JP4193757B2 - Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe - Google Patents

Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe Download PDF

Info

Publication number
JP4193757B2
JP4193757B2 JP2004169952A JP2004169952A JP4193757B2 JP 4193757 B2 JP4193757 B2 JP 4193757B2 JP 2004169952 A JP2004169952 A JP 2004169952A JP 2004169952 A JP2004169952 A JP 2004169952A JP 4193757 B2 JP4193757 B2 JP 4193757B2
Authority
JP
Japan
Prior art keywords
less
steel
temperature
strength
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004169952A
Other languages
Japanese (ja)
Other versions
JP2005350688A (en
Inventor
秀治 岡口
昌彦 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004169952A priority Critical patent/JP4193757B2/en
Publication of JP2005350688A publication Critical patent/JP2005350688A/en
Application granted granted Critical
Publication of JP4193757B2 publication Critical patent/JP4193757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、引張強さが750MPa以上の不安定延性破壊抵抗性に優れた超高強度ラインパイプ用鋼板およびその製造方法、ならびにその鋼板を素材として成形と溶接により製造された溶接鋼管に係わり、これらの鋼管および鋼板は特に原油および天然ガス輸送用の板厚10〜40mmの高圧ラインパイプ用鋼管またはその素材として好適である。なお、本発明において超高強度鋼板とは、従来の600MPa程度の鋼板に対して750MPa以上の鋼板をいう。   The present invention relates to a steel sheet for ultra-high-strength line pipe excellent in unstable ductile fracture resistance having a tensile strength of 750 MPa or more, a manufacturing method thereof, and a welded steel pipe manufactured by molding and welding using the steel sheet as a raw material, These steel pipes and steel plates are particularly suitable as steel pipes for high-pressure line pipes having a thickness of 10 to 40 mm for transporting crude oil and natural gas, or materials thereof. In the present invention, the ultra-high strength steel plate refers to a steel plate of 750 MPa or more with respect to a conventional steel plate of about 600 MPa.

原油や天然ガスを輸送するラインパイプでは、高い圧力で原油やガスを輸送するほど効率的であることから、高圧に耐えるようにより高強度の鋼材が使用される傾向にあり、種々のラインパイプ用超高強度鋼材が提案されている。   Line pipes that transport crude oil and natural gas are more efficient to transport crude oil and gas at higher pressures, so there is a tendency for higher strength steel materials to be used to withstand high pressures. Ultra-high strength steel has been proposed.

例えば、特許文献1には、溶接部靭性に優れたアメリカ石油協会規格API X100級(引張強さ760MPa以上)のラインパイプに適した高強度鋼管が示されている。
また、特許文献2には、低温靭性及の優れた引張強さ950MPa超のラインパイプ用鋼材が開示されている。
For example, Patent Document 1 discloses a high-strength steel pipe suitable for an American Petroleum Institute standard API X100 grade (tensile strength of 760 MPa or more) line pipe excellent in weld toughness.
Patent Document 2 discloses a steel material for line pipe having a tensile strength exceeding 950 MPa and excellent in low-temperature toughness.

これらの文献に開示されている発明では、化学組成および圧延、水冷条件の制御により組織を最適化し、APIX100級およびX100超級の高強度鋼の母材と溶接部の靭性の改善を図っている。   In the inventions disclosed in these documents, the structure is optimized by controlling the chemical composition, rolling, and water-cooling conditions, and the toughness of the base material and the welded portion of high strength steels of APIX100 grade and X100 grade is improved.

高圧ガスを輸送するラインパイプでは、通常の構造用鋼の必要特性として要求される強度、靭性等の材料特性のみでなく、ガスラインパイプ特有の破壊抵抗性に関する材料特性、いわゆる不安定延性破壊抵抗性の確保が必要とされている。   In line pipes that transport high-pressure gas, not only material characteristics such as strength and toughness required as characteristics of ordinary structural steel, but also material characteristics related to fracture resistance unique to gas line pipes, so-called unstable ductile fracture resistance It is necessary to ensure sex.

通常の構造用鋼における破壊靭性値は脆性破壊に対する抵抗特性を示し、使用環境で脆性破壊が生じないように設計するために用いられる。一方、高圧ガスラインパイプにおいては大規模破壊の回避に対しては脆性破壊抑制だけでは十分ではなく、さらに不安定延性破壊と呼ばれる延性破壊をも抑制する必要がある。   Fracture toughness values in ordinary structural steels show resistance to brittle fracture and are used to design so that brittle fracture does not occur in the environment of use. On the other hand, in high-pressure gas line pipes, it is not sufficient to suppress brittle fracture for avoiding large-scale fracture, and it is also necessary to suppress ductile fracture called unstable ductile fracture.

この不安定延性破壊は、高圧ガスラインパイプにおいて延性破壊が管軸方向に100m/s以上の速度にて伝播する現象で、これによって数kmにもおよぶ大規模破壊が生ずる可能性がある。そのため、超高強度鋼管については不安定延性破壊を抑制するための措置として、多くの実管ガスバースト試験結果に基づき求められた不安定延性破壊抑制のための必要シャルピー衝撃試験特性値(吸収エネルギー値、破面遷移温度)およびDWTT試験特性値(85%破面遷移温度)が規定されており、これらの対応によって超高強度鋼管の不安定延性破壊の抑制が保たれているが、十分でなかった。   This unstable ductile fracture is a phenomenon in which ductile fracture propagates in the direction of the pipe axis at a speed of 100 m / s or more in a high-pressure gas line pipe, which may cause a large-scale fracture of several kilometers. Therefore, for ultra-high strength steel pipes, as a measure to suppress unstable ductile fracture, the characteristic value of Charpy impact test (absorbed energy) required for unstable ductile fracture suppression obtained based on many actual pipe gas burst test results. Value, fracture surface transition temperature) and DWTT test characteristic value (85% fracture surface transition temperature) are specified, and by these measures, the suppression of unstable ductile fracture of ultra-high-strength steel pipes is maintained. There wasn't.

上記特許文献1および2に示されているような従来のX100級やX100超級の超高強度鋼においては、強度およびシャルピー試験により求められる延性および脆性破面遷移温度特性に関しては十分示されているものの、この不安定延性破壊に対する抵抗特性については十分考慮されていなかった。   In conventional ultra-high strength steels of X100 class and X100 superclass as shown in Patent Documents 1 and 2, the ductility and brittle fracture surface transition temperature characteristics required by the strength and Charpy test are sufficiently shown. However, the resistance characteristic against the unstable ductile fracture has not been sufficiently considered.

上記特許文献1および2に示されている超高強度鋼管用鋼板は、熱間圧延後は加速冷却したままの鋼板が製品とされている。一般にラインパイプ用鋼板の製造においては、大量かつできるだけ安価に製造するため、焼きならし、焼き入れ−焼戻し処理などのオフライン(圧延ライン上から外れてバッチで処理する工程)の工程はほとんど使用されず、圧延まま(圧延後、空冷)または加速冷却したまま(圧延後、加速冷却処理を行いその後空冷)の鋼板が製品となる。   The steel sheets for ultra-high-strength steel pipes shown in Patent Documents 1 and 2 are steel sheets that have been accelerated and cooled after hot rolling. In general, in the production of steel plates for line pipes, in order to produce large quantities and as cheaply as possible, offline processes such as normalizing and quenching-tempering processes (processes in batches outside the rolling line) are mostly used. Instead, the product is a steel plate as rolled (after rolling, air cooling) or accelerated cooled (after rolling, subjected to accelerated cooling treatment and then air cooled).

従来のAPI X70級までの鋼管の製造工程においても、高強度化や厚肉化のために加速冷却が適用されていたが、特に不安定延性破壊抵抗性の低下は生じていない。しかし、加速冷却したままの鋼板で製造されたX100級やX100超級の超強度鋼管においては、不安定延性破壊抵抗性が十分に確保できていない場合があった。したがって、その使用においてはクラックアレスターなどの利用を考慮する必要があり、こうしたクラックアレスターなどの利用はパイプライン建設コストの増加をもたらすという問題があった。   In conventional steel pipe manufacturing processes up to API X70 grade, accelerated cooling has been applied to increase the strength and thickness, but there has been no particular decrease in unstable ductile fracture resistance. However, in some cases, X100 grade or X100 grade super-strength steel pipes made of a steel plate that has been accelerated and cooled cannot be sufficiently secured with unstable ductile fracture resistance. Therefore, it is necessary to consider the use of a crack arrester or the like in its use, and there is a problem that the use of such a crack arrester causes an increase in pipeline construction cost.

