JP3374688B2 - Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness - Google Patents

Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness

Info

Publication number
JP3374688B2
JP3374688B2 JP34351796A JP34351796A JP3374688B2 JP 3374688 B2 JP3374688 B2 JP 3374688B2 JP 34351796 A JP34351796 A JP 34351796A JP 34351796 A JP34351796 A JP 34351796A JP 3374688 B2 JP3374688 B2 JP 3374688B2
Authority
JP
Japan
Prior art keywords
steel
less
strength
toughness
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34351796A
Other languages
Japanese (ja)
Other versions
JPH10183239A (en
Inventor
尚史 前田
俊道 大森
徹 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP34351796A priority Critical patent/JP3374688B2/en
Publication of JPH10183239A publication Critical patent/JPH10183239A/en
Application granted granted Critical
Publication of JP3374688B2 publication Critical patent/JP3374688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶接割れ感受性お
よび低温靭性に優れた600N/mm2 級高張力鋼の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a 600 N / mm 2 class high strength steel having excellent weld crack susceptibility and low temperature toughness.

【0002】[0002]

【従来の技術】従来より600N/mm2 級高張力鋼の
性能向上に関する要望は多く、これまでに数多くの検討
がなされている。これらのうち、溶接割れ感受性の改良
を目的に低C化とTi−B添加を特徴とした技術として
特開昭49-37814号公報、特公平4-13406 号公報などが公
知となっている。これらに代表される技術により、溶接
割れ感受性が改良された600N/mm2 級高張力鋼が
得られるが、600N/mm2 級高張力鋼に要求される
引張強さはBの活用により達成されているため、化学成
分や製造条件の変動による母材特性の不安定さが懸念さ
れ、さらに溶接熱影響部の硬さ上昇が著しい。この溶接
熱影響部の硬さ上昇は一般に溶接継手部で最も懸念され
るボンド部の靭性劣化をもたらす。特開平2-205627号公
報は、直接焼入法を用いて靭性の優れた600N/mm
2 級高張力鋼の製造方法を提供している。この技術はN
bとBの複合添加を必須としているため、上記と同様の
B添加による弊害が懸念される。
2. Description of the Related Art Conventionally, there have been many demands for improving the performance of 600 N / mm 2 class high strength steel, and many studies have been made so far. Among these, Japanese Patent Laid-Open No. 49-37814 and Japanese Patent Publication No. 4-13406 are known as techniques characterized by lowering C and adding Ti-B for the purpose of improving susceptibility to welding cracks. Technologies such as these can provide 600N / mm 2 class high-strength steel with improved weld cracking susceptibility, but the tensile strength required for 600N / mm 2 class high-strength steel is achieved by utilizing B. Therefore, there is a concern that the base material characteristics may become unstable due to changes in chemical composition and manufacturing conditions, and the hardness of the weld heat affected zone may increase significantly. This increase in hardness of the heat-affected zone of welding generally leads to deterioration of the toughness of the bond portion, which is the most concerned in the welded joint portion. Japanese Unexamined Patent Application Publication No. 2-205627 discloses an excellent toughness of 600 N / mm using a direct quenching method.
We provide a manufacturing method for second- class high-strength steel. This technology is N
Since the combined addition of b and B is indispensable, there is a concern that the same adverse effect as the addition of B may occur.

【0003】Bを添加しない技術として、特開平5-3315
38号公報、特公昭60-9086 号公報、特開平2-254119号公
報、特開昭59-113120 号公報、特公昭61-12970号公報、
特開昭53-119219 号公報が提案されている。
As a technique in which B is not added, JP-A-5-3315
38, Japanese Patent Publication No. 60-9086, Japanese Patent Laid-Open No. 2-254119, Japanese Patent Publication No. 59-113120, Japanese Patent Publication No. 61-12970,
JP-A-53-119219 has been proposed.

【0004】これらのうち特開平5-331538号公報に示さ
れる技術は500N/mm2 級非調質高張力鋼に関する
ものである。また、特公昭60-9086 号公報、特開平2-25
4119号公報、特開昭59-113120 号公報に示される技術は
いずれも600N/mm2 級非調質高張力鋼に関するも
のであり、実施例などからこれらの技術の適用板厚の上
限はいずれも20mm程度であることが知れる。特公昭
61-12970号公報は、低C化とV添加および直接焼入れを
組み合わせることで、溶接割れ感受性に優れた600N
/mm2 級高張力鋼を提供しようとするものであるが、
これについても適用板厚は30mmにとどまる。
Of these, the technique disclosed in Japanese Unexamined Patent Publication No. 5-331538 relates to 500 N / mm 2 grade non-heat treated high strength steel. Also, Japanese Patent Publication No. 60-9086 and Japanese Patent Laid-Open No. 2-25
The techniques disclosed in Japanese Patent No. 4119 and Japanese Patent Laid-Open No. 59-113120 are all related to 600 N / mm 2 class non-heat treated high-strength steel, and from the examples, the upper limit of the plate thickness to which these techniques are applied is Is also known to be about 20 mm. Tokusho
No. 61-12970 discloses 600N which has excellent weld crack susceptibility by combining low carbon content, V addition and direct quenching.
/ Mm 2 class high-strength steel
In this case as well, the applicable plate thickness remains 30 mm.

【0005】また特開昭53-119219 号公報は、再加熱焼
入れ焼戻しプロセスにより板厚の厚い500N/mm2
級以上の高張力鋼を提供しようとするものである。この
技術によれば0.02%を越える比較的多量のNb添加
により再加熱時に未固溶Nb炭窒化物を残存せしめ、結
晶粒の粗大化を防止し主に母材の靭性を改善しようとす
るものである。従って焼入れに際して固溶Nbの焼入れ
性向上効果および析出硬化を十分に活用できない。その
ため実施例に見られるように強度を確保するためNb,
Vに加えて更にNi,Moの添加が実質的に必須とな
り、かつ厚肉材の板厚1/4tの位置で600N/mm
2 級の強度を確保できる発明例(供試鋼J)ではPcm
値が0.22に達し溶接割れ感受性に劣る。
Further, Japanese Patent Laid-Open No. 53-119219 discloses a thick plate of 500 N / mm 2 by a reheating quenching and tempering process.
It is intended to provide high-strength steel of a grade or higher. According to this technique, an undissolved Nb carbonitride is left at the time of reheating by adding a relatively large amount of Nb exceeding 0.02% to prevent coarsening of crystal grains and mainly to improve the toughness of the base material. To do. Therefore, the effect of improving the hardenability of solid solution Nb and the precipitation hardening cannot be fully utilized in quenching. Therefore, in order to secure strength as seen in the examples, Nb,
In addition to V, it is essentially essential to add Ni and Mo, and 600 N / mm at the position where the plate thickness of the thick material is 1 / 4t.
Pcm for the invention example (test steel J) that can secure the second grade strength
The value reaches 0.22 and the susceptibility to weld cracking is poor.

【0006】上述のように溶接割れ感受性に優れた60
0N/mm2 級調質型高張力鋼の従来技術はそのほとん
どがB添加による焼入れ性の確保により達成されてお
り、B無添加の場合は、薄肉材に限定される。
As described above, 60 is excellent in susceptibility to welding cracks.
Most of the prior art of 0N / mm 2 grade tempered high-strength steel has been achieved by securing the hardenability by adding B, and when B is not added, it is limited to a thin material.

