JP3290595B2 - Method for manufacturing high-tensile steel plate with excellent toughness and weldability - Google Patents

Method for manufacturing high-tensile steel plate with excellent toughness and weldability

Info

Publication number
JP3290595B2
JP3290595B2 JP24217496A JP24217496A JP3290595B2 JP 3290595 B2 JP3290595 B2 JP 3290595B2 JP 24217496 A JP24217496 A JP 24217496A JP 24217496 A JP24217496 A JP 24217496A JP 3290595 B2 JP3290595 B2 JP 3290595B2
Authority
JP
Japan
Prior art keywords
less
toughness
cooling
steel plate
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24217496A
Other languages
Japanese (ja)
Other versions
JPH1088231A (en
Inventor
康 森影
健次 大井
章夫 大森
達巳 木村
文丸 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP24217496A priority Critical patent/JP3290595B2/en
Publication of JPH1088231A publication Critical patent/JPH1088231A/en
Application granted granted Critical
Publication of JP3290595B2 publication Critical patent/JP3290595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高張力鋼板の製造
方法に関し、とくに強度、靱性、溶接性のバランスがと
れた厚鋼板に関する。
[0001] The present invention relates to a method for manufacturing a high-tensile steel sheet, and more particularly to a thick steel sheet in which strength, toughness, and weldability are balanced.

【0002】[0002]

【従来の技術】厚鋼板において強度、靱性、溶接性をバ
ランスよく確保する方法として、TMCP(ThermoMech
anical Control Process)による厚鋼板の製造方法が知
られている。例えば、特開昭64-73019号公報には、Nbを
含有する鋼素材を(Ae3 −200 ℃)〜(Ae3 −250 ℃)
の温度域で2相域圧延を施し、加工中にフェライトを析
出させ、加工後に微細なフェライト組織とする方法が提
案されている。また、特開平3-223419号公報には、Nbを
含有する鋼素材を(Ar3 +150 ℃)以上の再結晶温度域
で30%以上の圧下を施したのち、(Ar3 +150 ℃)〜Ar
3 の温度域で50%以上の圧下を加える厚鋼板の製造方法
が提案されている。この方法では、未再結晶域での強圧
下により変形帯を導入し組織の微細化を図っている。ま
た、特平2-25968 号公報には、Ca、TiとNbまたはVを
含有する鋼片を900 〜1100℃に加熱し、900 ℃以下の圧
下量が30%以上で、かつ圧延仕上温度が680 〜860 ℃の
熱間圧延を施したのち、3 〜10℃/secの冷却速度で500
℃以下まで冷却する厚肉高張力鋼の製造方法が提案され
ている。
2. Description of the Related Art As a method for ensuring strength, toughness, and weldability of steel plates in a well-balanced manner, TMCP (ThermoMech) is used.
2. Description of the Related Art A method of manufacturing a thick steel plate by an anical control process is known. For example, Japanese Patent Application Laid-Open No. Sho 64-73019 discloses that a steel material containing Nb is made of (Ae 3 -200 ° C) to (Ae 3 -250 ° C).
A method has been proposed in which two-phase rolling is performed in the temperature range described above, ferrite is precipitated during processing, and a fine ferrite structure is formed after processing. JP-A-3-223419, then subjected to reduction of 30% or more in the steel material containing Nb (Ar 3 +150 ℃) above the recrystallization temperature region, (Ar 3 +150 ℃) ~Ar
A method of manufacturing a thick steel plate in which a reduction of 50% or more is applied in the temperature range of 3 has been proposed. In this method, a deformation zone is introduced by applying a strong pressure in a non-recrystallized region to make the structure finer. Further, JP fairness 2-25968, Ca, Ti and the billet containing Nb or V is heated to 900 C. to 1100 ° C., at 900 ° C. The following reduction rate of 30% or more, and the rolling finishing temperature After hot rolling at 680 to 860 ° C, 500 to 500 at a cooling rate of 3 to 10 ° C / sec.
There has been proposed a method for producing a thick-walled high-strength steel cooled to a temperature of not more than ° C.

【0003】しかしながら、上記したような未再結晶温
度域での圧延の効果を十分に発揮させるためには、より
低温で高圧下を加える必要があり、圧延機に多大な負荷
が掛り、多大のエネルギーを消費するうえ、厚肉材の場
合には温度調節の待ち時間が増大して圧延能率が低下す
るなどの問題が残されていた。また、極厚鋼板のように
低温での高圧下が確保できにくい場合には、変形帯の導
入が不十分となりフェライト核が減少し組織の微細化が
達成できず、また、一方、薄肉鋼板の場合には、集合組
織の形成による音響の異方性や、500 ℃以下といった低
温まで冷却されるため残留応力・残留歪が大きくなるな
どの問題があった。
However, in order to sufficiently exert the effect of rolling in the non-recrystallization temperature range as described above, it is necessary to apply a higher pressure at a lower temperature, which imposes a large load on a rolling mill and a large load. In addition to consuming energy, in the case of thick materials, there have been problems such as an increase in waiting time for temperature control and a reduction in rolling efficiency. In addition, when it is difficult to ensure high pressure at low temperatures as in the case of extremely thick steel sheets, the introduction of deformation bands is insufficient, ferrite nuclei are reduced, and the microstructure cannot be achieved. In such a case, there are problems such as anisotropy of sound due to formation of a texture and increase in residual stress and residual strain due to cooling to a low temperature of 500 ° C. or less.