また、従来の超高強度ラインパイプ用鋼管に用いる鋼板においては、鋼板が硬くなり、鋼管への曲げ成型が困難になり、特に表面が硬化していると、曲げ加工が困難になる。具体的には、加工中に割れを生じる確率が上昇する。割れを防止するためにゆっくり曲げると加工能率が落ちる。また、曲げ加工の精度が悪くなり、シーム溶接の開先精度が確保できなくなり、製管溶接の能率が低下するなどの問題がある。
特開2000−313935号公報 特開平11−041074号公報
Moreover, in the steel plate used for the conventional steel pipe for ultra-high-strength line pipes, a steel plate becomes hard and it becomes difficult to bend into a steel pipe, and especially when the surface is hardened, bending work becomes difficult. Specifically, the probability of causing cracks during processing increases. Slow bending to prevent cracking will reduce machining efficiency. In addition, there is a problem that the accuracy of the bending process is deteriorated, the groove accuracy of the seam welding cannot be secured, and the efficiency of the pipe making welding is lowered.
JP 2000-313935 A Japanese Patent Laid-Open No. 11-041074

本発明は上記問題に鑑みなされたもので、その課題は不安定延性破壊抵抗性の優れた引張強さが760MPa以上の超高強度ラインパイプ用鋼板および鋼管、ならびにその鋼板の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is to provide a steel sheet and a steel pipe for an ultrahigh strength line pipe having an excellent tensile ductility of 760 MPa or more, and a method for producing the steel sheet. There is.

本発明者らは上記課題を解決するため、鋼の化学組成および製造方法について実験を重ねた結果、下記の知見を得るに至った。
1)760MPa以上の超高強度鋼板は、シャルピー吸収エネルギー値やDWTT延性破面率が良好であっても、不安定延性破壊抵抗性に欠けている原因は、加速冷却処理を施したままで使用されていたために鋼板表層部の組織が適切でなく亀裂近傍の延性領域の広がりが制限されるからである。
In order to solve the above problems, the present inventors have conducted experiments on the chemical composition and manufacturing method of steel, and as a result, have obtained the following knowledge.
1) Ultra-high-strength steel sheets of 760 MPa or higher are used with accelerated cooling treatment as the cause of lack of unstable ductile fracture resistance, even if Charpy absorbed energy values and DWTT ductile fracture surface ratio are good. This is because the structure of the surface layer portion of the steel sheet is not appropriate and the spread of the ductile region near the crack is limited.

2)従来のシャルピー試験では鋼板表層部の影響を見ることができず、またDWTT試験においても、鋼板表層部の破面に占める割合が小さいことから破面率による判断では表面硬化層の不安定延性破壊抵抗性に与える悪影響が過少評価されていた。   2) In the conventional Charpy test, the effect of the steel sheet surface layer cannot be seen. Also in the DWTT test, the ratio of the surface area of the steel sheet to the fracture surface is small. The adverse effects on ductile fracture resistance were underestimated.

3)そこでDWTTの吸収エネルギーを用いて評価する必要があり、300J/cm以上のDWTTの吸収エネルギーを確保することにより不安定延性破壊抵抗性を改善することができる。 3) Therefore, it is necessary to evaluate using the absorbed energy of DWTT, and the unstable ductile fracture resistance can be improved by securing the absorbed energy of DWTT of 300 J / cm 2 or more.

4)高強度を低下させることなく、製管工程の曲げ加工性を向上させるために、また加工割れ防止のために延性特性を改善するには、および不安定延性破壊抵抗性を改善するには、TMCP工程の加速冷却後に特殊熱処理をおこない、鋼板表面および裏面の表層部のみを焼き戻しして、表層部の組織を改善すると共に硬度を低下させればよい。   4) To improve bendability in the pipe making process without reducing high strength, to improve ductility characteristics to prevent work cracking, and to improve unstable ductile fracture resistance After the accelerated cooling in the TMCP process, a special heat treatment is performed to temper only the surface layer portions on the front and back surfaces of the steel sheet, thereby improving the structure of the surface layer portion and reducing the hardness.

5)不安定延性破壊抵抗性は、平均旧オーステナイト粒径を18μm以下の細粒組織にすることにより改善される。
本発明は上記の知見に基づきなされたもので、その要旨は以下の通りである。
5) Unstable ductile fracture resistance is improved by making the average prior austenite grain size a fine grain structure of 18 μm or less.
The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.02〜0.1%、Si:0.5%以下、Mn:1〜2.5%、P:0.01%以下、S:0.005%以下、Mo:0.1〜0.8%、Nb:0.005〜0.06%、Ti:0.004〜0.015%、sol.Al:0.05%以下、N:0.001〜0.005%を含み、残部がFe及び不純物からなる化学組成を有し、下記(1)式で表されるPcm1値が0.16〜0.3%の範囲にあり、板厚中心部の平均旧オーステナイト粒径が18μm以下であり、かつベイナイト、マルテンサイト、又はその両者の混合組織からなる鋼板であって、かつ焼き戻しマルテンサイト組織を80%以上含む組織が、鋼板表裏面部に合計で板厚割合で少なくとも5%以上30%以下の部分を占めることを特徴とする引張強さが750MPa以上である、超高強度ラインパイプ用鋼板。。 (1) By mass%, C: 0.02 to 0.1%, Si: 0.5% or less, Mn: 1 to 2.5%, P: 0.01% or less, S: 0.005% or less Mo: 0.1-0.8%, Nb: 0.005-0.06%, Ti: 0.004-0.015%, sol. Al: 0.05% or less, N: 0.001 to 0.005% included, the balance has a chemical composition consisting of Fe and impurities, and the Pcm1 value represented by the following formula (1) is 0.16 to A steel sheet having an average prior austenite grain size in the center of the plate thickness of 18 μm or less and a bainite, martensite, or mixed structure of both, and a tempered martensite structure Is a steel sheet for an ultra-high-strength linepipe having a tensile strength of 750 MPa or more, characterized in that the structure containing 80% or more occupies at least 5% or more and 30% or less of the sheet thickness ratio in the steel sheet front and back surfaces . .

Pcm1=C+Si/30+Mn/20+Ni/60+Mo/15 (1)
(2)質量%で、C:0.02〜0.1%、Si:0.5%以下、Mn:1〜2.5%、P:0.01%以下、P:0.01%以下、S:0.005%以下、Mo:0.1〜0.8%、Nb:0.005〜0.06%、Ti:0.004〜0.015%、sol.Al:0.05%以下、N:0.001〜0.005%を含み、さらにNi:0.1〜2.5%、Cu:1.5%以下、Cr:0.1〜1%、V:0.005〜0.1%、B:0.0003〜0.002%のうちの1種以上を含有し、残部がFe及び不純物からなる化学組成を有し、下記(2)式で表されるPcm2値が0.16〜0.30%の範囲にあり、板厚中心部の平均旧オーステナイト粒径が18μm以下であり、かつベイナイト、マルテンサイト、又はその両者の混合組織からなる鋼板であって、かつ焼き戻しマルテンサイト組織を80%以上含む組織が、鋼板表裏面部に合計で板厚割合で少なくとも5%以上30%以下の部分を占めることを特徴とする引張強さが750MPa以上である、超高強度ラインパイプ用鋼板。
Pcm1 = C + Si / 30 + Mn / 20 + Ni / 60 + Mo / 15 (1)
(2) By mass%, C: 0.02 to 0.1%, Si: 0.5% or less, Mn: 1 to 2.5%, P: 0.01% or less, P: 0.01% or less , S: 0.005% or less, Mo: 0.1-0.8%, Nb: 0.005-0.06%, Ti: 0.004-0.015%, sol. Al: 0.05% or less, N: 0.001-0.005% included, Ni: 0.1-2.5%, Cu: 1.5% or less, Cr: 0.1-1%, V: 0.005 to 0.1%, B: contain one or more of 0.0003 to 0.002%, the balance has a chemical composition consisting of Fe and impurities, A steel sheet having a Pcm2 value in the range of 0.16 to 0.30%, an average prior austenite grain size at the center of the sheet thickness of 18 μm or less, and a bainite, martensite, or mixed structure of both. And the structure containing 80% or more of the tempered martensite structure occupies at least 5% or more and 30% or less of the sheet thickness ratio in total on the front and back surfaces of the steel sheet, and the tensile strength is 750 MPa or more It is a steel plate for ultra high strength line pipe.

Pcm2=C+Si/30+Mn/20+Ni/60+Mo/15+Cu/20+Cr/20+V/10+5B (2)
(3)Feの一部に代えて、質量%でZr:0.03%以下およびCa:0.003%以下の1種または2種を含有する上記(1)または(2)に記載の超高強度ラインパイプ用鋼板。
Pcm2 = C + Si / 30 + Mn / 20 + Ni / 60 + Mo / 15 + Cu / 20 + Cr / 20 + V / 10 + 5B (2)
(3) In place of a part of Fe, the mass as described in (1) or (2) above containing one or two of Zr: 0.03% or less and Ca: 0.003% or less Steel plate for high-strength line pipe.