【0007】一方、低温靭性の向上を図った高張力鋼の
圧延方法に関する従来技術として、特開平5-271760号公
報、特開平6-128638号公報、特開平6-93332 号公報があ
る。特開平6-93332 号公報ではC,Si,Mn,Nb,
Ti,Bを含み、sol.Al,Nの規制された素材鋼
を制御圧延後、直ちに所定の温度範囲まで加速冷却し、
ついでその温度範囲に一定時間等温保持、またはその温
度範囲を一定時間徐冷することで溶接割れ感受性と低温
靭性に優れた微細ベイナイト鋼の製造方法が開示されて
いるが、温度調整のための待ち時間がきわめて長くな
り、圧延効率の低下、等温保持および徐冷に伴うコスト
上昇を招き、生産性の低下は著しい。
On the other hand, Japanese Patent Laid-Open No. 5-271760, Japanese Patent Laid-Open No. 6-128638, and Japanese Patent Laid-Open No. 6-93332 disclose conventional methods for rolling high-strength steel with improved low-temperature toughness. In JP-A-6-93332, C, Si, Mn, Nb,
Ti, B, sol. Immediately after controlled rolling of a material steel in which Al and N are regulated, accelerated cooling to a predetermined temperature range,
Then, a method for producing a fine bainitic steel excellent in weld cracking susceptibility and low temperature toughness is disclosed by holding the temperature range isothermally for a certain period of time, or by gradually cooling the temperature range for a certain period of time. The time is extremely long, the rolling efficiency is lowered, the isothermal holding and the gradual cooling increase the cost, and the productivity is remarkably reduced.

【0008】[0008]

【発明が解決しようとする技術的課題】このような温度
調整のための待機という問題点を解決するために、特開
平6-128638号公報では、V,Nbを添加した鋳片をAc
3 点以上に加熱し、Ar3 点以上で冷却を実施しながら
熱間圧延し、ひきつづき放冷もしくは5℃/秒以上の冷
却速度で650℃以下の温度に加速冷却する事を特徴と
する高強度高靭性構造用厚鋼板の製造方法が開示されて
いる。しかし、これらの従来技術によれば、低温靭性の
改善する手段として熱間圧延を終了する温度をAr3
近傍(700〜800℃前後)という低温とすることが
開示されている。この結果、被圧延鋼の変形抵抗が大き
くなり、圧延機には多大な負荷が加わる。また、被圧延
鋼の溶接割れ感受性に関しては、何等考慮していない。
以上より、Ar3 点近傍という低温での制御圧延を実施
することなく、溶接割れ感受性と低温靭性に優れた調質
型600N/mm2 級高張力鋼の製造方法は現在までに
提供されていない。
In order to solve such a problem of waiting for temperature adjustment, Japanese Patent Laid-Open No. 6-128638 discloses that a slab containing V and Nb is added to Ac.
It is characterized by heating to 3 points or more and hot rolling while performing cooling at 3 points or more of Ar, and then allowing it to cool or accelerate cooling to a temperature of 650 ° C or less at a cooling rate of 5 ° C / sec or more. A method for manufacturing a structural steel plate having high strength and high toughness is disclosed. However, according to these conventional techniques, as a means for improving the low temperature toughness, it is disclosed that the temperature at which the hot rolling is finished is set to a low temperature near the Ar 3 point (around 700 to 800 ° C.). As a result, the deformation resistance of the steel to be rolled increases, and a great load is applied to the rolling mill. No consideration is given to the weld crack susceptibility of the rolled steel.
From the above, a method for producing a tempered 600 N / mm 2 class high-strength steel excellent in weld crack susceptibility and low temperature toughness without performing controlled rolling at a low temperature of around the Ar 3 point has not been provided to date. .

【0009】本発明はかかる事情に鑑みてなされたもの
であり、溶接割れ感受性および低温靭性の両特性に優れ
た板厚50mmまでの調質型600N/mm2 級鋼を低
温での制御圧延を実施することなく製造する方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and a controlled rolling of tempered 600 N / mm 2 grade steel up to a plate thickness of 50 mm, which is excellent in both characteristics of weld cracking susceptibility and low temperature toughness, is carried out at a low temperature. It is an object of the present invention to provide a manufacturing method without carrying out.

【0010】[0010]

【課題を解決するための手段】溶接割れ感受性を改善す
るためには、 Pcm=C+Si/30+Mn/20+Cu/20+Ni
/30+Cr/20+Mo/15+V/10+5B で定義されるPcm値を低減することが有効である。溶
接割れ感受性を確保しつつ母材の強度を確保する有効な
手段としてB添加が考えられるが、溶接熱影響部の著し
い硬度上昇に伴う継手靭性の劣化が特に後述する大入熱
溶接継手において懸念される。Bを有効に活用するため
に従来しばしば添加されるTiは安定に母材性能を得る
ために添加しないことが好ましい。そこで、Ti,Bを
添加せずに溶接割れ感受性の改善と溶接継手の健全性の
確保を両立させつつ600N/mm2 級高張力鋼を得る
ためには従来の再加熱焼入れ焼戻しプロセスの適用では
適用可能な板厚範囲に制約を生じる懸念がある。
In order to improve the weld crack susceptibility, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
It is effective to reduce the Pcm value defined by / 30 + Cr / 20 + Mo / 15 + V / 10 + 5B. Although addition of B is considered as an effective means for securing the strength of the base material while securing the susceptibility to weld cracking, deterioration of joint toughness due to a significant increase in hardness of the heat-affected zone of the weld is a concern especially for large heat input welded joints described below. To be done. It is preferable not to add Ti, which is often added conventionally in order to effectively utilize B, in order to stably obtain the base material performance. Therefore, in order to obtain 600 N / mm 2 class high-strength steel while simultaneously improving the weld crack susceptibility and ensuring the soundness of the welded joint without adding Ti and B, it is necessary to apply the conventional reheating quenching and tempering process. There is a concern that the applicable thickness range will be restricted.

【0011】溶接割れ感受性および低温靭性に優れた板
厚50mmに至る600N/mm級高張力鋼を工業的
に供給することを阻んできたこれらの課題を解決するこ
とを目的とする本発明は、直接焼入れ焼戻しプロセスの
適用を前提に下記の知見に基づいて提案されたものであ
る。
The present invention, which is aimed at solving these problems, has prevented the industrial supply of 600 N / mm 2 grade high-strength steel up to a plate thickness of 50 mm which is excellent in weld cracking susceptibility and low temperature toughness. It was proposed based on the following knowledge on the premise that the direct quenching and tempering process is applied.

【0012】(1)化学成分をNb添加系とし、かつ直
接焼入れ法の採用により圧延加熱時に固溶させたNbに
よる焼入れ性向上効果を活用できる。これにより他の焼
入れ性確保のための合金元素添加量を削減できる。また
Nbは炭化物を微細分散化する作用が有り厚肉材の1/
2t部の靭性確保に極めて有効である。
(1) By adopting Nb as a chemical component and adopting a direct quenching method, it is possible to utilize the effect of improving hardenability by Nb dissolved in a solid solution at the time of rolling and heating. This makes it possible to reduce the amount of addition of alloying elements for securing other hardenability. Nb also has the function of finely dispersing carbides,
It is extremely effective in securing the toughness of the 2t part.

【0013】(2)直接焼入れ後の焼戻し処理によりN
b炭窒化物の析出硬化を活用できる。これは焼入れ時の
冷却速度が表層側と比べて必然的に遅くなる板厚の中心
部の強度確保に有効である。即ちこれにより必要以上の
焼入れ性を確保することなく板厚中心部の強度を確保で
きる。
(2) N is obtained by the tempering treatment after direct quenching.
b Precipitation hardening of carbonitride can be utilized. This is effective in securing the strength of the central portion of the plate thickness where the cooling rate during quenching is necessarily slower than that on the surface side. That is, this makes it possible to secure the strength of the central portion of the plate thickness without securing the hardenability more than necessary.

【0014】(3)鋼材の低温靭性の改善に有効なオー
ステナイト未再結晶域での圧延は、オーステナイト再結
晶温度を上昇せしめるNb添加により、極端に低温での
圧下を実施することなく実現できる。
(3) Rolling in the austenite unrecrystallized region, which is effective for improving the low temperature toughness of the steel material, can be realized by adding Nb which raises the austenite recrystallization temperature, without performing reduction at an extremely low temperature.

