 to 5.0, CP value (mass%) represented by the following formula (1) is 0.98 or less, P represented by the following formula (2) Having a component composition with a CM value (mass%) of 0.15 or less,
The metal structure is a substantial two-phase structure in which the sum of the ferrite phase and the bainite phase is 95% or more by volume fraction, and carbides containing one or two of Nb, V, and Ti are dispersed and precipitated. A high-strength steel sheet for line pipes having excellent HIC resistance and weld heat-affected zone toughness, characterized by having a tensile strength of 580 MPa or more.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.74Cu (%) + 1.7Ni (%)} / 15+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (% )} / 5 + 22.36P (%) (1)
P CM = C (%) + Si (%) / 30 + Mn (%) / 20 + Cu (%) / 20 + Ni (%) / 60 + Cr (%) / 20 + Mo (%) / 15 + V (%) / 10 + B (%) * 5 (5) 2)
However, in the formulas (1) and (2), the element not added is 0.

[2]上記[1]のラインパイプ用高強度鋼板において、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、B:0.005%以下の1種または2種以上を含有することを特徴とする、耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板。
[3]上記[1]または[2]に記載のラインパイプ用高強度鋼板の製造方法であって、
上記[1]または[2]に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar温度以上の圧延終了温度で熱間圧延した後、5℃/sec以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/sec以上の昇温速度で、冷却停止温度以上であって且つ550〜700℃まで再加熱を行うことを特徴とする、耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板の製造方法。
[4]上記[1]または[2]に記載の鋼板を用いて製造されたことを特徴とする、耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼管。
[2] In the high-strength steel sheet for line pipes of the above [1], further, by mass, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.00. A high-strength steel sheet for line pipes having excellent HIC resistance and weld heat-affected zone toughness, characterized by containing one or more of 50% or less and B: 0.005% or less.
[3] A method for producing a high-strength steel sheet for line pipes according to [1] or [2 ] above,
The steel having the component composition described in [1] or [2] above is heated to a temperature of 1000 to 1300 ° C., hot-rolled at a rolling end temperature of Ar 3 temperature or higher, and then cooled at 5 ° C./sec or higher. Accelerating cooling to 300 to 600 ° C. at a speed, and immediately after that, at a temperature rising rate of 0.5 ° C./sec or more, reheating to 550 to 700 ° C. above the cooling stop temperature, A method for producing high-strength steel sheets for line pipes with excellent HIC resistance and weld heat-affected zone toughness.
[4] A high-strength steel pipe for a line pipe excellent in HIC resistance and weld heat affected zone toughness, characterized by being manufactured using the steel sheet described in [1] or [2] above.

本発明のラインパイプ用高強度鋼板は、高強度でありながら優れた耐HIC特性と溶接熱影響部靭性を有し、しかも多量の合金元素を添加することなく低コストで製造することができる。
また、本発明の製造方法によれば、上記のような高強度で且つ優れた耐HIC特性と溶接熱影響部靭性を有するラインパイプ用高強度鋼板を安定して製造することができる。
また、本発明のラインパイプ用高強度鋼管は、高強度で且つ優れた耐HIC特性と溶接熱影響部靭性を有するので、硫化水素を含む原油や天然ガスの輸送にも好適である。
The high-strength steel sheet for line pipes of the present invention has excellent HIC resistance and weld heat affected zone toughness while having high strength, and can be manufactured at a low cost without adding a large amount of alloying elements.
Moreover, according to the manufacturing method of this invention, the high strength steel plate for line pipes which has the above high intensity | strength, the outstanding HIC resistance characteristic, and the weld heat affected zone toughness can be manufactured stably.
The high-strength steel pipe for line pipe of the present invention has high strength and excellent HIC resistance and weld heat affected zone toughness, and is therefore suitable for transporting crude oil and natural gas containing hydrogen sulfide.

本発明の製造方法における金属組織制御のための熱履歴の概略を示すグラフThe graph which shows the outline of the heat history for the metal structure control in the manufacturing method of this invention 本発明の製造方法を実施するための製造ラインの一例を示す説明図Explanatory drawing which shows an example of the manufacturing line for enforcing the manufacturing method of this invention

本発明者らは、高強度鋼板の耐HIC特性の向上と高強度化を両立させ、さらに溶接熱影響部靭性を向上させるために、鋼材の成分とミクロ組織および鋼板の製造方法について鋭意検討した。その結果、高強度と耐HIC特性の両立には、高強度を確保しつつも偏析を抑制して割れ感受性の低い成分系となるように、偏析を考慮したCP値を適正化し、ミクロ組織をフェライト相とベイナイト相との強度差の小さいフェライト+ベイナイト2相組織とすることが最も効果的であり、制御圧延後の加速冷却とその後の再加熱という製造プロセスを採ることで、Ti、Nb、V等を含む微細析出物による軟質相であるフェライト相の強化と、硬質相であるベイナイト相の軟化が起こり、強度差の小さいフェライト+ベイナイト2相組織を得ることができるという知見を得た。そして、加速冷却時のベイナイト変態による強化に加え、Cに対するTi、Nb、Vの添加量を最適化することで、再加熱時に析出する微細炭化物による析出強化を最大限に活用することができ、合金元素の少ない低成分系の鋼においても高強度化が可能になるという知見を得た。特に、Nbを有効活用することにより、変態強化と析出強化の効果を増大し、且つ組織微細化を図ることができるという知見を得た。   The present inventors diligently studied the components and microstructure of the steel material and the manufacturing method of the steel sheet in order to achieve both improvement in the HIC resistance and high strength of the high-strength steel sheet and further improve the weld heat affected zone toughness. . As a result, in order to achieve both high strength and anti-HIC properties, the CP value in consideration of segregation is optimized so that the segregation is suppressed and the crack resistance is low, while maintaining high strength. It is most effective to have a ferrite + bainite two-phase structure with a small strength difference between the ferrite phase and the bainite phase. By adopting a manufacturing process of accelerated cooling after controlled rolling and subsequent reheating, Ti, Nb, It was found that the ferrite phase, which is a soft phase, and softening of the bainite phase, which is a hard phase, are caused by fine precipitates including V and the like, and a ferrite + bainite two-phase structure with a small strength difference can be obtained. And in addition to strengthening by bainite transformation during accelerated cooling, by optimizing the amount of Ti, Nb, V added to C, precipitation strengthening due to fine carbides that precipitate during reheating can be maximized, It was found that high strength can be achieved even in low-component steels with few alloying elements. In particular, it has been found that by effectively utilizing Nb, the effects of transformation strengthening and precipitation strengthening can be increased and the structure can be refined.

上記のようなTi、Nb、V等を含む析出物が分散析出したフェライト相とベイナイト相の2相組織を有する高強度鋼板は、従来の加速冷却等で得られるベイナイトまたはアシキュラーフェライト組織の鋼板のような表層部での硬度上昇がないので、表層部からのHICが生じない。さらに、強度差の小さいフェライト相とベイナイト相の2相組織は割れに対する抵抗が極めて高く、鋼板中心部や介在物からのHICも抑制することが可能となる。また、偏析傾向のある合金成分量を厳しく管理し、CP値で規制することにより中心偏析部からの割れを抑制することができる。さらに、変態強化に加え析出強化を最大限に活用するため、合金元素を多量に添加する必要がなく、溶接熱影響部靭性を損なうことなく高強度化が達成できるものである。   A high-strength steel sheet having a two-phase structure of a ferrite phase and a bainite phase in which precipitates containing Ti, Nb, V and the like as described above are dispersed is a steel sheet having a bainite or acicular ferrite structure obtained by conventional accelerated cooling or the like. Thus, there is no increase in hardness at the surface layer portion, so that HIC from the surface layer portion does not occur. Furthermore, the two-phase structure of the ferrite phase and the bainite phase having a small strength difference has extremely high resistance to cracking, and it is possible to suppress HIC from the steel plate center and inclusions. Moreover, the crack from a center segregation part can be suppressed by managing strictly the amount of alloy components with a segregation tendency, and regulating by the CP value. Furthermore, in order to make maximum use of precipitation strengthening in addition to transformation strengthening, it is not necessary to add a large amount of alloy elements, and high strength can be achieved without impairing the toughness of the weld heat affected zone.