【0004】一方、上記した方法とは異なり、VNの析
出を利用して、組織を微細化して圧延のままの強度靱性
を向上させた高強度鋼が、従来から知られている(例え
ば、鉄と鋼、Vol.77(1991)No.1、p171. )。また、特開
平5-186848号公報には、V、Nに加えTiを添加し、TiN-
MnS-VNの複合析出物を分散させ、フェライト生成機能を
有効に作用させHAZ 部靱性を向上させる技術が示されて
いる。しかしながら、これらの技術では、とくに極厚鋼
板の場合には、必ずしもVNの作用が効率良く発揮され
てはおらず、圧延のままの母材特性は不十分であるとい
う問題を残していた。
On the other hand, unlike the above-mentioned method, a high-strength steel in which the structure is refined by utilizing the precipitation of VN to improve the strength toughness as rolled has been known (for example, iron). And Steel, Vol.77 (1991) No.1, p171.). In Japanese Patent Application Laid-Open No. 5-186848, Ti is added in addition to V and N to form TiN-
There is disclosed a technique of dispersing a complex precipitate of MnS-VN, effectively acting a ferrite generation function, and improving the toughness of a HAZ portion. However, in these techniques, particularly in the case of an extremely thick steel plate, the effect of VN is not always efficiently exhibited, and there is a problem that the properties of the base material as-rolled are insufficient.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記した
問題を有利に解決し、強度・靱性および溶接性をバラン
ス良く確保でき、低降伏比で靱性・溶接性に優れた高張
力厚鋼板の製造方法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, provides a well-balanced strength, toughness and weldability, and provides a high yield strength steel plate having a low yield ratio and excellent toughness and weldability. The purpose is to propose a manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、強度・靱
性および溶接性をバランス良く確保できる高張力厚鋼板
の製造方法について鋭意検討した結果、つぎのような知
見を得た。 V、N、Ti量を制御し(V+Ti)/N値を限定して、
VN、TiN 析出物あるいはTiN とVNとの複合析出物を適
量、鋼中に分散させることにより、これら析出物がフェ
ライトの核として作用し、微細なフェライト+パーライ
ト組織が形成される。
Means for Solving the Problems The present inventors have conducted intensive studies on a method of manufacturing a high-tensile steel plate capable of ensuring a good balance of strength, toughness and weldability, and have obtained the following findings. By controlling V, N, and Ti amount, limiting (V + Ti) / N value,
By dispersing an appropriate amount of VN, TiN precipitates or composite precipitates of TiN and VN in steel, these precipitates act as nuclei for ferrite, and a fine ferrite + pearlite structure is formed.

【0007】VNは、フェライト変態後、フェライト中
にも多量に微細析出するため、強度増加に大きく寄与す
る。 VNは、比較的緩冷却でも多量に微細析出するため、鋼
板断面内の強度・靱性のばらつきが少なく、また、残留
応力・残留歪の発生が抑制できる。 V、N、Ti量を制御することに加えて、かかる素材を
1050〜1350℃に加熱したのち、1100〜950 ℃の温度範囲
で圧下率/パスで5%以上の圧下を累積圧下率で20%以
上施すという、再結晶細粒化圧延とを組み合わせること
によってはじめて十分な細粒化が得られる。
[0007] After the ferrite transformation, VN is finely precipitated in a large amount in ferrite, and thus greatly contributes to an increase in strength. VN is finely precipitated in a large amount even with relatively slow cooling, so that the variation in strength and toughness in the cross section of the steel sheet is small, and the occurrence of residual stress and residual strain can be suppressed. In addition to controlling the amount of V, N, Ti,
After heating to 1050-1350 ° C, it is the first time to combine with recrystallization refinement rolling in which a reduction of 5% or more at a reduction rate / pass is applied at a cumulative reduction rate of 20% or more in a temperature range of 1100-950 ° C. Sufficient grain refinement is obtained.

【0008】本発明は、上記した知見をもとに完成させ
たものである。すなわち、本発明は、重量%で、C:0.
05〜0.18%、Si:0.10〜0.60%、Mn:0.60〜2.00%、
P:0.030 %以下、S:0.015 %以下、Al:0.005 〜0.
050 %、V:0.04〜0.15%、Ti:0.005 〜0.05%、N:
0.0050〜0.0150%を含み、かつ、(V+Ti)/N:4.0
〜12.0を満足し、さらに、Cu:0.05〜0.50%、Ni:0.05
〜0.60%、Cr:0.05〜0.50%、Mo:0.02〜0.10%、Nb:
0.003 〜0.020 %のうちから選ばれた1 種または2 種以
上を含有し、次(1)式 Ceq =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1) で定義されるCeq を0.36〜0.45%とした、残部Feおよび
不可避的不純物からなる圧延素材を、1050〜1350℃に加
熱し、1100〜950 ℃の温度範囲で1パス当たりの圧下率
が5%以上の圧下を累積圧下率で20%以上施したのち、
室温まで空冷することを特徴とする靱性、溶接性に優れ
た高張力厚鋼板の製造方法である。
The present invention has been completed based on the above findings. That is, in the present invention, C: 0.
05-0.18%, Si: 0.10-0.60%, Mn: 0.60-2.00%,
P: 0.030% or less, S: 0.015% or less, Al: 0.005-0.
050%, V: 0.04-0.15%, Ti: 0.005-0.05%, N:
0.0050 to 0.0150%, and (V + Ti) / N: 4.0
~ 12.0, Cu: 0.05-0.50%, Ni: 0.05
~ 0.60%, Cr: 0.05 ~ 0.50%, Mo: 0.02 ~ 0.10%, Nb:
Contains one or more selected from 0.003 to 0.020%, and is defined by the following equation (1): Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1) The rolled material consisting of the balance Fe and unavoidable impurities with a Ceq of 0.36 to 0.45% is heated to 1050 to 1350 ° C, and the rolling reduction per pass is 5% or more in the temperature range of 1100 to 950 ° C. After applying the rolling reduction at a cumulative rolling reduction of 20% or more,
This is a method for producing a high-strength steel plate having excellent toughness and weldability, characterized by air cooling to room temperature.

【0009】また、本発明では、前記圧延素材を、重量
%で、C:0.05〜0.18%、Si:0.10〜0.60%、Mn:0.60
〜2.00%、P:0.030 %以下、S:0.015 %以下、Al:
0.005 〜0.050 %、V:0.04〜0.15%、Ti:0.005 〜0.
05%、N:0.0050〜0.0150%を含み、かつ、(V+Ti)
/N:4.0 〜12.0を満足し、さらに、Cu:0.05〜0.50
%、Ni:0.05〜0.60%、Cr:0.05〜0.50%、Mo:0.02〜
0.10%、Nb:0.003 〜0.020 %のうちから選ばれた1 種
または2 種以上を含有し、さらに、B:0.0003〜0.0020
%、REM :0.0010〜0.0200%、Ca:0.0010〜0.0100%の
うちから選ばれた1 種または2 種以上を含有し、前記
(1)式で定義されるCeq を0.36〜0.45%とした、残部
Feおよび不可避的不純物からなる圧延素材としてもよ
い。
In the present invention, the rolled material is, by weight%, C: 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.60%.
2.00%, P: 0.030% or less, S: 0.015% or less, Al:
0.005 to 0.050%, V: 0.04 to 0.15%, Ti: 0.005 to 0.
05%, N: 0.0050 to 0.0150%, and (V + Ti)
/ N: 4.0 to 12.0, and Cu: 0.05 to 0.50
%, Ni: 0.05 ~ 0.60%, Cr: 0.05 ~ 0.50%, Mo: 0.02 ~
0.10%, Nb: One or more selected from 0.003 to 0.020%, and B: 0.0003 to 0.0020%
%, REM: 0.0010-0.0200%, Ca: 0.0010-0.0100%, and Ceq defined by the above formula (1) is 0.36-0.45%.
A rolled material composed of Fe and inevitable impurities may be used.