(4)上記(1)〜(3)のいずれかに記載の超高強度ラインパイプ用鋼板の製造方法であって、上記(1)〜(3)に記載の化学組成を有する鋼片を、950〜1200℃の温度範囲に加熱し、熱間圧延を施した後、850〜650℃の範囲内の温度から少なくとも450℃の温度まで加速冷却処理を施し、その後、焼き戻しマルテンサイト組織を80%以上含む組織が、鋼板表裏面部に合計で板厚割合で少なくとも5%以上30%以下の部分を占めるように、3℃/s以上の昇温速度にて鋼板表層部のみを400〜700℃までの温度に昇温し、その温度で60s以下の保持をおこなう昇温と保持の処理を1回以上することを特徴とする、超高強度ラインパイプ用鋼板の製造方法。 (4) It is a manufacturing method of the steel plate for ultra-high-strength line pipes in any one of said (1)-(3) , Comprising: The steel piece which has a chemical composition as described in said (1)-(3) , After heating to a temperature range of 950 to 1200 ° C. and hot rolling, an accelerated cooling treatment is performed from a temperature in the range of 850 to 650 ° C. to a temperature of at least 450 ° C., and then the tempered martensite structure is 80 % At a rate of temperature increase of 3 ° C./s or more so that only the surface layer portion of the steel plate is 400 to 700 ° C. The manufacturing method of the steel plate for ultra-high-strength line pipes characterized in that the temperature is raised to the temperature up to the temperature, and the temperature raising and holding treatment for holding at that temperature for 60 seconds or less is performed once or more.

(5)加速冷却処理後の昇温を誘導加熱装置により実施する上記(4)に記載の不安定延性破壊抵抗性に優れた超高強度ラインパイプ用鋼板の製造方法
(6)上記(1)〜(3)のいずれかに記載の鋼板からなる引張強さが750MPa以上である超高強度ラインパイプ用溶接鋼管。
(5) The method for producing a steel sheet for ultra-high strength line pipe excellent in unstable ductile fracture resistance according to (4) , wherein the temperature rise after the accelerated cooling treatment is performed by an induction heating device .
(6) A welded steel pipe for an ultrahigh strength line pipe having a tensile strength of 750 MPa or more, comprising the steel plate according to any one of (1) to (3 ) above.

本発明によれば、引張強さが760MPa以上の超高強度である不安定延性破壊抵抗性に優れたラインパイプ用鋼管、およびその素材の成形性の良好な鋼板を経済的に供給することができる。   According to the present invention, it is possible to economically supply a steel pipe for a line pipe excellent in unstable ductile fracture resistance having an ultra-high strength with a tensile strength of 760 MPa or more, and a steel sheet having a good formability of the material. it can.

以下、本発明を実施する最良の形態について詳細に説明する。
(1) 金属組織
平均旧オーステナイト粒径:
平均旧オーステナイト粒径(D)を18μm以下としたのは、粒径が18μmを超えると、超高強度の不安定延性破壊抵抗性優れた鋼板は得られないからである。
粒径が小さいほど変態後の組織も細かくなり、変態後の組織が細かいことが、不安定延性破壊抵抗性に優れた超高強度ラインパイプ用鋼板を得るためには必要不可欠である。望ましくは15μm以下である。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
(1) Metal structure Average old austenite grain size:
The reason why the average prior austenite particle size (D) is set to 18 μm or less is that when the particle size exceeds 18 μm, a steel sheet excellent in ultra-high strength unstable ductile fracture resistance cannot be obtained.
The smaller the particle size, the finer the structure after transformation, and the finer structure after transformation is indispensable for obtaining a steel sheet for ultra-high strength line pipes excellent in unstable ductile fracture resistance. Desirably, it is 15 μm or less.

旧オーステナイト粒界については、本発明のような超高強度のベイナイト組織、マルテンサイト組織、またはその両者の混合組織からなる鋼板の組織では、比較的明瞭に判別できる。もし、不明瞭な場合は、界面活性剤などを加えた腐食液を用いるなどの工夫をすればよい。   The prior austenite grain boundaries can be distinguished relatively clearly in the structure of a steel sheet composed of an ultra-high-strength bainite structure, a martensite structure, or a mixed structure of both, as in the present invention. If it is unclear, it may be devised to use a corrosive solution with a surfactant added.

粒径の測定法としては、JIS G0501(1998) 「鋼のオーステナイト結晶粒度試験方法」を準用するものや画像解析による方法などがあるが、本発明では、旧オーステナイト粒には未再結晶オーステナイトから焼き入れられた扁平粒も含むため、板厚貫通亀裂の抵抗となる板厚方向のオーステナイト粒界の平均間隔を旧オーステナイト粒径の平均粒径とみなした。即ち、圧延方向に平行でかつ板面に垂直な鋼材面について、板厚中心部近傍を500倍の倍率で観察し、板厚方向に100mm(実寸:0.2mm)の直線を5本引き、直線の交点数をカウントし、平均切片長さを求める。同様の作業を5回以上繰り返し実施し、求めた平均切片長さを平均粒径と定義した。   As a method for measuring the grain size, there are a method applying JIS G0501 (1998) “Austenite grain size test method for steel” and a method based on image analysis. In the present invention, the old austenite grains are not recrystallized austenite. Since the hardened flat grains are also included, the average interval between the austenite grain boundaries in the thickness direction, which becomes the resistance of the through-thickness crack, was regarded as the average grain size of the prior austenite grain size. That is, for the steel surface parallel to the rolling direction and perpendicular to the plate surface, the vicinity of the center of the plate thickness is observed at a magnification of 500 times, and five straight lines of 100 mm (actual size: 0.2 mm) are drawn in the plate thickness direction, Count the number of intersections of the straight lines and determine the average intercept length. The same operation was repeated 5 times or more, and the obtained average section length was defined as the average particle diameter.

焼戻しマルテンサイト組織:
鋼板の表裏面の表層部を適切に加熱処理して焼戻しマルテンサイト組織にすることにより不安定延性破壊抵抗を高めることができると共に、鋼板をパイプに成形するときに、超高強度鋼板のために生ずる割れや曲がりにくさを緩和することができ、製管能率を上げることができる。
Tempered martensite organization:
It is possible to increase the unstable ductile fracture resistance by appropriately heat-treating the surface layer part of the front and back surfaces of the steel sheet to obtain a tempered martensite structure, and for forming ultra-high-strength steel sheets when forming steel sheets into pipes. It is possible to alleviate the difficulty of cracking and bending, and to improve the pipe manufacturing efficiency.

焼戻しマルテンサイト組織を80%以上としたのは、不安定延性破壊抵抗の高い超高強度を実現するためには、焼戻しマルテンサイト組織を主体とする組織にする必要があり、その割合が80%未満であると、不安定延性破壊抵抗が不足してしまうからである。すなわち、鋼板表面部に焼き戻されないマルテンサイト組織や他のベイナイト、フェライト組織などを多く含んだ鋼板では超高強度と高い延性破壊抵抗性は両立し得ないのである。   The reason why the tempered martensite structure is 80% or more is that it is necessary to make the structure mainly composed of the tempered martensite structure in order to realize ultra-high strength with high unstable ductile fracture resistance, and the ratio is 80%. It is because unstable ductile fracture resistance will run short if it is less than. That is, a steel sheet containing a large amount of martensite structure and other bainite, ferrite structure, etc. that are not tempered on the steel sheet surface cannot achieve both ultrahigh strength and high ductile fracture resistance.

次に、焼戻しマルテンサイト組織を生成させる部位を鋼板の表面および裏面から深さの合計が板厚の5〜30%に相当するそれぞれの表層部に限定したのは以下の理由による。
板厚の30%超に亘ってマルテンサイト組織にすると、強度の低下をもたらし、また熱処理コストや熱処理に掛かる時間が長くなり、経済性を損なうと同時に、強度低下や溶接性、溶接HAZ靭性の低下をもたらすからである。一方、5%未満では、板厚全体に占める割合が小さすぎ、焼戻しマルテンサイト組織の十分な効果が得られないから下限は5%とした。なお、全て焼戻しマルテンサイト組織にして超高強度を得るためには高合金化する方法も考えられるが、高合金化すれば溶接性や溶接HAZ靭性の劣化をもたらす可能性があるのでこの方法は採用できない。
Next, the reason why the part where the tempered martensite structure is generated is limited to the respective surface layer portions corresponding to 5 to 30% of the plate thickness from the front and back surfaces of the steel plate is as follows.
If a martensite structure is formed over 30% of the plate thickness, strength will be reduced, heat treatment costs and heat treatment time will be prolonged, and economic efficiency will be impaired. At the same time, strength reduction, weldability and weld HAZ toughness will be reduced. This is because it causes a decrease. On the other hand, if it is less than 5%, the proportion of the entire thickness is too small, and a sufficient effect of the tempered martensite structure cannot be obtained, so the lower limit was made 5%. In order to obtain an ultra-high strength with a tempered martensite structure, a method of making a high alloy is also conceivable. However, if a high alloy is used, there is a possibility that deterioration of weldability and weld HAZ toughness may occur. Cannot be adopted.