以下、本発明の高強度鋼板について詳しく説明する。まず、本発明の高強度鋼板の組織について説明する。
本発明の高強度鋼板の金属組織は、フェライト相とベイナイト相の合計が体積分率で95%以上である実質的な2相組織とする。フェライト相は延性に富んでおり、割れ感受性が低いため、高い耐HIC特性を実現できる。また、本発明の高強度鋼板が有するフェライトは、加速冷却後に残存する未変態オーステナイトがフェライトに変態した、微細なグラニュラーフェライトまたはベイニティックフェライトであり、粒界が平滑で明瞭である通常のポリゴナルフェライトに比べて強度と靭性に優れている。また、ベイナイト相は変態強化により優れた強度、靭性を有している。フェライトとベイナイトの2相組織は、一般的には軟質なフェライト相と硬質なベイナイト相の混合組織であり、このような組織を有する鋼材はフェライト相とベイナイト相との界面に水素が集積しやすいうえに、前記界面が割れの伝播経路となるため、耐HIC特性が劣っている。これに対して本発明では、フェライト相とベイナイト相の強度を調整して両者の強度差を小さくすることで、耐HIC特性と高強度の両立を可能としたものである。
Hereinafter, the high-strength steel sheet of the present invention will be described in detail. First, the structure of the high-strength steel sheet of the present invention will be described.
The metal structure of the high-strength steel sheet of the present invention is a substantially two-phase structure in which the total of the ferrite phase and the bainite phase is 95% or more in volume fraction. Since the ferrite phase is rich in ductility and has low cracking susceptibility, high HIC resistance can be realized. The ferrite of the high-strength steel sheet of the present invention is a fine granular ferrite or bainitic ferrite in which untransformed austenite remaining after accelerated cooling is transformed into ferrite, and has a smooth and clear grain boundary. Excellent strength and toughness compared to Nalferrite. The bainite phase has excellent strength and toughness due to transformation strengthening. The two-phase structure of ferrite and bainite is generally a mixed structure of a soft ferrite phase and a hard bainite phase, and in a steel material having such a structure, hydrogen is likely to accumulate at the interface between the ferrite phase and the bainite phase. In addition, since the interface serves as a crack propagation path, the HIC resistance is inferior. On the other hand, in the present invention, by adjusting the strength of the ferrite phase and the bainite phase to reduce the difference in strength between them, it is possible to achieve both HIC resistance and high strength.

フェライト+ベイナイト2相組織に、マルテンサイトやパーライト、残留オーステナイト、島状マルテンサイト(MA)などの異なる金属組織が1種または2種以上混在する場合は、異相界面での水素集積や応力集中によってHICを生じやすくなるため、フェライト相とベイナイト相以外の組織は少ない程よい。ただし、フェライト相とベイナイト相以外の組織の体積分率が十分に低い場合には、それらの影響は無視できる。具体的には、フェライト相とベイナイト相以外の金属組織(マルテンサイト、パーライト、残留オーステナイト、島状マルテンサイト(MA)等の1種または2種以上)の合計が体積分率で5%未満であれば、大きな影響はない。したがって、本発明の鋼板の金属組織は、フェライト相とベイナイト相の合計が体積分率で95%以上である実質的な2相組織であればよい。なお、特に耐HIC特性の観点からは、島状マルテンサイト(MA)の体積分率は3%以下であることがより好ましい。
また、ベイナイトの体積分率は特に規定しないが、母材の靭性確保の観点から10%以上、耐HIC特性の観点から80%以下とすることが好ましく、より好ましい体積分率は20〜60%である。
When two or more different metal structures such as martensite, pearlite, retained austenite, and island martensite (MA) are mixed in the ferrite + bainite two-phase structure, hydrogen accumulation and stress concentration at the heterophase interface Since it becomes easy to generate HIC, the smaller the structure other than the ferrite phase and the bainite phase, the better. However, when the volume fraction of the structure other than the ferrite phase and the bainite phase is sufficiently low, the influence thereof can be ignored. Specifically, the sum of the metal structures other than the ferrite phase and the bainite phase (one or more of martensite, pearlite, retained austenite, island martensite (MA), etc.) is less than 5% in volume fraction. If there is, there is no big influence. Therefore, the metal structure of the steel sheet of the present invention may be a substantial two-phase structure in which the total of the ferrite phase and the bainite phase is 95% or more in terms of volume fraction. In particular, from the viewpoint of HIC resistance, the volume fraction of island martensite (MA) is more preferably 3% or less.
The volume fraction of bainite is not particularly defined, but is preferably 10% or more from the viewpoint of securing the toughness of the base material, and preferably 80% or less from the viewpoint of HIC resistance, and a more preferable volume fraction is 20 to 60%. It is.

次に、本発明の高強度鋼板において、フェライト相内に分散析出する析出物について説明する。
本発明の高強度鋼板では、フェライト相中のNbと、V、Tiの1種または2種(Vおよび/またはTi)を含有する複合炭化物による析出強化を利用している。Nbと、V、Tiの1種または2種を含有する複合炭化物を鋼中に微細析出させることにより、フェライト相が強化され、フェライト相とベイナイト相間の強度差が小さくなるため、優れた耐HIC特性を得ることができる。この析出物は極めて微細であるので、耐HIC特性に対して何ら影響を与えない。
Nb、V、Tiは鋼中で炭化物を形成する元素であり、個々の炭化物の析出により鋼を強化することは従来より行われているが、従来は熱間圧延後の冷却過程や等温保持によってオーステナイトからのフェライト変態時や過飽和のフェライトからの析出を利用したり、或いは、圧延後急冷し、組織をマルテンサイトまたはベイナイトとした後に、加熱炉での焼戻し処理によってマルテンサイトまたはベイナイト中に炭化物を析出させる方法が採られていた。
Next, in the high-strength steel sheet of the present invention, the precipitate that is dispersed and precipitated in the ferrite phase will be described.
The high-strength steel sheet of the present invention utilizes precipitation strengthening due to a composite carbide containing Nb in the ferrite phase and one or two of V and Ti (V and / or Ti). Fine precipitation of composite carbide containing Nb and one or two of V and Ti in the steel strengthens the ferrite phase and reduces the difference in strength between the ferrite phase and the bainite phase. Characteristics can be obtained. Since this precipitate is extremely fine, it has no influence on the HIC resistance.
Nb, V, and Ti are elements that form carbides in steel, and strengthening of steel by precipitation of individual carbides has been conventionally performed, but conventionally, by cooling process and isothermal holding after hot rolling. Utilizing precipitation from austenite or precipitation from supersaturated ferrite, or quenching after rolling to make the structure martensite or bainite, then tempering in a heating furnace to convert carbide into martensite or bainite The method of making it precipitate was taken.