【0015】(4)オーステナイト未再結晶域での圧下
量によって鋼材の圧延方向に平行な方向(L方向)と垂
直な方向(C方向)との音速比(音響異方性)が増加す
るにつれ、シャルピー衝撃試験の破面遷移温度(vTr
s)で表される低温靭性が極端に低温での圧下を加える
ことなく改善される。しかしながら、音響異方性が1.
035を越えるようになると低温靭性は劣化する。図1
にその結果を示す。
(4) As the reduction ratio in the unrecrystallized austenite region increases the sound velocity ratio (acoustic anisotropy) between the direction parallel to the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction). , Fracture transition temperature of Charpy impact test (vTr
The low temperature toughness represented by s) is improved without applying reduction at extremely low temperatures. However, the acoustic anisotropy is 1.
If it exceeds 035, the low temperature toughness deteriorates. Figure 1
The results are shown in.

【0016】(5)上記によりB添加は不要となり、B
を有効に活用する観点からのTi添加は必須ではなく、
むしろ安定に良好な母材性能を得る上でTiは添加しな
いことが好ましい。
(5) From the above, the addition of B becomes unnecessary, and B
From the viewpoint of effectively utilizing
Rather, it is preferable not to add Ti in order to stably obtain good base material performance.

【0017】(6)(4)で記したように、本発明にお
いては鋼材の音響異方性を所定の範囲に限定するため、
熱間圧延に際してはγ粒の微細化による低温靱性の改善
に加え、音響異方性の値が1.035を越えない範囲で
増加させる目的で、1000℃未満800℃以下にて2
0%以上の累積圧下を付与し、少なくともAr3点以上
から直接焼き入れする。
As described in (6) and (4), in the present invention, the acoustic anisotropy of the steel material is limited to a predetermined range.
At the time of hot rolling, in order to improve the low temperature toughness by refining the γ grains, and to increase the value of the acoustic anisotropy within the range not exceeding 1.035, the temperature is less than 1000 ° C and 800 ° C or less.
A cumulative reduction of 0% or more is applied, and direct quenching is performed from at least 3 Ar points.

【0018】すなわち本発明は、(1)重量%でC:
0.04〜0.1%、Si:0.01〜0.4%、M
n:0.5〜1.6%、P:0.015%以下、S:
0.01%以下、Nb:0.005〜0.05%、V:
0.1%以下、Al:0.005〜0.1%、N:0.
0005〜0.008%、Ti<0.005%、B<
0.0003%を含み、Pcm=C+Si/30+Mn
/20+Cu/20+Ni/30+Cr/20+Mo/
15+V/10+5Bで定義されるPcm値が0.2以
下で、残部が鉄および不可避不純物よりなる鋼材を、熱
間圧延に際して1000〜1250℃の温度範囲に加熱
後、1000℃〜1050℃での20%以上の累積圧下
に引き続き、1000℃未満800℃以上の未再結晶温
度領域で、圧延1パス毎の圧下率が5%以上で、かつ、
圧延仕上温度を800℃以上として、20%以上の累積
圧下を施し、少なくともAr3 変態点以上から直接焼入
れし、その後、Ac1 変態点以下で焼戻しを行うことを
特徴とする引張強さ570N/mm2 以上の溶接割れ感
受性、低温靭性に優れた調質型600N/mm2 級高張
力鋼の製造方法、(2)鋼材は、Mo:0.3%以下、
Cu:0.5%以下、Ni:1.5%以下、Cr:0.
5%以下のうち1種以上をさらに含む(1)に記載され
る引張強さ570N/mm2 以上の溶接割れ感受性、低
温靭性に優れた調質型600N/mm2 級高張力鋼の製
造方法、(3)(1)又は(2)に記載の組成を有する
鋼材を、1000〜1250℃の温度範囲に設定された
加熱温度Tを用いて、log{(Nb)×(C+12/
14N)}=2.26−6770/(T+273.1
5)の関係より計算される固溶Nb量を有効Nb量とし
て、Ceq=C+Mn/6+Si/24+Ni/40+
Cr/5+Mo/4+V/14で定義されるCeq値お
よび有効Nb量,V含有量からなるX=625(有効N
b)+250V+210CeqがX≧40+t(ここに
tは鋼板の板厚(mm)指す)なる関係を満たすことを
特徴とする引張強さ570N/mm2 以上の溶接割れ感
受性、低温靭性に優れた調質型600N/mm2 級高張
力鋼の製造方法である。
That is, according to the present invention, (1) C by weight%:
0.04 to 0.1%, Si: 0.01 to 0.4%, M
n: 0.5 to 1.6%, P: 0.015% or less, S:
0.01% or less, Nb: 0.005 to 0.05%, V:
0.1% or less, Al: 0.005 to 0.1%, N: 0.
0005-0.008%, Ti <0.005%, B <
Including 0.0003%, Pcm = C + Si / 30 + Mn
/ 20 + Cu / 20 + Ni / 30 + Cr / 20 + Mo /
A steel material having a Pcm value defined by 15 + V / 10 + 5B of 0.2 or less and a balance of iron and unavoidable impurities is heated to a temperature range of 1000 to 1250 ° C. during hot rolling, and then 20 at 1000 ° C. to 1050 ° C. % or more following the cumulative reduction, non-recrystallization temperature of 800 ° C. or higher than 1000 ° C.
The rolling reduction is 5% or more in each rolling pass, and
A rolling finish temperature of 800 ° C. or higher, a cumulative reduction of 20% or higher, direct quenching at least from the Ar 3 transformation point or higher, and then tempering at the Ac 1 transformation point or lower, tensile strength of 570 N / A method for producing a tempered type 600 N / mm 2 class high-strength steel excellent in weld cracking susceptibility of mm 2 or more and low temperature toughness, (2) steel material is Mo: 0.3% or less,
Cu: 0.5% or less, Ni: 1.5% or less, Cr: 0.
A method for producing a tempered type 600 N / mm 2 class high-strength steel excellent in weld cracking susceptibility with a tensile strength of 570 N / mm 2 or more and excellent in low temperature toughness as described in (1) further containing one or more of 5% or less, (3) Using the heating temperature T set in the temperature range of 1000 to 1250 ° C., the steel material having the composition described in (1) or (2) is log {(Nb) × (C + 12 /
14N)} = 2.26-6770 / (T + 273.1)
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 +, where the solid solution Nb amount calculated from the relationship of 5) is the effective Nb amount.
Ceq value defined by Cr / 5 + Mo / 4 + V / 14, effective Nb amount, and V content X = 625 (effective N
b) + 250V + 210Ceq satisfies the relation of X ≧ 40 + t (where t indicates the plate thickness (mm) of the steel plate), and has a tensile strength of 570 N / mm 2 or more, which is excellent in weld cracking susceptibility and low temperature toughness. This is a method for producing a mold 600 N / mm 2 class high strength steel.