【0010】また、本発明では、前記室温まで空冷する
に代えて、3.0 ℃/sec未満の冷却速度で室温まで冷却し
てもよい。また、本発明では、前記室温まで空冷するに
代えて、3.0 ℃/sec未満の冷却速度で次(2)式 Ar3 =910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb…(2) で定義されるAr3 以下(Ar3 −100 ℃)以上の温度範囲
まで冷却したのち、3.0℃/sec以上の冷却速度で室温ま
で冷却してもよい。
In the present invention, instead of air cooling to the room temperature, cooling to a room temperature at a cooling rate of less than 3.0 ° C./sec may be performed. In the present invention, instead of air cooling to the room temperature, the following formula (2) is used at a cooling rate of less than 3.0 ° C./sec. Ar 3 = 910-273C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb ... After cooling to the temperature range of Ar 3 or less (Ar 3 −100 ° C.) or more defined in 2), the temperature may be cooled to room temperature at a cooling rate of 3.0 ° C./sec or more.

【0011】[0011]

【発明の実施の形態】本発明は、厚鋼板以外にも、熱延
鋼板、鋼管、形鋼、棒鋼に適用可能である。本発明で用
いて好適な圧延素材の化学組成についてまず説明する。 C:0.05〜0.18%、 Cは鋼の強度を増加させる元素であり、強度確保のため
に0.05%以上の添加が必要である。しかし、0.18%を超
えて添加すると、母材靱性および溶接性が劣化するた
め、Cは0.05〜0.18%の範囲に制限した。なお、好まし
くは0.08〜0.16%の範囲である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is applicable to hot rolled steel sheets, steel pipes, section steels, and steel bars in addition to thick steel sheets. First, a chemical composition of a rolled material suitable for use in the present invention will be described. C: 0.05 to 0.18%, C is an element that increases the strength of steel, and it is necessary to add 0.05% or more to secure the strength. However, if added in excess of 0.18%, the base metal toughness and weldability deteriorate, so C was limited to the range of 0.05 to 0.18%. In addition, it is preferably in the range of 0.08 to 0.16%.

【0012】Si:0.10〜0.60% Siは脱酸剤として作用し、さらに固溶強化により鋼の強
度を増加させる元素である。この効果を得るためには、
0.10%以上の添加を必要とするが、0.60%を超えると、
HAZ 部靱性を著しく劣化させる。このため、Siは0.10〜
0.60%の範囲とした。なお、好ましくは0.20〜0.45%で
ある。
Si: 0.10 to 0.60% Si is an element that acts as a deoxidizing agent and further increases the strength of steel by solid solution strengthening. To get this effect,
It is necessary to add 0.10% or more, but if it exceeds 0.60%,
Significantly degrades HAZ toughness. For this reason, Si is 0.10 ~
The range was 0.60%. In addition, it is preferably 0.20 to 0.45%.

【0013】Mn:0.60〜2.00% Mnは鋼の強度を増加させる元素であり、強度確保のため
に0.60%以上の添加が必要である。しかし、2.00%を超
えると、組織がフェライト+パーライトあるいはフェラ
イト+ベイナイトとなり、母材靱性が劣化する。このた
め、Mnは0.60〜2.00%の範囲とした。なお、好ましくは
1.00〜 1.70 %である。
Mn: 0.60 to 2.00% Mn is an element that increases the strength of steel, and it is necessary to add 0.60% or more to secure the strength. However, if it exceeds 2.00%, the structure becomes ferrite + pearlite or ferrite + bainite, and the base material toughness deteriorates. Therefore, Mn is set in the range of 0.60 to 2.00%. Preferably,
1.00-1.70%.

【0014】P:0.030 %以下 Pは粒界に偏析し、靱性を低下させる。このため、でき
るだけ低減するが、0.030 %までは許容できる。なお、
0.015 %以下とするのが好ましい。 S:0.015 %以下 SはMnと結合しMnS を形成し、圧延冷却後の組織を微細
化する作用を有している。しかし、0.015 %を超えての
含有は板厚方向の延性・靱性を劣化させる。このため、
Sは0.015 %以下に制限した。なお、MnS による細粒化
効果を得るためには、Sは0.004 〜0.010 %の範囲が好
ましい。
P: not more than 0.030% P segregates at the grain boundaries and lowers toughness. For this reason, it is reduced as much as possible, but up to 0.030% is acceptable. In addition,
The content is preferably set to 0.015% or less. S: 0.015% or less S combines with Mn to form MnS, and has an effect of refining the structure after rolling and cooling. However, if it exceeds 0.015%, the ductility and toughness in the thickness direction deteriorate. For this reason,
S was limited to 0.015% or less. In order to obtain the effect of MnS for grain refinement, S is preferably in the range of 0.004 to 0.010%.

【0015】Al:0.005 〜0.050 % Alは脱酸剤として作用するが、多量に添加すると非金属
介在物が多くなり、清浄度が低下し、靱性が劣化する。
また、AlはNと結合しAlN を形成しやすく、VNの安定
析出を阻害する。このため、Alは0.005 〜0.050 %の範
囲とした。なお、好ましくは0.010 〜0.040 %である。
Al: 0.005 to 0.050% Al acts as a deoxidizing agent, but when added in a large amount, nonmetallic inclusions increase, the cleanliness decreases, and the toughness deteriorates.
In addition, Al easily bonds with N to form AlN, and inhibits stable deposition of VN. Therefore, the content of Al is set in the range of 0.005 to 0.050%. Incidentally, the content is preferably 0.010 to 0.040%.

【0016】V:0.04〜0.15% Vは、Nと結合しVNを形成し、圧延後冷却中にオース
テナイト中に析出して、フェライト析出核として作用
し、結晶粒を微細化し靱性を向上させる。また、フェラ
イト変態後フェライト中にも微細析出し、冷却を強化す
ることなく母材強度を高めることができ、また、鋼板板
厚内の特性の均一性、残留応力・残留歪を軽減できる。
これらの効果を得るためには、0.04%以上の添加を必要
とするが、0.15%を超えて添加すると、母材靱性、溶接
性が劣化する。このため、Vは0.04〜0.15%の範囲に限
定した。なお、好ましくは0.04〜0.12%である。
V: 0.04 to 0.15% V combines with N to form VN, which precipitates in austenite during rolling after cooling, acts as ferrite precipitation nuclei, refines crystal grains, and improves toughness. Further, after the ferrite transformation, fine precipitates are also formed in the ferrite, whereby the strength of the base material can be increased without strengthening the cooling, and the uniformity of the properties within the thickness of the steel sheet, the residual stress and the residual strain can be reduced.
In order to obtain these effects, 0.04% or more must be added, but if added in excess of 0.15%, the base material toughness and weldability deteriorate. For this reason, V is limited to the range of 0.04 to 0.15%. In addition, it is preferably 0.04 to 0.12%.

【0017】Ti:0.005 〜0.050 % TiはNと結合しTiN を形成し、加熱時のオーステナイト
粒の成長を抑制するとともに、さらにオーステナイト中
に残留あるいは析出し、VNのオーステナイト中への析出
を促進させる作用を有する。この効果を得るためには、
0.005 %以上の添加が必要であるが、0.050 %を超える
と、鋼の清浄度を低下させ、母材の靱性を劣化させる。
このため、Tiは0.005 〜0.050 %の範囲とした。なお、
好ましくは0.010 〜0.025 %である。
Ti: 0.005 to 0.050% Ti combines with N to form TiN, suppresses the growth of austenite grains during heating, and further retains or precipitates in austenite to promote precipitation of VN in austenite. Has the effect of causing. To get this effect,
Addition of 0.005% or more is necessary, but if it exceeds 0.050%, the cleanliness of the steel is reduced and the toughness of the base material is deteriorated.
Therefore, Ti is set in the range of 0.005 to 0.050%. In addition,
Preferably it is 0.010 to 0.025%.

【0018】N:0.0050〜0.0150% NはV、Tiと結合し窒化物を形成し、加熱時のオーステ
ナイト粒の成長を抑制するとともに、フェライト析出核
として作用し、結晶粒を微細化し靱性を向上させる作用
を有している。0.0050%未満では、必要とする窒化物量
が不足する。一方、0.0150%を超えると、固溶N量が増
加し、母材靱性、溶接性を劣化させる。このため、Nは
0.0050〜0.0150%の範囲に制限した。なお、好ましい範
囲は0.0060〜0.0120%である。
N: 0.0050 to 0.0150% N combines with V and Ti to form a nitride, suppresses the growth of austenite grains during heating, acts as ferrite precipitation nuclei, refines crystal grains and improves toughness. It has the effect of causing. If it is less than 0.0050%, the required amount of nitride is insufficient. On the other hand, if it exceeds 0.0150%, the amount of solute N increases, and the toughness and weldability of the base material deteriorate. Therefore, N is
Limited to the range of 0.0050-0.0150%. The preferred range is 0.0060 to 0.0120%.

【0019】(V+Ti)/N:4.0 〜12.0 この発明では、V、Ti、Nを上記範囲とし、さらに、
(V+Ti)/Nを4.0 〜12.0の範囲となるようにV、T
i、N量を調整する。(V+Ti)/Nが4.0 未満では、
固溶N量が増加し、歪時効を生じさせ、さらに溶接性を
低下させる。また、(V+Ti)/Nが12.0を超えるとT
i、VがCと結合し母材靱性を低下させる。このため、
(V+Ti)/Nを4.0 〜12.0の範囲とした。なお、好ま
しくは、5.0 〜10.0である。
(V + Ti) / N: 4.0 to 12.0 In the present invention, V, Ti, and N are set in the above ranges.
V, T so that (V + Ti) / N is in the range of 4.0 to 12.0.
Adjust i, N amount. If (V + Ti) / N is less than 4.0,
The amount of solute N increases, causing strain aging and further reducing weldability. When (V + Ti) / N exceeds 12.0, T
i and V combine with C and lower the base material toughness. For this reason,
(V + Ti) / N was in the range of 4.0 to 12.0. Preferably, it is 5.0 to 10.0.

【0020】Cu:0.05〜0.50%、Ni:0.05〜0.60%、C
r:0.05〜0.50%、Mo:0.02〜0.10%、Nb:0.003 〜0.0
20 %のうちから選ばれた1種または2種以上 Cu、Ni、Cr、Mo、Nbはいずれも焼入性を向上させる作用
を有しており、1種または2種以上を添加できる。ま
た、Cu、Ni、Cr、Mo、NbはいずれもAr3 点を低下させ、
それによりフェライト粒をより微細化し、VNによる析出
硬化を増大させる。このような効果を得るためには、C
u、Ni、Cr、Mo、Nbはそれぞれ0.05%、0.05%、0.05
%、0.02%、0.003 %以上の添加が必要である。しか
し、Cuは多量添加すると、熱間加工性が劣化するため、
Niを同時に同量程度添加するのが好ましいが、0.50%を
超えて添加しても効果が飽和し、経済的にも高価とな
る。このため、Cuは0.05〜0.50%の範囲に限定した。Ni
は、0.60%を超えて添加しても効果が飽和し、経済的に
も高価となる。このため、Niは0.05〜0.60%の範囲とし
た。Cr、Mo、Nbは、それぞれ0.50%、0.10%、0.020 %
を超えると溶接性、母材靱性が劣化する。このため、Cr
は0.05〜0.50%、Moは0.02〜0.10%、Nbは0.003 〜0.02
0 %の範囲に限定した。
Cu: 0.05-0.50%, Ni: 0.05-0.60%, C
r: 0.05 to 0.50%, Mo: 0.02 to 0.10%, Nb: 0.003 to 0.0
One or more selected from 20% Cu, Ni, Cr, Mo, and Nb all have an effect of improving hardenability, and one or more of them can be added. Also, Cu, Ni, Cr, Mo, Nb all reduce the Ar 3 point,
This makes the ferrite grains finer and increases precipitation hardening due to VN. To achieve this effect, C
u, Ni, Cr, Mo, Nb are 0.05%, 0.05%, 0.05 respectively
%, 0.02%, 0.003% or more is required. However, when a large amount of Cu is added, hot workability deteriorates.
It is preferable to add about the same amount of Ni at the same time, but if it exceeds 0.50%, the effect is saturated and the cost becomes high. For this reason, Cu was limited to the range of 0.05 to 0.50%. Ni
Is saturated even if added in excess of 0.60%, and is economically expensive. Therefore, Ni is set in the range of 0.05 to 0.60%. Cr, Mo, and Nb are 0.50%, 0.10%, and 0.020%, respectively.
If it exceeds 300, the weldability and the base material toughness deteriorate. For this reason, Cr
Is 0.05-0.50%, Mo is 0.02-0.10%, Nb is 0.003-0.02%
Limited to the 0% range.