これに対して本発明は、ベイナイト変態域からの再加熱過程で誘導加熱炉などを用いた急速加熱を利用して炭化物を析出させる。このような本発明の方法によれば、急速短時間で加熱することにより炭化物の粗大化が抑制され、非常に微細な炭化物が析出するため、通常の方法に比べ、より大きな強度向上効果が得られることが特徴である。このような従来にない大きな強度向上効果は、Nbと、V、Tiの1種または2種を含有する複合炭化物が安定であり且つ急速加熱で成長速度が遅いために粒径10nm未満の極めて微細な析出物として得られることによるものである。このような粒径10nm未満の析出物は、引張強度が580MPa以上(APIX70グレード以上)の高強度鋼板とするためには、2×10個/μm以上析出させることが好ましい。析出形態としては、ランダムでも列状でもよく、特別な制限はない。また、この微細炭化物は主にフェライト相中に析出するが、化学成分、製造条件によってはベイナイト相からも析出する場合がある。この場合はさらなる強化が可能であるが、フェライト相とベイナイト相の強度差がHV70以下であれば耐HIC特性に影響はない。
本発明の鋼板内に分散析出する析出物である、Nbと、V、Tiの1種または2種を含有する複合炭化物は、以下に述べるような成分組成の鋼に本発明の製造方法を適用することにより得ることができる。
On the other hand, the present invention deposits carbide using rapid heating using an induction heating furnace or the like in the reheating process from the bainite transformation region. According to such a method of the present invention, the coarsening of the carbide is suppressed by heating in a rapid time and a very fine carbide is precipitated, so that a greater strength improvement effect is obtained as compared with the normal method. It is characteristic that Such an unprecedented strength improvement effect is extremely fine with a particle size of less than 10 nm because the composite carbide containing one or two of Nb, V, and Ti is stable and the growth rate is slow due to rapid heating. It is because it is obtained as a simple precipitate. Such precipitates having a particle size of less than 10 nm are preferably deposited at 2 × 10 3 pieces / μm 3 or more in order to obtain a high-strength steel sheet having a tensile strength of 580 MPa or more (APIX 70 grade or more). The form of precipitation may be random or in line, and there is no particular limitation. Moreover, although this fine carbide precipitates mainly in a ferrite phase, it may precipitate also from a bainite phase depending on a chemical component and manufacturing conditions. In this case, further strengthening is possible, but if the strength difference between the ferrite phase and the bainite phase is HV70 or less, the HIC resistance is not affected.
The composite carbide containing one or two of Nb, V, and Ti, which is a precipitate that disperses and precipitates in the steel sheet of the present invention, is applied to the steel having the component composition described below. Can be obtained.

次に、本発明の高強度鋼板の成分組成について説明する。なお、以下の説明において%で示す単位は全て質量%である。
C:0.02〜0.08%とする。Cは炭化物として析出強化に寄与する元素であるが、0.02%未満では十分な強度が確保できず、一方、0.08%を超えると靭性を劣化させる。
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、一方、0.5%を超えると靭性や溶接性を劣化させる。
Mn:0.5〜1.8%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、一方、1.8%を超えると溶接性と耐HIC特性が劣化する。特に、耐HIC特性の観点から、好ましいMn量は0.5〜1.6%である。
Next, the component composition of the high-strength steel sheet of the present invention will be described. In the following description, all units indicated by% are mass%.
C: Set to 0.02 to 0.08%. C is an element that contributes to precipitation strengthening as a carbide, but if it is less than 0.02%, sufficient strength cannot be secured, while if it exceeds 0.08%, toughness is deteriorated.
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, while if it exceeds 0.5%, toughness and weldability are deteriorated.
Mn: 0.5 to 1.8%. Mn is added for strength and toughness, but if it is less than 0.5%, its effect is not sufficient. On the other hand, if it exceeds 1.8%, weldability and HIC resistance are deteriorated. In particular, from the viewpoint of HIC resistance, the preferable amount of Mn is 0.5 to 1.6%.

P:0.01%以下とする。Pは不可避不純物元素であり、溶接性を劣化させるとともに、中心偏析部の硬さを上昇させることで耐HIC特性を劣化させ、0.01%を超えるとその傾向が顕著となる。特に、耐HIC特性の観点から、好ましいP量は0.008%以下である。
S:0.002%以下とする。Sは一般的には鋼中においてはMnS介在物となり耐HIC特性を劣化させるため少ないほどよいが、0.002%以下であれば問題はない。
Ca:0.0005〜0.005%とする。Caは硫化物系介在物の形態制御による耐HIC特性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、一方、0.005%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により耐HIC特性を劣化させる。
P: 0.01% or less. P is an unavoidable impurity element, which deteriorates the weldability and deteriorates the HIC resistance by increasing the hardness of the central segregation part, and the tendency becomes remarkable when it exceeds 0.01%. In particular, from the viewpoint of HIC resistance, the preferable amount of P is 0.008% or less.
S: Set to 0.002% or less. In general, the S content becomes MnS inclusions in the steel and deteriorates the HIC resistance, so the smaller the better, but there is no problem if it is 0.002% or less.
Ca: 0.0005 to 0.005%. Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions. However, if it is less than 0.0005%, the effect is not sufficient. On the other hand, even if it exceeds 0.005%, it is effective. Saturates, but rather deteriorates the anti-HIC properties due to a reduction in the cleanliness of the steel.

Nb:0.05〜0.15%とする。Nbは本発明において重要な元素である。Nbは、変態強化と析出強化の両方を活用して効果的に強度を増大させることができ、且つ組織微細化を図ることができる。Nbは、未再結晶域を拡大するとともに変態強化に有効な元素であるため、TMCPによる変態強化と組織微細化の効果を増大させる。また、Nbは変態強化の増大と組織の微細粒化により、強度と靭性を向上させるとともに、VおよびTiと共に微細な複合炭化物を形成して強度上昇に寄与する。しかし、0.05%未満ではその効果が十分でなく、一方、0.15%を超えると溶接熱影響部の靭性が劣化する。変態強化と析出強化を十分に活用するという観点から、好ましいNb量は0.07〜0.15%である。また、鋼板の強度を620MPa以上(APIX80グレード以上)とし、溶接熱影響部の靭性劣化を抑制するためには、Nb量は0.08〜0.12%とすることが好ましい。
Al:0.01〜0.08%とする。Alは脱酸剤として添加されるが、0.01%未満では効果がなく、一方、0.08%を超えると鋼の清浄度が低下し、靭性が劣化する。
Nb: 0.05 to 0.15%. Nb is an important element in the present invention. Nb can effectively increase the strength by utilizing both transformation strengthening and precipitation strengthening, and can refine the structure. Nb expands the non-recrystallized region and is an element effective for strengthening transformation, and therefore increases the effect of transformation strengthening and microstructure refinement by TMCP. Further, Nb improves strength and toughness by increasing transformation strengthening and refining the structure, and forms fine composite carbides together with V and Ti, thereby contributing to an increase in strength. However, if it is less than 0.05%, the effect is not sufficient. On the other hand, if it exceeds 0.15%, the toughness of the weld heat affected zone deteriorates. From the viewpoint of fully utilizing transformation strengthening and precipitation strengthening, a preferable Nb amount is 0.07 to 0.15%. Moreover, in order to set the strength of the steel sheet to 620 MPa or more (APIX 80 grade or more) and suppress the toughness deterioration of the weld heat affected zone, the Nb content is preferably 0.08 to 0.12%.
Al: 0.01 to 0.08%. Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect. On the other hand, if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates.

V:0.005〜0.15%、Ti:0.005〜0.04%の1種または2種を含有する。
Vは、NbおよびTiと共に微細な複合炭化物を形成し、強度上昇に寄与する。しかし、0.005%未満ではその効果が十分でなく、一方、0.15%を超えると溶接熱影響部の靭性が劣化する。このためVを添加する場合は、0.005〜0.15%とする。析出強化を十分に活用し、且つ溶接熱影響部の靭性劣化を抑制するという観点から、好ましいV量は0.005〜0.12%である。
Tiは、NbおよびVと共に微細な複合炭化物を形成し、強度上昇に大きく寄与する。しかし、0.005%未満ではその効果が十分でなく、一方、0.04%を超えると溶接熱影響部の靭性が劣化する。このためTiを添加する場合は、0.005〜0.04%とする。析出強化を十分に活用し、且つ溶接熱影響部の靭性劣化を抑制するという観点から、好ましいTi量は0.005〜0.03%である。
1 type or 2 types of V: 0.005-0.15% and Ti: 0.005-0.04% are contained.
V forms a fine composite carbide together with Nb and Ti and contributes to an increase in strength. However, if it is less than 0.005%, the effect is not sufficient. On the other hand, if it exceeds 0.15%, the toughness of the heat affected zone is deteriorated. For this reason, when adding V, it is set as 0.005 to 0.15%. From the viewpoint of fully utilizing precipitation strengthening and suppressing toughness deterioration of the weld heat affected zone, the preferable V amount is 0.005 to 0.12%.
Ti forms a fine composite carbide together with Nb and V, and greatly contributes to an increase in strength. However, if it is less than 0.005%, the effect is not sufficient. On the other hand, if it exceeds 0.04%, the toughness of the weld heat affected zone deteriorates. For this reason, when adding Ti, it is made into 0.005 to 0.04%. From the viewpoints of fully utilizing precipitation strengthening and suppressing toughness deterioration of the weld heat affected zone, the preferable Ti amount is 0.005 to 0.03%.

原子%でのC量とNb、VおよびTiの合計量の比であるC/(Nb+V+Ti)を1.0〜5.0とする。複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるNb、V、Ti量との関係が重要であり、これらの元素を適正なバランスのもとで添加することによって、熱的に安定し、且つ非常に微細な複合炭化物を得ることができる。本パラメータ式の値が1.0未満または5.0を超える場合は、いずれかの元素の含有量が過剰であり、粒径10nm未満の微細な複合炭化物が十分に得られず、また、島状マルテンサイトなどの硬化組織の形成による耐HIC特性の劣化や靭性の劣化を招く。
なお、質量%での含有量を用いる場合には、(C/12.01)/(Ti/47.9+Nb/92.91+V/50.94)の値を1.0〜5.0とする。
C / (Nb + V + Ti), which is a ratio of the amount of C in atomic% and the total amount of Nb, V, and Ti, is set to 1.0 to 5.0. In order to effectively use precipitation strengthening by composite precipitates, the relationship between the amount of C and the amount of carbide forming elements Nb, V, and Ti is important, and these elements are added in an appropriate balance. As a result, a thermally stable and very fine composite carbide can be obtained. When the value of this parameter formula is less than 1.0 or more than 5.0, the content of any element is excessive, and a fine composite carbide having a particle size of less than 10 nm cannot be sufficiently obtained. Cause deterioration of HIC resistance and toughness due to the formation of a hardened structure such as martensite.
In addition, when using content by mass%, the value of (C / 12.01) / (Ti / 47.9 + Nb / 92.91 + V / 50.94) shall be 1.0-5.0.

下記(1)式で表されるCP値(質量%)を0.98以下とする。下記(1)式において、C(%)、Mn(%)、Cu(%)、Ni(%)、Cr(%)、Mo(%)、V(%)、P(%)は各元素の含有量(質量%)であり、添加しない元素は0とする。
CP=4.46C(%)+2.37Mn(%)/6+{1.74Cu(%)+1.7Ni(%)}/15+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+22.36P(%) …(1)
このCP値は、各合金元素の含有量から中心偏析部の材質を推定するために考案された式であり、CP値が高いほど中心偏析部の濃度が高くなり、中心偏析部の硬さが上昇する。このCP値を0.98以下とすることでHIC試験での割れを抑制することが可能となる。また、CP値が低いほど中心偏析部の硬さが低くなるため、さらに高い耐HIC特性が必要な場合は、その上限を0.95とすることが望ましい。
The CP value (mass%) represented by the following formula (1) is set to 0.98 or less. In the following formula (1), C (%), Mn (%), Cu (%), Ni (%), Cr (%), Mo (%), V (%), and P (%) are the respective elements. The content (% by mass) is 0 for elements not added.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.74Cu (%) + 1.7Ni (%)} / 15+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (% )} / 5 + 22.36P (%) (1)
This CP value is an equation designed to estimate the material of the center segregation part from the content of each alloy element. The higher the CP value, the higher the concentration of the center segregation part, and the hardness of the center segregation part. To rise. By setting the CP value to 0.98 or less, it is possible to suppress cracks in the HIC test. Further, the lower the CP value, the lower the hardness of the center segregation part. Therefore, when higher HIC resistance is required, the upper limit is desirably set to 0.95.

下記(2)式で表されるPCM値(質量%)を0.15以下とする。下記(2)式において、C(%)、Si(%)、Mn(%)、Cu(%)、Ni(%)、Cr(%)、Mo(%)、V(%)、B(%)は各元素の含有量(質量%)であり、添加しない元素は0とする。
CM=C(%)+Si(%)/30+Mn(%)/20+Cu(%)/20+Ni(%)/60+Cr(%)/20+Mo(%)/15+V(%)/10+B(%)*5 …(2)
本発明では、良好な溶接熱影響部靭性を確保するために、PCM≦0.15質量%という合金元素量が少ない低合金成分組成とする。
Following (2) P CM value of the formula (mass%) 0.15 or less. In the following formula (2), C (%), Si (%), Mn (%), Cu (%), Ni (%), Cr (%), Mo (%), V (%), B (% ) Is the content (% by mass) of each element, and the elements not added are 0.
P CM = C (%) + Si (%) / 30 + Mn (%) / 20 + Cu (%) / 20 + Ni (%) / 60 + Cr (%) / 20 + Mo (%) / 15 + V (%) / 10 + B (%) * 5 (5) 2)
In the present invention, in order to ensure good weld heat-affected zone toughness, a low alloy component composition with a small alloy element amount of P CM ≦ 0.15 mass% is adopted.

以上が本発明の基本成分組成であるが、鋼板の強度、靭性をさらに改善させる場合には、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、B:0.005%以下の1種または2種以上を含有してもよい。
Cuは靭性の改善と強度の上昇に有効な元素であるが、過剰に添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
Niは靭性の改善と強度の上昇に有効な元素であるが、過剰に添加するとコスト的に不利になり、また、溶接熱影響部靭性が劣化するため、添加する場合は0.50%を上限とする。
CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、過剰に添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
Moは靭性の改善と強度の上昇に有効な元素であるが、過剰に添加すると溶接性が劣化するため、添加する場合は0.50を上限とする。
Bは強度上昇とHAZ靭性の改善に寄与する元素であるが、過剰に添加すると溶接性が劣化するため、添加する場合は0.005%を上限とする。
上記以外の残部はFeおよび不可避的不純物からなる。ただし、本発明の作用効果を害しない限り、他の微量元素の含有を妨げない。
The above is the basic component composition of the present invention. However, when the strength and toughness of the steel sheet are further improved, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo : 0.50% or less, B: 0.005% or less may be included.
Cu is an element effective for improving toughness and increasing strength, but if added excessively, weldability deteriorates, so when added, the upper limit is 0.50%.
Ni is an element effective for improving toughness and increasing strength. However, if added excessively, it is disadvantageous in terms of cost, and weld heat-affected zone toughness deteriorates, so when added, the upper limit is 0.50%. And
Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. However, if added excessively, weldability deteriorates, so when added, the upper limit is 0.50%.
Mo is an element effective for improving toughness and increasing strength, but if added excessively, weldability deteriorates, so when added, the upper limit is 0.50.
B is an element that contributes to an increase in strength and an improvement in HAZ toughness, but if added in excess, weldability deteriorates, so when added, the upper limit is made 0.005%.
The balance other than the above consists of Fe and inevitable impurities. However, the content of other trace elements is not hindered unless the effects of the present invention are impaired.