【0019】[0019]

【発明の実施の形態】以下に本発明での構成要件の限定
理由等について説明する。 <C>C量0.04%未満では他の焼入れ性向上元素の
多量添加が必要となりコスト高、靭性劣化、溶接割れ感
受性の劣化を招く。また、特に本発明鋼に大入熱溶接を
施す場合、C含有量が0.04%に満たないと溶接金属
へのCの希釈が少なくなり一般の溶接材料では継手強度
を確保することが困難となる。C量の上限は溶接割れ感
受性の確保のため0.1%である。 <Si>Siは母材強度と溶接継手強度を確保する上で
有効に働くので0.01%以上添加する。しかし、0.
4%を越える添加は溶接割れ感受性と溶接継手靭性を劣
化させる。 <Mn>Mnは母材強度と溶接継手強度を確保する上で
有効に働くので0.5%以上添加する。しかし、1.6
%を越える添加は溶接割れ感受性を劣化させ、必要以上
の焼入れ性をもたらし母材靭性、継手靭性を劣化させ
る。 <P,S>P,Sは、いずれも不純物元素であり、健全
な母材および溶接継手を得るためにPは0.015%以
下、好ましくは0.01%以下に、Sは0.01%に規
制されることが望ましい。 <Nb>上述したように、Nbは直接焼き入れ法の採用
時には請求項3に記される有効Nb量に応じて溶接割れ
感受性指数: Pcm=C+Si/30+Mn/20+Cu/20+N
i/30+Cr/20+Mo/15+V/10+5B を上昇させることなく焼き入れ性を向上させるととも
に、直接焼き入れごの焼戻し処理によるNb炭窒化物の
析出効果により母材強度と溶接継手強度を向上する。そ
の結果、Cu,Ni,Cr,Mo等、他の焼入れ性確保
のための合金元素の添加量を削減できるので、0.00
5%以上積極的に添加する。しかし、0.05%を越え
る添加は、溶接継手靭性を劣化させる傾向も認められる
ことからNb添加量の上限を0.05%、好ましくは
0.03%とする。 <V>Vは焼入れ性の向上のみならず、焼戻し処理によ
るV炭窒化物の析出効果により母材強度と溶接継手強度
を向上するので、0.1%を越えない程度に添加する。 <Al>Alは鋼の脱酸のため添加され、通常0.00
5%以上は含有する。また、ミクロ組織の微細化による
母材靭性の確保のために0.01%添加する。しかし、
0.1%を越えるAl添加は母材靭性を損なう。 <Ti,B>Tiはミクロ組織の細粒化を通じて母材お
よび溶接継手の靭性を改善する効果を有する。また、B
添加鋼では、焼入れ性に有効に働くBを確保するためし
ばし積極的に添加される。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the constituent features of the present invention will be described below. If the amount of <C> C is less than 0.04%, it is necessary to add a large amount of other hardenability-improving elements, resulting in high cost, toughness deterioration, and deterioration of weld cracking susceptibility. Further, particularly when subjecting the steel of the present invention to high heat input welding, if the C content is less than 0.04%, the dilution of C into the weld metal becomes small and it is difficult to secure the joint strength with general welding materials. Becomes The upper limit of the amount of C is 0.1% in order to secure the susceptibility to welding cracks. <Si> Si effectively acts to secure the strength of the base metal and the strength of the welded joint, so 0.01% or more is added. However, 0.
Addition of more than 4% deteriorates weld crack susceptibility and weld joint toughness. <Mn> Mn works effectively in securing the strength of the base metal and the strength of the welded joint, so 0.5% or more is added. But 1.6
%, The weld cracking susceptibility is deteriorated, the hardenability is increased more than necessary, and the base metal toughness and the joint toughness are deteriorated. <P, S> P and S are both impurity elements, and P is 0.015% or less, preferably 0.01% or less, and S is 0.01% in order to obtain a sound base metal and a welded joint. It is desirable to be regulated to%. <Nb> As described above, Nb is a weld crack susceptibility index according to the effective Nb amount described in claim 3 when the direct quenching method is adopted: Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
The hardenability is improved without increasing i / 30 + Cr / 20 + Mo / 15 + V / 10 + 5B, and the base metal strength and the weld joint strength are improved by the precipitation effect of Nb carbonitride by the tempering treatment of the direct quenching iron. As a result, the amount of addition of other alloying elements such as Cu, Ni, Cr, and Mo for securing the hardenability can be reduced, so 0.00
Add more than 5% positively. However, since the addition of more than 0.05% tends to deteriorate the weld joint toughness, the upper limit of the Nb addition amount is set to 0.05%, preferably 0.03%. <V> V not only improves the hardenability but also improves the base metal strength and the welded joint strength due to the precipitation effect of V carbonitrides by the tempering treatment, so it is added in an amount not exceeding 0.1%. <Al> Al is added for deoxidizing steel, and is usually 0.00
5% or more is contained. Further, 0.01% is added in order to secure the toughness of the base material due to the refinement of the microstructure. But,
Addition of Al in excess of 0.1% impairs base material toughness. <Ti, B> Ti has the effect of improving the toughness of the base material and the welded joint through grain refinement of the microstructure. Also, B
Additive steel is often added positively to secure B that works effectively for hardenability.

【0020】これに対し、本発明では、すでに述べたよ
うに、溶接熱影響部の硬化が懸念されるBを添加せずに
母材強度を確保し、熱影響部粗粒域の硬度低減により溶
接継手靭性を達成するため、Tiを添加する必然性はな
い。むしろTi添加による母材性能の不安定さを懸念
し、不純物元素として0.005%未満に規制するが後
述するN含有量の3.4倍を下回ることが望ましい。
On the other hand, in the present invention, as described above, the strength of the base metal is secured without adding B, which may cause hardening of the weld heat affected zone, and the hardness of the coarse grained zone of the heat affected zone is reduced. There is no need to add Ti to achieve weld joint toughness. Rather, there is a concern about instability in the base material performance due to the addition of Ti, and the content of the impurity element is regulated to less than 0.005%, but it is desirable to be less than 3.4 times the N content described later.

【0021】Bは上述の熱影響部の硬さ低減のため不純
物元素として0.0003%未満に規制しなければなら
ない。 <N>Nは、Al,Nbなどと反応し析出物を形成する
ことでミクロ組織を微細化し、母材靭性を向上させるた
め、および焼戻し時にNb,Vなどと反応し析出硬化に
よる強度確保のために添加する。
B must be regulated to less than 0.0003% as an impurity element in order to reduce the hardness of the heat affected zone. <N> N reacts with Al, Nb, etc. to form a precipitate, thereby making the microstructure finer and improving the base material toughness, and reacting with Nb, V, etc. during tempering to secure the strength by precipitation hardening. To add.

【0022】0.0005%未満の添加ではミクロ組織
の微細化および強度確保に必要な析出物が形成されず、
0.008%を越える添加はむしろ母材および溶接継手
の靭性を損なう。 <Mo>Moは母材強度、継手強度を向上させる効果を
有することから0.3%を越えない範囲で選択的に添加
する。 <Cu,Ni,Cr>Cu,Ni,Crは必ずしも必須
な元素ではない。しかし、Cu,Niは母材強度および
溶接継手強度向上のためにNiは母材強度、靭性および
継手強度をともに向上させるためにCu≦0.5%,N
i≦1.5%,Cr≦0.5%添加しても差し支えな
い。特にMnの一部をこれらの元素に置き換えることで
靭性の向上や偏析の低減などが達成できる。 <Pcm>Pcmは溶接割れ感受性を表す指数であり、
通常の環境において溶接施工時の予熱を不要にするため
に0.2%以下に規制する。 <計算式:X=625Nb+250V+210Ceq,
X≧t+40> 計算式:625Nb+250V+210Ceqは母材の
板厚1/2tにおける強度を表す指数であり、当該業者
間で一般に知られる炭素等量式(Ceq)に本発明の要
であるNb,Vの寄与を加味しさらに概ね50mmまで
の板厚範囲における板厚効果を考慮して整理した数式で
ある。尚、板厚効果とは、熱間圧延後の直接焼入れによ
り鋼板をAr3 変態点以上から強制冷却する際、板厚に
応じてその冷却速度が必然的に変化し、そのため母材強
度が変化することを指す。ここでは1/2tにおいても
600N/mm2 級高張力鋼に分類されるJIS G3
106SM570Qに適合する鋼板を得ることとし、計
算式の板厚の項は工業的な簡便さを図るべく板厚50m
mまでの1/2tの強度との相関を線形として取り扱
い、計算式:625Nb+250V+210Ceqが板
厚t(mm)に40を加えた値を上回ることとした。こ
の計算式におけるNb,Vの強度上昇効果はVの場合、
V炭窒化物の析出硬化による寄与を表し、Nbの場合は
Nb炭窒化物の析出硬化に加えて焼入れ性上昇による寄
与を考慮したものである。直接焼入れ後焼戻し工程によ
り期待されるこれらの元素の効果は、熱間圧延前の加熱
段階に於いて固溶していることが必要である。Vは本発
明の範囲において添加量全てが固溶し得るが、Nbの場
合は必ずしも全量固溶するとは限らない。そこで、Nb
の全量固溶を確保できない場合は、log{(Nb)×
(C+12N/14)}=2.26−6770/(T+
273.15)の関係より計算される固溶Nb量を有効
Nb量として、上述の計算式を 625(有効Nb)+250V+210Ceq≧t+4
0 として、適用しなければならない。
If the addition amount is less than 0.0005%, precipitates necessary for refining the microstructure and ensuring strength are not formed,
Addition of more than 0.008% rather impairs the toughness of the base metal and the welded joint. <Mo> Mo has the effect of improving the base material strength and joint strength, so it is selectively added within a range not exceeding 0.3%. <Cu, Ni, Cr> Cu, Ni, Cr are not always essential elements. However, Cu and Ni are for improving the base metal strength and weld joint strength, and Ni is Cu ≦ 0.5%, N for improving both the base metal strength, toughness and joint strength.
There is no problem even if i ≦ 1.5% and Cr ≦ 0.5% are added. In particular, by replacing a part of Mn with these elements, improvement of toughness and reduction of segregation can be achieved. <Pcm> Pcm is an index representing the susceptibility to welding cracks,
It is regulated to 0.2% or less in order to eliminate the need for preheating during welding in a normal environment. <Calculation formula: X = 625Nb + 250V + 210Ceq,
X ≧ t + 40> Calculation formula: 625Nb + 250V + 210Ceq is an index representing the strength of the base material at a plate thickness of 1 / 2t, and the carbon equivalent formula (Ceq) generally known to those skilled in the art is the key to Nb and V of the present invention. This is a mathematical formula in which the contribution is taken into consideration and the thickness effect in the thickness range up to approximately 50 mm is taken into consideration and arranged. Note that the plate thickness effect means that when the steel plate is forcibly cooled from the Ar 3 transformation point or higher by direct quenching after hot rolling, the cooling rate inevitably changes depending on the plate thickness, and therefore the base metal strength changes. It means to do. Here, even at 1 / 2t, JIS G3 is classified as 600N / mm 2 class high-strength steel.
A steel plate suitable for 106SM570Q is to be obtained, and the plate thickness term in the calculation formula is 50 m for industrial simplicity.
The correlation with the strength of 1 / 2t up to m was treated as linear, and the calculation formula: 625Nb + 250V + 210Ceq was determined to exceed the value obtained by adding 40 to the plate thickness t (mm). In the case of V, the strength increasing effect of Nb and V in this formula is
The contribution due to the precipitation hardening of V carbonitride is shown. In the case of Nb, the contribution due to the increase in the hardenability is considered in addition to the precipitation hardening of Nb carbonitride. The effect of these elements expected by the direct quenching and tempering process is that they must be solid-solved in the heating stage before hot rolling. In the range of the present invention, all of V can be solid-dissolved, but in the case of Nb, not all S are necessarily solid-dissolved. Therefore, Nb
When it is not possible to secure the solid solution for the entire amount, log {(Nb) ×
(C + 12N / 14)} = 2.26-6770 / (T +
273.15), the amount of solid solution Nb calculated from the relationship of 273.15) is used as the effective Nb amount, and the above calculation formula is calculated as 625 (effective Nb) + 250V + 210Ceq ≧ t + 4.
Must be applied as 0.

【0023】尚、本発明が対象とする板厚範囲は概ね2
5mm〜50mmの範囲である。 <熱間圧延前の加熱温度>合金元素の均質化とNbの固
溶を図るため、加熱温度は1000℃以上に設定する必
要がある。しかし、加熱温度が1250℃を越えるとミ
クロ組織の粗大化により母材の靭性が確保されなくなる
ので上限を1250℃、好ましくは1200℃、更に好
ましくは1150℃とする。 <圧延条件>均一に加熱された本発明鋼を所定の板厚ま
で熱間圧延する工程は、オーステナイト単結晶域であり
1050℃以下1000℃以上で20%以上の累積圧下
を与える必要がある。これによりγ粒が微細化し、低温
靱性が改善される。さらに母材の靱性を安定に確保、向
上するには、鋼材の音響異方性を1.01から1.03
5に限定する観点から、1000℃未満800℃以上の
温度範囲にて圧延1パス毎の圧下率を5%以上、さらに
好ましくは10%以上の圧延を累積圧下20%以上確保
する必要がある。
The plate thickness range targeted by the present invention is approximately 2
It is in the range of 5 mm to 50 mm. <Heating temperature before hot rolling> In order to homogenize alloy elements and form a solid solution of Nb, it is necessary to set the heating temperature to 1000 ° C or higher. However, if the heating temperature exceeds 1250 ° C, the toughness of the base material cannot be ensured due to the coarsening of the microstructure, so the upper limit is 1250 ° C, preferably 1200 ° C, and more preferably 1150 ° C. <Rolling conditions> The step of hot rolling the uniformly heated steel of the present invention to a predetermined plate thickness is in the austenite single crystal region, and it is necessary to give a cumulative reduction of 20% or more at 1050 ° C or lower and 1000 ° C or higher. This makes the γ grains finer and improves the low temperature toughness. Furthermore, in order to stably secure and improve the toughness of the base material, the acoustic anisotropy of the steel material should be 1.01 to 1.03.
From the viewpoint of being limited to 5, it is necessary to secure a rolling reduction of 5% or more, more preferably 10% or more, and a cumulative rolling reduction of 20% or more in each rolling pass in a temperature range of less than 1000 ° C. and 800 ° C. or more.

【0024】すなわち、図1に示すように鋼板の音響異
方性が1.01から1.035となるにつれて低温靱性
は改善される。熱間圧延後、直接焼入れを実施するまで
に当該温度での再結晶に十分な時間が経過した場合、鋼
板は再結晶する。その結果、音響異方性はほぼ1.00
0〜1.005の範囲となる。これに対して低温で圧延
が終了するか比較的高温でも圧延終了後に速やかに直接
焼入れした場合、鋼板は十分には再結晶せず、音響異方
性は1.005以上の値となる。
That is, as shown in FIG. 1, the low temperature toughness is improved as the acoustic anisotropy of the steel sheet changes from 1.01 to 1.035. After hot rolling, if sufficient time has passed for recrystallization at the temperature before direct quenching is performed, the steel sheet recrystallizes. As a result, the acoustic anisotropy is almost 1.00.
It will be in the range of 0 to 1.005. On the other hand, when the rolling is finished at a low temperature or is directly quenched immediately after the rolling even at a relatively high temperature, the steel sheet is not sufficiently recrystallized and the acoustic anisotropy is 1.005 or more.

【0025】本発明のようなNb添加鋼では、未再結晶
温度が高い。その結果、実用上の厚板熱間圧延の場合、
被圧延鋼の不可避的な温度低下により、圧延能率が阻害
する低温での圧延を実施することなく1.01を越える
程度の音響異方性が達成され、低温靱性が改善される。
一方、800℃未満のような低温での圧延を実施した場
合には音響異方性が1.035以上に上昇し、低温靱性
をかえって阻害する場合もある。従って、圧延仕上温度
は800℃以上、望ましくは850℃以上とすること
で、音響異方性を1.035以下、望ましくは1.01
5〜1.025とする。 <直接焼入れ>熱間圧延終了後、少なくともAr3 変態
点を上回る温度の鋼板を強制冷却し焼入れ処理を施すこ
とが必要である。強制冷却は水等の冷却媒体を鋼板に均
一に付与し、板厚1/2tにて少なくとも1℃/秒以上
の冷却速度を達成させなければならない。また、圧延仕
上温度と焼入れ開始温度(少なくともAr3 変態点以
上)との間に温度差を設け、低降伏比化を図ることも可
能である。また、圧延仕上げ温度と焼入れ開始温度(少
なくともAr3変態点以上)との間に温度差を設け、低
降伏比や音響異方性の調整を図ることも可能である。 <焼戻し温度>焼戻しは、溶接やSRによる性能変化に
対する懸念を取り除くためAc1 変態点以下で実施され
る。本発明では、焼戻しはNb炭窒化物の析出硬化によ
る母材強度確保という重要な意味を持つ。Ac1 変態点
以下に限定した理由は、Ac1変態点を越える温度で焼
戻しを行うと強度の低下が著しく、600N/mm2
高張力鋼としての強度が確保されない。焼戻し温度の好
ましい下限は570℃、特に600℃である。
The Nb-added steel according to the present invention has a high non-recrystallization temperature. As a result, in the case of practical thick plate hot rolling,
Due to the unavoidable temperature decrease of the steel to be rolled, acoustic anisotropy of more than 1.01 is achieved without rolling at a low temperature that impairs rolling efficiency, and the low temperature toughness is improved.
On the other hand, when rolling is carried out at a low temperature of less than 800 ° C., the acoustic anisotropy increases to 1.035 or more, which may rather hinder the low temperature toughness. Therefore, by setting the rolling finishing temperature to 800 ° C. or higher, preferably 850 ° C. or higher, the acoustic anisotropy is 1.035 or lower, preferably 1.01 or less.
It is set to 5 to 1.025. <Direct Quenching> After completion of hot rolling, it is necessary to forcibly cool and quench the steel sheet having a temperature at least higher than the Ar 3 transformation point. For forced cooling, a cooling medium such as water must be uniformly applied to the steel sheet to achieve a cooling rate of at least 1 ° C./second or more at a sheet thickness of 1 / 2t. It is also possible to achieve a low yield ratio by providing a temperature difference between the rolling finish temperature and the quenching start temperature (at least the Ar 3 transformation point or higher). It is also possible to adjust the low yield ratio and acoustic anisotropy by providing a temperature difference between the rolling finish temperature and the quenching start temperature (at least the Ar3 transformation point or higher). <Temperature Temperature> Tempering is carried out below the Ac 1 transformation point in order to eliminate concerns about performance changes due to welding and SR. In the present invention, tempering has an important meaning of securing the strength of the base metal by precipitation hardening of Nb carbonitride. The reason for limiting the temperature to the Ac 1 transformation point or lower is that when tempering is performed at a temperature higher than the Ac 1 transformation point, the strength is remarkably lowered, and the strength as 600 N / mm 2 class high tensile steel cannot be secured. The preferable lower limit of the tempering temperature is 570 ° C., particularly 600 ° C.

【0026】[0026]

【実施例】表1〜表2に本発明の実施例に用いた鋼の化
学成分を示す。表2の最右覧欄は加熱温度が十分に高
く、X=625(有効Nb)+250V+210Ceq
の計算式における有効Nb量が添加した全Nb量に等し
い場合の計算値を示す。表1〜表2に示した化学成分の
鋼を溶製し、鋼塊となし、表3乃至表6に示した製造条
件にて所定の板厚に熱間圧延後、直接焼入れし、更に焼
戻し処理を施し供試鋼を得た。尚、圧延仕上温度はいず
れも800℃以上であり、極端に低温での圧延は実施せ
ず、圧延に際しての温度調整等は不要である。焼戻し温
度は580〜680℃の範囲とした。なお、表3乃至6
中、t:板厚、SL:スラブ加熱温度、FT:圧延仕上
温度、UST:音響異方性、vTs:シャルピー衝撃試
験の破面遷移温度である。
EXAMPLES Tables 1 and 2 show chemical compositions of steels used in Examples of the present invention. In the rightmost column of Table 2, the heating temperature is sufficiently high and X = 625 (effective Nb) + 250V + 210Ceq.
The calculated value in the case where the effective Nb amount in the calculation formula is equal to the total Nb amount added is shown. Steel of the chemical composition shown in Tables 1 and 2 is melted to form a steel ingot, hot rolled to a predetermined plate thickness under the manufacturing conditions shown in Tables 3 to 6, then directly quenched, and further tempered. Treatment was performed to obtain a test steel. The rolling finishing temperatures are all 800 ° C. or higher, rolling is not carried out at an extremely low temperature, and temperature adjustment or the like at the time of rolling is unnecessary. The tempering temperature was in the range of 580 to 680 ° C. Tables 3 to 6
Medium, t: plate thickness, SL: slab heating temperature, FT: rolling finish
Temperature, UST: Acoustic anisotropy, vTs: Charpy impact test
It is the fracture surface transition temperature of the test.

【0027】全ての供試鋼の板厚中央部より、引張試験
およびシャルピー衝撃試験を圧延方向と垂直な方向にて
採取し600N/mm2 級鋼としての母材の機械的性質
を評価した。
Tensile tests and Charpy impact tests were taken in the direction perpendicular to the rolling direction from the center part of the plate thickness of all the sample steels, and the mechanical properties of the base material as 600 N / mm 2 class steel were evaluated.

【0028】また、JIS Z3158に準拠して斜め
y型溶接割れ試験を、JIS Z3101に準拠して最
高硬さ試験をそれぞれ実施し、溶接割れ感受性を評価し
た。これらの試験はいずれも600N/mm2 級鋼用超
低水素タイプの溶接材料を用いて、雰囲気20℃−60
%、試験片初期温度25℃の条件で行った。
Further, an oblique y-type weld cracking test was carried out according to JIS Z3158 and a maximum hardness test was carried out according to JIS Z3101 to evaluate the weld cracking susceptibility. In all of these tests, an ultra low hydrogen type welding material for 600 N / mm 2 grade steel was used and the atmosphere was 20 ° C.-60.
%, The test piece initial temperature was 25 ° C.

【0029】鋼番1の計算値:X=625(有効Nb)
+250V+210Ceq=98は供試鋼板厚:38
(mm)を上回り、供試鋼板厚中心部の引張強さは57
0N/mm2 を越え靭性も良好である。またPcm値は
0.18と低く、y割れ試験において溶接割れは発生し
なかった。No.1Aは1050℃以下での累積圧下に
よりγ粒が微細化するも、比較的高温である1000℃
での圧延終了後に鋼板が十分に再結晶したために音響異
方性の値は1.003となり、シャルピー衝撃試験の破
面遷移温度:vTs=−57(℃)に留まる。No.1
Bではさらに1000℃以下での累積圧下(圧延終了は
900℃)により音響異方性が1.029と増加したた
め、vTs=−80(℃)と靭性がさらに改善される。
Calculated value for steel No. 1: X = 625 (effective Nb)
+ 250V + 210Ceq = 98 is the sample steel plate thickness: 38
(Mm) and the tensile strength at the center of the thickness of the test steel plate is 57.
Exceeding 0 N / mm 2 and good toughness. Further, the Pcm value was as low as 0.18, and no weld crack occurred in the y crack test. No. 1A has a relatively high temperature of 1000 ° C, although the γ grains become finer due to the cumulative reduction below 1050 ° C.
Since the steel sheet was sufficiently recrystallized after the completion of rolling in 1., the value of acoustic anisotropy was 1.003, and the fracture surface transition temperature in the Charpy impact test remained at vTs = -57 (° C). No. 1
In B, the acoustic anisotropy increased to 1.029 due to the cumulative reduction at 1000 ° C or lower (900 ° C at the end of rolling), so that the vTs = -80 (° C) and the toughness are further improved.

【0030】鋼番2の計算値は供試鋼の板厚に40を加
えたものを上回り、良好な強度・靭性を示す。音響異方
性が1.023と増加したNo.2Bで1000℃以下
での圧延を実施するも、比較的高温である960℃での
圧延終了後から直接焼入れ処理までの再結晶の進行によ
り音響異方性が1.001となり、シャルピー衝撃試験
の破面遷移温度:vTs=−52(℃)に留まる。圧延
仕上げ温度の低下により音響異方性が増加したNo.2
B,2C,2Dでは、vTs=−70,−63,−70
(℃)と低温靱性がさらに改善されている。
The calculated value of steel No. 2 exceeds the thickness of the sample steel to which 40 is added, and shows good strength and toughness. No. 1 whose acoustic anisotropy increased to 1.023. Even if rolling is performed at 1000C or lower at 2B, the acoustic anisotropy becomes 1.001 due to the progress of recrystallization from the end of rolling at 960 ° C, which is a relatively high temperature, to the direct quenching treatment. Fracture transition temperature: stays at vTs = −52 (° C.). The acoustic anisotropy increased due to the decrease in rolling finishing temperature. Two
For B, 2C and 2D, vTs = -70, -63, -70.
(° C) and low temperature toughness are further improved.

【0031】鋼番3の計算値は83と供試鋼板厚の38
(mm)に40を加えたものを上回り、良好な強度・靭
性を示す。ただしNo.3Aでは比較的高温であり10
00℃での圧延終了後、鋼板が十分に再結晶したために
音響異方性は1.003であり、シャルピー衝撃試験の
破面遷移温度:vTs=−67℃に留まる。1000℃
以下での圧延の実施により音響異方性が増加したNo.
3B,3Cでは、vTs=−81(℃),−85(℃)
と靭性が改善される。圧延仕上げ温度の低下(800
℃)により音響異方性が1.035を超えるNo.3D
の靭性は、vTs=−76(℃)と高温側へ移行し、母
材強度も570N/mm2 を下回る。
The calculated value of steel No. 3 is 83 and the thickness of the test steel plate is 38
It exceeds that obtained by adding 40 to (mm) and shows good strength and toughness. However, No. At 3A, the temperature is relatively high 10
The acoustic anisotropy is 1.003 because the steel sheet was sufficiently recrystallized after the rolling at 00 ° C., and the fracture surface transition temperature in the Charpy impact test: vTs = −67 ° C. 1000 ° C
No. 1 whose acoustic anisotropy increased due to the following rolling.
In 3B and 3C, vTs = -81 (° C), -85 (° C)
And toughness is improved. Reduction of rolling finish temperature (800
C.), the acoustic anisotropy exceeds 1.035. 3D
Has a toughness of vTs = -76 (° C.), and the base metal strength is less than 570 N / mm 2 .

【0032】音響異方性が1.011のNo.4Aは、
優れた強度・靭性を示すが、No.4Bでは音響異方性
が1.03まで増加し、更なる靭性の改善が達成され
る。鋼番5〜12および18は、Moを含む実施例であ
る。各鋼番の計算値:X=625(有効Nb)+250
V+210Ceqは供試鋼板厚を上回り、供試鋼板厚中
心部の引張強さは570N/mm2 を越え靭性も良好で
ある。ただしNo.8Kの場合、加熱温度が1050℃
と低く、計算式:X=675(有効Nb)+250V+
210Ceqの値は92となる。この結果、音響異方性
が1.034とほぼ同等のNo.8I,8Jに対して強
度が低めである。同様にNo.9Dでは計算式:X=6
75(有効Nb)+250V+210Ceqの値は87
となり、音響異方性がほぼ同等のNo.9Bに対して強
度が低めである。しかしながらスラブ加熱時に未固溶で
あるNbが加熱γ粒の粗大化を抑制するため、No.8
K,No.9Dの低温靱性は飛躍的に向上する。
No. 1 having an acoustic anisotropy of 1.011. 4A is
Although it has excellent strength and toughness, In 4B, the acoustic anisotropy increases to 1.03, and further improvement in toughness is achieved. Steel Nos. 5 to 12 and 18 are examples containing Mo. Calculated value of each steel number: X = 625 (effective Nb) +250
V + 210 Ceq exceeds the thickness of the test steel sheet, and the tensile strength of the center portion of the thickness of the test steel sheet exceeds 570 N / mm 2 and the toughness is also good. However, No. In case of 8K, heating temperature is 1050 ℃
The calculation formula: X = 675 (effective Nb) + 250V +
The value of 210 Ceq is 92. As a result, No. 1 whose acoustic anisotropy is almost equal to 1.034. The strength is lower than 8I and 8J. Similarly, No. Calculation formula in 9D: X = 6
The value of 75 (effective Nb) + 250V + 210Ceq is 87
And the acoustic anisotropy is almost the same. The strength is lower than that of 9B. However, Nb which is not solid-solved during heating of the slab suppresses the coarsening of the heated γ grains. 8
K, No. The low temperature toughness of 9D is dramatically improved.

【0033】鋼番5〜12および18のPcm値は0.
2以下と低く、y割れ試験において溶接割れは発生しな
い。また、音響異方性が1.01から1.035へ増加
するにつれて靭性の改善が達成される。しかし、音響異
方性が1.035を超えるようになるとvTsが高温側
へ移行し、靭性がかえって劣化する。
The Pcm values of steel Nos. 5 to 12 and 18 are 0.
It is as low as 2 or less, and no weld crack occurs in the y crack test. Also, improvement in toughness is achieved as the acoustic anisotropy increases from 1.01 to 1.035. However, when the acoustic anisotropy exceeds 1.035, vTs shifts to the high temperature side and the toughness deteriorates rather.

【0034】鋼番13〜17および20,21はMo及
びCu,Ni,Crを含む実施例である。各鋼番の計算
値:X=625(有効Nb)+250V+210Ceq
は供試鋼板厚を上回り、供試鋼板厚中心部の引張強さは
570N/mm2 を越え靭性も良好である。またPcm
値は0.2以下と低く、y割れ試験において溶接割れは
発生しない。靭性は、音響異方性が1.01から1.0
35へ増加するにつれて改善される。
Steel Nos. 13 to 17 and 20, 21 are examples containing Mo and Cu, Ni, Cr. Calculated value of each steel number: X = 625 (effective Nb) + 250V + 210Ceq
Exceeds the thickness of the test steel sheet, the tensile strength of the center portion of the thickness of the test steel sheet exceeds 570 N / mm 2, and the toughness is also good. Also Pcm
The value is as low as 0.2 or less, and no weld crack occurs in the y crack test. Toughness has an acoustic anisotropy of 1.01 to 1.0
It is improved as it increases to 35.

【0035】鋼番21〜25は化学成分範囲が本発明の
範囲外である。鋼番21,22ではNbを含まず、鋼番
23はC含有量が少ない。鋼番24ではC含有量が0.
131,鋼番25ではCr含有量が0.7%と多くPc
m値が0.2を上回り、y割れ試験にて割れが確認され
るとともに最高硬さの値も290を上回る。
Steel Nos. 21 to 25 have chemical compositions outside the scope of the present invention. Steel Nos. 21 and 22 do not contain Nb, and Steel No. 23 has a low C content. Steel No. 24 has a C content of 0.
131 and steel No. 25 have a high Cr content of 0.7% Pc
The m value exceeds 0.2, cracks are confirmed in the y crack test, and the maximum hardness value also exceeds 290.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【発明の効果】以上のように本発明により、溶接割れ感
受性および低温靭性に優れた調質型600N/mm2
高張力鋼およびその製造方法を提供できる顕著な効果を
発揮する。
INDUSTRIAL APPLICABILITY As described above, the present invention exerts a remarkable effect of providing a tempered type 600 N / mm 2 class high strength steel excellent in weld crack susceptibility and low temperature toughness and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】低温靱性と音響異方性との関係を示す図。FIG. 1 is a diagram showing a relationship between low temperature toughness and acoustic anisotropy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−176731(JP,A) 特開 平8−176727(JP,A) 特開 平8−209238(JP,A) 特開 平8−209242(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-8-176731 (JP, A) JP-A-8-176727 (JP, A) JP-A-8-209238 (JP, A) JP-A-8- 209242 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 8/00-8/10 C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%でC:0.04〜0.1%、S
i:0.01〜0.4%、Mn:0.5〜1.6%、
P:0.015%以下、S:0.01%以下、Nb:
0.005〜0.05%、V:0.1%以下、Al:
0.005〜0.1%、N:0.0005〜0.008
%、Ti<0.005%、B<0.0003%を含み、
Pcm=C+Si/30+Mn/20+Cu/20+N
i/30+Cr/20+Mo/15+V/10+5Bで
定義されるPcm値が0.2以下で、残部が鉄および不
可避不純物よりなる鋼材を、熱間圧延に際して1000
〜1250℃の温度範囲に加熱後、1000℃〜105
0℃での20%以上の累積圧下に引き続き、1000℃
未満800℃以上の未再結晶温度領域で、圧延1パス毎
の圧下率が5%以上で、かつ、圧延仕上温度を800℃
以上として、20%以上の累積圧下を施し、少なくとも
Ar3 変態点以上から直接焼入れし、その後、Ac1
態点以下で焼戻しを行うことを特徴とする引張強さ57
0N/mm2 以上の溶接割れ感受性、低温靭性に優れた
調質型600N/mm2 級高張力鋼の製造方法。
1. C: 0.04 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.6%,
P: 0.015% or less, S: 0.01% or less, Nb:
0.005-0.05%, V: 0.1% or less, Al:
0.005-0.1%, N: 0.0005-0.008
%, Ti <0.005%, B <0.0003%,
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
A steel material having a Pcm value defined by i / 30 + Cr / 20 + Mo / 15 + V / 10 + 5B of 0.2 or less, and the balance of iron and unavoidable impurities was 1000 at the time of hot rolling.
After heating to a temperature range of -1250 ° C, 1000 ° C-105
Continued under 20% or more cumulative pressure at 0 ℃, then 1000 ℃
Less than 800 ℃ or more, in the non-recrystallization temperature range , every 1 pass of rolling
The rolling reduction is 5% or more, and the rolling finishing temperature is 800 ° C.
As described above, a tensile strength of 57 is characterized by performing a cumulative reduction of 20% or more, directly quenching at least from the Ar 3 transformation point, and then tempering at the Ac 1 transformation point or less.
A method for producing a tempered type 600 N / mm 2 class high-strength steel excellent in weld cracking susceptibility of 0 N / mm 2 or more and low temperature toughness.
【請求項2】 鋼材は、Mo:0.3%以下、Cu:
0.5%以下、Ni:1.5%以下、Cr:0.5%以
下のうち1種以上をさらに含む、請求項1に記載される
引張強さ570N/mm2 以上の溶接割れ感受性、低温
靭性に優れた調質型600N/mm2 級高張力鋼の製造
方法。
2. Steel: Mo: 0.3% or less, Cu:
Weld cracking susceptibility with a tensile strength of 570 N / mm 2 or more according to claim 1, further comprising one or more of 0.5% or less, Ni: 1.5% or less, and Cr: 0.5% or less. A method for producing a tempered 600N / mm 2 class high strength steel with excellent low temperature toughness.
【請求項3】 請求項1又は2に記載の組成を有する鋼
材を、1000〜1250℃の温度範囲に設定された加
熱温度Tを用いて、log(Nb)×(C+12/1
4N)=2.26−6770/(T+273.15)
の関係より計算される固溶Nb量を有効Nb量として、
Ceq=C+Mn/6+Si/24+Ni/40+Cr
/5+Mo/4+V/14で定義されるCeq値および
有効Nb量,V含有量からなるX=625(有効Nb)
+250V+210CeqがX≧40+t(ここにtは
鋼板の板厚(mm)指す) なる関係を満たすことを特徴とする引張強さ570N/
mm2 以上の溶接割れ感受性、低温靭性に優れた調質型
600N/mm2 級高張力鋼の製造方法。
3. A steel material having the composition according to claim 1 or 2, using a heating temperature T set in a temperature range of 1000 to 1250 ° C., log { (Nb) × (C + 12/1
4N) } = 2.26-6770 / (T + 273.15)
The amount of solid solution Nb calculated from the relationship of
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr
X = 625 (effective Nb) consisting of Ceq value defined by / 5 + Mo / 4 + V / 14, effective Nb amount, and V content
+ 250V + 210Ceq satisfies the relation of X ≧ 40 + t (where t indicates the plate thickness (mm) of the steel plate) tensile strength 570 N /
A method for producing a tempered type 600 N / mm 2 class high-strength steel excellent in weld cracking susceptibility of mm 2 or more and low temperature toughness.
JP34351796A 1996-12-24 1996-12-24 Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness Expired - Fee Related JP3374688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34351796A JP3374688B2 (en) 1996-12-24 1996-12-24 Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34351796A JP3374688B2 (en) 1996-12-24 1996-12-24 Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness

Publications (2)

Publication Number Publication Date
JPH10183239A JPH10183239A (en) 1998-07-14
JP3374688B2 true JP3374688B2 (en) 2003-02-10

Family

ID=18362131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34351796A Expired - Fee Related JP3374688B2 (en) 1996-12-24 1996-12-24 Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness

Country Status (1)

Country Link
JP (1) JP3374688B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103114186B (en) * 2013-03-15 2015-04-08 济钢集团有限公司 Control cooling method of easy-welding high-performance steel plate
CN105200329A (en) * 2015-09-11 2015-12-30 武汉钢铁(集团)公司 Tensile strength-700MPa level easy-to-weld low-internal-stress structural steel plate and manufacturing method thereof
CN111270150B (en) * 2020-03-30 2021-11-19 南京钢铁股份有限公司 Production method of ultralow-temperature high-strength 13MnNi6-3 container steel
CN111270149B (en) * 2020-03-30 2021-11-19 南京钢铁股份有限公司 Production method of ultralow-temperature high-center impact large-thickness 13MnNi6-3 container steel
CN111621708B (en) * 2020-06-30 2021-09-24 南阳汉冶特钢有限公司 Novel steel plate with impact toughness higher than P690QL2 steel plate for LPG ship storage tank and production method thereof
CN112342350B (en) * 2020-09-14 2023-04-18 唐山中厚板材有限公司 Production method of high-strength and high-toughness thick steel plate

Also Published As

Publication number Publication date
JPH10183239A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP2000178645A (en) Production of steel excellent in strength and toughness
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3374688B2 (en) Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JPH10298706A (en) High tensile strength steel excellent in high heat input weldability and weld crack sensitivity and its production
JP3812488B2 (en) High-strength steel with excellent workability and material uniformity and method for producing the same
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP3503345B2 (en) High-tensile steel excellent in large heat input weldability, susceptibility to weld cracking and weather resistance and method for producing the same
JP3255004B2 (en) High strength steel material for welding excellent in toughness and arrestability and method for producing the same
JPH0774383B2 (en) Method for producing steel sheet with excellent resistance to hydrogen-induced cracking
JP4044862B2 (en) Composite structure type high strength steel plate excellent in earthquake resistance and weldability and method for producing the same
JPH08225883A (en) Production of high tensile strength steel plate excellent in strength and toughness
JPH08176731A (en) High tensile steel and production thereof
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JPS62196325A (en) Manufacture of high toughness acceleratedly cooled type 50kg class steel plate superior in weldability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees