JP5292869B2 - High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same - Google Patents

High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same Download PDF

Info

Publication number
JP5292869B2
JP5292869B2 JP2008066902A JP2008066902A JP5292869B2 JP 5292869 B2 JP5292869 B2 JP 5292869B2 JP 2008066902 A JP2008066902 A JP 2008066902A JP 2008066902 A JP2008066902 A JP 2008066902A JP 5292869 B2 JP5292869 B2 JP 5292869B2
Authority
JP
Japan
Prior art keywords
less
mass
steel pipe
base material
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008066902A
Other languages
Japanese (ja)
Other versions
JP2009221533A (en
Inventor
信行 石川
光浩 岡津
隆二 村岡
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008066902A priority Critical patent/JP5292869B2/en
Publication of JP2009221533A publication Critical patent/JP2009221533A/en
Application granted granted Critical
Publication of JP5292869B2 publication Critical patent/JP5292869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength steel pipe in which occurrence of fracture from a weld zone can be suppressed in a using form where high internal pressure is applied thereto, and burst fracture and unstable ductile fracture can be prevented. <P>SOLUTION: Disclosed is a steel pipe produced by an UOE pipe making process and having a base material tensile strength of &ge;600 MPa, wherein, the ratio between the tensile strength (TSw) of a seam weld metal and the base material tensile strength (TSb), [TSw/TSb] is &ge;0.95, the yield ratio in the peripheral direction of the pipe in the base material is &le;92%, and the difference between the hardness (HVs) of the surface layer part in the base material and the average hardness (HVm) of the central part in the base material, [HVs-HVm] is &le;30HV. By reducing the yield ratio of the base material and narrowing the difference in the hardness between the surface layer part and the inside in the base material, concentration of strain on a weld heat affected zone is suppressed, and the occurrence of fracture from the weld zone caused by internal pressure can be prevented. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ガスパイプラインや水道配管等の流体輸送用配管、ガス貯蔵用鋼管などに好適な高強度鋼管であって、特に内圧による破壊に対して高い抵抗力を有する高強度鋼管に関するものである。   The present invention relates to a high-strength steel pipe suitable for fluid transportation pipes such as gas pipelines and water pipes, steel pipes for gas storage, and the like, and particularly to a high-strength steel pipe having high resistance to breakage due to internal pressure. .

UOE鋼管はガスパイプラインや水道配管等の流体輸送用配管として広く用いられているが、近年、このような輸送用配管による流体の輸送コストを削減するために、パイプラインの高圧化に対する要求が高まっている。ラインパイプの溶接欠陥、外的要因により生じた傷、腐食による減肉部等から延性的にき裂が発生する延性破壊が生じると、これが原因でバースト破壊を生じたり、長距離き裂伝播(不安定延性破壊)を生じる場合がある。特に、パイプラインが高圧化すると、延性破壊がバースト破壊や不安定延性破壊に進展して鋼管が破壊される危険性が高まることが予想される。
不安定延性破壊を防ぐことを目的として、特許文献1には、金属組織をベイナイト単一組織とすることによって吸収エネルギーを高めたラインパイプ用鋼板の製造方法が開示され、また、特許文献2には、鋼板表層部を超微細組織とすることによって不安定延性破壊の停止性能を高めた鋼材が開示されている。
UOE steel pipes are widely used as fluid transportation pipes such as gas pipelines and water pipes. Recently, in order to reduce the cost of transporting fluids using such transportation pipes, the demand for high pressure pipelines has increased. ing. When a ductile fracture that causes a ductile crack occurs from a weld defect of a line pipe, a scratch caused by an external factor, or a thinned part due to corrosion, a burst fracture or long-distance crack propagation ( (Unstable ductile fracture) may occur. In particular, when the pressure of the pipeline is increased, it is expected that the risk that the ductile fracture will progress to burst fracture or unstable ductile fracture and the steel pipe will be destroyed increases.
For the purpose of preventing unstable ductile fracture, Patent Document 1 discloses a method for producing a steel sheet for line pipes in which the absorbed energy is increased by making the metal structure a single bainite structure. Discloses a steel material that has improved the stopping performance of unstable ductile fracture by making the surface layer portion of the steel sheet into an ultrafine structure.

また、UOE鋼管のシーム溶接部は靭性が劣ったり、溶接熱影響部に軟化部が生じたりするため、シーム溶接熱影響部が破壊の発生場所やき裂伝播経路となり、大きな被害を生じる可能性がある。このような溶接部での破壊の発生、伝播を防止するため、特許文献3には、溶接金属の強度を母材より高くし、さらに溶接ビードの高さを一定値以下にする技術が開示され、また、特許文献4には、溶接部のピーキング量と溶接熱影響部の硬さ及び母材の硬さで規定される関係式を満たすように、溶接部のピーキング量と溶接熱影響部の硬さを低減する技術が開示されている。
特開昭62−4826号公報 特開平10−17986号公報 特開2002−309336号公報 特開2002−346629号公報
In addition, seam welded parts of UOE steel pipes are inferior in toughness or softened parts occur in the weld heat affected zone, so the seam welded heat affected zone can become a location where fracture occurs or a crack propagation path, possibly causing significant damage. is there. In order to prevent the occurrence and propagation of such a fracture in the welded part, Patent Document 3 discloses a technique for making the weld metal stronger than the base metal and further making the weld bead height below a certain value. Further, in Patent Document 4, the peaking amount of the welded portion and the welding heat affected zone of the welded heat affected zone are satisfied so as to satisfy the relational expression defined by the peaking amount of the welded portion, the hardness of the welded heat affected zone and the hardness of the base material. A technique for reducing the hardness is disclosed.
Japanese Patent Laid-Open No. 62-4826 Japanese Patent Laid-Open No. 10-17986 JP 2002-309336 A JP 2002-346629 A

しかし、特許文献1,2のような技術を適用しても、パイプラインの操業条件によっては、一度発生したき裂の伝播を停止できない場合があり、また、減圧時に相変態挙動(ガス→ガス+ミスト)を示す天然ガスなどでは、相変態によってガスの減圧が阻害されるため、き裂の停止がさらに困難になる場合がある。したがって、ラインパイプの不安定延性破壊を防ぐためには、溶接欠陥や外的要因による傷または腐食による減肉部等からのき裂の発生を抑制することが必要である。このような溶接部からの破壊を抑制する目的で、前述の特許文献3,4の技術が提案されている。特許文献3の技術は、溶接金属の強度を母材より高くし、さらに溶接ビード高さを低減することで、溶接部の止端部への圧力集中を低減でき、溶接部での破壊を抑制するに効果的である。しかしながら、溶接金属強度や母材強度には管長手方向でバラツキがあるため、鋼管全長にわたって溶接金属強度と母材強度の関係を保つことは難しく、また、電流や電圧などの溶接条件のバラツキにより、溶接ビードの高さを鋼管の全長にわたって一定値以下に制御することも困難である。そのため鋼管の中で所定の条件を満たさない、脆弱な部分が発生する可能性がある。また、特許文献4の技術も同様に、鋼管全長にわたってピーキングの高さを制御することは困難であり、鋼管の中に所定の条件を満たさない部分が生じる可能性がある。さらに、いずれの技術も、母材の材質については溶接金属の強度との関係以外は何ら検討しておらず、母材の材質が溶接部への応力集中を生じやすいものである場合、いかに溶接部の形状を制御したとしても、溶接部からの破壊発生を防げない場合がある。   However, even if the techniques such as Patent Documents 1 and 2 are applied, the propagation of a crack once generated may not be stopped depending on the operating conditions of the pipeline, and the phase transformation behavior (gas → gas In the case of natural gas or the like indicating (+ mist), the decompression of the gas is inhibited by the phase transformation, so that it may be more difficult to stop the crack. Therefore, in order to prevent the unstable ductile fracture of the line pipe, it is necessary to suppress the generation of cracks from a weld defect, a flaw caused by external factors, or a thinned portion due to corrosion. In order to suppress such breakage from the welded portion, the techniques of Patent Documents 3 and 4 have been proposed. The technology of Patent Document 3 makes it possible to reduce the pressure concentration on the toe of the welded part by reducing the weld bead height by making the weld metal stronger than the base metal and suppressing the fracture at the welded part. It is effective to do. However, since the weld metal strength and the base metal strength vary in the longitudinal direction of the pipe, it is difficult to maintain the relationship between the weld metal strength and the base metal strength over the entire length of the steel pipe, and due to variations in welding conditions such as current and voltage. It is also difficult to control the height of the weld bead below a certain value over the entire length of the steel pipe. Therefore, there is a possibility that a fragile portion that does not satisfy the predetermined condition in the steel pipe may occur. Similarly, in the technique of Patent Document 4, it is difficult to control the height of peaking over the entire length of the steel pipe, and there may be a portion in the steel pipe that does not satisfy a predetermined condition. Furthermore, none of the technologies has examined the material of the base material except for the relationship with the strength of the weld metal. If the material of the base material is likely to cause stress concentration on the welded part, how to weld it? Even if the shape of the part is controlled, the occurrence of breakage from the welded part may not be prevented.

したがって本発明の目的は、このような従来技術の課題を解決し、高い内圧を受ける使用形態において溶接部からの破壊発生が抑制され、バースト破壊や不安定延性破壊が防止できる高強度鋼管及びその製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art, suppress the occurrence of fracture from the welded portion in a usage form subject to high internal pressure, and prevent high-strength steel pipes that can prevent burst fracture and unstable ductile fracture, and its It is to provide a manufacturing method.

上記課題を解決するための本発明の要旨は以下とおりである。
[1] UOE製管プロセスにより製造された母材引張強度が600MPa以上の鋼管であって、母材が、C:0.03〜0.08質量%、Si:0.01〜0.5質量%、Mn:1.5〜2.0質量%、P:0.02質量%以下、S:0.002質量%以下、Al:0.08質量%以下、Nb:0.01〜0.05質量%、Ti:0.005〜0.02質量%を含有し、残部Fe及び不可避的不純物からなり、シーム溶接金属の引張強度(TSw)と母材引張強度(TSb)の比[TSw/TSb]が0.95以上であり、母材の管周方向降伏比が92%以下、母材表層部の硬さ(HVs)と母材中心部の平均硬さ(HVm)の差[HVs−HVm]がHV30以下であることを特徴とする耐内圧破壊特性に優れた高強度鋼管。
The gist of the present invention for solving the above problems is as follows.
[1] A steel pipe having a base metal tensile strength of 600 MPa or more manufactured by a UOE pipe manufacturing process, wherein the base material is C: 0.03 to 0.08 mass%, Si: 0.01 to 0.5 mass %, Mn: 1.5 to 2.0 mass%, P: 0.02 mass% or less, S: 0.002 mass% or less, Al: 0.08 mass% or less, Nb: 0.01 to 0.05 % By mass, Ti: 0.005 to 0.02% by mass, comprising the balance Fe and inevitable impurities, and the ratio of the tensile strength (TSw) and the base material tensile strength (TSb) of the seam weld metal [TSw / TSb ] Is 0.95 or more, the pipe circumferential yield ratio of the base metal is 92% or less, and the difference between the hardness of the base metal surface layer (HVs) and the average hardness of the base metal center (HVm) [HVs−HVm ] Is an HV30 or less, a high-strength steel pipe excellent in internal pressure fracture resistance .

[2]上記[1]の鋼管において、母材が、さらに、Cu:0.5質量%以下、Ni:0.5質量%以下、Cr:0.5質量%以下、Mo:0.5質量%以下の中から選ばれる1種以上を含有することを特徴とする耐内圧破壊特性に優れた高強度鋼管。
[3]上記[1]又は[2]の鋼管において、母材が、さらに、V:0.1質量%以下、Ca:0.0005〜0.0030質量%、B:0.005質量%以下の中から選ばれる1種以上を含有することを特徴とする耐内圧破壊特性に優れた高強度鋼管。
[4]上記[1]〜[3]のいずれかに記載の高強度鋼管の製造方法において、
圧延垂直方向の降伏比が88%以下の鋼板を用いてUOE製管プロセスにより鋼管を製造する方法であって、シーム溶接後に施す拡管工程での拡管率を0.6〜1.4%とすることを特徴とする耐内圧破壊特性に優れた高強度鋼管の製造方法。
[2] In the steel pipe of the above [1] , the base material is further Cu: 0.5 mass% or less, Ni: 0.5 mass% or less, Cr: 0.5 mass% or less, Mo: 0.5 mass % High-strength steel pipe excellent in internal pressure fracture resistance, characterized by containing one or more selected from below.
[3] In the steel pipe of the above [1] or [2] , the base material is further V: 0.1 mass% or less, Ca: 0.0005 to 0.0030 mass%, B: 0.005 mass% or less. A high-strength steel pipe excellent in internal pressure fracture resistance, characterized by containing one or more selected from the above.
[4] In the method for producing a high-strength steel pipe according to any one of [1] to [3 ] above,
This is a method of manufacturing a steel pipe by a UOE pipe manufacturing process using a steel sheet having a yield ratio in the vertical direction of rolling of 88% or less, and the pipe expansion ratio in the pipe expansion process applied after seam welding is 0.6 to 1.4%. A method for producing a high-strength steel pipe excellent in internal pressure fracture resistance.

本発明の高強度鋼管は、引張強度600MPa以上の高強度を有するとともに、内圧による溶接部からの破壊発生が抑制される優れた耐内圧破壊特性を有する。このため、特に高い破壊安全性が必要とされるラインパイプ等として有用な高強度鋼管である。また、本発明の製造方法は、このような優れた耐内圧破壊特性を有する高強度鋼管を安定して製造することができる。   The high-strength steel pipe of the present invention has a high tensile strength of 600 MPa or more and excellent internal pressure fracture resistance that suppresses the occurrence of fracture from the weld due to internal pressure. For this reason, it is a high-strength steel pipe useful as a line pipe etc. in which especially high destruction safety is required. Moreover, the production method of the present invention can stably produce a high-strength steel pipe having such excellent internal pressure fracture resistance.

本発明者らは、UOE鋼管の内圧による破壊挙動に関して鋭意研究を行い、内圧による溶接部からの破壊発生を抑制するには、管周方向での母材の降伏比を低下させ、母材の表層部と内部の硬さの差を小さくすることが有効であり、これによって溶接熱影響部への歪の集中を防ぐことが可能となり、内圧による溶接部からの破壊発生を抑制することができることを知見した。そして、このような材質を有する母材であれば、シーム溶接金属の引張強度(TSw)と母材の引張強度(TSb)との比[TSw/TSb]が0.95以上であれば溶接部からの破壊発生を抑制でき、内圧による鋼管のバーストまでに大きく変形できることになる。   In order to suppress the occurrence of fracture from the weld due to the internal pressure, the present inventors have diligently studied the fracture behavior of the UOE steel pipe due to the internal pressure, and reduced the yield ratio of the base metal in the pipe circumferential direction. It is effective to reduce the difference between the hardness of the surface layer and the inside, and this makes it possible to prevent the concentration of strain on the weld heat affected zone and to suppress the occurrence of fracture from the weld due to internal pressure. I found out. And if it is a base material which has such a material, if the ratio [TSw / TSb] of the tensile strength (TSw) of a seam weld metal and the tensile strength (TSb) of a base material is 0.95 or more, a welded part It is possible to suppress the occurrence of fracture from the steel, and it can be greatly deformed by the burst of the steel pipe due to internal pressure.

図1(模式図)に示す方法で水圧バースト試験を行った結果を以下に示す。引張強度が630〜750MPaのUOE鋼管を用い、鋼管の両端にエンドキャップを溶接し、鋼管内に水を充填した。そして、高圧ポンプによりさらに鋼管内に水を注入することで、鋼管を破壊させた。図2(模式図)にバーストした鋼管の破壊形態の例を示す。鋼管がシーム溶接部から離れた母材部で破壊する場合、母材の変形によって鋼管全体の変形を吸収できるため、高い圧力まで破壊を抑制できる。一方、シーム溶接部、特に溶接熱影響部(HAZ)に歪が集中すると、その部分で早期に破壊を生じるため、低い圧力、すなわち少ない水注入量でバーストすることになる。水圧バースト試験の結果を、バーストまでに注入した水量(ΔV)の鋼管の初期内容積(V)に対する割合を破壊体積歪として評価し、鋼管の管周方向降伏比との関係で整理したものを図3に示す。これによると、母材の降伏比が低いほど破壊体積歪が大きくなっており、耐内圧破壊特性が優れることが判る。逆に降伏比が一定値以上となると、溶接熱影響部(HAZ)から破壊を生じるため、破壊体積歪が大きく低下することが判る。
以上のように、本発明の最大の特徴は管周方向での母材の降伏比を低下させ、母材の表層部と内部の硬さの差を小さくすることで、溶接熱影響部への歪集中を抑制することである。これによって、内圧による溶接部からの破壊発生を抑制し、耐内圧破壊特性を向上させることができる。
The results of a water pressure burst test performed by the method shown in FIG. 1 (schematic diagram) are shown below. A UOE steel pipe having a tensile strength of 630 to 750 MPa was used, end caps were welded to both ends of the steel pipe, and the steel pipe was filled with water. And the steel pipe was destroyed by inject | pouring water further into a steel pipe with a high pressure pump. FIG. 2 (schematic diagram) shows an example of a fractured form of a steel pipe burst. When the steel pipe breaks at the base material part away from the seam welded part, the deformation of the whole steel pipe can be absorbed by the deformation of the base material, so that the fracture can be suppressed to a high pressure. On the other hand, when strain concentrates on the seam welded portion, particularly the weld heat affected zone (HAZ), the portion is destroyed at an early stage, so that bursting occurs at a low pressure, that is, a small water injection amount. The results of the water pressure burst test were evaluated by evaluating the ratio of the amount of water injected before the burst (ΔV) to the initial internal volume (V 0 ) of the steel pipe as the fracture volume strain and organizing it in relation to the pipe pipe circumferential yield ratio. Is shown in FIG. According to this, it can be seen that the lower the yield ratio of the base material, the larger the fracture volume strain, and the better the internal pressure fracture resistance. Conversely, when the yield ratio is equal to or greater than a certain value, fracture occurs from the weld heat affected zone (HAZ), and it can be seen that the fracture volume strain is greatly reduced.
As described above, the greatest feature of the present invention is that the yield ratio of the base metal in the pipe circumferential direction is reduced, and the difference between the hardness of the surface layer portion and the inside of the base material is reduced, so that the weld heat affected zone is reduced. This is to suppress strain concentration. As a result, the occurrence of fracture from the weld due to the internal pressure can be suppressed, and the internal pressure fracture resistance can be improved.

以下、本発明の高強度鋼管の限定理由について説明する。
・母材引張強度:600MPa以上
本発明の目的は、高強度のUOE鋼管で問題となる内圧による溶接部からの破壊を防止することにあるが、引張強度が600MPa未満の鋼管では特に問題とならないため、対象とする鋼管の強度を600MPa以上とする。
・シーム溶接金属の引張強度(TSw)と母材引張強度(TSb)の比[TSw/TSb]:0.95以上
シーム溶接金属の引張強度が母材の引張強度よりも著しく低い場合、内圧による管周方向の応力が付与されると溶接部が優先して変形を生じるようになり、溶接部からの破壊を生じてしまう。しかし、後述するような母材特性を有している場合、シーム溶接金属の引張強度(TSw)と母材引張強度(TSb)の比[TSw/TSb]が0.95以上であれば、溶接部からの破壊を抑制できるため、その下限を0.95に規定する。また、シーム溶接金属と母材の引張強度の比が大きいほど、溶接部からの破壊に対する危険性が低下するため、より安定した耐内圧破壊性能を得るためには、シーム溶接金属の引張強度(TSw)と母材引張強度(TSb)の比[TSw/TSb]を1.0以上とすることが好ましい。
なお、シーム溶接は通常のUOE鋼管の製造に用いられるサブマージアーク溶接等を適用すればよく、溶接に用いる溶接材料を適宜選択して溶接金属の強度を調節すればよい。
Hereinafter, the reasons for limitation of the high-strength steel pipe of the present invention will be described.
-Base material tensile strength: 600 MPa or more The object of the present invention is to prevent fracture from the weld due to internal pressure, which is a problem with high-strength UOE steel pipes, but it is not particularly problematic for steel pipes with a tensile strength of less than 600 MPa. Therefore, the strength of the target steel pipe is set to 600 MPa or more.
・ The ratio of the tensile strength (TSw) of the seam weld metal to the base material tensile strength (TSb) [TSw / TSb]: 0.95 or more Depending on the internal pressure if the tensile strength of the seam weld metal is significantly lower than the tensile strength of the base metal When stress in the pipe circumferential direction is applied, the welded part is preferentially deformed, resulting in destruction from the welded part. However, if the base material characteristics as described later are present, welding is performed if the ratio [TSw / TSb] of the tensile strength (TSw) of the seam weld metal to the base material tensile strength (TSb) is 0.95 or more. Since the destruction from the part can be suppressed, the lower limit is defined as 0.95. Also, the greater the ratio of the seam weld metal to the base metal, the lower the risk of fracture from the weld. Therefore, in order to obtain a more stable internal pressure fracture resistance, the tensile strength of the seam weld metal ( The ratio [TSw / TSb] of TSw) to base material tensile strength (TSb) is preferably 1.0 or more.
It should be noted that seam welding may be performed by applying submerged arc welding or the like used in the manufacture of ordinary UOE steel pipes, and by appropriately selecting a welding material used for welding and adjusting the strength of the weld metal.

・母材の管周方向降伏比:92%以下
母材の管周方向降伏比が高いと、内圧による管周方向の変形に対して溶接部への歪集中を生じやすくなり、溶接部破壊の原因となる。しかし、母材の管周方向降伏比が92%以下であれば、母材の変形によって溶接部への歪集中が低減され、溶接部からの破壊を抑制できる。このため母材の管周方向降伏比を92%以下に規定する。なお、母材の管周方向の引張試験は、鋼管を矯正して平板とした全厚の試験片が用いられる場合があるが、矯正によって引張特性が大きく変化するため、本発明においては、未矯正の鋼管の管周方向から採取した丸棒引張試験片によって評価する。
・ Pipe circumferential yield ratio of base metal: 92% or less When the pipe peripheral yield ratio of the base metal is high, strain concentration tends to occur in the welded part due to deformation in the pipe circumferential direction due to internal pressure. Cause. However, if the pipe circumferential direction yield ratio of the base material is 92% or less, the strain concentration on the welded portion is reduced due to the deformation of the base material, and the breakage from the welded portion can be suppressed. For this reason, the yield ratio of the base material in the pipe circumferential direction is specified to be 92% or less. In the tensile test in the pipe circumferential direction of the base material, a full-thickness test piece obtained by straightening a steel pipe may be used. It is evaluated by a round bar tensile specimen taken from the circumferential direction of a straightened steel pipe.

・母材表層部の硬さ(HVs)と母材中心部の平均硬さ(HVm)の差[HVs−HVm]:HV30以下
母材表層部の硬さが中心部の硬さよりも著しく大きい場合、たとえ母材の管周方向降伏比が低くても溶接部への歪集中を生じやすくなる。しかし、母材表層部の硬さ(HVs)と母材中心部の平均硬さ(HVm)の差[HVs−HVm]がビッカース硬さでHV30以下であれば大きな歪集中を生じないため、その差の上限をHV30に規定する。なお、母材表層部の硬さ(HVs)は、鋼管の表裏面から深さ1mmの位置で測定し、その最大値とする。また、母材中心部の平均硬さ(HVm)は、管厚方向で硬さを測定したときの、表面側の管厚1/4の位置と裏面側の管厚1/4の位置の間の硬さの平均値とする。
なお、母材表層部の硬さ(HVs)と母材中心部の平均硬さ(HVm)の差が小さい鋼板は、後述する化学成分及び製造条件に従うこと、特に加速冷却の冷却停止温度を500℃以上とし、さらに加速冷却後の再加熱温度を570℃以上とすることで得ることができる。
・ Difference between the hardness of the base metal surface layer (HVs) and the average hardness of the base metal center (HVm) [HVs-HVm]: HV30 or less When the hardness of the base metal surface layer is significantly higher than the hardness of the central part Even if the yield ratio of the base metal in the pipe circumferential direction is low, strain concentration tends to occur at the weld. However, if the difference [HVs-HVm] between the hardness of the base metal surface layer (HVs) and the average hardness of the base metal center (HVm) [HVs−HVm] is HV30 or less in Vickers hardness, large strain concentration will not occur. The upper limit of the difference is defined as HV30. In addition, the hardness (HVs) of the base material surface layer part is measured at a depth of 1 mm from the front and back surfaces of the steel pipe, and is the maximum value. The average hardness (HVm) at the center of the base material is between the position of the tube thickness 1/4 on the surface side and the position of the tube thickness 1/4 on the back side when the hardness is measured in the tube thickness direction. The average value of the hardness.
Note that a steel sheet having a small difference between the hardness of the base metal surface layer (HVs) and the average hardness of the base metal center (HVm) conforms to the chemical composition and production conditions described below, and in particular, the cooling stop temperature of accelerated cooling is 500. It can be obtained by setting the reheating temperature after accelerated cooling to 570 ° C. or higher.

以上述べたような本発明の高強度鋼管は、以下のような製造方法により製造することができる。
UOE製管プロセスにより鋼管を製造する場合、冷間成形によって鋼板に歪が付与され、特に、シーム溶接後の拡管工程では管周方向に引張変形を受けるため、降伏比が上昇する。そのため管周方向で低い降伏比を得るには、鋼板の状態で降伏比を十分低くする必要がある。さらに、拡管工程での拡管率を一定範囲に制御することで、所定の管周方向降伏比を得ることが可能となる。
The high-strength steel pipe of the present invention as described above can be manufactured by the following manufacturing method.
When a steel pipe is manufactured by a UOE pipe manufacturing process, distortion is imparted to the steel sheet by cold forming, and in particular, in the pipe expansion process after seam welding, the steel sheet is subjected to tensile deformation in the pipe circumferential direction, so that the yield ratio increases. Therefore, in order to obtain a low yield ratio in the pipe circumferential direction, it is necessary to sufficiently reduce the yield ratio in the state of the steel sheet. Furthermore, it becomes possible to obtain a predetermined pipe circumferential direction yield ratio by controlling the tube expansion rate in the tube expansion step within a certain range.

以下、本発明の製造方法の限定理由を説明する。
・鋼板の圧延垂直方向の降伏比:88%以下
UOE鋼管は冷間成形によって製造されるために、使用する鋼板と成形後の鋼管とで引張特性が大きく変化する。降伏比の低い鋼管を得るためには、それに用いる鋼板の降伏比を低くする必要があり、管周方向の降伏比が92%以下の鋼管を得るためには、鋼板の圧延垂直方向の降伏比を88%以下にする必要がある。このため、鋼管の製造に用いる鋼板の圧延垂直方向の降伏比の上限を88%に規定する。
Hereinafter, the reasons for limitation of the production method of the present invention will be described.
-Yield ratio in the vertical direction of rolling of the steel sheet: 88% or less Since UOE steel pipes are manufactured by cold forming, tensile properties vary greatly between the steel sheet used and the steel pipe after forming. In order to obtain a steel pipe having a low yield ratio, it is necessary to lower the yield ratio of the steel sheet used therefor, and in order to obtain a steel pipe having a yield ratio in the pipe circumferential direction of 92% or less, the yield ratio of the steel sheet in the vertical direction of rolling. Must be 88% or less. For this reason, the upper limit of the yield ratio in the rolling vertical direction of the steel sheet used for manufacturing the steel pipe is defined as 88%.

・シーム溶接後に施す拡管工程での拡管率:0.6〜1.4%
UOE鋼管の製造工程において、管周方向の降伏比に最も影響を及ぼす工程が拡管工程であり、拡管率が大きいほど管周方向への歪の付与によって降伏比が大きく上昇する。しかし、拡管率が1.4%以下であれば、管周方向の降伏比を92%以下に抑制することができるため、拡管率の上限を1.4%とする。また、拡管率が低すぎると鋼管の真円度が低下し、溶接部への歪集中の原因となるため、その下限を0.6%とする。
-Tube expansion rate in the tube expansion process after seam welding: 0.6-1.4%
In the manufacturing process of a UOE steel pipe, the process that most affects the yield ratio in the pipe circumferential direction is the pipe expansion process, and the yield ratio is greatly increased by the application of strain in the pipe circumferential direction as the pipe expansion ratio increases. However, if the tube expansion ratio is 1.4% or less, the yield ratio in the pipe circumferential direction can be suppressed to 92% or less, so the upper limit of the tube expansion ratio is 1.4%. Further, if the expansion ratio is too low, the roundness of the steel pipe is lowered and causes strain concentration on the welded portion, so the lower limit is made 0.6%.

本発明では、以上述べたような条件を満たしていれば優れた耐内圧破壊特性が得られるため、それに用いる鋼材の成分及び製造方法は任意の条件でよい。しかし、上述の性能を有する鋼管を安定して得るためには、鋼板の化学成分及び製造条件を以下のようにすることが望ましい。
まず、鋼板の化学成分について説明する。なお、各元素の含有量の「%」は、いずれも質量%を意味する。
・C:0.03〜0.08%
Cは鋼材の強度を確保するとともに、ベイナイトまたはマルテンサイトの生成を促進し、低降伏比に有利な複相組織を得るために必要な元素である。しかし、0.03%未満では十分な強度が得られず、一方、0.08%を超えて添加すると溶接性を劣化させるので、C含有量は0.03〜0.08%とすることが好ましい。
In the present invention, excellent internal pressure fracture resistance can be obtained as long as the above-described conditions are satisfied. Therefore, the components and manufacturing method of the steel material used therefor may be arbitrary conditions. However, in order to stably obtain a steel pipe having the above-described performance, it is desirable that the chemical composition and production conditions of the steel plate are as follows.
First, chemical components of the steel plate will be described. In addition, all "%" of content of each element means the mass%.
・ C: 0.03-0.08%
C is an element necessary for securing the strength of the steel material, promoting the formation of bainite or martensite, and obtaining a multiphase structure advantageous for a low yield ratio. However, if it is less than 0.03%, sufficient strength cannot be obtained. On the other hand, if it exceeds 0.08%, weldability deteriorates, so the C content may be 0.03 to 0.08%. preferable.

・Si:0.01〜0.5%
Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、一方、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量は0.01〜0.5%とすることが好ましい。
・Mn:1.5〜2.0%
Mnは強度及び靭性確保のために添加するが、1.5%未満ではその効果が十分でなく、一方、2.0%を超えると溶接性が劣化するため、Mn含有量は1.5〜2.0%とすることが好ましい。
・P:0.02%以下
Pは不可避不純物として含有されるが、靭性及び溶接性を劣化させるため、P含有量は0.02%以下とすることが好ましい。
・S:0.002%以下
Sは不可避不純物として含有されるが、一般的に鋼中においてはMnS介在物となってボイドの発生起点となり、シャルピー吸収エネルギーを低下させるため、その含有量を厳しく規制する必要がある。しかし、0.002%以下であれば問題ないので、S含有量は0.002%以下とすることが好ましい。
・ Si: 0.01-0.5%
Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient. On the other hand, if it exceeds 0.5%, the toughness and weldability are deteriorated. It is preferable to set it to 0.5%.
Mn: 1.5 to 2.0%
Mn is added to ensure strength and toughness, but if it is less than 1.5%, the effect is not sufficient, while if it exceeds 2.0%, the weldability deteriorates, so the Mn content is 1.5 to It is preferable to set it to 2.0%.
-P: 0.02% or less P is contained as an inevitable impurity, but in order to deteriorate toughness and weldability, the P content is preferably 0.02% or less.
-S: 0.002% or less S is contained as an inevitable impurity, but in general, in steel, it becomes a MnS inclusion and becomes a starting point of voids, reducing the Charpy absorbed energy. It is necessary to regulate. However, since there is no problem if it is 0.002% or less, the S content is preferably 0.002% or less.

・Al:0.08%以下
Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靭性が劣化するため、Al含有量は0.08%以下とすることが好ましい。さらに好ましくは、0.01〜0.08%である。
・Nb:0.01〜0.05%
Nbは制御圧延によって組織を微細化し、靭性及び強度を高めるために必要な元素であるが、0.01%未満ではその効果が小さく、一方、0.05%を超えて添加すると溶接熱影響部(HAZ)の靭性を劣化させるので、その添加量は0.01〜0.05%とすることが好ましい。
・Ti:0.005〜0.02%
Tiは炭窒化物として析出し、スラブ加熱時の結晶粒粗大化抑制及び溶接熱影響部の微細化に有効な元素である。しかし、0.005%未満ではその効果が得られず、一方、0.02%を超えると析出物が粗大化し、溶接部の靭性を劣化させるので、その添加量は0.005〜0.02%とすることが好ましい。
-Al: 0.08% or less Al is added as a deoxidizer, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is 0.08% or less. It is preferable to do. More preferably, it is 0.01 to 0.08%.
・ Nb: 0.01-0.05%
Nb is an element necessary to refine the structure by controlled rolling and increase the toughness and strength. However, if it is less than 0.01%, its effect is small. Since the toughness of (HAZ) is deteriorated, the addition amount is preferably 0.01 to 0.05%.
Ti: 0.005-0.02%
Ti precipitates as carbonitride and is an effective element for suppressing grain coarsening during slab heating and for miniaturizing the weld heat affected zone. However, if the amount is less than 0.005%, the effect cannot be obtained. On the other hand, if the amount exceeds 0.02%, the precipitate becomes coarse and deteriorates the toughness of the welded portion. % Is preferable.

鋼板には、さらに、以下のような元素の1種以上を選択的に含有させることができる。
・Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下の中から選ばれる1種以上
Cu、Ni、Cr、Moは、いずれも強度を高めるために有効な元素であるが、いずれも0.5%を超えて添加すると溶接性が劣化するので、添加する場合は各々0.5%以下とすることが好ましい。
・V:0.1%以下
Vは炭窒化物として析出することで強度向上に有効な元素である。しかし、0.1%を超えて添加すると、溶接熱影響部の靭性が劣化するので、添加する場合は0.1%以下とすることが好ましい。
The steel sheet can further contain one or more of the following elements selectively.
Cu, Ni, Cr, Mo is one or more selected from Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less Although these elements are effective elements for increasing the strength, the weldability deteriorates if they are added in excess of 0.5%. Therefore, when they are added, the content is preferably 0.5% or less.
V: 0.1% or less V is an element effective for improving the strength by precipitating as carbonitride. However, if added over 0.1%, the toughness of the weld heat-affected zone deteriorates. Therefore, when added, the content is preferably made 0.1% or less.

・Ca:0.0005〜0.0030%
Caは介在物の制御のために添加することができる。0.0005%未満では効果がなく、一方、0.0030%を超えると介在物量が増えて靭性が劣化するので、添加する場合は0.0005〜0.0030%とすることが好ましい。
・B:0.005%以下
Bは強度上昇、HAZ靭性改善に寄与する元素である。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とすることが好ましい。
上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。例えば、Mg:0.02%以下、REM:0.02%以下の1種以上を添加してもよい。
・ Ca: 0.0005 to 0.0030%
Ca can be added for the control of inclusions. If it is less than 0.0005%, there is no effect. On the other hand, if it exceeds 0.0030%, the amount of inclusions increases and the toughness deteriorates. Therefore, when added, the content is preferably 0.0005 to 0.0030%.
B: 0.005% or less B is an element that contributes to strength increase and HAZ toughness improvement. In order to acquire the effect, it is preferable to add 0.0005% or more, but if added over 0.005%, the weldability is deteriorated. .
The balance other than the above consists essentially of Fe. That the balance is substantially made of Fe means that an element containing other trace elements including inevitable impurities can be included in the scope of the present invention unless the effects of the present invention are lost. For example, one or more of Mg: 0.02% or less and REM: 0.02% or less may be added.

また、鋼板の好ましい製造条件としては、上記の成分組成を有する鋼を用い、加熱温度:1000〜1200℃、圧延終了温度:Ar点以上で熱間圧延を行った後、5℃/s以上の冷却速度で500〜620℃まで加速冷却を行い、その後0.5℃/s以上の昇温速度で、加速冷却停止温度よりも高い温度であって且つ570〜700℃の温度まで再加熱を行うことで、金属組織をベイナイトと島状マルテンサイト(MA)の複相組織とする。
ここで、上記の加熱温度、圧延終了温度、加速冷却停止温度(冷却終了温度)、再加熱温度等の温度は、鋼板の板厚方向平均温度とする。この板厚方向平均温度は、スラブまたは鋼板の表面温度から、板厚、熱伝導率等のパラメータを考慮して、計算により求められる。また、冷却速度は、熱間圧延終了後、加速冷却停止温度までの冷却に必要な温度差をその冷却するに要した時間で割った平均冷却速度である。また、昇温速度は、冷却後、再加熱に必要な温度差を再加熱するに要した時間で割った平均昇温速度である。
Moreover, as preferable manufacturing conditions of a steel plate, using steel having the above component composition, after performing hot rolling at a heating temperature of 1000 to 1200 ° C. and a rolling end temperature of Ar 3 points or more, 5 ° C./s or more. Accelerated cooling to 500 to 620 ° C. at a cooling rate of 0.5 ° C./s, followed by reheating to a temperature higher than the accelerated cooling stop temperature and a temperature of 570 to 700 ° C. By carrying out, a metal structure is made into the multiphase structure of a bainite and an island-like martensite (MA).
Here, the heating temperature, the rolling end temperature, the accelerated cooling stop temperature (cooling end temperature), the reheating temperature, and the like described above are the average thickness direction temperature of the steel sheet. This average thickness direction temperature is obtained by calculation from the surface temperature of the slab or steel plate in consideration of parameters such as plate thickness and thermal conductivity. The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the accelerated cooling stop temperature by the time required for cooling after completion of hot rolling. The temperature increase rate is an average temperature increase rate obtained by dividing the temperature difference necessary for reheating after cooling by the time required for reheating.

以下、上記製造条件の限定理由を説明する。
熱間圧延での加熱温度は1000〜1200℃とする。加熱温度が1000℃未満では、炭化物の固溶が不十分で必要な強度と降伏比が得られず、一方、1200℃を超えると母材靭性が劣化する。
熱間圧延の圧延終了温度はAr点以上とする。圧延終了温度がAr点未満であると、その後のフェライト変態速度が低下するため、再加熱によるフェライト変態時に十分な微細析出物の分散析出が得られず、強度が低下する。また、再加熱時の未変態オーステナイトへのCの濃縮が不十分となり、島状マルテンサイトが生成しない。ここで、Ar点はフェライト変態が開始する温度であり、例えば、下記(1)式により求めることができる。
Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo …(1)
但し、(1)式に示す元素記号は各元素の質量%を表す。
Hereinafter, the reasons for limiting the manufacturing conditions will be described.
The heating temperature in the hot rolling is 1000 to 1200 ° C. If the heating temperature is less than 1000 ° C., the solid solution of carbide is insufficient and the required strength and yield ratio cannot be obtained, while if it exceeds 1200 ° C., the base material toughness deteriorates.
The rolling end temperature of hot rolling is Ar 3 points or more. If the rolling end temperature is less than Ar 3 , the subsequent ferrite transformation rate is lowered, so that sufficient precipitation of fine precipitates cannot be obtained during ferrite transformation by reheating, and the strength is lowered. Moreover, the concentration of C into untransformed austenite during reheating becomes insufficient, and island martensite is not generated. Here, the Ar 3 point is a temperature at which the ferrite transformation starts, and can be determined by the following equation (1), for example.
Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (1)
However, the element symbol shown in the formula (1) represents mass% of each element.

圧延終了後、直ちに5℃/s以上の冷却速度で冷却(加速冷却)する。冷却速度が5℃/s未満では冷却時にパーライトが生成するため、島状マルテンサイトが生成せず、またベイナイトによる強化が得られないため、十分な強度が得られない。また、冷却開始温度がAr点未満となりフェライトが生成すると、再加熱時に微細析出物の分散析出が得られず、強度不足を招き、且つ島状マルテンサイトの生成も起こらないため、冷却開始温度はAr点以上とする。このときの冷却方法については、製造プロセスによって任意の冷却設備を用いることが可能である。 Immediately after the completion of rolling, cooling (accelerated cooling) is performed at a cooling rate of 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, pearlite is generated at the time of cooling, so that island-like martensite is not generated and strengthening by bainite cannot be obtained, so that sufficient strength cannot be obtained. In addition, when the cooling start temperature is less than Ar 3 point and ferrite is generated, dispersion precipitation of fine precipitates is not obtained during reheating, resulting in insufficient strength, and generation of island martensite does not occur. Is Ar 3 or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.

上記加速冷却の冷却停止温度は500〜620℃とする。このプロセスは、本発明において重要な製造条件である。本発明では、再加熱後に存在するCの濃縮した未変態オーステナイトがその後の空冷時に島状マルテンサイトへと変態する。すなわち、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が500℃未満では、ベイナイト変態が完了するため空冷時に島状マルテンサイトが生成せず、低降伏比化が達成できない。また、冷却停止温度が低くなると、鋼板表層部はさらに低温まで冷却され、上部ベイナイトやマルテンサイト等の硬化組織が形成されるなどして、表面の硬度が著しく上昇するので、この点からも冷却停止温度の下限を500℃とする。一方、冷却停止温度が620℃を超えると、冷却中にパーライトが析出するため微細炭化物の析出が不十分となり、十分な強度が得られず、また、パーライトにCが消費され島状マルテンサイトが生成しない。   The cooling stop temperature of the accelerated cooling is 500 to 620 ° C. This process is an important manufacturing condition in the present invention. In the present invention, C-concentrated untransformed austenite present after reheating is transformed into island martensite during subsequent air cooling. That is, it is necessary to stop the cooling in a temperature range where untransformed austenite during the bainite transformation exists. If the cooling stop temperature is less than 500 ° C., the bainite transformation is completed, so that island martensite is not generated during air cooling, and a low yield ratio cannot be achieved. In addition, when the cooling stop temperature is lowered, the surface layer of the steel sheet is further cooled to a low temperature, and a hardened structure such as upper bainite and martensite is formed, so that the surface hardness increases remarkably. The lower limit of the stop temperature is 500 ° C. On the other hand, when the cooling stop temperature exceeds 620 ° C., pearlite is precipitated during cooling, so that fine carbides are not sufficiently precipitated, and sufficient strength cannot be obtained. Further, C is consumed in the pearlite and island martensite is formed. Do not generate.

加速冷却停止後、直ちに0.5℃/s以上の昇温速度で、加速冷却停止温度よりも高い温度であって且つ570〜750℃の温度まで再加熱を行う。このプロセスも、本発明において重要な製造条件である。強化に寄与する微細複合炭化物の析出物は、再加熱時に析出する。さらに、再加熱時の未変態オーステナイトからのベイナイト変態と、それに伴う未変態オーステナイトへのCの排出により、再加熱後の空冷時にCが濃化した未変態オーステナイトが島状マルテンサイトへと変態する。このような微細複合炭化物の析出物ならびに島状マルテンサイトを得るためには、加速冷却停止温度よりも高い温度であって且つ570〜750℃の温度域まで再加熱する必要がある。昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、微細複合炭化物の分散析出や島状マルテンサイトが得られず、十分な強度、低降伏比を得ることができない。再加熱温度が570℃未満では十分な析出駆動力が得られず、微細複合炭化物の量が少ないため、十分な析出強化が得られない。また、加速冷却後の再加熱によって、加速冷却時の硬化した表層部分が焼戻しされて硬度が低下し、鋼板中央部と表層部の硬さの差が小さくなるが、再加熱温度が低いと、表層部の硬さの低減が十分でないため、この点からも再加熱温度の下限を570℃とする。一方、再加熱温度が700℃を超えると、析出物が粗大化して十分な強度が得られない。   Immediately after the accelerated cooling is stopped, reheating is performed to a temperature higher than the accelerated cooling stop temperature and a temperature of 570 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more. This process is also an important production condition in the present invention. Precipitates of fine composite carbides that contribute to strengthening precipitate during reheating. Furthermore, bainite transformation from untransformed austenite at the time of reheating, and discharge of C into the untransformed austenite accompanying the transformation, untransformed austenite enriched with C during air cooling after reheating transforms into island martensite. . In order to obtain such fine composite carbide precipitates and island martensite, it is necessary to reheat to a temperature higher than the accelerated cooling stop temperature and to a temperature range of 570 to 750 ° C. If the heating rate is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency deteriorates and pearlite transformation occurs. The site cannot be obtained, and sufficient strength and low yield ratio cannot be obtained. When the reheating temperature is lower than 570 ° C., sufficient precipitation driving force cannot be obtained, and since the amount of fine composite carbide is small, sufficient precipitation strengthening cannot be obtained. In addition, by reheating after accelerated cooling, the hardened surface layer part at the time of accelerated cooling is tempered and the hardness is reduced, and the difference in hardness between the steel plate center part and the surface layer part is reduced, but when the reheating temperature is low, Since the hardness of the surface layer portion is not sufficiently reduced, the lower limit of the reheating temperature is set to 570 ° C. from this point. On the other hand, when the reheating temperature exceeds 700 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained.

上記の製造条件であれば、再加熱後直ちに冷却しても、十分な微細複合炭化物が得られるため高い強度が得られるが、さらに十分な微細複合炭化物を確保するために、再加熱した状態で30分以内の温度保持を行うこともできる。30分を超えて温度保持を行うと複合炭化物の粗大化を生じ、強度が低下する場合がある。また、再加熱後の冷却過程においては、冷却速度に関わりなく微細複合炭化物は粗大化しないため、再加熱後の冷却速度は基本的には空冷とすることが好ましい。
以上のような条件で製造した鋼板を用い、UOE製管プロセスにより鋼管を製造することで、より耐内圧破壊性能に優れた鋼管を安定して得ることができる。
If it is said manufacturing conditions, even if it cools immediately after reheating, high intensity | strength will be obtained since sufficient fine composite carbide is obtained, but in order to ensure sufficient fine composite carbide, in the state reheated. It is also possible to hold the temperature within 30 minutes. If the temperature is maintained for more than 30 minutes, the composite carbide may become coarse and the strength may decrease. In the cooling process after reheating, the fine composite carbide is not coarsened regardless of the cooling rate. Therefore, it is preferable that the cooling rate after reheating is basically air cooling.
By using a steel plate manufactured under the above conditions and manufacturing a steel pipe by a UOE pipe manufacturing process, it is possible to stably obtain a steel pipe with more excellent internal pressure fracture resistance.

表1に示す化学成分の鋼(鋼種A〜G)を連続鋳造法によりスラブとし、これを用いて種々の板厚の厚鋼板(No.1〜17)を製造した。
加熱したスラブを熱間圧延し、熱間圧延後の鋼板を直ちに水冷型の加速冷却設備を用いて冷却し、次いで、加速冷却設備と同一ライン上に設置した誘導加熱炉を用いて再加熱した。加速冷却時の冷却速度は40〜55℃/s、再加熱時の加熱速度は20〜30℃/sとした。また、一部の鋼板については、比較のため再加熱を行わなかった。これらの鋼板を用いてUOE製管プロセスにより鋼管を製造した。
製造された各鋼管に対して、図1に示す方法で水圧バースト試験を実施した。試験鋼管の両端部にエンドキャップを溶接し、内部を水で充填した。その後、さらに高圧ポンプで水を注入し、鋼管がバーストするまでに注入した水量(ΔV)の鋼管の初期内容積(V)に対する割合(百分率)を破壊体積歪として評価した。表2に使用した鋼板の製造条件と特性を、表3に鋼管の製造条件と特性をそれぞれ示す。
Steels (steel types A to G) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 17) having various plate thicknesses were produced using the slabs.
The heated slab is hot-rolled, and the hot-rolled steel sheet is immediately cooled using water-cooled accelerated cooling equipment, and then reheated using an induction heating furnace installed on the same line as the accelerated cooling equipment. . The cooling rate during accelerated cooling was 40 to 55 ° C./s, and the heating rate during reheating was 20 to 30 ° C./s. In addition, some steel plates were not reheated for comparison. Using these steel plates, steel pipes were manufactured by the UOE pipe manufacturing process.
A water pressure burst test was performed on each manufactured steel pipe by the method shown in FIG. End caps were welded to both ends of the test steel pipe, and the interior was filled with water. Thereafter, water was further injected with a high-pressure pump, and the ratio (percentage) of the amount of water (ΔV) injected until the steel pipe burst to the initial internal volume (V 0 ) of the steel pipe was evaluated as fracture volume strain. Table 2 shows the manufacturing conditions and characteristics of the steel plates used, and Table 3 shows the manufacturing conditions and characteristics of the steel pipes.

表2及び表3において、本発明例であるNo.1〜10の鋼管は、いずれも母材の管周方向降伏比が92%以下、シーム溶接金属の引張強度(TSw)と母材引張強度(TSb)との比[TSw/TSb]が0.95以上、母材表層部の硬さ(HVs)と母材中心部の平均硬さ(HVm)の差[HVs−HVm]がHV30以下であるため、水圧バースト試験の破壊体積歪が大きく、且つき裂発生位置が全て母材となっている。
一方、比較例であるNo.11〜17は、母材の管周方向降伏比が高いか、若しくはシーム溶接金属の引張強度(TSw)と母材引張強度(TSb)との比[TSw/TSb]が小さいため、水圧バースト試験での破壊体積歪が小さく且つ全てHAZ部から破断している。
In Table 2 and Table 3, No. Each of the steel pipes 1 to 10 has a yield ratio of the base metal in the pipe circumferential direction of 92% or less, and the ratio [TSw / TSb] of the tensile strength (TSw) to the base metal tensile strength (TSb) of the seam weld metal is 0. Since the difference [HVs−HVm] between the hardness of the base metal surface layer (HVs) and the average hardness (HVm) of the base metal center is not more than HV30, the fracture volume strain in the hydraulic burst test is large, and All cracking positions are the base material.
On the other hand, No. which is a comparative example. Nos. 11 to 17 have a high pressure burst test because the pipe yield ratio is high or the ratio of the seam weld metal tensile strength (TSw) to base metal tensile strength (TSb) is small [TSw / TSb]. The fracture volume strain at is small and all fracture from the HAZ part.

Figure 0005292869
Figure 0005292869

Figure 0005292869
Figure 0005292869

Figure 0005292869
Figure 0005292869

水圧バースト試験の試験方法を示す説明図Explanatory drawing showing the test method of water pressure burst test 水圧バースト試験後のき裂発生位置を示す説明図Explanatory diagram showing crack initiation position after hydraulic pressure burst test 母材の管周方向降伏比と水圧バースト試験で測定された破壊体積歪との関係を示すグラフA graph showing the relationship between the pipe circumferential yield ratio of the base metal and the fracture volume strain measured by the hydraulic burst test 母材の引張強度と水圧バースト試験で測定された破壊体積歪との関係を示すグラフGraph showing the relationship between the tensile strength of the base metal and the fracture volume strain measured by the hydraulic burst test

Claims (4)

UOE製管プロセスにより製造された母材引張強度が600MPa以上の鋼管であって、母材が、C:0.03〜0.08質量%、Si:0.01〜0.5質量%、Mn:1.5〜2.0質量%、P:0.02質量%以下、S:0.002質量%以下、Al:0.08質量%以下、Nb:0.01〜0.05質量%、Ti:0.005〜0.02質量%を含有し、残部Fe及び不可避的不純物からなり、シーム溶接金属の引張強度(TSw)と母材引張強度(TSb)の比[TSw/TSb]が0.95以上であり、母材の管周方向降伏比が92%以下、母材表層部の硬さ(HVs)と母材中心部の平均硬さ(HVm)の差[HVs−HVm]がHV30以下であることを特徴とする耐内圧破壊特性に優れた高強度鋼管。 It is a steel pipe having a base metal tensile strength of 600 MPa or more manufactured by the UOE pipe manufacturing process, and the base material is C: 0.03 to 0.08 mass%, Si: 0.01 to 0.5 mass%, Mn : 1.5 to 2.0 mass%, P: 0.02 mass% or less, S: 0.002 mass% or less, Al: 0.08 mass% or less, Nb: 0.01 to 0.05 mass%, Ti: 0.005 to 0.02% by mass, consisting of remainder Fe and inevitable impurities, and the ratio [TSw / TSb] of the tensile strength (TSw) and base material tensile strength (TSb) of the seam weld metal is 0 .95 or more, the pipe circumferential yield ratio of the base metal is 92% or less, and the difference [HVs−HVm] between the hardness of the base metal surface layer (HVs) and the average hardness of the base metal center (HVm) is HV30 A high-strength steel pipe with excellent internal pressure fracture resistance characterized by: 母材が、さらに、Cu:0.5質量%以下、Ni:0.5質量%以下、Cr:0.5質量%以下、Mo:0.5質量%以下の中から選ばれる1種以上を含有することを特徴とする請求項に記載の耐内圧破壊特性に優れた高強度鋼管。 The base material further includes at least one selected from Cu: 0.5% by mass or less, Ni: 0.5% by mass or less, Cr: 0.5% by mass or less, Mo: 0.5% by mass or less. The high-strength steel pipe having excellent internal pressure fracture resistance according to claim 1, which is contained. 母材が、さらに、V:0.1質量%以下、Ca:0.0005〜0.0030質量%、B:0.005質量%以下の中から選ばれる1種以上を含有することを特徴とする請求項1又は2に記載の耐内圧破壊特性に優れた高強度鋼管。 The base material further contains one or more selected from V: 0.1% by mass or less, Ca: 0.0005-0.0030% by mass, and B: 0.005% by mass or less. A high-strength steel pipe excellent in internal pressure fracture resistance according to claim 1 or 2 . 請求項1〜のいずれかに記載の高強度鋼管の製造方法において、
圧延垂直方向の降伏比が88%以下の鋼板を用いてUOE製管プロセスにより鋼管を製造する方法であって、シーム溶接後に施す拡管工程での拡管率を0.6〜1.4%とすることを特徴とする耐内圧破壊特性に優れた高強度鋼管の製造方法。
In the manufacturing method of the high strength steel pipe according to any one of claims 1 to 3 ,
This is a method of manufacturing a steel pipe by a UOE pipe manufacturing process using a steel sheet having a yield ratio in the vertical direction of rolling of 88% or less, and the pipe expansion ratio in the pipe expansion process applied after seam welding is 0.6 to 1.4%. A method for producing a high-strength steel pipe excellent in internal pressure fracture resistance.
JP2008066902A 2008-03-15 2008-03-15 High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same Active JP5292869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066902A JP5292869B2 (en) 2008-03-15 2008-03-15 High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066902A JP5292869B2 (en) 2008-03-15 2008-03-15 High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009221533A JP2009221533A (en) 2009-10-01
JP5292869B2 true JP5292869B2 (en) 2013-09-18

Family

ID=41238609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066902A Active JP5292869B2 (en) 2008-03-15 2008-03-15 High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5292869B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751012B2 (en) * 2011-05-24 2015-07-22 Jfeスチール株式会社 Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5751013B2 (en) * 2011-05-24 2015-07-22 Jfeスチール株式会社 Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5811591B2 (en) * 2011-05-24 2015-11-11 Jfeスチール株式会社 High strength line pipe excellent in crush resistance and weld heat-affected zone toughness and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4314873B2 (en) * 2002-04-26 2009-08-19 Jfeスチール株式会社 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same

Also Published As

Publication number Publication date
JP2009221533A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
RU2588755C2 (en) Steel strip with low ratio of yield strength to ultimate strength and high impact strength and method for production thereof
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5782828B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP5549176B2 (en) Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
WO2003099482A1 (en) Uoe steel pipe with excellent crash resistance, and method of manufacturing the uoe steel pipe
JP5447698B2 (en) High-strength steel for steam piping and method for manufacturing the same
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
CA2980252A1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5292869B2 (en) High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP6354789B2 (en) Manufacturing method of steel plate for high strength and high toughness steel pipe and steel plate for high strength and high toughness steel pipe
JP2009084598A (en) Method for manufacturing steel sheet superior in deformability and low-temperature toughness for ultrahigh-strength line pipe, and method for manufacturing steel pipe for ultrahigh-strength line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5292869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250