本発明の高強度鋼板は、その製造方法を特に限定しないが、以下のような製造方法が望ましい。以下の説明において、温度はスラブや鋼板の平均温度とする。
図1に、本発明の製造方法における金属組織制御のための熱履歴の概略を示す。本発明の製造方法では、Ar温度以上のオーステナイト領域からベイナイト領域まで加速冷却することで、未変態オーステナイトとベイナイトの混合組織とし、冷却後、直ちに再加熱することにより、未変態オーステナイトはフェライトに変態し、フェライト相中には微細析出物が分散析出する。一方、ベイナイト相は焼戻されて焼戻しベイナイトとなる。この微細析出物によって析出強化したフェライト相と焼戻されて軟化したベイナイト層の2相組織とすることで、合金元素を多量に添加することなく、高強度化と耐HIC特性の両立が可能となる。
The production method of the high-strength steel sheet of the present invention is not particularly limited, but the following production method is desirable. In the following description, the temperature is an average temperature of a slab or a steel plate.
In FIG. 1, the outline of the heat history for the metal structure control in the manufacturing method of this invention is shown. In the production method of the present invention, accelerated cooling is performed from the austenite region at an Ar 3 temperature or higher to the bainite region to form a mixed structure of untransformed austenite and bainite. Transformation occurs and fine precipitates are dispersed and precipitated in the ferrite phase. On the other hand, the bainite phase is tempered to become tempered bainite. By adopting a two-phase structure consisting of a ferrite phase precipitation strengthened by these fine precipitates and a tempered and softened bainite layer, it is possible to achieve both high strength and HIC resistance without adding a large amount of alloying elements. Become.

本発明の製造方法では、上述した成分組成を有する鋼(スラブ)を、所定のスラブ加熱温度と圧延終了温度で熱間圧延した後、所定の条件で加速冷却し、その後直ちに急速加熱による再加熱を行う。
スラブ加熱温度:1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、一方、1300℃を超えると靭性が劣化する。
熱間圧延終了温度:Ar温度以上とする。Ar温度とは、冷却中におけるフェライト変態開始温度を意味し、下記の式で求めることができる。式中、C(%)、Mn(%)、Cu(%)、Cr(%)、Ni(%)、Mo(%)は各元素の含有量(%)であり、添加しない元素は0とする。圧延終了温度がAr温度未満になると、その後のフェライト変態速度が低下するため、再加熱によるフェライト変態時に十分な微細析出物の分散析出が得られず、強度が低下する。
Ar=910−310C(%)−80Mn(%)−20Cu(%)−15Cr(%)−55Ni(%)−80Mo(%)
In the production method of the present invention, the steel (slab) having the above-described component composition is hot-rolled at a predetermined slab heating temperature and rolling end temperature, acceleratedly cooled under predetermined conditions, and then immediately reheated by rapid heating. I do.
Slab heating temperature: 1000-1300 ° C. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, while if it exceeds 1300 ° C., the toughness deteriorates.
Hot rolling end temperature: Ar 3 temperature or higher. The Ar 3 temperature means a ferrite transformation start temperature during cooling, and can be obtained by the following equation. In the formula, C (%), Mn (%), Cu (%), Cr (%), Ni (%), and Mo (%) are the contents (%) of each element, and the elements not added are 0. To do. When the rolling end temperature is lower than the Ar 3 temperature, the subsequent ferrite transformation rate is lowered, so that sufficient precipitation of fine precipitates cannot be obtained during ferrite transformation by reheating, and the strength is lowered.
Ar 3 = 910-310C (%) - 80Mn (%) - 20Cu (%) - 15Cr (%) - 55Ni (%) - 80Mo (%)

圧延終了後、直ちに5℃/sec以上の冷却速度で300〜600℃まで加速冷却する。圧延終了後に放冷または徐冷を行うと、高温域から析出物が析出するために析出物が容易に粗大化し、その結果、十分な強度が得られず、また十分な変態強化も得られない。このため本発明では、析出強化と変態強化に最適な温度まで急冷(加速冷却)を行い、高温域からの析出を防止し且つ変態強化の効果を得るものである。この加速冷却に使用する冷却設備に特別な制限はない。
冷却速度が5℃/sec未満では、高温域での析出防止効果が十分ではなく強度が低下するとともに、ベイナイト変態による変態強化が十分に得られない。また、冷却時に高温域でフェライトを生成するおそれがあり、フェライト変態時に生じた析出物は高温域で容易に粗大化するため、十分な強度が得られない。高温域での析出防止とベイナイト変態による変態強化の効果を十分に発揮させるために、圧延終了後の冷却速度は10℃/sec以上とすることが好ましい。
Immediately after the end of rolling, accelerated cooling to 300 to 600 ° C. is performed at a cooling rate of 5 ° C./sec or more. When the product is allowed to cool or gradually cool after the rolling, the precipitate is easily coarsened because the precipitate is precipitated from the high temperature region, and as a result, sufficient strength cannot be obtained and sufficient transformation strengthening cannot be obtained. . For this reason, in the present invention, rapid cooling (accelerated cooling) is performed to a temperature optimum for precipitation strengthening and transformation strengthening, preventing precipitation from a high temperature region and obtaining the effect of transformation strengthening. There is no particular restriction on the cooling equipment used for this accelerated cooling.
When the cooling rate is less than 5 ° C./sec, the effect of preventing precipitation in a high temperature range is not sufficient, the strength is lowered, and transformation strengthening due to bainite transformation cannot be sufficiently obtained. In addition, ferrite may be generated in a high temperature range during cooling, and precipitates generated during ferrite transformation are easily coarsened in the high temperature range, so that sufficient strength cannot be obtained. In order to sufficiently exhibit the effect of preventing precipitation in a high temperature range and the effect of transformation strengthening by bainite transformation, the cooling rate after the rolling is preferably 10 ° C./sec or more.

圧延終了後の加速冷却でベイナイト変態域である300〜600℃まで急冷することにより、ベイナイト相を生成させ、且つ再加熱時のフェライト変態の駆動力を大きくする。駆動力が大きくなることで、再加熱過程でのフェライト変態を促進し、短時間の再加熱でフェライト変態を完了させることが可能となる。冷却停止温度が300℃未満では、ベイナイトやマルテンサイトの単相組織となるか、フェライト+ベイナイト2相組織となっても島状マルテンサイト(MA)が生成するために、耐HIC特性が劣化する。一方、冷却停止温度が600℃を超えると、再加熱時のフェライト変態が完了せず、パーライトが析出して耐HIC特性が劣化するとともに、ベイナイト変態による変態強化の効果が十分ではなく、強度が低下する。再加熱時のフェライト変態の駆動力を大きくし、フェライト変態時の析出物による析出強化の効果を十分に得るという観点から、冷却停止温度は400〜600℃とすることが好ましい。   By rapidly cooling to 300 to 600 ° C., which is a bainite transformation region, by accelerated cooling after the end of rolling, a bainite phase is generated, and the driving force for ferrite transformation during reheating is increased. By increasing the driving force, it becomes possible to promote the ferrite transformation in the reheating process and complete the ferrite transformation with a short reheating. When the cooling stop temperature is less than 300 ° C., the island-shaped martensite (MA) is generated even when the single phase structure of bainite or martensite or the ferrite + bainite two-phase structure is formed, so that the HIC resistance is deteriorated. . On the other hand, when the cooling stop temperature exceeds 600 ° C., the ferrite transformation at the time of reheating is not completed, pearlite is precipitated and the HIC resistance is deteriorated, and the effect of transformation strengthening by bainite transformation is not sufficient, and the strength is high. descend. The cooling stop temperature is preferably 400 to 600 ° C. from the viewpoint of increasing the driving force of the ferrite transformation at the time of reheating and sufficiently obtaining the effect of precipitation strengthening by precipitates at the time of ferrite transformation.

上述した加速冷却後、直ちに0.5℃/sec以上の昇温速度で冷却停止温度以上であって且つ550〜700℃の温度まで再加熱を行う。このプロセスは本発明における重要な製造条件である。フェライト相の強化に寄与する微細析出物は、再加熱時のフェライト変態と同時に析出する。微細析出物によるフェライト相の強化とベイナイト相の軟化を同時に行い、フェライト相とベイナイト相の強度差の小さい組織を得るためには、加速冷却後、直ちに冷却停止温度以上であって且つ550〜700℃の温度域まで再加熱することが必要である。また、この再加熱の際には、冷却停止温度よりも50℃以上高い温度に昇温することが望ましい。
昇温速度が0.5℃/sec未満では、目的の再加熱温度に達するまでに長時間を要するため、微細析出物の分散析出が得られず、十分な強度を得ることができないのみならず、製造効率が悪化する。また、靭性の劣化を抑制するためには、昇温中の炭化物の粗大化を抑制して微細かつ均一に分散析出させることが有効であり、この観点からは昇温速度は3℃/sec以上とすることが好ましい。
Immediately after the accelerated cooling described above, reheating is performed at a temperature rising rate of 0.5 ° C./sec or more to a temperature equal to or higher than the cooling stop temperature and to a temperature of 550 to 700 ° C. This process is an important manufacturing condition in the present invention. Fine precipitates that contribute to strengthening of the ferrite phase are deposited simultaneously with the ferrite transformation during reheating. In order to simultaneously strengthen the ferrite phase by the fine precipitates and soften the bainite phase, and obtain a structure having a small strength difference between the ferrite phase and the bainite phase, immediately after the accelerated cooling, the cooling stop temperature is not less than 550 to 700. It is necessary to reheat to the temperature range of ° C. In this reheating, it is desirable to raise the temperature to 50 ° C. or higher than the cooling stop temperature.
If the heating rate is less than 0.5 ° C./sec, it takes a long time to reach the target reheating temperature, so that the dispersion of fine precipitates cannot be obtained and sufficient strength cannot be obtained. , Manufacturing efficiency deteriorates. Moreover, in order to suppress the deterioration of toughness, it is effective to finely and uniformly disperse and precipitate by suppressing the coarsening of the carbide during the temperature rise. From this viewpoint, the temperature rise rate is 3 ° C./sec or more. It is preferable that

再加熱温度は、焼戻しを兼ねるため冷却停止温度以上とする。また、再加熱温度が550℃未満では微細析出物による十分な析出強化が図れず、またフェライト変態が完了せずにその後の冷却時に未変態オーステナイトがパーライトに変態するため耐HIC特性が劣化する。一方、再加熱温度が700℃を超えると析出物が粗大化し十分な強度が得られない。再加熱温度において、特に温度保持時間を設定する必要はない。したがって、再加熱温度に到達後、直ちに冷却してもよい。冷却速度は、微細析出物が継続して析出するように適宜選定するが、特に空冷が望ましい。再加熱温度に保持する場合は、30分を超えて温度保持を行うと析出物の粗大化を生じ、強度低下を招く場合があるので、30分以内とすることが望ましい。   The reheating temperature is equal to or higher than the cooling stop temperature to double tempering. Further, if the reheating temperature is less than 550 ° C., sufficient precipitation strengthening by fine precipitates cannot be achieved, and ferrite transformation is not completed, and untransformed austenite is transformed into pearlite during subsequent cooling, resulting in deterioration of HIC resistance. On the other hand, if the reheating temperature exceeds 700 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained. There is no need to set the temperature holding time at the reheating temperature. Therefore, it may be cooled immediately after reaching the reheating temperature. The cooling rate is appropriately selected so that fine precipitates are continuously deposited, and air cooling is particularly desirable. When the temperature is maintained at the reheating temperature, if the temperature is maintained for more than 30 minutes, the precipitates are coarsened and the strength may be reduced.

図2に、本発明の高強度鋼板の製造に好適な設備の一例を示す。圧延ライン1には、上流側から下流側に向かって熱間圧延機3、加速冷却装置4、ホットレベラー5、加速冷却後の鋼板を再加熱するためのインライン型誘導加熱装置6を配置する。このインライン型誘導加熱装置6を、熱間圧延機3および加速冷却装置4と同一ライン上に設置するので、圧延および冷却終了後の鋼板2を迅速に再加熱処理することができる。すなわち、圧延して加速冷却した後の鋼板2を、冷却停止温度から過度に冷却させることなく、直ちに冷却停止温度以上で且つ550〜700℃に再加熱することができる。   FIG. 2 shows an example of equipment suitable for manufacturing the high-strength steel sheet of the present invention. In the rolling line 1, a hot rolling mill 3, an accelerated cooling device 4, a hot leveler 5, and an inline induction heating device 6 for reheating the steel plate after accelerated cooling are arranged from the upstream side toward the downstream side. Since the inline induction heating device 6 is installed on the same line as the hot rolling mill 3 and the accelerated cooling device 4, the steel plate 2 after the completion of rolling and cooling can be quickly reheated. That is, the steel plate 2 after rolling and accelerated cooling can be immediately reheated to the cooling stop temperature or higher and to 550 to 700 ° C. without excessive cooling from the cooling stop temperature.

図2で用いるような誘導加熱装置は、均熱炉等に比べて温度制御が容易であり、設備コストも比較的低く、冷却後の鋼板を迅速に加熱できるので特に好ましい。
また、複数の誘導加熱装置を直列に連続して配置することにより、ライン速度や鋼板の種類・寸法が異なる場合にも、通電する誘導加熱装置の数を任意に設定するだけで、昇温速度、再加熱温度を自在に制御することが可能である。
再加熱後の冷却速度は任意であるので、加熱装置の下流側に特別な設備を設置する必要はない。なお、加熱装置として、インライン型誘導加熱装置6に替えて、鋼板の急速加熱が可能であるガス燃焼炉を用いてもよい。
The induction heating apparatus used in FIG. 2 is particularly preferable because temperature control is easier than in a soaking furnace, the equipment cost is relatively low, and the cooled steel sheet can be heated quickly.
Also, by arranging a plurality of induction heating devices in series, even if the line speed and the type / size of the steel sheet are different, the temperature increase rate can be set simply by arbitrarily setting the number of induction heating devices to be energized. The reheating temperature can be freely controlled.
Since the cooling rate after reheating is arbitrary, it is not necessary to install special equipment downstream of the heating device. As a heating device, a gas combustion furnace capable of rapid heating of a steel plate may be used instead of the in-line induction heating device 6.

本発明の高強度鋼板を、プレスベンド成形、ロール成形、UOE成形等で管状に成形した後、溶接する(さらに必要に応じて拡管等を行う)ことにより、原油や天然ガスの輸送に好適な耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼管(UOE鋼管、電縫鋼管、スパイラル鋼管等)を製造することができる。例えば、UOE鋼管は、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで環状に成形した後、仮付溶接および内外面溶接で開先部を溶接し、拡管工程を経て製造される。   The high-strength steel sheet of the present invention is formed into a tubular shape by press bend forming, roll forming, UOE forming, etc., and then welded (further expansion or the like is performed if necessary), which is suitable for transportation of crude oil and natural gas. High-strength steel pipes for line pipes (UOE steel pipes, ERW steel pipes, spiral steel pipes, etc.) excellent in HIC resistance and weld heat affected zone toughness can be produced. For example, in UOE steel pipe, the edge part of a steel plate is grooved, and after forming into a ring shape by C press, U press, O press, the groove part is welded by temporary welding and inner / outer surface welding, and undergoes a pipe expanding process. Manufactured.

表1に示す化学成分の鋼(鋼種A〜Y)を連続鋳造法によりスラブとし、これを用いて表2および表3に示すNo.1〜No.33の厚鋼板を製造した。
スラブを加熱後、熱間圧延により所定の板厚とした後、直ちに水冷型の加速冷却設備を用いて冷却を行い、その後、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。
得られた鋼板の金属組織を、光学顕微鏡、透過型電子顕微鏡(TEM)により観察した。金属組織については、板厚中央部およびt/4位置を光学顕微鏡で観察し、撮影した写真から画像処理によりフェライト相とベイナイト相の面積分率を測定し、5視野の各相の面積分率の平均値を体積分率とした。また、析出物の成分は、エネルギー分散型X線分光法(EDX)により分析した。また、各鋼板の引張特性、耐HIC特性、溶接熱影響部(HAZ)靭性を測定した。それらの結果を、製造条件とともに表2および表3に示す。
Steels having the chemical components shown in Table 1 (steel types A to Y) were made into slabs by a continuous casting method, and No. 2 shown in Tables 2 and 3 were used. 1-No. 33 thick steel plates were produced.
After heating the slab to a predetermined thickness by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility, and then reheated using an induction heating furnace or a gas combustion furnace. The induction furnace was installed on the same line as the accelerated cooling equipment.
The metal structure of the obtained steel sheet was observed with an optical microscope and a transmission electron microscope (TEM). For the metal structure, the central portion of the plate thickness and the t / 4 position were observed with an optical microscope, the area fraction of the ferrite phase and the bainite phase was measured from the photographed image by image processing, and the area fraction of each phase in five fields of view. Was the volume fraction. Moreover, the component of the deposit was analyzed by energy dispersive X-ray spectroscopy (EDX). In addition, the tensile properties, HIC resistance, and weld heat affected zone (HAZ) toughness of each steel plate were measured. The results are shown in Tables 2 and 3 together with the production conditions.

引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって、最高加熱温度1400℃、入熱40kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。耐HIC特性は、NACE Standard TM-02-84に準じた浸漬時間96時間のHIC試験を行い、割れが認められない場合を耐HIC性良好と判断して“○”、割れが発生した場合を“×”として評価した。
本実施例の性能評価では、製造上のばらつきを考慮して、引張強度580MPa以上(APIX70グレード以上)、HAZ靭性は延性−脆性遷移温度(vTrs)が0℃以下、耐HIC特性は割れ無し、をそれぞれ合格とした。
Tensile properties were measured by performing a tensile test using a full thickness test piece in the vertical direction of rolling as a tensile test piece, and measuring the tensile strength. With respect to the weld heat affected zone (HAZ) toughness, a Charpy test was performed using a test piece to which a heat history corresponding to a maximum heating temperature of 1400 ° C. and a heat input of 40 kJ / cm was added by a reproducible heat cycle apparatus. HIC resistance is determined by conducting an HIC test with an immersion time of 96 hours in accordance with NACE Standard TM-02-84. If no cracks are observed, it is determined that the HIC resistance is good. Evaluated as “×”.
In the performance evaluation of this example, considering the manufacturing variation, the tensile strength is 580 MPa or more (APIX 70 grade or more), the HAZ toughness is ductile-brittle transition temperature (vTrs) of 0 ° C. or less, the HIC resistance is not cracked, Each was accepted.

表2および表3において、No.1〜18は本発明例であり、いずれも耐HIC特性が良好で、引張強度が580MPa以上、溶接熱影響部の延性−脆性遷移温度(vTrs)が0℃以下である。また、Nbと、V、Tiの中の1種または2種を含有する粒径10nm未満の微細な複合炭化物が2×10個/μm以上の密度で分散析出していることが観察された。
一方、No.19〜23は、化学成分は本発明条件を満足するが、製造方法が本発明条件を満足しない比較例であり、いずれも微細炭化物の分散析出が不十分であり、十分な引張強度が得られていない。No.19は、スラブ加熱温度が低く、微細分散析出に必要な炭化物の固溶が不十分である。No.20とNo.21は、加速冷却が本発明条件を満足しないため、フェライト相+ベイナイト相の2相組織が得られず、微細炭化物の分散析出も不十分である。さらに、島状マルテンサイト(MA)やパーライトが析出するため、耐HIC特性が劣っている。No.22は、再加熱昇温速度が遅いため、微細炭化物の分散析出が不十分であり、十分な引張強度が得られていない。No.23は、再加熱温度が低いため、これも微細炭化物の分散析出が不十分であり、十分な引張強度が得られていない。また、パーライトが析出するため、耐HIC特性が劣っている。
No.24〜33は、化学成分が本発明条件を満足しないため、耐HIC特性、HAZ靭性のいずれかが劣っている。
In Table 2 and Table 3, no. Examples 1 to 18 are examples of the present invention, all having good HIC resistance, a tensile strength of 580 MPa or more, and a ductile-brittle transition temperature (vTrs) of a weld heat affected zone of 0 ° C. or less. Further, it was observed that fine composite carbides having a particle size of less than 10 nm containing one or two of Nb, V, and Ti were dispersed and precipitated at a density of 2 × 10 3 particles / μm 2 or more. It was.
On the other hand, no. Nos. 19 to 23 are comparative examples in which the chemical components satisfy the conditions of the present invention, but the production method does not satisfy the conditions of the present invention, and all of them are insufficiently dispersed and precipitated of fine carbides, and sufficient tensile strength is obtained. Not. No. No. 19 has a low slab heating temperature and insufficient solid solution of carbides required for fine dispersion precipitation. No. 20 and no. In No. 21, since accelerated cooling does not satisfy the conditions of the present invention, a two-phase structure of ferrite phase + bainite phase cannot be obtained, and dispersion and precipitation of fine carbides is insufficient. Furthermore, since island-like martensite (MA) and pearlite are precipitated, the HIC resistance is inferior. No. No. 22 has a slow reheating temperature rise rate, so that the dispersion and precipitation of fine carbides is insufficient, and sufficient tensile strength is not obtained. No. Since No. 23 has a low reheating temperature, fine carbide dispersion and precipitation are insufficient, and sufficient tensile strength is not obtained. Moreover, since pearlite precipitates, the HIC resistance is inferior.
No. Nos. 24-33 are inferior in either HIC resistance or HAZ toughness because the chemical components do not satisfy the conditions of the present invention.

Figure 0005672658
Figure 0005672658

Figure 0005672658
Figure 0005672658

Figure 0005672658
Figure 0005672658

1 圧延ライン
2 鋼板
3 熱間圧延機
4 加速冷却装置
5 ホットレベラー
6 インライン型誘導加熱装置
DESCRIPTION OF SYMBOLS 1 Rolling line 2 Steel plate 3 Hot rolling mill 4 Accelerated cooling device 5 Hot leveler 6 In-line type induction heating device

Claims (4)

質量%で、C:0.02〜0.08%、Si:0.01〜0.5%、Mn:0.5〜1.8%、P:0.01%以下、S:0.002%以下、Ca:0.0005〜0.005%、Nb:0.05〜0.15%、Al:0.01〜0.08%を含有し、さらに、V:0.005〜0.15%、Ti:0.005〜0.04%の1種または2種を含有し、残部がFeおよび不可避的不純物からなり、且つ原子%でのC量とNb、VおよびTiの合計量の比であるC/(Nb+V+Ti)が1.0〜5.0、下記(1)式で表されるCP値(質量%)が0.98以下、下記(2)式で表されるPCM値(質量%)が0.15以下である成分組成を有し、
金属組織が、フェライト相とベイナイト相の合計が体積分率で95%以上である実質的な2相組織であり、且つNbと、V、Tiの1種または2種を含む炭化物が分散析出し、引張強度が580MPa以上であることを特徴とする、耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板。
CP=4.46C(%)+2.37Mn(%)/6+{1.74Cu(%)+1.7Ni(%)}/15+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+22.36P(%) …(1)
CM=C(%)+Si(%)/30+Mn(%)/20+Cu(%)/20+Ni(%)/60+Cr(%)/20+Mo(%)/15+V(%)/10+B(%)*5 …(2)
但し、(1)式、(2)式において、添加しない元素は0とする。
In mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 0.5 to 1.8%, P: 0.01% or less, S: 0.002 %: Ca: 0.0005 to 0.005%, Nb: 0.05 to 0.15%, Al: 0.01 to 0.08%, and V: 0.005 to 0.15 %, Ti: One or two of 0.005 to 0.04%, the balance being Fe and inevitable impurities, and the ratio of the amount of C in atomic% and the total amount of Nb, V and Ti C / (Nb + V + Ti ) is 1.0 to 5.0 is the following (1) CP value represented by the formula (wt%) 0.98 or less, P CM value represented by the following formula (2) ( (Mass%) has a component composition of 0.15 or less,
The metal structure is a substantial two-phase structure in which the sum of the ferrite phase and the bainite phase is 95% or more by volume fraction, and carbides containing one or two of Nb, V, and Ti are dispersed and precipitated. A high-strength steel sheet for line pipes having excellent HIC resistance and weld heat-affected zone toughness, characterized by having a tensile strength of 580 MPa or more.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.74Cu (%) + 1.7Ni (%)} / 15+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (% )} / 5 + 22.36P (%) (1)
P CM = C (%) + Si (%) / 30 + Mn (%) / 20 + Cu (%) / 20 + Ni (%) / 60 + Cr (%) / 20 + Mo (%) / 15 + V (%) / 10 + B (%) * 5 (5) 2)
However, in the formulas (1) and (2), the element not added is 0.
さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、B:0.005%以下の1種または2種以上を含有することを特徴とする、請求項1に記載の耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板。   Further, by mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.50% or less, B: 0.005% or less The high-strength steel sheet for line pipes having excellent HIC resistance and weld heat-affected zone toughness according to claim 1, comprising at least a seed. 請求項1または請求項2に記載のラインパイプ用高強度鋼板の製造方法であって、
請求項1または請求項2に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar温度以上の圧延終了温度で熱間圧延した後、5℃/sec以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/sec以上の昇温速度で、冷却停止温度以上であって且つ550〜700℃まで再加熱を行うことを特徴とする、耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板の製造方法。
It is a manufacturing method of the high strength steel plate for line pipes according to claim 1 or 2,
A steel having the component composition according to claim 1 or 2 is heated to a temperature of 1000 to 1300 ° C and hot-rolled at a rolling end temperature of Ar 3 temperature or higher, and then a cooling rate of 5 ° C / sec or higher. Accelerating cooling to 300 to 600 ° C., and immediately after that, at a temperature rising rate of 0.5 ° C./sec or more, reheating to 550 to 700 ° C. is performed at or above the cooling stop temperature. A method for producing high-strength steel sheets for line pipes with excellent HIC characteristics and weld heat-affected zone toughness.
請求項1または請求項2に記載の鋼板を用いて製造されたことを特徴とする、耐HIC特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼管。   A high-strength steel pipe for a line pipe excellent in HIC resistance and weld heat affected zone toughness, characterized by being manufactured using the steel plate according to claim 1 or 2.
JP2009083610A 2009-03-30 2009-03-30 High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same Active JP5672658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083610A JP5672658B2 (en) 2009-03-30 2009-03-30 High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083610A JP5672658B2 (en) 2009-03-30 2009-03-30 High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010235987A JP2010235987A (en) 2010-10-21
JP5672658B2 true JP5672658B2 (en) 2015-02-18

Family

ID=43090592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083610A Active JP5672658B2 (en) 2009-03-30 2009-03-30 High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP5672658B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741016B2 (en) * 2011-01-28 2015-07-01 Jfeスチール株式会社 Method for producing high-strength thick steel plate with excellent weldability and base metal toughness
KR101382906B1 (en) 2011-12-27 2014-04-08 주식회사 포스코 METHOD FOR PRODUCING THICK STEEL PLATE HAVING EXCELLENT WELDED ZONE TOUGHNESS AND DUCTiLITY AND WELD STRUCTURE USING THE SAME MATHOD
JPWO2014010150A1 (en) * 2012-07-09 2016-06-20 Jfeスチール株式会社 Thick and high strength sour line pipe and method for manufacturing the same
CN113924373B (en) * 2019-12-20 2023-09-01 现代制铁株式会社 Hot stamping part and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4314873B2 (en) * 2002-04-26 2009-08-19 Jfeスチール株式会社 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP4273826B2 (en) * 2002-04-26 2009-06-03 Jfeスチール株式会社 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP4419744B2 (en) * 2003-07-31 2010-02-24 Jfeスチール株式会社 High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JP2005194607A (en) * 2004-01-09 2005-07-21 Jfe Steel Kk High-strength steel sheet for line pipe superior in high-speed ductile fracture resistance, and manufacturing method therefor
JP4940886B2 (en) * 2006-10-19 2012-05-30 Jfeスチール株式会社 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP4905240B2 (en) * 2007-04-27 2012-03-28 Jfeスチール株式会社 Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance

Also Published As

Publication number Publication date
JP2010235987A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP4940886B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
US8147626B2 (en) Method for manufacturing high strength steel plate
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP5903880B2 (en) High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
JP2007270194A (en) Method for producing high-strength steel sheet excellent in sr resistance property
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5672658B2 (en) High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JP4419744B2 (en) High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JP4314873B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP4273826B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP4089455B2 (en) High strength steel with excellent HIC resistance
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2005194607A (en) High-strength steel sheet for line pipe superior in high-speed ductile fracture resistance, and manufacturing method therefor
JP2003321730A (en) High strength steel sheet for line pipe having excellent hic resisting property and production method thereof
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP7095801B2 (en) High-strength seamless steel pipe and its manufacturing method
JP3896915B2 (en) High strength steel plate with excellent HIC resistance and method for producing the same
JP2004003012A (en) High-strength steel sheet superior in toughness of weld heat-affected zone, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5672658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250