【0021】Ceq :0.36〜0.45% Ceq は次(1)式で定義される。 Ceq =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1) Ceq は良好な溶接性と高強度を確保するために、化学組
成を調整し、0.36〜0.45%の範囲に限定する。Ceq が、
0.36%未満では母材およびHAZ 軟化部の強度確保が困難
となり、0.45%を超えると溶接割れ感受性が高くなり、
HAZ 部靱性が劣化する。
Ceq: 0.36 to 0.45% Ceq is defined by the following equation (1). Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1) Ceq adjusts the chemical composition to ensure good weldability and high strength, and ranges from 0.36 to 0.45% Limited to. Ceq is
If it is less than 0.36%, it is difficult to secure the strength of the base metal and the HAZ softened part, and if it exceeds 0.45%, the susceptibility to weld cracking increases,
HAZ toughness deteriorates.

【0022】B:0.0003〜0.0020%、REM :0.0010〜0.
0200%、Ca:0.0010〜0.0100%のうちから選ばれた1種
または2種以上 B、REM 、Caはいずれもフェライト粒の微細化に寄与す
る作用を有しており、必要に応じ1種または2種以上を
添加できる。Bは粒界に偏析し、粗大な粒界フェライト
の析出を抑制し、フェライト粒の微細化に寄与する。こ
のような効果を得るためには、0.0002%以上の添加を必
要とするが、0.0020%を超えて添加すると、靱性を低下
させる。このため、Bは0.0002〜0.0020%の範囲に限定
した。
B: 0.0003-0.0020%, REM: 0.0010-0.
0200%, Ca: one or two or more selected from 0.0010 to 0.0100% B, REM, and Ca each have an effect of contributing to the refinement of ferrite grains. Two or more can be added. B segregates at the grain boundaries, suppresses the precipitation of coarse grain boundary ferrite, and contributes to the refinement of ferrite grains. In order to obtain such effects, 0.0002% or more is required. However, if it exceeds 0.0020%, toughness is reduced. For this reason, B was limited to the range of 0.0002 to 0.0020%.

【0023】REM 、Caは高温においても安定な酸化物を
形成し微細に鋼中に分散して、オーステナイト粒の成長
を抑制し、圧延後のフェライト粒を微細化する。REM は
0.0010%未満ではその効果が少なく、一方、0.0200%を
超えて添加すると、析出物量が増加し、しかも粗大化す
るため、清浄度が低下し靱性が劣化する。このため、RE
M は0.0010〜0.0100%の範囲に限定した。
REM and Ca form stable oxides even at high temperatures and are finely dispersed in the steel to suppress the growth of austenite grains and refine the ferrite grains after rolling. REM is
If the content is less than 0.0010%, the effect is small. On the other hand, if the content exceeds 0.0200%, the amount of precipitates increases and coarsens, so that the cleanliness decreases and the toughness deteriorates. Therefore, RE
M was limited to the range of 0.0010-0.0100%.

【0024】Caは0.0010%未満ではその効果が少なく、
0.0100%を超えて添加すると、析出物量が増加し、しか
も粗大化するため、清浄度が低下し靱性が劣化する。こ
のため、Caは0.0010〜0.0100%の範囲に限定した。その
他、残部Feおよび不可避的不純物である。上記に規定し
た元素以外の元素では、0:0.0025%未満、Zr:0.020
%以下、Mg:0.020 %以下の含有が許容できる。
If the content of Ca is less than 0.0010%, the effect is small,
If it is added in excess of 0.0100%, the amount of precipitates increases and coarsens, so that cleanliness decreases and toughness deteriorates. For this reason, Ca was limited to the range of 0.0010 to 0.0100%. Others are Fe and inevitable impurities. For elements other than the elements specified above, 0: less than 0.0025%, Zr: 0.020
% Or less, Mg: 0.020% or less is acceptable.

【0025】つぎに、製造方法について説明する。上記
した組成の鋼の溶製は、転炉、電気炉等通常公知の溶製
方法がいずれも適用でき、とくに限定する必要はない。
溶製された溶鋼は、連続鋳造法あるいは造塊法により凝
固され圧延素材とされる。本発明の鋼は、熱間圧延によ
り厚鋼板に成形される。
Next, the manufacturing method will be described. For the smelting of the steel having the above-mentioned composition, any commonly known smelting method such as a converter and an electric furnace can be applied, and there is no particular limitation.
The smelted molten steel is solidified by a continuous casting method or an ingot-making method to be a rolled material. The steel of the present invention is formed into a thick steel plate by hot rolling.

【0026】熱間圧延の加熱温度は、1050〜1350℃とす
る。加熱温度が1050℃未満では変形抵抗の増加により、
所定の圧下率/パス、累積圧下率の確保が困難となる。
一方、1350℃を超えると、加熱炉原単位を悪化させると
ともにスケールロスの増加や炉補修回数の増加等を招
く。このため、圧延素材の加熱温度は1050〜1350℃の範
囲とした。
The heating temperature of the hot rolling is 1050 to 1350 ° C. If the heating temperature is less than 1050 ° C, the deformation resistance increases,
It is difficult to secure a predetermined rolling reduction / pass and a cumulative rolling reduction.
On the other hand, when the temperature exceeds 1350 ° C., the heating furnace basic unit is deteriorated, and the scale loss and the number of furnace repairs are increased. For this reason, the heating temperature of the rolled material was set in the range of 1050 to 1350 ° C.

【0027】圧延素材を加熱後、ついで、1100〜950 ℃
の温度範囲で1パス当たりの圧下率が5%以上の圧下を
累積圧下率で20%以上施したのち、室温まで空冷する。
本発明では熱間圧延を、1100〜950 ℃のオーステナイト
の部分再結晶域で1パス当たりの圧下率が5%以上の圧
下を繰り返し、累積圧下率で20%以上とする。これによ
り、オーステナイト粒の再結晶細粒化が達成できる。
After the rolled material is heated, it is then heated at 1100-950 ° C.
After a reduction of 5% or more per pass in a temperature range of 20% or more in terms of a cumulative reduction rate, air cooling is performed to room temperature.
In the present invention, hot rolling is repeated at a rolling reduction of 5% or more per pass in the austenite partial recrystallization region at 1100 to 950 ° C., and the cumulative rolling reduction is 20% or more. Thereby, recrystallization refinement of austenite grains can be achieved.

【0028】圧延温度が1100℃を超えるとオーステナイ
トの再結晶細粒化効果が小さく、また、950 ℃未満では
集合組織が形成されやすく、音響異方性が顕著となり、
残留応力・残留歪が発生する。このため、圧延温度は11
00〜950 ℃の範囲に限定した。また、1パスあたりの圧
下率が5%未満では十分な細粒化効果が得られないた
め、1パスあたりの圧下率は5%以上に限定した。再結
晶細粒化の観点からは、1パスあたりの圧下率は大きけ
れば大きいほどよいが、圧延機の能力の制約から上限は
30%程度である。
If the rolling temperature exceeds 1100 ° C., the effect of recrystallization refinement of austenite is small, and if it is lower than 950 ° C., a texture is easily formed, and the acoustic anisotropy becomes remarkable.
Residual stress and residual strain occur. Therefore, the rolling temperature is 11
The range was limited to the range of 00 to 950 ° C. Further, if the rolling reduction per pass is less than 5%, a sufficient grain refining effect cannot be obtained, so the rolling reduction per pass is limited to 5% or more. From the viewpoint of recrystallization refinement, the larger the rolling reduction per pass, the better, but the upper limit is limited due to the limitation of the rolling mill capacity.
It is about 30%.

【0029】オーステナイトの部分再結晶域での累積圧
下率が20%未満では、十分な再結晶細粒化効果が得られ
ず、TiN 、VNによる組織微細化効果を発揮させても最終
組織が粗くなり、母材靱性が低下する。このため、1100
〜950 ℃の温度範囲での累積圧下率を20%以上に限定し
た。圧延終了後、室温まで空冷する。
If the cumulative rolling reduction in the austenite partial recrystallization region is less than 20%, a sufficient recrystallization refinement effect cannot be obtained, and the final structure is coarse even when the structure refinement effect by TiN or VN is exerted. And the base material toughness decreases. For this reason, 1100
The cumulative rolling reduction in the temperature range of 950950 ° C. was limited to 20% or more. After the end of the rolling, air-cool to room temperature.

【0030】空冷のような緩冷却を施すことにより、強
度・靱性のばらつき、残留応力・残留歪が軽減できる。
また、本発明では、前記室温まで空冷するに代えて、3.
0 ℃/sec未満の冷却速度で室温まで冷却してもよい。冷
却速度が3.0 ℃/sec未満であれば、VNの析出が抑制され
ることもないため、鋼材の冷却を速めることができ生産
能率を向上できる。冷却速度が3.0 ℃/secを超えるとVN
の析出が抑制され、組織が粗大化し、さらにベイナイト
主体の組織となりやすく靱性が劣化する。
By performing slow cooling such as air cooling, variation in strength and toughness, and residual stress and residual strain can be reduced.
In the present invention, instead of air cooling to the room temperature, 3.
It may be cooled to room temperature at a cooling rate of less than 0 ° C./sec. If the cooling rate is less than 3.0 ° C./sec, the precipitation of VN is not suppressed, so that the cooling of the steel material can be accelerated and the production efficiency can be improved. VN when the cooling rate exceeds 3.0 ° C / sec
Precipitation is suppressed, the structure becomes coarse, and the structure tends to be mainly bainite, and the toughness is deteriorated.

【0031】また、本発明では、前記室温まで空冷する
に代えて、好ましくは空冷以上3.0℃/sec未満の冷却速
度で次(2)式 Ar3=910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb…(2) で定義されるAr3 以下(Ar3 −100 ℃)以上の温度範囲
まで冷却したのち、3.0℃/sec以上の冷却速度で室温ま
で冷却してもよい。
In the present invention, instead of air cooling to the room temperature, the following formula (2) is preferably used at a cooling rate of not less than air cooling and less than 3.0 ° C./sec: Ar 3 = 910-273C + 25Si-74Mn-56Ni-16Cr- 9Mo -5Cu -1620Nb ... (2) After cooling to Ar 3 or less (Ar 3 -100 ° C.) or more temperature range defined by, may be cooled to room temperature at 3.0 ° C. / sec or more cooling rate.

【0032】3.0 ℃/sec未満の冷却速度で冷却する温度
範囲がAr3 点を超えると組織の微細化が不十分となり、
(Ar3 −100 ℃)未満では残留応力・残留歪の発生が顕
著となる。このため、3.0 ℃/sec未満で冷却する温度は
Ar3 以下(Ar3 −100 ℃)以上の温度範囲までとした。
その後、3.0 ℃/sec以上の冷却速度で室温まで冷却する
ことにより、フェライト粒の成長が抑制され組織がさら
に微細化し、母材靱性が向上する。
When the temperature range for cooling at a cooling rate of less than 3.0 ° C./sec exceeds the Ar 3 point, the micronization of the structure becomes insufficient,
If the temperature is lower than (Ar 3 -100 ° C.), the generation of residual stress and residual strain becomes remarkable. Therefore, the cooling temperature at less than 3.0 ° C / sec is
The temperature range was set to a temperature range of Ar 3 or less (Ar 3 −100 ° C.) or more.
Thereafter, by cooling to room temperature at a cooling rate of 3.0 ° C./sec or more, growth of ferrite grains is suppressed, the structure is further refined, and the base material toughness is improved.

【0033】本発明で規定する温度、冷却速度は鋼板の
板厚中心部での値である。
The temperature and cooling rate specified in the present invention are values at the center of the thickness of the steel sheet.

【0034】[0034]

【実施例】表1に示す組成の鋼を転炉で溶製し、連続鋳
造法でスラブとした。ついで、これらスラブを表2に示
す温度に加熱し、表2に示す熱間圧延条件で厚鋼板とし
た。圧延終了後、直ちに表2に示す冷却速度で冷却し
た。これらの製品板を用いて、母材の引張特性、靱性、
および溶接HAZ 部靱性を調査した。その結果を表2に示
す。
EXAMPLES Steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. Next, these slabs were heated to the temperatures shown in Table 2, and were made into thick steel plates under the hot rolling conditions shown in Table 2. Immediately after the completion of the rolling, cooling was performed at a cooling rate shown in Table 2. Using these product plates, the tensile properties, toughness,
And weld HAZ toughness were investigated. Table 2 shows the results.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】なお、母材の引張特性、靱性、溶接熱影響
部の靱性の試験方法は下記に示す通りである。 (1)母材の引張試験 上記製品板の板厚1/4 T部から圧延方向と直角方向にJI
S Z 2201に規定する4号試験片を採取し、JIS Z 2241に
準拠して、降伏点(YP)、引張強さ(TS)を求め
た。 (2)母材の靱性試験 上記製品板の板厚1/4 T部から圧延方向と直角方向にJI
S Z 2202に規定する4号試験片を採取し、JIS Z 2242に
準拠して、0℃におけるシャルピー吸収エネルギー(vE
0 )を求めた。 (3)溶接熱影響部の靱性試験 上記製品板の板厚1/4 T部から圧延方向と直角方向に12
t×75×80mmの試験片を採取し、高周波加熱装置によ
り、入熱100kJ/cmのサブマージアーク溶接の粗粒域HAZ
部の受ける熱サイクル(最高加熱温度1400℃)を付与し
たのち、JIS Z 2202に規定する4号試験片を採取し、JI
S Z 2242に準拠して、0℃におけるシャルピー吸収エネ
ルギー(vE0 )を求めた。
The methods for testing the tensile properties, toughness, and toughness of the heat affected zone of the base metal are as follows. (1) Tensile test of base material From the 1/4 T section of the above product sheet, JI was applied in the direction perpendicular to the rolling direction.
A No. 4 test piece specified in SZ2201 was sampled, and the yield point (YP) and tensile strength (TS) were determined in accordance with JIS Z2241. (2) Toughness test of base material From the 1/4 T section of the above product sheet, JI was applied in the direction perpendicular to the rolling direction.
Sample No. 4 specified in SZ 2202 was collected, and the Charpy absorbed energy at 0 ° C (vE
0 ). (3) Toughness test of heat-affected zone of welding 12
A test specimen of t × 75 × 80mm was collected and the HAZ coarse grain area of submerged arc welding with a heat input of 100kJ / cm using a high frequency heating device.
After applying the heat cycle (maximum heating temperature 1400 ° C) to which the part is subjected, a No. 4 test piece specified in JIS Z 2202 is collected and JI
The Charpy absorbed energy at 0 ° C. (vE 0 ) was determined according to SZ 2242.

【0038】表2から、本発明例では、TSで500MPa以
上の高強度で、vE0 で150 J以上の高靱性が得られ、降
伏比も80%以下であり、HAZ 部の靱性もvE0 で150 J以
上の高靱性が得られ、母材の強度・靱性はもちろんHAZ
部靱性ともに優れていることがわかる。また、Ar3
(Ar3 −100 ℃)で冷却速度を変更した本発明例No.3は
vE0 で250 J以上の高靱性が得られている。
As can be seen from Table 2, in the examples of the present invention, a high strength of 500 MPa or more in TS and a high toughness of 150 J or more in vE 0 are obtained, the yield ratio is 80% or less, and the toughness of the HAZ portion is also vE 0. With high toughness of 150 J or more.
It can be seen that both the toughness is excellent. Also, Ar 3 ~
Example No. 3 of the present invention in which the cooling rate was changed at (Ar 3 −100 ° C.)
At vE 0 , high toughness of 250 J or more is obtained.

【0039】化学組成が本発明範囲から外れる比較例N
o.16 〜No.21 ではvE0 が低い。Ceqが本発明範囲から外
れる比較例No.22 は、YS、TSが低い。また、圧延・
冷却条件が本発明範囲から外れる比較例No.5、No.6では
強度・靱性バランスがわるく、比較例No.5では板厚断面
内の母材特性変化が大きい。
Comparative Example N whose chemical composition is outside the scope of the present invention
vE 0 is low in o.16 to No.21. Comparative Example No. 22 in which Ceq is out of the range of the present invention has low YS and TS. In addition, rolling
Comparative Example No.5 cooling conditions outside the range of the present invention, strength and toughness balance in No.6 is poor, a large base material characteristic change of the thickness in the cross section in Comparative Example No.5.

【0040】[0040]

【発明の効果】この発明によれば、板厚断面内の母材
性のばらつきが少なく、強度・靱性および溶接性のバラ
ンスが良く、低降伏比で靱性・溶接性に優れた高張力厚
鋼板が工業的に容易に製造でき、溶接構造用鋼としてそ
の用途をさらに拡大でき、産業上多大な効果を奏する。
According to the present invention, variations in the properties of the base material within the cross section of the sheet thickness are small, the balance between strength, toughness and weldability is good, and a low yield ratio and excellent toughness and weldability are obtained. A high-strength steel plate having high strength can be easily manufactured industrially, and its use as a steel for welded structures can be further expanded.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 達巳 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (72)発明者 川端 文丸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (56)参考文献 特開 平10−68016(JP,A) 特開 平10−88232(JP,A) 特開 平7−242944(JP,A) 特開 昭56−142826(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/02 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsumi Kimura 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Kawasaki Steel Corporation Mizushima Works (56) References JP-A-10-68016 (JP, A) JP-A-10-88232 (JP, A) JP-A-7-242944 (JP, A) JP-A-56-142826 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/02 C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C:0.05〜0.18%、 Si:0.10〜0.60%、 Mn:0.60〜2.00%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.050 %、 V:0.04〜0.15%、 Ti:0.005 〜0.05%、 N:0.0050〜0.0150% を含み、かつ、(V+Ti)/N:4.0 〜12.0を満足し、
さらに、 Cu:0.05〜0.50%、 Ni:0.05〜0.60%、 Cr:0.05〜0.50%、 Mo:0.02〜0.10%、 Nb:0.003 〜0.020 % のうちから選ばれた1種または2種以上を含有し、下記
(1)式で定義されるCeq を0.36〜0.45%とした、残部
Feおよび不可避的不純物からなる圧延鋼素材を、1050〜
1350℃に加熱し、1100〜950 ℃の温度範囲で1パス当た
りの圧下率が5%以上の圧下を累積圧下率で20%以上施
したのち、室温まで空冷することを特徴とする靱性、溶
接性に優れた高張力厚鋼板の製造方法 記 Ceq =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1)
C. 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.60 to 2.00%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.050%, V : 0.04 to 0.15%, Ti: 0.005 to 0.05%, N: 0.0050 to 0.0150%, and satisfy (V + Ti) / N: 4.0 to 12.0,
Furthermore, one or more selected from among Cu: 0.05 to 0.50%, Ni: 0.05 to 0.60%, Cr: 0.05 to 0.50%, Mo: 0.02 to 0.10%, Nb: 0.003 to 0.020% And Ceq defined by the following equation (1) is set to 0.36 to 0.45%,
Rolled steel material consisting of Fe and unavoidable impurities
Heating to 1350 ° C, applying a reduction of 5% or more per pass in a temperature range of 1100 to 950 ° C at a cumulative reduction of 20% or more, and then air cooling to room temperature. Manufacturing method of high tensile strength steel sheet with excellent heat resistance Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
【請求項2】 前記圧延素材が、重量%で、 C:0.05〜0.18%、 Si:0.10〜0.60%、 Mn:0.60〜2.00%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.050 %、 V:0.04〜0.15%、 Ti:0.005 〜0.05%、 N:0.0050〜0.0150% を含み、かつ、(V+Ti)/N:4.0 〜12.0を満足し、
さらに、 Cu:0.05〜0.50%、 Ni:0.05〜0.60%、 Cr:0.05〜0.50%、 Mo:0.02〜0.10%、 Nb:0.003 〜0.020 % のうちから選ばれた1種または2種以上を含有し、さら
に、 B:0.0003〜0.0020%、 REM :0.0010〜0.0200%、 Ca:0.0010〜0.0100% のうちから選ばれた1種または2種以上を含有し、下記
(1)式で定義されるCeq を0.36〜0.45%とした、残部
Feおよび不可避的不純物からなることを特徴とする請求
項1記載の高張力厚鋼板の製造方法。 記 Ceq =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1)
2. The rolled material is, by weight%, C: 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.60 to 2.00%, P: 0.030% or less, S: 0.015% or less, Al: 0.005% 0.050%, V: 0.04 to 0.15%, Ti: 0.005 to 0.05%, N: 0.0050 to 0.0150%, and satisfy (V + Ti) / N: 4.0 to 12.0,
Furthermore, one or more selected from among Cu: 0.05 to 0.50%, Ni: 0.05 to 0.60%, Cr: 0.05 to 0.50%, Mo: 0.02 to 0.10%, Nb: 0.003 to 0.020% B: 0.0003-0.0020%, REM: 0.0010-0.0200%, Ca: 0.0010-0.0100%, and one or more selected from the group consisting of Ceq defined by the following formula (1). 0.36 to 0.45%
2. The method for producing a high-tensile steel plate according to claim 1, comprising Fe and unavoidable impurities. Note Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
【請求項3】 前記室温まで空冷するに代えて、3.0 ℃
/sec未満の冷却速度で室温まで冷却することを特徴とす
る請求項1または2記載の高張力厚鋼板の製造方法。
3. Instead of air cooling to room temperature, 3.0 ° C.
The method for producing a high-tensile steel plate according to claim 1 or 2, wherein the steel plate is cooled to room temperature at a cooling rate of less than / sec.
【請求項4】 前記室温まで空冷するに代えて、3.0 ℃
/sec未満の冷却速度で下記(2)式で定義されるAr3
下(Ar3 −100 ℃)以上の温度範囲まで冷却したのち、
3.0 ℃/sec以上の冷却速度で室温まで冷却することを特
徴とする請求項1、または記載の高張力厚鋼板の製造
方法。 記 Ar3 =910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb…(2)
4. In place of air cooling to room temperature, 3.0 ° C.
After cooling to a temperature range of Ar 3 or less (Ar 3 −100 ° C.) or more defined by the following equation (2) at a cooling rate of less than / sec,
Claim 1, or the method for manufacturing a high-tensile steel plate of 2, wherein the cooling at 3.0 ° C. / sec or more cooling rate to room temperature. Ar 3 = 910-273 C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb ... (2)
JP24217496A 1996-09-12 1996-09-12 Method for manufacturing high-tensile steel plate with excellent toughness and weldability Expired - Fee Related JP3290595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24217496A JP3290595B2 (en) 1996-09-12 1996-09-12 Method for manufacturing high-tensile steel plate with excellent toughness and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24217496A JP3290595B2 (en) 1996-09-12 1996-09-12 Method for manufacturing high-tensile steel plate with excellent toughness and weldability

Publications (2)

Publication Number Publication Date
JPH1088231A JPH1088231A (en) 1998-04-07
JP3290595B2 true JP3290595B2 (en) 2002-06-10

Family

ID=17085425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24217496A Expired - Fee Related JP3290595B2 (en) 1996-09-12 1996-09-12 Method for manufacturing high-tensile steel plate with excellent toughness and weldability

Country Status (1)

Country Link
JP (1) JP3290595B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567726B2 (en) * 1998-03-09 2004-09-22 Jfeスチール株式会社 Structural steel excellent in earthquake resistance and method of manufacturing the same
CN100427630C (en) * 2005-12-29 2008-10-22 攀枝花钢铁(集团)公司 Production method of high-strength atmospheric corrosion resistant section steel
JP4959401B2 (en) * 2007-03-29 2012-06-20 新日本製鐵株式会社 High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
KR101298701B1 (en) * 2011-04-27 2013-08-21 현대제철 주식회사 Ultrahigh strength steel and method for manufacturing the same
EP2942414B1 (en) 2013-03-15 2019-05-22 JFE Steel Corporation Thick, tough, high tensile strength steel plate and production method therefor
NO3120941T3 (en) * 2014-03-20 2018-08-25
SG11201608464UA (en) 2014-04-24 2016-11-29 Jfe Steel Corp Steel plate and method of producing same
CN115747663A (en) * 2022-12-05 2023-03-07 中交第二航务工程局有限公司 High-toughness easy-to-weld steel bar and production method thereof

Also Published As

Publication number Publication date
JPH1088231A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4843982B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4193315B2 (en) High strength steel sheet and high strength galvanized steel sheet with excellent ductility and low yield ratio, and methods for producing them
JPH11315341A (en) Extra thick wide flange shape excellent in toughness and having more than 325 mpa of yield strength
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JP2002363649A (en) Method for producing high strength cold rolled steel sheet
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP5256818B2 (en) Method for producing high toughness steel
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JP3374688B2 (en) Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees