JP4314873B2 - High strength steel plate for line pipe with excellent HIC resistance and method for producing the same - Google Patents

High strength steel plate for line pipe with excellent HIC resistance and method for producing the same Download PDF

Info

Publication number
JP4314873B2
JP4314873B2 JP2003121928A JP2003121928A JP4314873B2 JP 4314873 B2 JP4314873 B2 JP 4314873B2 JP 2003121928 A JP2003121928 A JP 2003121928A JP 2003121928 A JP2003121928 A JP 2003121928A JP 4314873 B2 JP4314873 B2 JP 4314873B2
Authority
JP
Japan
Prior art keywords
strength
hic resistance
temperature
less
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003121928A
Other languages
Japanese (ja)
Other versions
JP2004003015A (en
Inventor
豊久 新宮
茂 遠藤
信行 石川
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003121928A priority Critical patent/JP4314873B2/en
Publication of JP2004003015A publication Critical patent/JP2004003015A/en
Application granted granted Critical
Publication of JP4314873B2 publication Critical patent/JP4314873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管等の製造に好適なAPI規格X65グレード以上の強度を有する高強度鋼板に関し、特に耐水素誘起割れ性(耐HIC性)に優れたラインパイプ用高強度鋼板とその製造方法に関する。
【0002】
【従来の技術】
硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性の他に、耐水素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SCC性)などのいわゆる耐サワー性が必要とされる。鋼材の水素誘起割れ(HIC)は、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積し、その内圧により割れを生ずるものとされている。
このような水素誘起割れを防ぐために、CaやCeをS量に対して適量添加することにより、針状のMnSの生成を抑制し、応力集中の小さい微細に分散した球状の介在物に形態を変えて割れの発生・伝播を抑制する、耐HIC性の優れたラインパイプ用鋼の製造方法が知られている(例えば、特許文献1参照。)。また、偏析傾向の高い元素(C、Mn、P等)の低減や、スラブ加熱段階での均熱処理、冷却時の変態途中での加速冷却により、中心偏析部での割れの起点となる島状マルテンサイト、割れの伝播経路となるマルテンサイトやベイナイトなどの硬化組織の生成を抑制した、耐HIC性に優れた鋼が知られている(例えば、特許文献2、特許文献3参照。)。また、耐HIC性の優れたX80グレードの高強度鋼板に関して、低SでCa添加により介在物の形態制御を行いつつ、低C、低Mnとして中央偏析を抑制し、それに伴う強度低下をCr、Mn、Niなどの添加と加速冷却により補う方法が知られている(例えば、特許文献4、特許文献5、特許文献6参照。)。
しかし、上記の耐HIC性を改善する方法はいずれも中心偏析部が対象である。API X80グレード等のX65グレードを超える高強度鋼板は加速冷却または直接焼入れによって製造される場合が多いため、冷却速度の速い鋼板表面部が内部に比べ硬化し、表面近傍から水素誘起割れが発生する。また、加速冷却によって得られるこれらの高強度鋼板のミクロ組織は、表面のみならず内部までベイナイトまたはアシキュラーフェライトの比較的割れ感受性の高い組織であり、中心偏析部のHICへの対策を施した場合でも、API X80グレード程度の高強度鋼では硫化物系または酸化物系介在物を起点としたHICをなくすことは困難である。従ってこれらの高強度鋼板の耐HIC性を問題にする場合は、鋼板の表面部のHICまたは、硫化物系や酸化物系介在物を起点としたHICの対策が必要である。
一方、ミクロ組織が割れ感受性の高いブロック状ベイナイトやマルテンサイトを含まない耐HIC性に優れた高強度鋼として、特開平7−216500号公報には、フェライト−ベイナイト2相組織である、API X80グレードの耐HIC性に優れた高強度鋼材が知られている(例えば、特許文献7参照。)。また、特開昭61−227129号公報、特開平7−70697号公報には、ミクロ組織をフェライト単相組織とすることで耐SCC(SSCC)性や耐HIC性を改善し、MoまたはTiの多量添加によって得られる炭化物の析出強化を利用した高強度鋼が知られている(例えば、特許文献8、特許文献9参照。)。
【0003】
【特許文献1】
特開昭54−110119号公報
【0004】
【特許文献2】
特開昭61−60866号公報
【0005】
【特許文献3】
特開昭61−165207号公報
【0006】
【特許文献4】
特開平5−9575号公報
【0007】
【特許文献5】
特開平5−271766号公報
【0008】
【特許文献6】
特開平7−173536号公報
【0009】
【特許文献7】
特開平7−216500号公報
【0010】
【特許文献8】
特開昭61−227129号公報
【0011】
【特許文献9】
特開平7−70697号公報
【0012】
【発明が解決しようとする課題】
しかし、特許文献7に記載の高強度鋼のベイナイト組織は、ブロック状ベイナイトやマルテンサイト程ではないが比較的割れ感受性の高い組織であり、SおよびMn量を厳しく制限して、Ca処理を必須として耐HIC性を向上させる必要があるため、製造コストが高い。また、特許文献7に記載の圧延・冷却方法を用いてフェライト−ベイナイト2相組織を安定的に得ることは難しい。一方、特許文献8、特許文献9に記載のフェライト相は延性に富んだ組織であり、割れ感受性が極めて低いため、ベイナイト組織またはアシキュラーフェライト組織の鋼に比べ耐HIC性が大幅に改善される。しかし、フェライト単相では強度が低いため、特許文献8に記載の鋼はC及びMoを多量に添加した鋼を用いて、炭化物を多量に析出させることによって高強度化し、特許文献9の鋼帯ではTi添加鋼を特定の温度で鋼帯に巻き取り、TiCの析出強化を利用して高強度化している。ところが、特許文献8に記載のMo炭化物が分散したフェライト組織を得るためには、焼入れ焼戻しの後に冷間加工を行い、さらに再度焼戻しを行う必要があり、製造コストが上昇するだけでなく、Mo炭化物の粒径が約0.1ミクロンと大きく、強度上昇効果が低いため、C及びMoの含有量を高め、炭化物の量をふやすことによって所定の強度を得る必要がある。また、特許文献9に記載の高強度鋼で利用しているTiCはMo炭化物に比べ微細であり、析出強化に有効な炭化物であるが、析出時の温度の影響を受けて粗大化しやすいにもかかわらず、析出物粗大化に対する対策がなされていない。そのため析出強化が十分ではなく、多量のTi添加が必要となっている。
【0013】
したがって本発明の目的は、このような従来技術の課題を解決し、API X65グレード以上のラインパイプ用高強度鋼板であって、中央偏析部のHIC及び表面近傍や介在物から発生するHICに対して、優れた耐HIC特性を有するラインパイプ用高強度鋼板を多量の合金元素を添加することなく低コストで提供することにある。
【0014】
【課題を解決するための手段】
このような課題を解決するための本発明の特徴は以下の通りである。
(1)、質量%で、C:0.02〜0.08%、Si:0.01〜0.5%、Mn:0.5〜1.8%、P:0.01%以下、S:0.002%以下、Mo:0.05〜0.5%、Ti:0.005〜0.04%、Al:0.07%以下を含有し、残部がFeおよび不可避不純物からなり、原子%でのC量とMo、Tiの合計量の比であるC/(Mo+Ti)が0.5〜3であり、金属組織がフェライトとベイナイトとの合計の体積分率が95%以上であり、Tiと、Moとを含む析出物が分散析出していることを特徴とする、耐HIC特性に優れたラインパイプ用高強度鋼板。
(2)、さらに、質量%で、Nb:0.005〜0.05%および/またはV:0.005〜0.1%を含有し、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.5〜3であり、金属組織がフェライトとベイナイトとの合計の体積分率が95%以上であり、Tiと、Moと、Nbおよび/またはVとを含む複合析出物が分散析出していることを特徴とする、(1)に記載の耐HIC特性に優れたラインパイプ用高強度鋼板。
(3)、さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.005%の中から選ばれる1種又は2種以上を含有することを特徴とする(1)または(2)に記載の耐HIC特性に優れたラインパイプ用高強度鋼板。
(4)、(1)ないし(3)のいずれかに記載の化学成分を含有する鋼を、加熱温度:1000〜1300℃、圧延終了温度:Ar温度以上の条件で熱間圧延した後、冷却速度:5℃/s以上で300〜600℃まで加速冷却を行い、冷却後直ちに昇温速度:0.5℃/s以上で550〜700℃の温度まで再加熱を行うことを特徴とする、耐HIC特性に優れたラインパイプ用高強度鋼板の製造方法。
(5)、(1)ないし(3)のいずれかに記載の鋼板を用いて製造されたことを特徴とする、耐HIC特性に優れた高強度鋼管。
【0015】
【発明の実施の形態】
本発明者らは耐HIC特性向上と高強度の両立のために、鋼材のミクロ組織と鋼板の製造方法を鋭意検討した。その結果、高強度と耐HIC特性の両立にはミクロ組織を、フェライト組織とベイナイト組織との強度差の小さい、フェライト+ベイナイト2相組織とすることが最も効果的であり、熱間圧延後の加速冷却とその後の再加熱という製造プロセスを行うことで、Ti、Mo等を含む微細析出物による軟質相であるフェライト相の強化と、硬質相であるベイナイト相の軟化が起こり、強度差の小さいフェライト+ベイナイト2相組織を得ることができるという知見を得た。そして、Cに対するMo、Tiの添加量を適正化することで、炭化物による析出強化を最大限に活用することができるという知見を得た。また、Nbおよび/またはVを複合添加すれば、Tiと、Moと、Nbおよび/またはVとを含む析出物を分散析出させることによってフェライト相の高強度化が達成できること、Cに対するMo、Ti、Nb、Vの添加量を適正化することで、炭化物による析出強化を最大限に活用することができるという知見を得た。
【0016】
本発明は上記のようなTi、Mo等を含む析出物が分散析出したフェライト相と、ベイナイト相との、2相組織を有する耐HIC特性に優れたラインパイプ用高強度鋼板およびその製造方法に関するものであり、このようにして製造した鋼板は、従来の加速冷却等で得られるベイナイトまたはアシキュラーフェライト組織の鋼板のような表層部での硬度上昇がないので、表層部からのHICが生じない。さらに強度差の小さいフェライト相とベイナイト相の2相組織は割れに対する抵抗が極めて高いため、鋼板中心部や介在物からのHICも抑制することが可能となる。
【0017】
以下、本発明のラインパイプ用高強度鋼板について詳しく説明する。まず、本発明のラインパイプ用高強度鋼板の組織について説明する。
【0018】
本発明の鋼板の金属組織は実質的にフェライト+ベイナイト2相組織とする。フェライト相は延性に富んでおり割れ感受性が低いために、高い耐HIC特性を実現できる。また、ベイナイト相は優れた強度靭性を有している。フェライトとベイナイトの2相組織は、一般的には軟質なフェライト相と硬質なベイナイト相の混合組織であり、このような組織を有する鋼材はフェライト相とベイナイト相との界面に水素が集積しやすいうえに、前記界面が割れの伝播経路となるため、耐HIC特性が劣っている。しかし、本発明ではフェライト相とベイナイト相の強度を調整して両者の強度差を小さくすることで、耐HIC特性と高強度の両立を可能とする。フェライト+ベイナイト2相組織に、マルテンサイトやパーライトなどの異なる金属組織が1種または2種以上混在する場合は、異相界面での水素集積や応力集中によってHICを生じやすくなるため、フェライト相とベイナイト相以外の組織分率は少ない程良い。しかし、フェライト相とベイナイト相以外の組織の体積分率が低い場合は影響が無視できるため、トータルの体積分率で5%以下の他の金属組織を、すなわちマルテンサイト、パーライト等を1種または2種以上含有してもよい。また、ベイナイト分率は特に規定しないが、母材の靭性確保の観点から10%以上、耐HIC特性の観点から80%以下とすることが好ましい。より好ましくは、ベイナイト分率を20〜60%とする。
【0019】
次に、本発明においてフェライト相内に分散析出する析出物について説明する。
【0020】
本発明の鋼板では、フェライト相中にMoとTiとを基本として含有する析出物が分散析出することによりフェライト相が強化され、フェライト−ベイナイト間の強度差が低くなるため、優れた耐HIC特性を得ることができる。この析出物は極めて微細であるので耐HIC特性に対して何ら影響を与えない。Mo及びTiは鋼中で炭化物を形成する元素であり、MoC、TiCの析出により鋼を強化することは従来より行われているが、本発明ではMoとTiを複合添加して、MoとTiとを基本として含有する複合炭化物を鋼中に微細析出させることにより、MoCおよび/またはTiCの析出強化の場合に比べて、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、MoとTiとを基本として含有する複合炭化物が安定でかつ成長速度が遅いので、粒径が10nm未満の極めて微細な析出物が得られることによるものである。
【0021】
MoとTiとを基本として含有する複合炭化物は、Mo、Ti、Cのみで構成される場合は、MoとTiの合計量とC量とが原子比で1:1の付近で化合しているものであり、高強度化に非常に効果がある。また、本発明では、Nbおよび/またはVを複合添加することにより、析出物がMoと、Tiと、Nbおよび/またはVとを含んだ複合炭化物となり、同様の析出強化が得られることを見出した。溶接熱影響部の靭性を問題とする場合は、Tiの一部をNbおよび/またはVで置換することにより、高強度化の効果を損なわずに溶接熱影響部の靭性を向上させることが可能である。また、この微細炭化物は主にフェライト相中に析出するが、化学成分、製造条件によってはベイナイト相からも析出する場合もある。この場合は更なる高強度化が可能であり、フェライト相とベイナイト相の硬度差がHV70以下なら耐HIC性能に影響はない。
【0022】
これら10nm未満の析出物の個数は、降伏強度が448MPa以上(APIX65グレード以上)の高強度鋼板とするためには、2×103個/μm3以上析出させることが好ましい。析出形態としては、ランダムでも列状でも良く、特に規定されない。また、MoとTiとを主体とする複合炭化物以外の析出物を含有する場合は、MoとTiの複合炭化物による高強度化の効果を損なわず耐HIC特性を劣化させない程度とするが、10nm未満の析出物の個数はTiNを除いた全析出物の個数の95%以上であることが好ましい。
【0023】
本発明において鋼板内に分散析出する析出物である、MoとTiとを主体とする複合炭化物は、以下に述べる成分の鋼に本発明の製造方法を用いて鋼板を製造することにより、フェライト相中に分散させて得ることができる。
【0024】
次に、本発明で用いるラインパイプ用高強度鋼板の化学成分について説明する。以下の説明において特に記載がない場合は、%で示す単位は全て質量%である。
【0025】
C:0.02〜0.08%とする。Cは炭化物として析出強化に寄与する元素であるが、0.02%未満では十分な強度が確保できず、0.08%を超えると靭性や耐HIC性を劣化させるため、C含有量を0.02〜0.08%に規定する。
【0026】
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。
【0027】
Mn:0.5〜1.8%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、1.8%を超えると溶接性と耐HIC性が劣化するため、Mn含有量を0.5〜1.8%に規定する。好ましくは、0.5〜1.5%である。
【0028】
P:0.01%以下とする。Pは溶接性と耐HIC性を劣化させる不可避不純物元素であるため、P含有量の上限を0.01%に規定する。
【0029】
S:0.002%以下とする。Sは一般的には鋼中においてはMnS介在物となり耐HIC特性を劣化させるため少ないほどよい。しかし、0.002%以下であれば問題ないため、S含有量の上限を0.002%に規定する。
【0030】
Mo:0.05〜0.5%とする。Moは本発明において重要な元素であり、0.05%以上含有させることで、熱間圧延後冷却時のパーライト変態を抑制しつつ、Tiとの微細な複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.5%を超えて添加するとマルテンサイトなどの硬化相を形成し耐HIC特性が劣化するため、Mo含有量を0.05〜0.5%に規定する。好ましくは、0.05%以上、0.3%未満である。
【0031】
Ti:0.005〜0.04%とする。TiはMoと同様に本発明において重要な元素である。0.005%以上添加することで、Moと複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.04%を越えて添加すると、溶接熱影響部靭性の劣化を招くため、Ti含有量は0.005〜0.04%に規定する。さらに、Ti含有量が0.02%未満であると、より優れた靭性を示す。このため、Nbおよび/またはVを添加する場合は、Ti含有量を0.005%以上、0.02%未満とすることが好ましい。
【0032】
Al:0.07%以下とする。Alは脱酸剤として添加されるが、0.07%を超えると鋼の清浄度が低下し、耐HIC性を劣化させるため、Al含有量は0.07%以下に規定する。好ましくは、0.01〜0.07%とする。
【0033】
C量とMo、Tiの合計量の比である、C/(Mo+Ti):は0.5〜3とする。本発明による高強度化はTi、Moを含む析出物(主に炭化物)によるものである。この複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Ti量との関係が重要であり、これらの元素を適正なバランスのもとで添加することによって、熱的に安定かつ非常に微細な複合析出物を得ることが出来る。このとき各元素の原子%の含有量で表される、C/(Mo+Ti)の値が0.5未満または3.0を越える場合はいずれかの元素量が過剰であり、硬化組織の形成による耐HIC特性の劣化や靭性の劣化を招くため、C/(Mo+Ti)の値を0.5〜3に規定する。ただし、各元素記号は原子%での各元素の含有量である。なお、質量%の含有量を用いる場合には(C/12.01)/(Mo/95.9+Ti/47.9)の値を0.5〜3に規定する。C/(Mo+Ti)の値を0.7〜2とすると、粒径5nm以下のより微細な析出物が得られるためより好ましい。
【0034】
本発明では鋼板の強度及び溶接部靭性をさらに改善する目的で、以下に示すNb、Vの1種又は2種を含有してもよい。
【0035】
Nb:0.005〜0.05%とする。Nbは組織の微細粒化により靭性を向上させるが、Ti及びMoと共に複合析出物を形成し、フェライト相の強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.05%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.05%に規定する。
【0036】
V:0.005〜0.1%とする。VもNbと同様にTiおよびMoと共に複合析出物を形成し、フェライト相の強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.1%に規定する。
【0037】
Nbおよび/またはVを含有する場合には、C量とMo、Ti、Nb、Vの合計量の比である、C/(Mo+Ti+Nb+V):は0.5〜3とする。本発明による高強度化はTi、Moを含む析出物によるが、Nbおよび/またはVを含有する場合はそれらを含んだ複合析出物(主に炭化物)となる。このとき各元素の原子%の含有量で表される、C/(Mo+Ti+Nb+V)の値が0.5未満または3を越える場合はいずれかの元素量が過剰であり、硬化組織の形成による耐HIC特性の劣化や靭性の劣化を招くため、C/(Mo+Ti+Nb+V)の値を0.5〜3に規定する。ただし、各元素記号は原子%での含有量である。より好ましくは、C/(Mo+Ti+Nb+V)の値は0.7〜2であり、粒径5nm以下のさらに微細な析出物が得られる。なお、質量%の含有量を用いる場合には(C/12.01)/(Mo/95.9+Ti/47.9+Nb/92.91+V/50.94)の値を0.5〜3に規定する。
【0038】
本発明では鋼板の強度や耐HIC特性をさらに改善する目的で、以下に示すCu、Ni、Cr、Caの1種または2種以上を含有してもよい。
【0039】
Cu:0.5%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。
【0040】
Ni:0.5%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると耐HIC特性が低下するため、添加する場合は0.5%を上限とする。
【0041】
Cr:0.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.5%を上限とする。
【0042】
Ca:0.0005〜0.005%とする。Caは硫化物系介在物の形態制御による耐HIC特性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、0.005%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により耐HIC性を劣化させるので、添加する場合はCa含有量を0.0005〜0.005%に規定する。
【0043】
また、溶接性の観点から、強度レベルに応じて下記の(1)式で定義されるCeqの上限を規定することが好ましい。降伏強度が448MPa以上の場合には、Ceqを0.28以下、降伏強度が482MPa以上の場合には、Ceqを0.32以下、降伏強度が551MPa以上の場合には、Ceqを0.36以下にすることで良好な溶接性を確保することが出来る。
【0044】
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5…(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
【0045】
なお、本発明の鋼材については、板厚10mmから30mm程度の範囲でCeqの板厚依存性はなく、30mm程度まで同じCeqで設計することができる。
【0046】
上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0047】
次に、本発明のラインパイプ用高強度鋼板の製造方法について説明する。
【0048】
図1は、本発明の組織制御方法を示す概略図である。Ar3温度以上のオーステナイト領域(A)からベイナイト領域(B)まで加速冷却(C)することで、オーステナイト単相10から、未変態オーステナイト11とベイナイト12の混合組織とする。冷却後、直ちにフェライト領域(E)まで再加熱(D)することにより、オーステナイト11はフェライトに変態し、フェライト相中には微細析出物が分散析出する。一方、ベイナイト相は焼戻されて焼戻しベイナイトとなる。この微細析出物によって析出強化したフェライト相13と焼戻されて軟化したベイナイト相14の2相組織とすることで、高強度化と耐HIC特性の両立が可能となる。以下、具体的にこの組織制御方法を詳しく説明する。
【0049】
本発明のラインパイプ用高強度鋼板は上記の成分組成を有する鋼を用い、加熱温度:1000〜1300℃、圧延終了温度:Ar3温度以上で熱間圧延を行い、その後5℃/s以上の冷却速度で300〜600℃まで冷却し、冷却後直ちに0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行うことで、MoとTiとを主体とする微細な複合炭化物をフェライト相中に分散析出させ、ベイナイト相を軟化させた複合組織として製造できる。ここで、温度は鋼板の平均温度とする。以下、各製造条件について詳しく説明する。
【0050】
加熱温度:1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると靭性が劣化するため、1000〜1300℃とする。好ましくは、1050〜1250℃である。
【0051】
圧延終了温度:Ar3温度以上とする。Ar3温度とは、冷却中におけるフェライト変態開始温度を意味し、以下の(2)式を用いて求めることができる。圧延終了温度がAr3温度未満になると、その後のフェライト変態速度が低下するため、再加熱によるフェライト変態時に十分な微細析出物の分散析出が得られず、強度が低下するため、圧延終了温度をAr3温度以上とする。
Ar3温度(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo・・・(2)
但し、(2)式の元素記号は各含有元素の質量%を示す。
【0052】
圧延終了後、直ちに5℃/s以上の冷却速度で冷却する。圧延終了後に放冷または徐冷を行うと高温域から析出物が析出してしまい、析出物が容易に粗大化しフェライト相が強化できない。よって、析出強化に最適な温度まで急冷(加速冷却)を行い、高温域からの析出を防止することが本発明における重要な製造条件である。冷却速度が5℃/s未満では高温域での析出防止効果が十分ではなく強度が低下するため、圧延終了後の冷却速度を5℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。
【0053】
冷却停止温度:300〜600℃とする。圧延終了後加速冷却でベイナイト変態域である300〜600℃まで急冷することにより、ベイナイト相を生成させ、かつ、再加熱時のフェライト変態の駆動力を大きくする。駆動力が大きくなることで、再加熱過程でのフェライト変態を促進し、短時間の再加熱でフェライト変態を完了させることが可能となる。冷却停止温度が300℃未満では、ベイナイトやマルテンサイト単相組織となるか、フェライト+ベイナイト2相組織となっても島状マルテンサイト(MA)が生成するために耐HIC特性が劣化し、また600℃を超えると再加熱時のフェライト変態が完了せずパーライトが析出し耐HIC特性が劣化するため、加速冷却停止温度を300〜600℃に規定する。確実にMAの生成を抑制するためには、冷却停止温度を400℃以上とすることが好ましい。
【0054】
加速冷却後直ちに0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行う。このプロセスは本発明における重要な製造条件である。フェライト相の強化に寄与する微細析出物は、再加熱時のフェライト変態と同時に析出する。微細析出物によるフェライト相の強化とベイナイト相の軟化を同時に行い、フェライト相とベイナイト相の強度差の小さい組織を得るためには、加速冷却後直ちに550〜700℃の温度域まで再加熱することが必要である。また、再加熱の際には、冷却後の温度より少なくとも50℃以上昇温することが望ましい。再加熱時の昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、微細析出物の分散析出が得られず十分な強度を得る事ができない。再加熱温度が550℃未満ではフェライト変態が完了せずその後の冷却時に未変態オーステナイトがパーライトに変態するため耐HIC特性が劣化し、700℃を超えると析出物が粗大化し十分な強度が得られないため、再加熱温度域を550〜700℃に規定する。
【0055】
再加熱温度において、特に温度保持時間を設定する必要はない。本発明の製造方法を用いれば再加熱後直ちに冷却しても、フェライト変態が十分に進行するため、微細析出による高い強度が得られる。確実にフェライト変態を終了させるために、30分以内の温度保持を行うこともできるが、30分を超えて温度保持を行うと、析出物の粗大化を生じ強度低下を招く場合がある。再加熱後の冷却速度は適宜設定すれば良いが、再加熱後の冷却過程でもフェライト変態が進行するので、空冷が好ましい。フェライト変態を阻害しない程度であれば、空冷よりも早い冷却速度で冷却を行うことも可能である。
【0056】
550〜700℃の温度まで再加熱を行うための設備として、加速冷却を行なうための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。誘導加熱装置は均熱炉等に比べて温度制御が容易でありコストも比較的低く、冷却後の鋼板を迅速に加熱できるので特に好ましい。また複数の誘導加熱装置を直列に連続して配置することにより、ライン速度や鋼板の種類・寸法が異なる場合にも、通電する誘導加熱装置の数や供給電力を任意に設定するだけで、昇温速度、再加熱温度を自在に操作することが可能である。なお、再加熱後の冷却速度は任意の速度で構わないので、加熱装置の下流側には特別な設備を設置する必要はない。
【0057】
図2に、上記の製造方法を用いて製造した本発明の鋼板(0.05C−0.15Si−1.25Mn−0.09Mo−0.01Ti)を透過型電子顕微鏡(TEM)で観察した写真を示す。図2によれば、非常に微細な析出物が列状に析出している様子が確認できるが、これは、フェライト変態時のオーステナイト/フェライト界面において析出を生じる変態析出によるものであり、これにより極めて高い析出強化が得られる。また、析出物はMoとTiを含有する炭化物であり、このことはエネルギー分散型X線分光法(EDX)等を用いて分析して確認した。
【0058】
図3に、本発明の製造方法を実施するための製造ラインの一例の概略図を示す。図3に示すように、圧延ライン1には上流から下流側に向かって熱間圧延機3、加速冷却装置4、インライン型誘導加熱装置5、ホットレベラー6が配置されている。インライン型誘導加熱装置5あるいは他の熱処理装置を、圧延設備である熱間圧延機3およびそれに引き続く冷却設備である加速冷却装置4と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延して加速冷却した後の鋼板を、直ちに550℃以上に加熱することができる。
【0059】
上記の製造方法により製造された本発明の鋼板は、プレスベンド成形、ロール成形、UOE成形等で鋼管に成形して、原油や天然ガスを輸送する鋼管(電縫鋼管、スパイラル鋼管、UOE鋼管)等に利用することができる。本発明の鋼板を用いて製造された鋼管は、高強度でかつ耐HIC特性に優れているので、硫化水素を含む原油や天然ガスの輸送にも好適である。
【0060】
【実施例】
表1に示す化学成分の鋼(鋼種A〜O)を連続鋳造法によりスラブとし、これを用いて板厚18、26mmの厚鋼板(No.1〜27)を製造した。
【0061】
【表1】

Figure 0004314873
【0062】
加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。冷却設備及び誘導加熱炉はインライン型とした。各鋼板(No.1〜27)の製造条件を表2に示す。
【0063】
以上のようにして製造した鋼板のミクロ組織を、光学顕微鏡、透過型電子顕微鏡(TEM)により観察した。析出物の成分はエネルギー分散型X線分光法(EDX)により分析した。また各鋼板の引張特性、耐HIC特性を測定した。測定結果を表2に併せて示す。引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、降伏強度、引張強度を測定した。そして、製造上のばらつきを考慮して、降伏強度480MPa以上、引張強度580MPa以上であるものをAPI X65グレード以上の高強度鋼板として評価した。耐HIC特性はNACE Standard TM-02-84に準じた浸漬時間96時間のHIC試験を行い、割れが認められない場合を耐HIC性良好と判断して○で、割れが発生した場合を×で示した。
【0064】
【表2】
Figure 0004314873
【0065】
表2において、本発明例であるNo.1〜14はいずれも、化学成分および製造方法が本発明の範囲内であり、降伏強度480MPa以上、引張強度580MPa以上の高強度で、かつ耐HIC性が優れていた。TiとMoと、一部の鋼板についてはさらにNbおよび/またはVとを含む粒径が10nm未満の微細な炭化物の析出物が分散析出していた。また、No.1〜14の鋼板の組織は、実質的にフェライト+ベイナイト2相組織であり、ベイナイト相の分率は、いずれも10〜80%の範囲であった。
【0066】
No.15〜21は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、組織がフェライト+ベイナイト2相組織になっていないことや、微細炭化物が分散析出していないため、強度不足やHIC試験で割れが発生した。No.22〜27は化学成分が本発明の範囲外であるので、粗大な析出物が生成したり、TiとMoとを含む析出物が分散析出していないため、十分な強度が得られないか、HIC試験で割れが生じた。
【0067】
なお、再加熱を誘導加熱炉で行った場合もガス燃焼炉で行った場合も特に結果に差は見られなかった。
【0068】
【発明の効果】
以上述べたように、本発明によれば、API X65グレード以上の高強度を有し、かつ耐HIC性の優れた鋼板を、多量の合金元素を添加することなく低コストで製造することができる。このため優れた特性を有する電縫鋼管、スパイラル鋼管、UOE鋼管等の鋼管を製造することができる。
【図面の簡単な説明】
【図1】本発明の組織制御方法を示す概略図。
【図2】本発明の鋼板を透過型電子顕微鏡(TEM)で観察した写真。
【図3】本発明の製造方法を実施するための製造ラインの一例を示す概略図。
【符号の説明】
1:圧延ライン、
2:鋼板、
3:熱間圧延機、
4:加速冷却装置、
5:インライン型誘導加熱装置、
6:ホットレベラー、
10:オーステナイト単相、
11:未変態オーステナイト、
12:ベイナイト、
13:微細析出物によって析出強化したフェライト相、
14:焼戻されて軟化したベイナイト相、
A:オーステナイト領域、
B:ベイナイト領域、
C:加速冷却、
D:再加熱、
E:フェライト領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel sheet having an API standard X65 grade or higher suitable for the production of steel pipes and the like, and more particularly to a high-strength steel sheet for line pipes excellent in hydrogen-induced crack resistance (HIC resistance) and a method for producing the same. .
[0002]
[Prior art]
Line pipes used to transport crude oil and natural gas containing hydrogen sulfide have strength, toughness and weldability, as well as hydrogen-induced crack resistance (HIC resistance) and stress corrosion crack resistance (SCC resistance). So-called sour resistance is required. In hydrogen induced cracking (HIC) of steel, hydrogen ions from the corrosion reaction are adsorbed on the surface of the steel, penetrate into the steel as atomic hydrogen, around non-metallic inclusions such as MnS in the steel and hard second phase structure. It diffuses and accumulates on the surface and cracks are caused by its internal pressure.
In order to prevent such hydrogen-induced cracking, by adding an appropriate amount of Ca or Ce with respect to the amount of S, the formation of acicular MnS is suppressed, and the form is formed into finely dispersed spherical inclusions with a small stress concentration. A manufacturing method of steel for line pipes that is excellent in HIC resistance and that suppresses the generation and propagation of cracks by changing is known (see, for example, Patent Document 1). In addition, islands that are the starting point of cracks in the central segregation part due to reduction of elements with high segregation tendency (C, Mn, P, etc.), soaking in the slab heating stage, and accelerated cooling during transformation during cooling Steels excellent in HIC resistance that suppress the formation of martensite and hardened structures such as martensite and bainite, which are propagation paths of cracks, are known (see, for example, Patent Document 2 and Patent Document 3). In addition, regarding X80 grade high-strength steel sheet with excellent HIC resistance, while controlling the form of inclusions by adding Ca at low S, the central segregation is suppressed as low C, low Mn, and the accompanying strength reduction is Cr, A method of supplementing by adding Mn, Ni or the like and accelerated cooling is known (see, for example, Patent Document 4, Patent Document 5, and Patent Document 6).
However, all the methods for improving the above-mentioned HIC resistance are for the center segregation part. High strength steel sheets exceeding the X65 grade, such as API X80 grade, are often manufactured by accelerated cooling or direct quenching, so the surface of the steel sheet with a high cooling rate is hardened compared to the inside, and hydrogen-induced cracking occurs from the vicinity of the surface. . Moreover, the microstructure of these high-strength steel sheets obtained by accelerated cooling is a relatively high cracking susceptibility of bainite or acicular ferrite not only to the surface but also to the inside. Even in this case, it is difficult to eliminate HIC starting from sulfide-based or oxide-based inclusions in high-strength steel of about API X80 grade. Therefore, when the HIC resistance of these high-strength steel plates is a problem, it is necessary to take measures against HIC on the surface portion of the steel plate or HIC starting from sulfide or oxide inclusions.
On the other hand, as a high-strength steel excellent in HIC resistance that does not contain block bainite or martensite whose microstructure is highly susceptible to cracking, Japanese Patent Application Laid-Open No. 7-216500 discloses API X80, which is a ferrite-bainite two-phase structure. A high-strength steel material excellent in grade HIC resistance is known (see, for example, Patent Document 7). JP-A-61-227129 and JP-A-7-70697 disclose that the microstructure is a ferrite single phase structure to improve the SCC (SSCC) resistance and the HIC resistance. High-strength steel using carbide precipitation strengthening obtained by adding a large amount is known (see, for example, Patent Document 8 and Patent Document 9).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 54-110119
[Patent Document 2]
Japanese Patent Laid-Open No. 61-60866
[Patent Document 3]
Japanese Patent Laid-Open No. 61-165207 [0006]
[Patent Document 4]
Japanese Patent Laid-Open No. 5-9575 [0007]
[Patent Document 5]
JP-A-5-271766 [0008]
[Patent Document 6]
Japanese Patent Laid-Open No. 7-173536 [0009]
[Patent Document 7]
Japanese Patent Laid-Open No. 7-216500
[Patent Document 8]
Japanese Patent Laid-Open No. 61-227129
[Patent Document 9]
Japanese Patent Laid-Open No. 7-70697
[Problems to be solved by the invention]
However, the bainite structure of the high-strength steel described in Patent Document 7 is a structure that is not as high as block bainite and martensite, but is relatively high in cracking sensitivity. The amount of S and Mn is severely limited, and Ca treatment is essential. Therefore, the manufacturing cost is high because it is necessary to improve the HIC resistance. Moreover, it is difficult to stably obtain a ferrite-bainite two-phase structure using the rolling / cooling method described in Patent Document 7. On the other hand, the ferrite phase described in Patent Document 8 and Patent Document 9 is a structure having a high ductility and extremely low cracking susceptibility, so that the HIC resistance is significantly improved as compared with a steel having a bainite structure or an acicular ferrite structure. . However, since the strength of the ferrite single phase is low, the steel described in Patent Document 8 is strengthened by using a steel containing a large amount of C and Mo to precipitate a large amount of carbides. Then, Ti-added steel is wound around a steel strip at a specific temperature, and the strength is increased by utilizing precipitation strengthening of TiC. However, in order to obtain a ferrite structure in which Mo carbides described in Patent Document 8 are dispersed, it is necessary to perform cold working after quenching and tempering, and further tempering again, which not only increases the manufacturing cost but also increases Mo. Since the particle size of the carbide is as large as about 0.1 microns and the effect of increasing the strength is low, it is necessary to obtain a predetermined strength by increasing the content of C and Mo and increasing the amount of the carbide. In addition, TiC used in the high-strength steel described in Patent Document 9 is finer than Mo carbide and is an effective carbide for precipitation strengthening, but it is likely to be coarsened under the influence of temperature during precipitation. Regardless, no countermeasures against precipitate coarsening have been taken. Therefore, precipitation strengthening is not sufficient, and a large amount of Ti is required.
[0013]
Therefore, the object of the present invention is to solve such problems of the prior art, and is a high-strength steel plate for API X65 grade line pipes, which is against the HIC of the central segregation part and the HIC generated near the surface and inclusions. Therefore, the object is to provide a high-strength steel sheet for line pipes having excellent HIC resistance without adding a large amount of alloy elements at a low cost.
[0014]
[Means for Solving the Problems]
The features of the present invention for solving such problems are as follows.
(1), in mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 0.5 to 1.8%, P: 0.01% or less, S : 0.002% or less, Mo: 0.05 to 0.5%, Ti: 0.005 to 0.04%, Al: 0.07% or less, with the balance being Fe and inevitable impurities, atoms C / (Mo + Ti), which is the ratio of the amount of C in% and the total amount of Mo and Ti, is 0.5 to 3, and the total volume fraction of the microstructure of ferrite and bainite is 95% or more A high-strength steel sheet for line pipes having excellent HIC resistance, wherein precipitates containing Ti and Mo are dispersed and precipitated.
(2) Further, by mass%, Nb: 0.005 to 0.05% and / or V: 0.005 to 0.1%, C amount in atomic% and Mo, Ti, Nb, C / (Mo + Ti + Nb + V), which is a ratio of the total amount of V, is 0.5 to 3, the total volume fraction of ferrite and bainite is 95% or more , Ti, Mo, Nb and The high strength steel sheet for line pipes having excellent HIC resistance according to (1), wherein composite precipitates containing V and / or V are dispersed and precipitated.
(3) Further, 1% selected from Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Ca: 0.0005 to 0.005% by mass%. A high-strength steel sheet for line pipes having excellent HIC resistance according to (1) or (2), comprising seeds or two or more kinds.
(4) After hot rolling the steel containing the chemical component according to any one of (1) to (3) at a heating temperature of 1000 to 1300 ° C. and a rolling end temperature of Ar 3 or higher, Cooling rate: accelerated cooling to 300 to 600 ° C. at 5 ° C./s or more, and immediately after cooling, heating rate: reheating to a temperature of 550 to 700 ° C. at 0.5 ° C./s or more The manufacturing method of the high strength steel plate for line pipes which was excellent in HIC resistance.
(5) A high-strength steel pipe excellent in HIC resistance, characterized by being manufactured using the steel sheet according to any one of (1) to (3).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors diligently studied the microstructure of the steel material and the manufacturing method of the steel plate in order to improve both the HIC resistance and high strength. As a result, to achieve both high strength and HIC resistance, it is most effective to make the microstructure a ferrite + bainite two-phase structure with a small difference in strength between the ferrite structure and the bainite structure. By performing the manufacturing process of accelerated cooling and subsequent reheating, strengthening of the ferrite phase, which is a soft phase, and softening of the bainite phase, which is a hard phase, due to fine precipitates containing Ti, Mo, etc. occur, and the difference in strength is small The knowledge that a ferrite + bainite two-phase structure can be obtained was obtained. And the knowledge that precipitation strengthening by a carbide | carbonized_material can be utilized to the maximum was acquired by optimizing the addition amount of Mo and Ti with respect to C. Further, if Nb and / or V are added in combination, the strength of the ferrite phase can be increased by dispersing precipitates containing Ti, Mo, and Nb and / or V, and Mo, Ti for C It was found that the precipitation strengthening by carbides can be utilized to the maximum by optimizing the addition amounts of Nb and V.
[0016]
The present invention relates to a high-strength steel sheet for line pipes having a two-phase structure of a ferrite phase in which precipitates containing Ti, Mo and the like are dispersed and a bainite phase, and excellent in HIC resistance, and a method for producing the same. The steel sheet produced in this way has no increase in hardness at the surface layer portion like a bainite or acicular ferrite structure steel plate obtained by conventional accelerated cooling or the like, so that HIC from the surface layer portion does not occur. . Furthermore, since the two-phase structure of the ferrite phase and the bainite phase having a small strength difference has an extremely high resistance to cracking, it is possible to suppress HIC from the central part of the steel sheet and inclusions.
[0017]
Hereinafter, the high-strength steel sheet for line pipes of the present invention will be described in detail. First, the structure of the high-strength steel sheet for line pipes of the present invention will be described.
[0018]
The metal structure of the steel sheet of the present invention is substantially a ferrite + bainite two-phase structure. Since the ferrite phase is rich in ductility and has low cracking susceptibility, high HIC resistance can be realized. The bainite phase has excellent strength toughness. The two-phase structure of ferrite and bainite is generally a mixed structure of a soft ferrite phase and a hard bainite phase, and in a steel material having such a structure, hydrogen is likely to accumulate at the interface between the ferrite phase and the bainite phase. In addition, since the interface serves as a crack propagation path, the HIC resistance is inferior. However, in the present invention, both the HIC resistance and high strength can be achieved by adjusting the strength of the ferrite phase and the bainite phase to reduce the strength difference between the two. When two or more different metal structures such as martensite and pearlite are mixed in the ferrite + bainite two-phase structure, HIC is likely to occur due to hydrogen accumulation and stress concentration at the heterophase interface. The smaller the fraction of the structure other than the phase, the better. However, if the volume fraction of the structure other than the ferrite phase and the bainite phase is low, the influence can be ignored. Therefore, other metal structures of 5% or less in total volume fraction, that is, one type of martensite, pearlite, etc. You may contain 2 or more types. The bainite fraction is not particularly defined, but is preferably 10% or more from the viewpoint of securing the toughness of the base material and 80% or less from the viewpoint of HIC resistance. More preferably, the bainite fraction is 20 to 60%.
[0019]
Next, the precipitate that is dispersed and precipitated in the ferrite phase in the present invention will be described.
[0020]
In the steel sheet of the present invention, the ferrite phase is strengthened by the precipitation containing Mo and Ti as a basis in the ferrite phase, and the strength difference between ferrite and bainite is reduced. Can be obtained. Since this precipitate is extremely fine, it has no influence on the HIC resistance. Mo and Ti are elements that form carbides in steel, and it has been conventionally practiced to strengthen steel by precipitation of MoC and TiC. However, in the present invention, Mo and Ti are added together to form Mo and Ti. It is a feature that a greater strength improvement effect can be obtained by finely precipitating the composite carbide containing the above in steel as compared with the case of precipitation strengthening of MoC and / or TiC. This unprecedented strength improvement effect is due to the fact that a composite carbide containing Mo and Ti as a basis is stable and has a slow growth rate, so that an extremely fine precipitate having a particle size of less than 10 nm can be obtained. .
[0021]
When the composite carbide containing Mo and Ti as a base is composed of only Mo, Ti, and C, the total amount of Mo and Ti and the amount of C are combined in an atomic ratio of about 1: 1. It is very effective in increasing strength. Further, in the present invention, it has been found that by adding Nb and / or V in combination, the precipitate becomes a composite carbide containing Mo, Ti, Nb and / or V, and the same precipitation strengthening can be obtained. It was. When the toughness of the weld heat affected zone is a problem, it is possible to improve the toughness of the weld heat affected zone without losing the effect of increasing the strength by replacing part of Ti with Nb and / or V. It is. Moreover, although this fine carbide mainly precipitates in the ferrite phase, it may also precipitate from the bainite phase depending on chemical components and production conditions. In this case, the strength can be further increased. If the hardness difference between the ferrite phase and the bainite phase is HV70 or less, the HIC resistance is not affected.
[0022]
In order to obtain a high-strength steel sheet having a yield strength of 448 MPa or more (APIX65 grade or more), the number of precipitates of less than 10 nm is preferably deposited at 2 × 10 3 pieces / μm 3 or more. The form of precipitation may be random or in line and is not particularly defined. Moreover, when it contains precipitates other than the composite carbide mainly composed of Mo and Ti, the effect of increasing the strength by the composite carbide of Mo and Ti is not impaired and the HIC resistance is not deteriorated, but less than 10 nm. The number of precipitates is preferably 95% or more of the total number of precipitates excluding TiN.
[0023]
In the present invention, the composite carbide mainly composed of Mo and Ti, which is a precipitate dispersed and precipitated in the steel sheet, is produced by manufacturing the steel sheet using the manufacturing method of the present invention to steel having the components described below. It can be obtained by dispersing in.
[0024]
Next, chemical components of the high-strength steel sheet for line pipe used in the present invention will be described. Unless otherwise specified in the following description, all units shown in% are% by mass.
[0025]
C: Set to 0.02 to 0.08%. C is an element that contributes to precipitation strengthening as a carbide. However, if it is less than 0.02%, sufficient strength cannot be secured, and if it exceeds 0.08%, toughness and HIC resistance are deteriorated. 0.02 to 0.08%.
[0026]
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated, so the Si content is 0.01 to 0.00. Specify 5%.
[0027]
Mn: 0.5 to 1.8%. Mn is added for strength and toughness, but if less than 0.5%, the effect is not sufficient, and if it exceeds 1.8%, the weldability and HIC resistance deteriorate, so the Mn content is 0.5 to It is specified to 1.8%. Preferably, it is 0.5 to 1.5%.
[0028]
P: 0.01% or less. Since P is an inevitable impurity element that deteriorates weldability and HIC resistance, the upper limit of the P content is specified to be 0.01%.
[0029]
S: Set to 0.002% or less. In general, S is preferably as small as possible because it becomes MnS inclusions in steel and deteriorates the HIC resistance. However, since there is no problem if it is 0.002% or less, the upper limit of the S content is defined as 0.002%.
[0030]
Mo: 0.05 to 0.5%. Mo is an important element in the present invention, and by containing 0.05% or more, fine composite precipitates with Ti are formed while suppressing pearlite transformation during cooling after hot rolling, thereby increasing strength. A big contribution. However, if added over 0.5%, a hardened phase such as martensite is formed and the HIC resistance is deteriorated, so the Mo content is specified to be 0.05 to 0.5%. Preferably, it is 0.05% or more and less than 0.3%.
[0031]
Ti: 0.005 to 0.04%. Ti, like Mo, is an important element in the present invention. Addition of 0.005% or more forms a composite precipitate with Mo, which greatly contributes to an increase in strength. However, if added over 0.04%, the weld heat affected zone toughness is deteriorated, so the Ti content is specified to be 0.005 to 0.04%. Furthermore, more excellent toughness is exhibited when the Ti content is less than 0.02%. For this reason, when adding Nb and / or V, it is preferable to make Ti content into 0.005% or more and less than 0.02%.
[0032]
Al: 0.07% or less. Al is added as a deoxidizer, but if it exceeds 0.07%, the cleanliness of the steel is lowered and the HIC resistance is deteriorated, so the Al content is specified to be 0.07% or less. Preferably, it is 0.01 to 0.07%.
[0033]
C / (Mo + Ti): which is the ratio of the amount of C and the total amount of Mo and Ti is 0.5-3. The increase in strength according to the present invention is due to precipitates (mainly carbides) containing Ti and Mo. In order to effectively use the precipitation strengthening by this composite precipitate, the relationship between the amount of C and the amounts of Mo and Ti which are carbide forming elements is important, and these elements should be added in an appropriate balance. Thus, a thermally stable and very fine composite precipitate can be obtained. At this time, when the value of C / (Mo + Ti) represented by the content of atomic% of each element is less than 0.5 or more than 3.0, the amount of any element is excessive and due to the formation of a hardened structure. The value of C / (Mo + Ti) is defined as 0.5 to 3 in order to cause deterioration of the HIC resistance and toughness. However, each element symbol is the content of each element in atomic%. In addition, when content of the mass% is used, the value of (C / 12.01) / (Mo / 95.9 + Ti / 47.9) is specified to 0.5-3. When the value of C / (Mo + Ti) is 0.7-2, a finer precipitate having a particle size of 5 nm or less is obtained, which is more preferable.
[0034]
In the present invention, for the purpose of further improving the strength and weld zone toughness of the steel sheet, one or two of Nb and V shown below may be contained.
[0035]
Nb: 0.005 to 0.05%. Nb improves toughness by refining the structure, but forms a composite precipitate with Ti and Mo and contributes to an increase in the strength of the ferrite phase. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.05%, the toughness of the weld heat affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.05%.
[0036]
V: Set to 0.005 to 0.1%. V, like Nb, forms a composite precipitate with Ti and Mo and contributes to an increase in the strength of the ferrite phase. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.1%.
[0037]
When Nb and / or V are contained, C / (Mo + Ti + Nb + V): which is a ratio of the amount of C and the total amount of Mo, Ti, Nb, and V is set to 0.5 to 3. Strengthening according to the present invention depends on precipitates containing Ti and Mo, but when Nb and / or V are contained, they become composite precipitates (mainly carbides) containing them. At this time, when the value of C / (Mo + Ti + Nb + V) represented by the content of atomic% of each element is less than 0.5 or more than 3, the amount of any element is excessive, and HIC resistance due to formation of a hardened structure In order to cause deterioration of characteristics and toughness, the value of C / (Mo + Ti + Nb + V) is regulated to 0.5-3. However, each element symbol is a content in atomic%. More preferably, the value of C / (Mo + Ti + Nb + V) is 0.7-2, and a finer precipitate having a particle size of 5 nm or less is obtained. In addition, when content of mass% is used, the value of (C / 12.01) / (Mo / 95.9 + Ti / 47.9 + Nb / 92.91 + V / 50.94) is specified to 0.5-3. .
[0038]
In the present invention, for the purpose of further improving the strength and HIC resistance of the steel sheet, one or more of Cu, Ni, Cr and Ca shown below may be contained.
[0039]
Cu: 0.5% or less. Cu is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates, so when added, the upper limit is 0.5%.
[0040]
Ni: 0.5% or less. Ni is an element effective for improving toughness and increasing strength, but if added in a large amount, the HIC resistance decreases, so when added, the upper limit is 0.5%.
[0041]
Cr: 0.5% or less. Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. However, if a large amount is added, weldability deteriorates, so when added, the upper limit is 0.5%.
[0042]
Ca: 0.0005 to 0.005%. Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions, but the effect is not sufficient if it is less than 0.0005%, and the effect is saturated even if added over 0.005%. However, since the HIC resistance is deteriorated due to a decrease in the cleanliness of the steel, the Ca content is specified to be 0.0005 to 0.005% when added.
[0043]
Moreover, it is preferable to prescribe | regulate the upper limit of Ceq defined by the following (1) Formula from a viewpoint of weldability according to an intensity | strength level. When the yield strength is 448 MPa or more, Ceq is 0.28 or less, when the yield strength is 482 MPa or more, Ceq is 0.32 or less, and when the yield strength is 551 MPa or more, Ceq is 0.36 or less. By making it, good weldability can be secured.
[0044]
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
[0045]
In addition, about the steel material of this invention, there is no board thickness dependence of Ceq in the range of about 10 mm to 30 mm, and it can design with the same Ceq to about 30 mm.
[0046]
The remainder other than the above consists essentially of Fe. The balance substantially consisting of Fe means that an element containing an inevitable impurity and other trace elements can be included in the scope of the present invention unless the effects of the present invention are lost.
[0047]
Next, the manufacturing method of the high strength steel plate for line pipes of this invention is demonstrated.
[0048]
FIG. 1 is a schematic view showing the tissue control method of the present invention. The austenite single phase 10 is converted to a mixed structure of untransformed austenite 11 and bainite 12 by accelerated cooling (C) from the austenite region (A) at the Ar 3 temperature or higher to the bainite region (B). By reheating (D) to the ferrite region (E) immediately after cooling, the austenite 11 is transformed into ferrite, and fine precipitates are dispersed and precipitated in the ferrite phase. On the other hand, the bainite phase is tempered to become tempered bainite. By adopting a two-phase structure of the ferrite phase 13 that is precipitation strengthened by the fine precipitates and the bainite phase 14 that is tempered and softened, it is possible to achieve both high strength and HIC resistance. Hereinafter, the tissue control method will be specifically described in detail.
[0049]
The high-strength steel sheet for line pipes of the present invention uses steel having the above-described composition, and is hot-rolled at a heating temperature of 1000 to 1300 ° C. and a rolling end temperature of Ar 3 temperature or higher, and then 5 ° C./s or higher. It is cooled to 300 to 600 ° C. at a cooling rate, and immediately after cooling, it is reheated to a temperature of 550 to 700 ° C. at a temperature rising rate of 0.5 ° C./s or more, so that the fineness mainly composed of Mo and Ti It can be produced as a composite structure in which composite carbide is dispersed and precipitated in the ferrite phase and the bainite phase is softened. Here, the temperature is the average temperature of the steel sheet. Hereinafter, each manufacturing condition will be described in detail.
[0050]
Heating temperature: 1000-1300 ° C. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1300 ° C., the toughness deteriorates. Preferably, it is 1050-1250 degreeC.
[0051]
Rolling end temperature: Ar 3 temperature or higher. Ar 3 temperature means the ferrite transformation start temperature during cooling, and can be determined using the following equation (2). When the rolling end temperature is lower than the Ar 3 temperature, the subsequent ferrite transformation rate decreases, so that sufficient precipitation of fine precipitates cannot be obtained during ferrite transformation by reheating, and the strength decreases. Ar 3 temperature or higher.
Ar 3 temperature (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (2)
However, the element symbol of the formula (2) indicates mass% of each contained element.
[0052]
Immediately after the end of rolling, it is cooled at a cooling rate of 5 ° C./s or more. If it is allowed to cool or gradually cool after completion of rolling, precipitates are precipitated from a high temperature range, and the precipitates are easily coarsened and the ferrite phase cannot be strengthened. Therefore, it is an important production condition in the present invention to perform rapid cooling (accelerated cooling) to a temperature optimum for precipitation strengthening and prevent precipitation from a high temperature range. If the cooling rate is less than 5 ° C./s, the effect of preventing precipitation in a high temperature region is not sufficient and the strength is lowered. Therefore, the cooling rate after completion of rolling is specified to be 5 ° C./s or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.
[0053]
Cooling stop temperature: 300 to 600 ° C. By rapidly cooling to 300 to 600 ° C., which is a bainite transformation region, by accelerated cooling after the end of rolling, a bainite phase is generated and the driving force for ferrite transformation during reheating is increased. By increasing the driving force, it becomes possible to promote the ferrite transformation in the reheating process and complete the ferrite transformation with a short reheating. When the cooling stop temperature is less than 300 ° C., even if it becomes a bainite or martensite single phase structure or a ferrite + bainite two-phase structure, island-like martensite (MA) is generated, so that the HIC resistance deteriorates. If the temperature exceeds 600 ° C., ferrite transformation at the time of reheating is not completed and pearlite is deposited, and the HIC resistance is deteriorated. Therefore, the accelerated cooling stop temperature is regulated to 300 to 600 ° C. In order to reliably suppress the production of MA, it is preferable to set the cooling stop temperature to 400 ° C. or higher.
[0054]
Immediately after the accelerated cooling, reheating is performed to a temperature of 550 to 700 ° C. at a heating rate of 0.5 ° C./s or more. This process is an important manufacturing condition in the present invention. Fine precipitates that contribute to strengthening of the ferrite phase are deposited simultaneously with the ferrite transformation during reheating. In order to simultaneously strengthen the ferrite phase with fine precipitates and soften the bainite phase and obtain a structure with a small strength difference between the ferrite phase and the bainite phase, reheat to a temperature range of 550 to 700 ° C. immediately after accelerated cooling. is required. In reheating, it is desirable to raise the temperature by at least 50 ° C. from the temperature after cooling. When the heating rate during reheating is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that production efficiency deteriorates and pearlite transformation occurs, so that fine precipitates are dispersed and precipitated. Cannot be obtained and sufficient strength cannot be obtained. If the reheating temperature is less than 550 ° C, the ferrite transformation is not completed, and the untransformed austenite transforms to pearlite at the time of subsequent cooling, so that the HIC resistance deteriorates, and if it exceeds 700 ° C, the precipitate becomes coarse and sufficient strength is obtained. Therefore, the reheating temperature range is specified to be 550 to 700 ° C.
[0055]
There is no need to set the temperature holding time at the reheating temperature. If the production method of the present invention is used, even if it is cooled immediately after reheating, the ferrite transformation proceeds sufficiently, so that high strength due to fine precipitation can be obtained. In order to reliably complete the ferrite transformation, the temperature can be maintained for 30 minutes or less. However, if the temperature is maintained for more than 30 minutes, the precipitates may become coarse and the strength may be reduced. The cooling rate after reheating may be set as appropriate. However, since the ferrite transformation proceeds even in the cooling process after reheating, air cooling is preferable. As long as the ferrite transformation is not hindered, it is possible to perform cooling at a cooling rate faster than air cooling.
[0056]
As equipment for performing reheating up to a temperature of 550 to 700 ° C., a heating device can be installed on the downstream side of the cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet. The induction heating device is particularly preferable because temperature control is easier than in a soaking furnace, the cost is relatively low, and the cooled steel sheet can be heated quickly. In addition, by arranging a plurality of induction heating devices in series, even if the line speed and the type and size of the steel sheet are different, the number of induction heating devices to be energized and the supply power can be set by arbitrarily setting them. It is possible to freely control the temperature rate and the reheating temperature. In addition, since the cooling rate after reheating may be arbitrary, it is not necessary to install special equipment in the downstream of a heating apparatus.
[0057]
FIG. 2 is a photograph of a steel sheet of the present invention (0.05C-0.15Si-1.25Mn-0.09Mo-0.01Ti) manufactured by the above manufacturing method, observed with a transmission electron microscope (TEM). Indicates. According to FIG. 2, it can be confirmed that very fine precipitates are deposited in a row, but this is due to transformation precipitation that causes precipitation at the austenite / ferrite interface during ferrite transformation. Extremely high precipitation strengthening is obtained. The precipitate is a carbide containing Mo and Ti, and this was confirmed by analysis using energy dispersive X-ray spectroscopy (EDX) or the like.
[0058]
FIG. 3 shows a schematic diagram of an example of a production line for carrying out the production method of the present invention. As shown in FIG. 3, a hot rolling mill 3, an acceleration cooling device 4, an inline induction heating device 5, and a hot leveler 6 are arranged in the rolling line 1 from the upstream side toward the downstream side. By installing the in-line type induction heating device 5 or other heat treatment device on the same line as the hot rolling mill 3 as a rolling facility and the accelerated cooling device 4 as a subsequent cooling facility, the rolling and cooling can be quickly performed. Since the reheating treatment can be performed, the steel sheet after being rolled and accelerated and cooled can be immediately heated to 550 ° C. or higher.
[0059]
The steel plate of the present invention manufactured by the above manufacturing method is formed into a steel pipe by press bend forming, roll forming, UOE forming, etc., and transports crude oil or natural gas (electric-welded steel pipe, spiral steel pipe, UOE steel pipe) Etc. can be used. Since the steel pipe manufactured using the steel plate of the present invention has high strength and excellent HIC resistance, it is also suitable for transporting crude oil and natural gas containing hydrogen sulfide.
[0060]
【Example】
Steel having the chemical composition shown in Table 1 (steel types A to O) was made into a slab by a continuous casting method, and a thick steel plate (No. 1 to 27) having a plate thickness of 18 and 26 mm was produced using the slab.
[0061]
[Table 1]
Figure 0004314873
[0062]
After the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility and reheated using an induction heating furnace or a gas combustion furnace. The cooling equipment and induction heating furnace were in-line type. Table 2 shows the production conditions of each steel plate (No. 1 to 27).
[0063]
The microstructure of the steel sheet produced as described above was observed with an optical microscope and a transmission electron microscope (TEM). The components of the precipitate were analyzed by energy dispersive X-ray spectroscopy (EDX). The tensile properties and HIC resistance of each steel plate were measured. The measurement results are also shown in Table 2. Tensile properties were measured by performing a tensile test using a full thickness test piece in the rolling vertical direction as a tensile test piece, and measuring yield strength and tensile strength. In consideration of manufacturing variations, a steel having a yield strength of 480 MPa or higher and a tensile strength of 580 MPa or higher was evaluated as a high strength steel plate of API X65 grade or higher. The HIC resistance is determined by performing an HIC test with an immersion time of 96 hours in accordance with NACE Standard TM-02-84. If no crack is observed, the HIC resistance is judged as good. Indicated.
[0064]
[Table 2]
Figure 0004314873
[0065]
In Table 2, all of Nos. 1 to 14 as examples of the present invention are within the scope of the present invention in terms of chemical composition and production method, have high yield strength of 480 MPa or higher, tensile strength of 580 MPa or higher, and HIC resistance. Was excellent. As for Ti, Mo, and some of the steel plates, fine carbide precipitates containing Nb and / or V and having a particle size of less than 10 nm were dispersed and precipitated. Moreover, the structure of the steel plates No. 1 to 14 was substantially a ferrite + bainite two-phase structure, and the fraction of the bainite phase was in the range of 10 to 80%.
[0066]
Nos. 15 to 21 have chemical components within the scope of the present invention, but because the production method is outside the scope of the present invention, the structure is not a ferrite + bainite two-phase structure, and fine carbides are dispersed. Since it did not precipitate, cracks occurred in the insufficient strength and in the HIC test. Nos. 22 to 27 have chemical components outside the scope of the present invention, so that coarse precipitates are not generated, and precipitates containing Ti and Mo are not dispersed and precipitated, so that sufficient strength cannot be obtained. Or cracks occurred in the HIC test.
[0067]
In addition, when the reheating was performed in the induction heating furnace or in the gas combustion furnace, there was no particular difference in the results.
[0068]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a steel sheet having high strength equal to or higher than API X65 grade and excellent in HIC resistance at a low cost without adding a large amount of alloy elements. . For this reason, steel pipes, such as an electric resistance welded steel pipe, a spiral steel pipe, and a UOE steel pipe, having excellent characteristics can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a tissue control method of the present invention.
FIG. 2 is a photograph of a steel sheet of the present invention observed with a transmission electron microscope (TEM).
FIG. 3 is a schematic view showing an example of a production line for carrying out the production method of the present invention.
[Explanation of symbols]
1: rolling line,
2: Steel plate,
3: Hot rolling mill,
4: Accelerated cooling device,
5: Inline type induction heating device,
6: Hot leveler,
10: austenite single phase,
11: Untransformed austenite,
12: Bainite,
13: Ferrite phase strengthened by precipitation with fine precipitates,
14: Tempered and softened bainite phase,
A: austenite region,
B: Baynite region,
C: accelerated cooling,
D: Reheating,
E: Ferrite region

Claims (5)

質量%で、C:0.02〜0.08%、Si:0.01〜0.5%、Mn:0.5〜1.8%、P:0.01%以下、S:0.002%以下、Mo:0.05〜0.5%、Ti:0.005〜0.04%、Al:0.07%以下を含有し、残部がFeおよび不可避不純物からなり、原子%でのC量とMo、Tiの合計量の比であるC/(Mo+Ti)が0.5〜3であり、金属組織がフェライトとベイナイトとの合計の体積分率が95%以上であり、Tiと、Moとを含む析出物が分散析出していることを特徴とする、耐HIC特性に優れたラインパイプ用高強度鋼板。In mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 0.5 to 1.8%, P: 0.01% or less, S: 0.002 %: Mo: 0.05-0.5%, Ti: 0.005-0.04%, Al: 0.07% or less, with the balance being Fe and inevitable impurities , C in atomic% C / (Mo + Ti), which is the ratio of the total amount of Mo and Ti, is 0.5 to 3, the total volume fraction of ferrite and bainite is 95% or more , and Ti and A high-strength steel sheet for line pipes having excellent HIC resistance, wherein precipitates containing Mo and Mo are dispersed and precipitated. さらに、質量%で、Nb:0.005〜0.05%および/またはV:0.005〜0.1%を含有し、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.5〜3であり、金属組織がフェライトとベイナイトとの合計の体積分率が95%以上であり、Tiと、Moと、Nbおよび/またはVとを含む複合析出物が分散析出していることを特徴とする、(1)に記載の耐HIC特性に優れたラインパイプ用高強度鋼板。Further, in mass%, Nb: 0.005 to 0.05% and / or V: 0.005 to 0.1%, and the total amount of C, Mo, Ti, Nb, and V in atomic% The ratio C / (Mo + Ti + Nb + V) is 0.5 to 3, the total volume fraction of ferrite and bainite is 95% or more , and Ti, Mo, Nb and / or V The high-strength steel sheet for line pipes having excellent HIC resistance according to (1), wherein the composite precipitate containing さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.005%の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1または請求項2に記載の耐HIC特性に優れたラインパイプ用高強度鋼板。Furthermore, by mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Ca: 0.0005 to 0.005% The high-strength steel sheet for line pipes having excellent HIC resistance according to claim 1 or 2, characterized by containing the above. 請求項1ないし請求項3のいずれかに記載の化学成分を含有する鋼を、加熱温度:1000〜1300℃、圧延終了温度:Ar3温度以上の条件で熱間圧延した後、冷却速度:5℃/s以上で300〜600℃まで加速冷却を行い、冷却後直ちに昇温速度:0.5℃/s以上で550〜700℃の温度まで再加熱を行うことを特徴とする、耐HIC特性に優れたラインパイプ用高強度鋼板の製造方法。The steel containing the chemical component according to any one of claims 1 to 3 is hot-rolled under conditions of a heating temperature: 1000 to 1300 ° C and a rolling end temperature: Ar 3 temperature or more, and then a cooling rate: 5 HIC resistance, characterized by performing accelerated cooling to 300 to 600 ° C. at a temperature of ℃ / s or higher and immediately reheating to a temperature of 550 to 700 ° C. at a rate of temperature rise of 0.5 ° C./s or higher immediately after cooling. Manufacturing method for high-strength steel sheets for line pipes. 請求項1ないし請求項3のいずれかに記載の鋼板を用いて製造されたことを特徴とする、耐HIC特性に優れた高強度鋼管。A high-strength steel pipe excellent in HIC resistance, characterized by being manufactured using the steel plate according to any one of claims 1 to 3.
JP2003121928A 2002-04-26 2003-04-25 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same Expired - Lifetime JP4314873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121928A JP4314873B2 (en) 2002-04-26 2003-04-25 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002125942 2002-04-26
JP2003121928A JP4314873B2 (en) 2002-04-26 2003-04-25 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004003015A JP2004003015A (en) 2004-01-08
JP4314873B2 true JP4314873B2 (en) 2009-08-19

Family

ID=30447499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121928A Expired - Lifetime JP4314873B2 (en) 2002-04-26 2003-04-25 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4314873B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270194A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
JP5292869B2 (en) * 2008-03-15 2013-09-18 Jfeスチール株式会社 High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same
JP5369639B2 (en) * 2008-11-25 2013-12-18 Jfeスチール株式会社 High strength steel material excellent in welding heat-affected zone toughness and HIC resistance and manufacturing method thereof
JP5423323B2 (en) * 2009-02-12 2014-02-19 新日鐵住金株式会社 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5672658B2 (en) * 2009-03-30 2015-02-18 Jfeスチール株式会社 High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JP5782827B2 (en) * 2011-05-24 2015-09-24 Jfeスチール株式会社 High compressive strength steel pipe for sour line pipe and manufacturing method thereof
EP2862954A4 (en) 2012-06-18 2016-01-20 Jfe Steel Corp Thick, high-strength, sour-resistant line pipe and method for producing same
KR101757710B1 (en) 2012-07-09 2017-07-14 제이에프이 스틸 가부시키가이샤 Method for producing thick-walled high-strength sour-resistant line pipe
DE102014221068A1 (en) * 2014-10-16 2016-04-21 Sms Group Gmbh Plant and method for the production of heavy plates
KR101988771B1 (en) 2017-12-22 2019-09-30 주식회사 포스코 Steel having excellent hydrogen induced cracking resistance and longitudinal strength unifomity and method for manufacturing the same

Also Published As

Publication number Publication date
JP2004003015A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4940886B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
US8147626B2 (en) Method for manufacturing high strength steel plate
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
KR101044161B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP3711896B2 (en) Manufacturing method of steel sheets for high-strength line pipes
JP5903880B2 (en) High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same
JP4254551B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP4314873B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP4419744B2 (en) High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JP4273826B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5672658B2 (en) High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JP4089455B2 (en) High strength steel with excellent HIC resistance
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2005048289A (en) Low yield ratio, high strength and high toughness steel sheet, and its production method
JP2003226922A (en) Manufacturing method for high strength steel sheet having excellent hic resistance
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2005194607A (en) High-strength steel sheet for line pipe superior in high-speed ductile fracture resistance, and manufacturing method therefor
JP2003321730A (en) High strength steel sheet for line pipe having excellent hic resisting property and production method thereof
JP3714232B2 (en) High strength steel plate with excellent HIC resistance and method for producing the same
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JP3896915B2 (en) High strength steel plate with excellent HIC resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Ref document number: 4314873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term