ここに、「マルテンサイト」とは、組織構造に関するものではなくて、むしろマルテンサイト変態によって生じた変態生成物を指す一般的な用語であり、この変態は原子の協同運動によって生じる固体の相変態を意味する[「レスリー鉄鋼材料学」(S60.5.31. 丸善)p67参照]。   Here, “martensite” does not relate to the structure of the structure, but rather is a general term that refers to a transformation product generated by the martensitic transformation, which is a solid phase transformation caused by the cooperative movement of atoms. [Refer to "Leslie Steel Materialology" (S60.5.31. Maruzen) p67].

すなわち、鋼を、オーステナイト状態から十分な速さで冷却したときに、マルテンサイト変態をして、いわゆる焼きが入った状態になる。このときに生じる組織がマルテンサイトである。   That is, when the steel is cooled at a sufficient speed from the austenite state, it undergoes martensitic transformation and becomes a so-called baked state. The structure formed at this time is martensite.

本発明に係る超高強度ラインパイプ用鋼板にあっては、焼入れ状態のマルテンサイト組織に焼戻しを施して、マルテンサイト相の特性を改善して使用する。
本発明の焼戻しについては、主として加熱による焼戻し処理が好ましいが、Ms点から室温までの過程を利用する「自己焼戻しあるいは自動焼戻し」も可能である[「レスリー鉄鋼材料学」(同)p242参照]。この場合、「自己焼戻しあるいは自動焼戻し」については、マルテンサイト変態後の温度およびその後の冷却過程を制御する必要がある。加熱による焼戻し処理の場合、このような制御の困難さがなく、品質管理が容易におこなえる利点がある。
In the steel sheet for ultra-high strength line pipe according to the present invention, the martensite structure in the quenched state is tempered to improve the characteristics of the martensite phase.
For the tempering of the present invention, a tempering treatment mainly by heating is preferable, but “self-tempering or automatic tempering” using a process from the Ms point to room temperature is also possible [see “Leslie Steel Materialology” (p. 242)]. . In this case, for “self-tempering or automatic tempering”, it is necessary to control the temperature after the martensitic transformation and the subsequent cooling process. In the case of tempering by heating, there is an advantage that quality control can be easily performed without such control difficulty.

ベイナイト組織:
「ベイナイト」は、パーライトとマルテンサイトとの中間で生じる組織であり、等温変態によって生じる組織として研究されてきた[「第3版 鉄鋼便覧 I 基礎」(S56.6.20 丸善)P461参照]。その後、本発明に関係する制御圧延、加速冷却の加工オーステナイトからの変態組織が研究され、その組織形態の類似性から、加工オーステナイトからの変態組織についても、ベイナイトの名称が使われている[「鉄鋼の変態挙動 ―実用材料の変態と性質―」(H1.10.2 日本鉄鋼協会)P11,P58など参照]。
Bainite organization:
“Bainite” is a structure that occurs between pearlite and martensite, and has been studied as a structure generated by isothermal transformation [Refer to “Third Edition Steel Handbook I Basics” (S56.6.20 Maruzen) P461]. Subsequently, the transformation structure from the processed austenite of controlled rolling and accelerated cooling related to the present invention was studied, and from the similarity of the structure form, the name of bainite was also used for the transformed structure from the processed austenite [“ "Transformation Behavior of Steels-Transformation and Properties of Practical Materials" (H1.10.2 Japan Iron and Steel Institute, see P11, P58, etc.)].

ここに、「ベイナイト」は、一般に、上部ベイナイトと下部ベイナイトに分類される。
上部ベイナイトは、比較的高温で生じるベイナイトでラス状フェライトとラス状フェライト境界の棒状ないし針状の炭化物が特徴である。
Here, “bainite” is generally classified into upper bainite and lower bainite.
The upper bainite is a bainite produced at a relatively high temperature and is characterized by rod-like or needle-like carbides at the boundary between lath-like ferrite and lath-like ferrite.

下部ベイナイトは、比較的低温で生じるベイナイトでレンズ状または板状のフェライト相からなり、電子顕微鏡で観察すると、そのフェライト相の内部に炭化物を析出している組織が特徴である[「第3版 鉄鋼便覧 I 基礎」(同)P462参照]。   Lower bainite is a bainite produced at a relatively low temperature and is composed of a lens-like or plate-like ferrite phase. When observed with an electron microscope, the lower bainite is characterized by a structure in which carbides are precipitated in the ferrite phase ["Third Edition". See “Handbook of Iron and Steel I Fundamentals” (ibid.) P.

本発明においては、下部ベイナイトと上部ベイナイトを厳密に区別する必要はないが、本発明に係るベイナイトは、マルテンサイト80%以上生成する製造条件下で生じるベイナイトであり、その形態及び特性から下部ベイナイトに分類される。   In the present invention, it is not necessary to strictly distinguish between lower bainite and upper bainite. However, the bainite according to the present invention is bainite that is produced under production conditions in which 80% or more of martensite is produced. are categorized.

ベイナイト組織については、光学顕微鏡観察あるいは必要により電子顕微鏡観察、CCT図などを併用して同定することができる。
加工CCT図は、「鉄鋼の変態挙動 ―実用材料の変態と性質―」(同)の3章「加工オーステナイトからのCCT図解説」P139にあるように、測定装置の開発により、加工CCT図が容易に得られるようになっており、また、「加工オーステナイトからのCCT図集」が4章に収められているので、類似の組成の鋼については、これを利用することができる。また、通常のCCT図集は、金属データブック(S49.7.20. 丸善)などを利用することができる。
The bainite structure can be identified by observation with an optical microscope or, if necessary, with an electron microscope or a CCT diagram.
Machining CCT diagrams are based on the development of measuring equipment, as described in Chapter 3 “Explanation of CCT Diagrams from Machining Austenite” in “Chapter 3 of“ Transformation Behavior of Iron and Steel—Transformation and Properties of Practical Materials ””. Since it is easy to obtain, and “CCT charts from processed austenite” are contained in Chapter 4, it can be used for steels of similar composition. Moreover, the metal data book (S49.7.20. Maruzen) etc. can be used for normal CCT collections.

なお、本発明に係るマルテンサイト及びベイナイトについては、加工オーステナイトからの変態組織と無加工のオーステナイトからの変態組織(通常の熱処理による)のどちらでもよいものとする。   The martensite and bainite according to the present invention may be either a transformed structure from processed austenite or a transformed structure from unprocessed austenite (by ordinary heat treatment).

しかしながら、組織の微細化という意味で、加工オーステナイトからの変態組織がより微細で好ましいが、所有設備などによって選択することができる。
(2)化学組成
鋼板の化学組成を限定した理由について説明する。なお、各元素の含有量を示す%は「質量%」である。
However, the transformation structure from the processed austenite is finer and preferable in terms of the refinement of the structure, but can be selected depending on the owned equipment.
(2) Chemical composition The reason for limiting the chemical composition of the steel sheet will be described. In addition,% which shows content of each element is "mass%".

C:0.02〜0.1%
Cは鋼板の強度を確保するために必要な元素であり、0.02%未満では十分な強度を確保することができず、0.1%を超えると靭性および不安定延性破壊抵抗性を劣化させる。したがって、C含有量は0.02〜0.1%とした。
C: 0.02-0.1%
C is an element necessary for ensuring the strength of the steel sheet. If it is less than 0.02%, sufficient strength cannot be ensured. If it exceeds 0.1%, the toughness and unstable ductile fracture resistance deteriorate. Let Therefore, the C content is set to 0.02 to 0.1%.

Si:0.5%以下
Siは脱酸のために添加するが、0.5%を超えて含有させると靭性や溶接性を劣化させる。したがって、Si含有量は0.5%以下とした。
Si: 0.5% or less Si is added for deoxidation, but if it exceeds 0.5%, toughness and weldability are deteriorated. Therefore, the Si content is set to 0.5% or less.

Mn:1〜2.5%
Mnは鋼の強度および靭性を向上させる効果があり、1%未満ではその効果が十分ではなく、一方2.5%を超えると溶接性が劣化する。したがって、Mn含有量は1〜2.5%とした。
Mn: 1 to 2.5%
Mn has the effect of improving the strength and toughness of the steel, and if it is less than 1%, the effect is not sufficient, while if it exceeds 2.5%, the weldability deteriorates. Therefore, the Mn content is set to 1 to 2.5%.

P:0.01%以下
Pは不可避不純物元素で溶接性を劣化させる。この傾向は0.01%を超えると顕著となので、P含有量は0.01%以下とした。
P: 0.01% or less P is an inevitable impurity element and deteriorates weldability. Since this tendency becomes remarkable when it exceeds 0.01%, the P content is set to 0.01% or less.

S:0.005%以下
Sは鋼中においては一般にMnS系の介在物となり、不安定延性破壊抵抗性を劣化させる。また、Ca添加によりMnS系からCaS系介在物に形態制御されるが、Sの含有量が多いとCaS系介在物の量も多くなり、不安定延性破壊抵抗性を劣化させる。この傾向は、S量が0.005%を超えると顕著となる。したがって、S含有量は0.005%以下とした。
S: 0.005% or less S is generally an MnS-based inclusion in steel, and deteriorates unstable ductile fracture resistance. Further, although the form is controlled from the MnS type to the CaS type inclusion by addition of Ca, if the content of S is large, the amount of CaS type inclusion also increases and the unstable ductile fracture resistance is deteriorated. This tendency becomes remarkable when the S content exceeds 0.005%. Therefore, the S content is set to 0.005% or less.

Mo:0.1〜0.8%
Moは靭性の改善と強度の上昇に有効な元素であるが、0.8%を超えて含有させると溶接性や不安定延性破壊抵抗性を劣化させる。したがって、Mo含有量の上限は0.8%とした。一方、0.1%以上含有させないと靭性の改善と強度の上昇効果が小さいので、下限を0.10とした。
Mo: 0.1 to 0.8%
Mo is an element effective for improving toughness and increasing strength. However, if contained over 0.8%, weldability and unstable ductile fracture resistance are deteriorated. Therefore, the upper limit of the Mo content is set to 0.8%. On the other hand, since the effect of improving toughness and increasing the strength is small unless the content is 0.1% or more, the lower limit is set to 0.10.

Nb:0.005〜0.06%
Nbは圧延時や焼入れ時の粒成長を抑制し、微細粒化により靭性を向上させる効果がある。しかし、Nb含有量が0.005%未満ではその効果がなく、0.06%を超えると溶接熱影響部の靭性が劣化する。したがって、Nb含有量は0.005〜0.06%とした。
Nb: 0.005 to 0.06%
Nb has the effect of suppressing grain growth during rolling and quenching and improving toughness by making fine grains. However, if the Nb content is less than 0.005%, the effect is not obtained, and if it exceeds 0.06%, the toughness of the heat affected zone is deteriorated. Therefore, the Nb content is set to 0.005 to 0.06%.

Ti:0.004〜0.015%
TiはTiNを形成して溶接HAZ部の靭性を改善する効果がある。しかし、Ti含有量が0.004%未満ではその効果がなく、0.015%を超えると靭性が劣化する。したがって、Ti含有量は0.004〜0.015%、好ましくは0.005〜0.015%とした。
Ti: 0.004 to 0.015%
Ti has the effect of forming TiN and improving the toughness of the welded HAZ part. However, when the Ti content is less than 0.004%, there is no effect, and when it exceeds 0.015%, the toughness deteriorates. Therefore, the Ti content is set to 0.004 to 0.015%, preferably 0.005 to 0.015%.

sol.Al:0.05%以下
Alは脱酸剤として添加するが、0.05%を超えて含有させると清浄度の低下により不安定延性破壊抵抗性を劣化させる。したがって、Al含有量は0.05%以下とした。
sol. Al: 0.05% or less Al is added as a deoxidizing agent, but if it exceeds 0.05%, unstable ductile fracture resistance is deteriorated due to a decrease in cleanliness. Therefore, the Al content is set to 0.05% or less.

N:0.001〜0.005%
NはTiNを形成して溶接HAZ部の靭性を改善する効果がある。しかし、N含有量が0.001%未満ではその効果がなく、0.0050%を超えると靭性が劣化する。したがって、N含有量は0.001〜0.005%とした。
以下の元素は必要により含有させることができる。
N: 0.001 to 0.005%
N has the effect of forming TiN and improving the toughness of the welded HAZ part. However, if the N content is less than 0.001%, the effect is not obtained, and if it exceeds 0.0050%, the toughness deteriorates. Therefore, the N content is set to 0.001 to 0.005%.
The following elements can be contained if necessary.

Ni、Cu、Cr、VおよびBの1種以上:
これらの元素は、強度を高める効果があるので必要により1種以上含有させてもよい。
Niは強度を高める効果がある他に靱性改善効果もある。しかし、高価な元素であり2.5%を超えて含有させてもコスト上昇の割りには効果が小さい。したがって、Niを含有させる場合は2.5%以下とした。一方、0.1%以上含有させないと靭性改善と強度向上効果が小さいので、下限は0.1%とした。
One or more of Ni, Cu, Cr, V and B:
Since these elements have an effect of increasing the strength, one or more of these elements may be contained as necessary.
Ni has an effect of improving the toughness in addition to the effect of increasing the strength. However, even if it is an expensive element and exceeds 2.5%, the effect is small for the increase in cost. Therefore, when Ni is contained, the content is set to 2.5% or less. On the other hand, unless the content is 0.1% or more, the toughness improvement and strength improvement effects are small, so the lower limit was made 0.1%.

Cuも強度を高める他に靭性を改善する元素であるが、1.5%を超えて含有させると溶接性が劣化する。従って、Cuを含有させる場合の上限は1.5%とした。なお、Cuは微量含有させても上記効果が得られるので、下限は特に限定しない。   Cu is an element that improves toughness in addition to increasing the strength, but if it exceeds 1.5%, weldability deteriorates. Therefore, the upper limit when Cu is contained is set to 1.5%. In addition, since the said effect is acquired even if it contains a trace amount of Cu, a minimum is not specifically limited.

Crは、Mnと同様に低Cでも十分な強度を得るために有効な元素であるが、1%を超えて含有させると溶接性が劣化する。したがって、Crを含有させる場合の上限は1%とした。一方、0.1%以上含有させないと靭性の改善と強度の上昇効果が小さいので下限は0.1%とした。   Cr, like Mn, is an element effective for obtaining sufficient strength even at low C, but if it exceeds 1%, weldability deteriorates. Therefore, the upper limit when Cr is contained is set to 1%. On the other hand, if the content is not more than 0.1%, the effect of improving toughness and increasing the strength are small, so the lower limit was made 0.1%.

Vは靭性、溶接性を劣化させずに強度を上昇させる効果があるが、0.1%を超えて含有させると溶接性を著しく損なう。したがって、Vを含有させる場合の上限は0.1%以下とした。一方、0.005%以上含有させないと靭性の改善と強度の上昇効果が小さいので、下限は0.1%とした。   V has the effect of increasing the strength without deteriorating toughness and weldability, but if it exceeds 0.1%, the weldability is significantly impaired. Therefore, the upper limit when V is contained is set to 0.1% or less. On the other hand, if 0.005% or more is not contained, the effect of improving toughness and increasing strength is small, so the lower limit was made 0.1%.

Bは、微量で鋼の焼き入れ性を高めて強度を向上させる元素として有用である。B含有量が0.0003%未満ではその効果がなく、0.002%を超えるとかえって焼き入れ性が低下するので上限を0.002%とした。したがって、B量を含有させる場合の含有量を0.0003〜0.002%とした。   B is useful as an element that improves the hardenability of the steel and improves the strength in a small amount. If the B content is less than 0.0003%, the effect is not obtained, and if it exceeds 0.002%, the hardenability deteriorates, so the upper limit was made 0.002%. Therefore, the content when the B content is included is set to 0.0003 to 0.002%.

Zr、Caの1種または2種:
ZrおよびCaは溶接HAZ部の靭性改善に効果を発揮する元素であり、必要により少なくとも1種含有させてもよい。
One or two of Zr and Ca:
Zr and Ca are elements that exert an effect on improving the toughness of the welded HAZ part, and may be contained as required.

Zrは、窒化物、酸化物や硫化物などを形成することを通じて溶接HAZ部靭性改善に役立つ。しかし、Zr量が0.03%を超えると靭性を劣化させるため、Zr含有量の上限を0.03%とした。Zrは微量でも上記効果があるので下限は限定しないが、その効果を十分なものとするには0.003%以上の添加が望ましい。   Zr is useful for improving the toughness of the welded HAZ part by forming nitrides, oxides, sulfides and the like. However, if the Zr content exceeds 0.03%, the toughness is deteriorated, so the upper limit of the Zr content is set to 0.03%. Zr has the above-mentioned effects even in a very small amount, so the lower limit is not limited, but 0.003% or more is desirable to make the effect sufficient.

Caは硫化物系介在物の形態制御に有効な元素であり、微量でも効果があるので、下限は特に限定しない。一方、0.003%を超えて含有させても効果が飽和し、むしろ清浄度の低下により耐HIC性を劣化させる。したがって、Ca含有量の上限は0.003%とした。また、酸化物制御によりHAZ部靭性の改善効果もあるが、靭性を積極的に改善したい場合は0.0004%以上含有させるのが望ましい。   Ca is an element effective for controlling the form of sulfide inclusions and is effective even in a trace amount, so the lower limit is not particularly limited. On the other hand, even if the content exceeds 0.003%, the effect is saturated, and rather the HIC resistance is deteriorated due to a decrease in cleanliness. Therefore, the upper limit of the Ca content is set to 0.003%. Moreover, although there exists an improvement effect of HAZ part toughness by oxide control, when it is desired to improve toughness positively, it is desirable to make it contain 0.0004% or more.

溶接割れ感受性組成:Pcm 0.16〜0.3%
溶接割れ感受性組成Pcmは、X65級以上の強度を確保するためには0.16%以上が必要であので、下限を0.16%とした。一方、0.3%を超えると、溶接性が悪くなるんで、上限を0.3%とした。ただし、溶接性を重視する場合、上限を0.25%とすることが好ましい。Pcmは化学組成により次の2つの式を使い分ける必要がある。
Weld cracking susceptibility composition: Pcm 0.16-0.3%
The weld cracking susceptibility composition Pcm needs to be 0.16% or more in order to ensure the strength of X65 grade or higher, so the lower limit was made 0.16%. On the other hand, if it exceeds 0.3%, the weldability deteriorates, so the upper limit was made 0.3%. However, when emphasizing weldability, the upper limit is preferably set to 0.25%. Pcm needs to be properly used according to the following two formulas depending on the chemical composition.

Pcm1=C+Si/30+Mn/20+Ni/60+Mo/15
Pcm2=C+Si/30+Mn/20+Ni/60+Mo/15+Cu/20+Cr/20+V/10+5B
なお、本発明の鋼の残部は実質的に鉄であり、上記以外の元素及び不可避不純物については、本発明の効果を損なわない限り含有することができる。
Pcm1 = C + Si / 30 + Mn / 20 + Ni / 60 + Mo / 15
Pcm2 = C + Si / 30 + Mn / 20 + Ni / 60 + Mo / 15 + Cu / 20 + Cr / 20 + V / 10 + 5B
The balance of the steel of the present invention is substantially iron, and elements other than the above and inevitable impurities can be contained unless the effects of the present invention are impaired.

(3)鋼板の製造方法
加熱温度:
鋼片の加熱温度が、950℃未満では鋼の変形抵抗が大きく、所定の圧延仕上げ温度を確保することができないだけでなく、目標の強度が得られなくなる場合も生ずるため下限を950℃とした。一方、1200℃を超える温度では、鋼のオーステナイト粒径が粗大化して圧延後の鋼の靭性を劣化させるだけでなく、エネルギー効率が悪くなるうえスラブの表面酸化による圧延スケールも著しいので、上限を1200℃とした。
(3) Steel plate manufacturing method Heating temperature:
If the heating temperature of the slab is less than 950 ° C., the deformation resistance of the steel is large, and not only the predetermined rolling finishing temperature cannot be secured but also the target strength cannot be obtained, so the lower limit is set to 950 ° C. . On the other hand, when the temperature exceeds 1200 ° C., not only does the austenite grain size of the steel become coarse and the toughness of the steel after rolling deteriorates, but also the energy efficiency becomes worse and the rolling scale due to surface oxidation of the slab is remarkable, so the upper limit is set. It was 1200 degreeC.

なお、仕上げ温度については、特に規定しないが880℃〜680℃が望ましい。その理由は、880℃を超える仕上げ温度では、十分な微細組織が得られず十分な不安定延性破壊抵抗が得られない場合があるので、上限は880℃が望ましい。また、680℃を下回る温度では、圧延の影響が強くなりすぎ圧延集合組織などが残り十分な不安定延性破壊抵抗が得られない場合があるので、下限を680℃とするのが望ましい。   In addition, about finishing temperature, although it does not prescribe | regulate in particular, 880 to 680 degreeC is desirable. The reason is that at a finishing temperature exceeding 880 ° C., a sufficient microstructure cannot be obtained and sufficient unstable ductile fracture resistance may not be obtained, so the upper limit is desirably 880 ° C. Further, at a temperature lower than 680 ° C., the influence of rolling becomes so strong that the rolling texture remains and sufficient unstable ductile fracture resistance may not be obtained, so the lower limit is desirably 680 ° C.

加速冷却:
圧延後、焼入れ組織とするために加速冷却処理を施すが、加速冷却とは水などの冷却媒体を用いて空冷より早い速度で鋼板を冷却することをいう。
Accelerated cooling:
After rolling, an accelerated cooling treatment is performed in order to obtain a quenched structure. Accelerated cooling refers to cooling a steel sheet at a faster speed than air cooling using a cooling medium such as water.

加速冷却開始温度が850℃を超えると、冷却後の板厚中心と表面の組織差が拡大し、水冷後に表層の組織を変える処理を実施しても十分な不安定延性破壊抵抗が得られない場合が生ずるので、加速冷却の開始温度の上限は850℃とした。また、650℃を下回る温度から加速冷却をおこなうと、十分な焼き入れ性が確保できず所望の強度が得られないだけでなく、靭性および不安定延性破壊抵抗性が損なわれるため、加速冷却開始温度の下限を50℃とした。   When the accelerated cooling start temperature exceeds 850 ° C., the difference in structure between the center of the plate thickness after cooling and the surface is enlarged, and sufficient unstable ductile fracture resistance cannot be obtained even if the surface layer structure is changed after water cooling. In some cases, the upper limit of the start temperature of accelerated cooling was set to 850 ° C. In addition, if accelerated cooling is performed from a temperature lower than 650 ° C., not only sufficient hardenability can be secured and the desired strength cannot be obtained, but also the toughness and unstable ductile fracture resistance are impaired. The lower limit of the temperature was 50 ° C.

加速冷却停止温度が450℃を超える場合は、マルテンサイト変態あるいは下部ベイナイト変態を十分完了させることができず、所定の組織割合が得られなくなるので、その上限を450℃とした。下限については特に限定する必要はないが、エネルギー効率の観点からは200℃以上とするのが望ましい。   When the accelerated cooling stop temperature exceeds 450 ° C., the martensite transformation or the lower bainite transformation cannot be sufficiently completed, and a predetermined structure ratio cannot be obtained. Therefore, the upper limit is set to 450 ° C. The lower limit is not particularly limited, but is preferably 200 ° C. or higher from the viewpoint of energy efficiency.

加速冷却後の昇温:
昇温速度が3℃/s未満の速度では、昇温に時間が掛かりすぎ、昇温途中で鋼材の特性が影響を受けてしまい、安定して所定の特性を確保できなくなるので、昇温速度の下限を3℃/s以上とした。上限は特に限定しないが、加熱手段の能力により上限は必然的に制限されることになる。
Temperature rise after accelerated cooling:
If the rate of temperature increase is less than 3 ° C./s, it takes too much time to increase the temperature, and the characteristics of the steel material are affected during the temperature increase, making it impossible to secure the predetermined characteristics stably. The lower limit of 3 ° C./s or more. The upper limit is not particularly limited, but the upper limit is necessarily limited by the capability of the heating means.

鋼板表層部の温度とは、放射温度計または鋼板表面部に溶着させた熱電対にて測定された鋼板表面部近傍の温度をいう。鋼板の表裏面の両方を計測することが好ましいが、鋼板の表裏面がほぼ対称な温度分布になることが推定される場合は、片面側だけの計測でもよい。   The temperature of the steel plate surface layer means the temperature in the vicinity of the steel plate surface portion measured by a radiation thermometer or a thermocouple welded to the steel plate surface portion. It is preferable to measure both the front and back surfaces of the steel plate, but when it is estimated that the front and back surfaces of the steel plate have a substantially symmetrical temperature distribution, measurement on only one side may be performed.

昇温温度については、400℃未満では焼戻しが不十分となり十分な不安定延性破壊抵抗性を確保することができなくなるため下限を400℃とした。一方、700℃を超えると強度低下が大きくなり、目標とする引張強さの760MPa以上を確保することができなくなるのみでなく、加熱エネルギーが多くなるため、上限を700℃とした。   Regarding the temperature elevation temperature, if the temperature is lower than 400 ° C., the tempering is insufficient and sufficient unstable ductile fracture resistance cannot be secured, so the lower limit is set to 400 ° C. On the other hand, when the temperature exceeds 700 ° C., the strength decreases greatly, and not only the target tensile strength of 760 MPa or more cannot be secured, but also the heating energy increases, so the upper limit is set to 700 ° C.

昇温した温度で保持する時間が、60sを超えると760MPa以上の引張さを確保することができなくなるのみならず、昇温時間が長くなることによる生産性の低下をきたすため、上限を60sとした。また、下限は特に限定しないが鋼板が瞬時でも目標の昇温温度になれば効果が得られるので1秒以下であってもよい。   If the time of holding at the raised temperature exceeds 60 s, not only will it be impossible to ensure a tensile strength of 760 MPa or more, but also the productivity will be lowered due to the increased temperature raising time, so the upper limit is set to 60 s. did. Further, the lower limit is not particularly limited, but an effect can be obtained if the steel plate reaches the target temperature rise even instantaneously, and may be 1 second or less.

昇温と保持の処理を1回以上するのは、1回未満では鋼板表面組織を所定の焼戻し組織とすることが出来ず、所望の不安定延性破壊抵抗が得られないためである。また処理回数増えるほど、不安定延性破壊抵抗が増大する傾向があるが、コストの観点から昇温・保持処理は1〜3回の回数が望ましい。   The reason why the temperature raising and holding treatment is performed once or more is that if it is less than once, the steel sheet surface structure cannot be a predetermined tempered structure, and a desired unstable ductile fracture resistance cannot be obtained. Further, the unstable ductile fracture resistance tends to increase as the number of treatments increases, but from the viewpoint of cost, the temperature raising / holding treatment is desirably performed 1 to 3 times.


圧延後の昇温方法については誘導加熱装置や直接または反射式加熱バーナを用いた加熱炉を用いるなどの方法があるが、この内誘導加熱が、本発明の加速冷却によって硬化した鋼板表面組織の焼戻し処理に対し好適である。

As for the temperature raising method after rolling, there is a method such as using a heating furnace using an induction heating device or a direct or reflective heating burner, but this induction heating is a method of the steel sheet surface texture hardened by the accelerated cooling of the present invention. Suitable for tempering treatment.

(3)ラインパイプ用溶接鋼管
超高強度ラインパイプ用溶接鋼管は、本発明で規定した鋼板を冷間加工または温間加工によって、鋼管の形状に成形した鋼板の端部同士を溶接によって接合することにより製造した鋼管である。通常は、室温での冷間成形がおこなわれる。しかし、冬期などでは冷間成形時に鋼板に割れを生じることがあり、室温以上のそれほど高くない温度に鋼板を熱して加工をおこなうことがある。これを温間加工という。
(3) Welded steel pipe for line pipes Welded steel pipes for ultra-high-strength line pipes join the ends of steel sheets formed into steel pipe shapes by welding by cold working or warm working of steel sheets specified in the present invention. It is a steel pipe manufactured by this. Usually, cold forming at room temperature is performed. However, in winter and the like, cracks may occur in the steel sheet during cold forming, and the steel sheet may be heated to a temperature that is not so high above room temperature. This is called warm processing.

鋼板端部を接合する溶接は通常の方法でよく、円筒状になった鋼板の開先部をまず炭酸ガス溶接などで仮付け溶接し、その後サブマージドアーク溶接で本溶接をおこなうことが多い。   The welding for joining the end portions of the steel plates may be a normal method. In many cases, the groove portions of the cylindrical steel plates are first tack welded by carbon dioxide gas welding or the like, and then main welding is performed by submerged arc welding.

鋼板の曲げ成形性が悪いと開先精度が悪くなり、溶接欠陥を生じることが多いので鋼板の成形性は、超高強度ラインパイプ用鋼管用としては重要な特性である。本発明によれば十分な曲げ加工精度を確保できる。   If the bend formability of the steel sheet is poor, the groove accuracy deteriorates and weld defects are often generated. Therefore, the formability of the steel sheet is an important characteristic for a steel pipe for an ultra high strength line pipe. According to the present invention, sufficient bending accuracy can be ensured.

表1に示す記号A〜Lのそれぞれの化学組成を有する鋼を溶製した後鍛造によりスラブとし、表2に示す製造条件で熱間圧延をおこない、次いで表2に示すように条件を種々変えて水冷による加速冷却処理を施した後、誘導加熱装置を用いて再加熱処理を施し、板厚20mmの熱間圧延鋼板を製造した。   After melting steels having respective chemical compositions of symbols A to L shown in Table 1, the slab is formed by forging, hot rolling is performed under the manufacturing conditions shown in Table 2, and then the conditions are changed variously as shown in Table 2. After performing the accelerated cooling process by water cooling, the reheating process was performed using the induction heating apparatus, and the hot rolled steel plate with a plate thickness of 20 mm was manufactured.

Figure 0004193757
Figure 0004193757

Figure 0004193757
Figure 0004193757

これらの鋼板から、顕微鏡組織観察用の試料、API(アメリカ石油協会) 5Lに規定の板状引張り試験片、JIS(日本工業規格) Z2202に規定の2mmVノッチのシャルピー衝撃試験片、およびAPI RP5L3に規定のDWTT試験片を採取した。   From these steel sheets, a sample for microscopic observation, a plate-shaped tensile test piece specified in API (American Petroleum Institute) 5L, a Charpy impact test piece of 2 mm V notch specified in JIS (Japanese Industrial Standard) Z2202, and API RP5L3 A specified DWTT specimen was taken.

金属組織は光学顕微鏡にて、表層部の焼戻し組織の占める割合と、その組織の占める鋼板表面からの深さを調べ、また表層部以外の組織の状態を調べた。
平均旧オーステナイト粒径の計測は、圧延方向に平行でかつ板面に垂直な鋼材面について、板厚中心部近傍を500倍の倍率で観察し、板厚方向に100mm(実寸:0.2mm)の直線を5本引き、直線の交点数をカウントし、平均切片長さを求め、同様の作業を5回以上繰り返し実施し、求めた平均切片長さを平均旧オーステナイト粒径とした。金属組織の調査結果は表2に示す通りであった。
As for the metal structure, the ratio of the tempered structure in the surface layer part and the depth from the steel plate surface occupied by the structure were examined with an optical microscope, and the state of the structure other than the surface layer part was examined.
The average prior austenite grain size was measured by observing the vicinity of the center of the thickness of the steel material surface parallel to the rolling direction and perpendicular to the plate surface at a magnification of 500 times, and measuring 100 mm in the plate thickness direction (actual size: 0.2 mm). 5 were drawn, the number of intersections of the straight lines was counted, the average intercept length was obtained, the same operation was repeated 5 times or more, and the obtained mean intercept length was defined as the average prior austenite grain size. The results of the metal structure investigation are shown in Table 2.

DWTT試験は、元板厚x3インチ幅x12インチ長さの試験片中央部に0.2インチ深さのV字状のプレスノッチを施した試験片に所定の温度で衝撃荷重を与え、その破壊に際するエネルギー値と試験片破面の延性/脆性破面率を測定する試験で、鋼材の不安定延性破壊抵抗を評価する試験である。従来強度グレード鋼では試験温度における延性破面率が85%であれば、その温度において十分な不安定延性破壊抵抗を有すると求められていたが、引張強さ750MPa以上の超高強度鋼においては延性破面率の確保に加え、300J/cmの吸収エネルギー値の確保が必要である。 In the DWTT test, an impact load was applied to a test piece having a V-shaped press notch with a depth of 0.2 inch at the center of the test piece having a thickness of 3 inches and a width of 12 inches. In this test, the energy value and the ductility / brittle fracture surface ratio of the specimen fracture surface are measured, and the unstable ductile fracture resistance of the steel material is evaluated. In conventional strength grade steel, if the ductile fracture surface ratio at the test temperature is 85%, it was required to have sufficient unstable ductile fracture resistance at that temperature, but in ultra-high strength steel with a tensile strength of 750 MPa or more. In addition to securing the ductile fracture surface ratio, it is necessary to secure an absorbed energy value of 300 J / cm 2 .

各試験結果を表3に示す。   The test results are shown in Table 3.

Figure 0004193757
Figure 0004193757

表3から明らかなように本発明例で示す各鋼板は、本発明で規定する金属組織になっていない比較例に比べ、DWTT試験での吸収エネルギーが極めて大きく、引張り強さが750MPa以上と超高強度でありながら不安定延性破壊抵抗性に優れていることが分かる。   As is apparent from Table 3, each steel plate shown in the present invention example has an extremely large absorbed energy in the DWTT test and a tensile strength exceeding 750 MPa or more, compared with a comparative example not having a metal structure defined in the present invention. It turns out that it is excellent in unstable ductile fracture resistance though it is high intensity | strength.

Claims (6)

質量%で、C:0.02〜0.1%、Si:0.5%以下、Mn:1〜2.5%、P:0.01%以下、S:0.005%以下、Mo:0.1〜0.8%、Nb:0.005〜0.06%、Ti:0.004〜0.015%、sol.Al:0.05%以下、N:0.001〜0.005%を含み、残部がFe及び不純物からなる化学組成を有し、下記(1)式で表されるPcm1値が0.16〜0.3%の範囲にあり、
板厚中心部の平均旧オーステナイト粒径が18μm以下であり、かつベイナイト、マルテンサイト、又はその両者の混合組織からなる鋼板であって、かつ焼き戻しマルテンサイト組織を80%以上含む組織が、鋼板表裏面部に合計で板厚割合で少なくとも5%以上30%以下の部分を占めることを特徴とする引張強さが750MPa以上である、超高強度ラインパイプ用鋼板。
Pcm1=C+Si/30+Mn/20+Ni/60+Mo/15 (1)
In mass%, C: 0.02 to 0.1%, Si: 0.5% or less, Mn: 1 to 2.5%, P: 0.01% or less, S: 0.005% or less, Mo: 0.1-0.8%, Nb: 0.005-0.06%, Ti: 0.004-0.015%, sol. Al: 0.05% or less, N: 0.001 to 0.005% included, the balance has a chemical composition consisting of Fe and impurities, and the Pcm1 value represented by the following formula (1) is 0.16 to In the range of 0.3%,
A steel sheet having an average prior austenite grain size of 18 μm or less at the center of the plate thickness and comprising a bainite, martensite, or a mixed structure of both, and a structure containing 80% or more of a tempered martensite structure. A steel sheet for ultra-high-strength line pipes having a tensile strength of 750 MPa or more, characterized by occupying at least 5% to 30% of the total thickness of the front and back surfaces .
Pcm1 = C + Si / 30 + Mn / 20 + Ni / 60 + Mo / 15 (1)
質量%で、C:0.02〜0.1%、Si:0.5%以下、Mn:1〜2.5%、P:0.01%以下、P:0.01%以下、S:0.005%以下、Mo:0.1〜0.8%、Nb:0.005〜0.06%、Ti:0.004〜0.015%、sol.Al:0.05%以下、N:0.001〜0.005%を含み、さらにNi:0.1〜2.5%、Cu:1.5%以下、Cr:0.1〜1%、V:0.005〜0.1%、B:0.0003〜0.002%のうちの1種以上を含有し、残部がFe及び不純物からなる化学組成を有し、下記(2)式で表されるPcm2値が0.16〜0.30%の範囲にあり、
板厚中心部の平均旧オーステナイト粒径が18μm以下であり、かつベイナイト、マルテンサイト、又はその両者の混合組織からなる鋼板であって、かつ焼き戻しマルテンサイト組織を80%以上含む組織が、鋼板表裏面部に合計で板厚割合で少なくとも5%以上30%以下の部分を占めることを特徴とする引張強さが750MPa以上である、超高強度ラインパイプ用鋼板。
Pcm2=C+Si/30+Mn/20+Ni/60+Mo/15+Cu/20+Cr/20+V/10+5B (2)
In mass%, C: 0.02 to 0.1%, Si: 0.5% or less, Mn: 1 to 2.5%, P: 0.01% or less, P: 0.01% or less, S: 0.005% or less, Mo: 0.1-0.8%, Nb: 0.005-0.06%, Ti: 0.004-0.015%, sol. Al: 0.05% or less, N: 0.001-0.005% included, Ni: 0.1-2.5%, Cu: 1.5% or less, Cr: 0.1-1%, V: 0.005 to 0.1%, B: contain one or more of 0.0003 to 0.002%, the balance has a chemical composition consisting of Fe and impurities, The represented Pcm2 value is in the range of 0.16 to 0.30%,
A steel sheet having an average prior austenite grain size of 18 μm or less at the center of the plate thickness and comprising a bainite, martensite, or a mixed structure of both, and a structure containing 80% or more of a tempered martensite structure. A steel sheet for ultra-high-strength line pipes having a tensile strength of 750 MPa or more, characterized by occupying at least 5% to 30% of the total thickness of the front and back surfaces .
Pcm2 = C + Si / 30 + Mn / 20 + Ni / 60 + Mo / 15 + Cu / 20 + Cr / 20 + V / 10 + 5B (2)
Feの一部に代えて、質量%でZr:0.03%以下およびCa:0.003%以下の1種または2種を含有することを特徴とする請求項1または2に記載の超高強度ラインパイプ用鋼板。 The super-high content according to claim 1 or 2 , wherein one or two of Zr: 0.03% or less and Ca: 0.003% or less are contained in mass% instead of a part of Fe. Steel plate for strength line pipe. 請求項1〜3のいずれかに記載の超高強度ラインパイプ用鋼板の製造方法であって、
請求項1〜3のいずれかに記載の化学組成を有する鋼片を、950〜1200℃の温度範囲に加熱し、熱間圧延を施した後、850〜650℃の範囲内の温度から少なくとも450℃の温度まで加速冷却処理を施し、その後、焼き戻しマルテンサイト組織を80%以上含む組織が、鋼板表裏面部に合計で板厚割合で少なくとも5%以上30%以下の部分を占めるように、3℃/s以上の昇温速度にて鋼板表層部のみを400〜700℃までの温度に昇温し、その温度で60s以下の保持をおこなう昇温と保持の処理を1回以上することを特徴とする、超高強度ラインパイプ用鋼板の製造方法。
It is a manufacturing method of the steel plate for ultra-high-strength line pipe according to any one of claims 1 to 3,
The steel slab having the chemical composition according to any one of claims 1 to 3 is heated to a temperature range of 950 to 1200 ° C and subjected to hot rolling, and then at least 450 from a temperature in the range of 850 to 650 ° C. Accelerated cooling treatment is performed to a temperature of 0 ° C., and then the structure containing 80% or more of the tempered martensite structure occupies at least 5% or more and 30% or less of the sheet thickness ratio in the steel sheet front and back surfaces. It is characterized in that only the surface layer of the steel sheet is heated to a temperature of 400 to 700 ° C. at a temperature rising rate of at least ° C./s, and the temperature raising and holding treatment for holding for 60 s or less at that temperature is performed once or more. The manufacturing method of the steel plate for super high-strength line pipes.
加速冷却処理後の昇温を誘導加熱装置により実施することを特徴とする、請求項に記載の超高強度ラインパイプ用鋼板の製造方法 The method for producing a steel sheet for ultra-high-strength line pipe according to claim 4 , wherein the temperature rise after the accelerated cooling treatment is performed by an induction heating device . 請求項1〜のいずれかに記載の鋼板からなる引張強さが750MPa以上である超高強度ラインパイプ用溶接鋼管。 Ultra-high-strength line welded steel pipe for tensile strength consisting of steel plate is not less than 750MPa according to any one of claims 1-3.
JP2004169952A 2004-06-08 2004-06-08 Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe Expired - Fee Related JP4193757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004169952A JP4193757B2 (en) 2004-06-08 2004-06-08 Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004169952A JP4193757B2 (en) 2004-06-08 2004-06-08 Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe

Publications (2)

Publication Number Publication Date
JP2005350688A JP2005350688A (en) 2005-12-22
JP4193757B2 true JP4193757B2 (en) 2008-12-10

Family

ID=35585412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169952A Expired - Fee Related JP4193757B2 (en) 2004-06-08 2004-06-08 Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe

Country Status (1)

Country Link
JP (1) JP4193757B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270194A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
JP4848966B2 (en) * 2007-01-29 2011-12-28 住友金属工業株式会社 Thick-wall high-tensile steel plate and manufacturing method thereof
JP5139015B2 (en) * 2007-09-18 2013-02-06 株式会社神戸製鋼所 Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
CN101418416B (en) * 2007-10-26 2010-12-01 宝山钢铁股份有限公司 Low welding crack sensitivity steel plate with yield strength of 800MPa grade and method for producing the same
JP5217385B2 (en) * 2007-11-21 2013-06-19 Jfeスチール株式会社 Steel sheet for high toughness line pipe and method for producing the same
JP5181697B2 (en) * 2008-01-25 2013-04-10 Jfeスチール株式会社 High strength steel plate with excellent PWHT resistance and method for producing the same
JP5151510B2 (en) * 2008-01-30 2013-02-27 新日鐵住金株式会社 Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP5348386B2 (en) * 2008-10-24 2013-11-20 Jfeスチール株式会社 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
JP5786720B2 (en) * 2012-01-05 2015-09-30 Jfeスチール株式会社 High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same
KR101830437B1 (en) 2016-04-25 2018-02-20 현대자동차주식회사 High toughness, heat-treated steel pipe having a three-layer structure and manufacturing method thereof
CN116145023A (en) * 2021-11-23 2023-05-23 中国石油天然气集团有限公司 High-strength high-toughness high-extrusion-resistance sleeve and processing method thereof

Also Published As

Publication number Publication date
JP2005350688A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP6344538B1 (en) Steel pipe and steel plate
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP6521197B2 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5845674B2 (en) High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
JP6825748B2 (en) High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
WO2015151469A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP6844691B2 (en) High-strength steel sheets for sour-resistant pipes and their manufacturing methods, and high-strength steel pipes using high-strength steel sheets for sour-resistant pipes
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
JP7218533B2 (en) Steel material and its manufacturing method
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP6048615B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP6241434B2 (en) Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof
JP4193757B2 (en) Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP6825749B2 (en) High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
WO2016157235A1 (en) High-strength steel, production method therefor, steel pipe, and production method therefor
JP6665822B2 (en) High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe
JP6177733B2 (en) Low yield ratio high-strength steel sheet with large work-hardening ability and excellent uniform elongation and weldability, and its manufacturing method
JP6521196B1 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Ref document number: 4193757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees