JP2541070B2 - Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material - Google Patents
Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base materialInfo
- Publication number
- JP2541070B2 JP2541070B2 JP4082934A JP8293492A JP2541070B2 JP 2541070 B2 JP2541070 B2 JP 2541070B2 JP 4082934 A JP4082934 A JP 4082934A JP 8293492 A JP8293492 A JP 8293492A JP 2541070 B2 JP2541070 B2 JP 2541070B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- base material
- rolling
- temperature
- nickel alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Metal Rolling (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、圧延による母材の高
ニッケル合金クラッド鋼板の製造方法に関するもので、
母材の脆性破壊伝播停止特性において優れた高ニッケル
合金クラッド鋼板を適切に製造することのできる方法を
提供しようとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high nickel alloy clad steel plate as a base material by rolling,
An object of the present invention is to provide a method capable of appropriately manufacturing a high nickel alloy clad steel sheet excellent in brittle fracture propagation stopping properties of a base material.
【0002】[0002]
【従来の技術】硫化水素や炭酸ガス分を多く含んだガス
を輸送するパイプライン用、ケミカルタンカー用、海洋
構造物用、砕氷船用などの用途においては低温靭性、特
に脆性破壊の伝播停止特性に優れたクラッド鋼が要望さ
れ、これらの用途においては、当然のことながらその用
途に応じて選定された合せ材の耐食性、合せ材と母材の
接合強度ならびに母材に対しては強度とともに低温靭
性、脆性破壊の伝播停止特性が要求される。2. Description of the Related Art Low temperature toughness, especially for brittle fracture propagation stopping properties, for pipelines, chemical tankers, marine structures, icebreakers, etc. that transport gas containing a large amount of hydrogen sulfide and carbon dioxide gas. Excellent clad steel is demanded, and in these applications, naturally, corrosion resistance of the composite material selected according to the application, joint strength between the composite material and the base metal, and strength and low temperature toughness for the base material , The propagation stopping property of brittle fracture is required.
【0003】またこれらのクラッド鋼を得るための主な
製造方法としては、圧延による接合法、爆着法、肉盛
法、鋳込法があるが、生産性、コスト、製造可能寸法の
面で圧延による接合方法が優れており、広く採用されて
いる。Further, as a main manufacturing method for obtaining these clad steels, there are a joining method by rolling, an explosive welding method, a surfacing method and a casting method, but in view of productivity, cost and manufacturable dimensions. The method of joining by rolling is excellent and widely used.
【0004】高ニッケル合金クラッド鋼板の製造方法と
して下記の如き幾つかが提案されている。 C:0.3%以下の炭素鋼または低合金鋼からなる母材の
オーステナイト系材料の合わせ材とを合わせて成る予備
クラッド材を1000℃以上の温度に加熱して熱間加工
を行ってクラッド化し、熱間加工後そのままの状態で8
00℃以上の温度から急冷処理、または急冷後に母材の
Ac1 点以下の温度で焼戻し処理を施す方法(特開昭6
1─144284号)。The following several methods have been proposed as a method for producing a high nickel alloy clad steel sheet. C: A preliminary clad material formed by combining a base material made of a carbon steel or a low alloy steel of 0.3% or less with a composite material of an austenitic material is heated to a temperature of 1000 ° C. or more and hot worked to form a clad, 8 as it is after hot working
A method of performing quenching treatment from a temperature of 00 ° C. or higher, or tempering treatment after the quenching at a temperature of Ac 1 point or less of the base material (Japanese Patent Laid-Open No. 6-58242)
1-144284).
【0005】C:0.2wt%以下を含有する炭素鋼または
低合金鋼からなる母材とNi基合金の合わせ材とから構成
される組立コンポジットを1050℃以上に加熱して、
合わせ材の平均温度が900℃を越えるように圧延を完
了させ、次いで800℃以上且つ850℃以下の温度域
までを2℃/sec 未満の冷却速度で冷却した後、800
℃以上の温度から2〜20℃/sec の平均冷却速度で4
50℃以上550℃以下の温度域まで冷却し、その後空
冷するという方法(特開平2─30712号)。C: An assembled composite composed of a base material made of carbon steel or a low alloy steel containing 0.2 wt% or less and a Ni-base alloy composite material is heated to 1050 ° C. or higher,
Rolling is completed so that the average temperature of the laminated material exceeds 900 ° C., and then the temperature range of 800 ° C. or more and 850 ° C. or less is cooled at a cooling rate of less than 2 ° C./sec.
4 at an average cooling rate of 2 to 20 ° C / sec from a temperature above ℃
A method of cooling to a temperature range of 50 ° C. or higher and 550 ° C. or lower and then air-cooling (JP-A-2-30712).
【0006】[0006]
【発明が解決しようとする課題】しかし、特開昭61
─144284号のものは、母材の再結晶温度域で熱間
加工を施すことは微細なオーステナイト組織が得られな
いため、急冷しても良好な靱性は得られない。また、圧
延後Ac1 点以下で焼戻し処理することによって合わせ
材の結晶粒界にCr炭化物が析出して鋭敏化するため、
耐粒界腐食性は水冷まま材に比べて劣化することは避け
られない。However, Japanese Patent Laid-Open No. Sho 61-61
In No. 144284, when hot working is performed in the recrystallization temperature range of the base material, a fine austenite structure cannot be obtained, so that good toughness cannot be obtained even by rapid cooling. Further, after the rolling, a tempering treatment at an Ac 1 point or less causes precipitation of Cr carbides at the crystal grain boundaries of the laminated material, resulting in sensitization.
It is unavoidable that the intergranular corrosion resistance deteriorates as compared with the material as it is cooled with water.
【0007】また、特開平2─30712号の方法で
はその実施例記載のように靱性が不充分である。以上の
ような方法は、母材の靱性を最高度に発揮するという観
点から見た場合、仕上げ圧延は最適条件では行われず、
母材の細粒化が図れないためにその靱性は低く、API
5L規格に規定されている鋼板の脆性破壊伝播停止特
性を評価する試験方法である Drop Weight Tear Test
(DWTT)の延性破面率が85%を示す温度(85%
SATT)は常温以上となり、前記の低温靭性、脆性破
壊伝播停止特性が要求される用途には用いることができ
ない。Further, in the method disclosed in JP-A-2-30712, the toughness is insufficient as described in the examples. From the viewpoint of maximizing the toughness of the base metal, the above method does not perform finish rolling under the optimum conditions,
The toughness of the base material is low because the base material cannot be made finer.
Drop Weight Tear Test, which is a test method for evaluating the brittle fracture propagation stopping property of steel sheet specified in the 5L standard
The temperature at which the ductile fracture surface ratio of (DWTT) shows 85% (85%
SATT) is higher than room temperature and cannot be used for the applications requiring the above-mentioned low temperature toughness and brittle fracture propagation stopping property.
【0008】[0008]
【課題を解決するための手段】本発明は、このような現
状に鑑み検討を重ねて創案されたものであって、合せ材
と母材の界面における接合強度を高温で仕上げたクラッ
ド鋼のそれと同等の安定して高いレベルに維持しつつ、
合せ材の耐食性と母材の低温靭性、脆性破壊の伝播停止
特性を最高度に発揮せしめる圧延条件により、母材の脆
性破壊伝播停止特性に優れた高ニッケル合金クラッド鋼
板の製造方法を提供することに成功したものである。SUMMARY OF THE INVENTION The present invention has been devised through repeated studies in view of such a situation as described above, and has the same joining strength at the interface between the laminated material and the base material as that of clad steel finished at high temperature. While maintaining the same stable and high level,
To provide a manufacturing method of a high nickel alloy clad steel sheet excellent in brittle fracture propagation stopping property of a base material by a corrosion condition of a laminated material, a low temperature toughness of a base material, and a rolling condition that maximizes the propagation stopping property of brittle fracture. Is a successful one.
【0009】本発明者等は、種々の成分組成を有する高
ニッケル合金を合せ材とし、かつ、種々の成分組成を有
する母材をクラッド圧延したときの圧延条件の影響を調
査した結果、合せ材のC量を低減し、かつ、母材を特定
成分組成として、高温において十分高くて安定した接合
強度が得られる必要最小限の圧下量を施し、引き続き、
850℃以下Ar3 点−20℃までに大きい圧下量を施し
た直後に、450℃以下まで水冷することによって接合
強度とともに耐食性と脆性破壊伝播停止特性に優れた高
ニッケル合金クラッド鋼板が得られるという知見を得、
本発明は、斯かる知見を基にして成されたものであっ
て、以下の如くである。The inventors of the present invention investigated the influence of rolling conditions when a high nickel alloy having various component compositions was used as a composite material and a base material having various component compositions was clad rolled, and as a result, the composite material was obtained. The amount of C is reduced, and the base material is used as the specific component composition, and the necessary minimum amount of reduction is obtained to obtain a sufficiently high and stable bonding strength at high temperature.
It is said that a high nickel alloy clad steel sheet excellent in joint strength as well as corrosion resistance and brittle fracture propagation arresting property can be obtained by water cooling to 450 ° C. or lower immediately after a large reduction of 850 ° C. or lower Ar 3 points to −20 ° C. Gaining knowledge,
The present invention has been made based on such knowledge and is as follows.
【0010】(1) 重量%で、C量が0.02%以下の
高ニッケル合金を合せ材とし、母材として、C:0.02
〜0.1%、 Si:0.05〜0.5%、 Mn:0.5
〜2.0%、Nb:0.005〜0.05%、 Al:0.01〜0.
06%を含有し、残部鉄および不可避的不純物からなる
鋼を用いて組み立てたスラブを1100℃以上に加熱し
た後、1000℃以上の温度範囲において圧下比で3.0
以上、850℃以下で母材のAr3 点−20℃までの温度
範囲において圧下率50%以上の圧延を施し、該圧延完
了後直ちに450℃以下の温度まで水冷することを特徴
とする母材の脆性破壊伝播停止特性に優れた高ニッケル
合金クラッド鋼板の製造方法。(1) A high nickel alloy having a C content of 0.02% or less by weight is used as a composite material, and C: 0.02 is used as a base material.
~ 0.1%, Si: 0.05-0.5%, Mn: 0.5
~ 2.0%, Nb: 0.005 to 0.05%, Al: 0.01 to 0.
After heating the slab assembled with steel containing 06% and the balance iron and unavoidable impurities to 1100 ° C. or higher, the reduction ratio was 3.0 in the temperature range of 1000 ° C. or higher.
As described above, the base material is rolled at a temperature of 850 ° C. or lower at a rolling point of 50% or higher in a temperature range of Ar 3 points to −20 ° C., and immediately after completion of the rolling, water-cooled to a temperature of 450 ° C. or lower. Of manufacturing a high nickel alloy clad steel sheet having excellent brittle fracture propagation stopping properties of.
【0011】(2) 重量%で、C量が0.02%以下の
高ニッケル合金を合せ材とし、母材として、C:0.02
〜0.1%、 Si:0.05〜0.5%、 Mn:0.5
〜2.0%、Nb:0.005〜0.05%、 Al:0.01〜0.
06%を含有すると共に、Cu:1.5%以下、 N
i:3.0%以下、 Cr:0.3 %以下、Mo:0.3%以
下、 V:0.08%以下、 Ti:0.08%以下、
B:0.0020%以下、 Ca:0.004%以下の何れか
1種または2種以上を含有し、残部が鉄および不可避的
不純物からなる鋼を用いて組み立てたスラブを1100
℃以上に加熱した後、1000℃以上の温度範囲におい
て圧下比で3.0以上、850℃以下で母材のAr3 点−2
0℃までの温度範囲において圧下率で50%以上の圧延
を施し、その後直ちに450℃以下の温度まで水冷する
ことを特徴とする母材の脆性破壊伝播停止特性に優れた
高ニッケル合金クラッド鋼板の製造方法。金クラッド鋼
板の製造方法。(2) A high nickel alloy having a C content of 0.02% or less by weight is used as a composite material, and C: 0.02 is used as a base material.
~ 0.1%, Si: 0.05-0.5%, Mn: 0.5
~ 2.0%, Nb: 0.005 to 0.05%, Al: 0.01 to 0.
06% and Cu: 1.5% or less, N
i: 3.0% or less, Cr: 0.3% or less, Mo: 0.3% or less, V: 0.08% or less, Ti: 0.08% or less,
B: 1100 of a slab assembled using steel containing at least one of 0.0020% or less and Ca: 0.004% or less, with the balance being iron and inevitable impurities.
After heating to ℃ or more, in the temperature range of 1000 ℃ or more, the reduction ratio of 3.0 or more, 850 ℃ or less of the base material Ar 3 points-2
A high-nickel alloy clad steel sheet excellent in brittle fracture propagation stopping properties of a base material, which is characterized by rolling at a rolling reduction of 50% or more in a temperature range up to 0 ° C. and immediately followed by water cooling to a temperature of 450 ° C. or less. Production method. Manufacturing method of gold clad steel sheet.
【0012】[0012]
【作用】この発明の構成は、大きく分けて次の3点から
なる。 安定して高い接合強度を得るために、1100℃以
上に加熱して、1000℃以上の圧下比を必要最小限の
ものとし、母材の靭性を改善するための圧下量の余地を
確保する。 母材を低C−Nb系という成分組成とし、850℃以
下Ar3 点−20℃以上の温度範囲で高圧下することによ
って微細なオーステナイト粒を得るとともに、圧延終了
後に450℃以下まで水冷することによって微細な組織
を得る。これによって良好な靭性を確保する。 仕上げ圧延を母材のAr3 点−20℃以上と合せ材の
再結晶温度よりも低い温度で施すため、合せ材の加工硬
化は避けられないが、合せ材のC量を低減し、かつ、圧
延終了後に水冷することによって合せ材の鋭敏化を抑制
し、溶体化処理と同等な耐食性を確保する。The structure of the present invention is roughly divided into the following three points. In order to obtain a stable and high bonding strength, heating is performed to 1100 ° C. or higher, and a reduction ratio of 1000 ° C. or higher is set to a necessary minimum to secure a room for a reduction amount for improving the toughness of the base material. The base material has a composition of a low C-Nb system, and fine austenite grains are obtained by subjecting it to high pressure within a temperature range of 850 ° C or less Ar 3 points -20 ° C or more, and water cooling to 450 ° C or less after rolling is completed. To obtain a fine structure. This ensures good toughness. Since finish rolling is performed at an Ar 3 point of the base material −20 ° C. or higher and a temperature lower than the recrystallization temperature of the composite material, work hardening of the composite material is unavoidable, but the C content of the composite material is reduced, and By cooling with water after the completion of rolling, the sensitization of the composite material is suppressed and the corrosion resistance equivalent to that of the solution heat treatment is secured.
【0013】上記の高温で大きな圧下量を得ることに
よって、安定して高い接合強度が得られることは前記の
ように公知である。しかし、安定して高い接合強度が得
られる必要最小限の圧下量については公知ではないので
これを説明すると、図1は、825合金を合せ材とする
クラッド鋼の圧延における1000℃以上の圧下比を変
化させたときの接合強度を示している。なお、加熱温度
は1180℃である。また、界面の接合強度はJIS
G 0601に規定されているせん断試験で評価した。
図1から明らかなように、1000℃以上の圧下比が一
定値以上になると安定して高いせん断強度が得られ、そ
の必要最小圧下比は、825合金に代表される高ニッケ
ル合金を合せ材としたときには3.0であった。As described above, it is known that a stable and high bonding strength can be obtained by obtaining a large amount of reduction at the above high temperature. However, it is not known about the minimum necessary amount of reduction that can stably obtain a high bonding strength, and this is explained. FIG. 1 shows that the reduction ratio of 1000 ° C. or more in rolling of clad steel using 825 alloy as a composite material. It shows the joint strength when is changed. The heating temperature is 1180 ° C. In addition, the joint strength of the interface is JIS
It was evaluated by the shear test specified in G 0601.
As is clear from FIG. 1, when the rolling reduction ratio of 1000 ° C. or higher reaches a certain value or higher, stable high shear strength is obtained, and the minimum required rolling reduction ratio is that of a high nickel alloy typified by 825 alloy as a composite material. When I did it was 3.0.
【0014】次に、前記を説明するために、次の実験
結果を用意した。即ち図2は、次の表1に示す供試材1
について、強度靭性に及ぼす圧延後の水冷停止温度の影
響を示している。なお、加熱温度は1170℃であり、
850℃以下Ar3 点−20℃以上の温度範囲において圧
下率で50%の圧下を施した。図2から明らかなよう
に、水冷停止温度の低下とともに強度は向上し、DWT
Tの85%SATTが低温側に移行していることがわか
る。Next, in order to explain the above, the following experimental results were prepared. That is, FIG. 2 shows the test material 1 shown in Table 1 below.
Shows the effect of the water cooling stop temperature after rolling on the strength and toughness. The heating temperature is 1170 ° C,
In the temperature range of 850 ° C. or lower Ar 3 points −20 ° C. or higher, the reduction rate was 50%. As is clear from FIG. 2, the strength increases with the decrease in the water cooling stop temperature, and the DWT
It can be seen that 85% SATT of T has shifted to the low temperature side.
【0015】[0015]
【表1】 [Table 1]
【0016】また、図3には、表1の供試材2につい
て、圧延後の強度靭性に及ぼす850℃以下Ar3 点−2
0℃以上の温度範囲における圧下率の影響を示してい
る。なお、加熱温度は1180℃であり、圧延直後45
0℃まで水冷した。同図から明らかなように、母材の靭
性は850℃以下Ar3 点−20℃以上の温度範囲におけ
る圧下率の増加に伴って向上している。以上のように、
母材の靭性、特に脆性破壊の伝播停止特性を改善するた
めには、オーステナイト低温域での高圧下と圧延直後の
水冷が有効であることがわかる。Further, in FIG. 3, for the test material 2 in Table 1, Ar 3 point-2 at 850 ° C. or lower which affects the strength and toughness after rolling.
The influence of the rolling reduction in the temperature range of 0 ° C. or higher is shown. The heating temperature was 1180 ° C., which was 45 immediately after rolling.
It was cooled to 0 ° C with water. As is clear from the figure, the toughness of the base material is improved with an increase in the rolling reduction in the temperature range of 850 ° C. or lower and Ar 3 points −20 ° C. or higher. As mentioned above,
It can be seen that in order to improve the toughness of the base material, especially the propagation stopping property of brittle fracture, water cooling under high pressure in the low temperature range of austenite and immediately after rolling is effective.
【0017】更に前記について説明する。未再結晶温
度域での圧延後水冷することによって、合せ材となる高
ニッケル合金の鋭敏化を抑制できることは公知である。
ここでは、合せ材の未再結晶温度域で高圧下を受けた合
せ材の耐食性に及ぼすC量の影響についての実験結果を
説明する。図4には、次の表2に示す825合金を合せ
材とするクラッド鋼の合せ材の硬さに及ぼす850℃以
下Ar3 点−20℃の温度範囲における圧下率の影響を示
す。なお、加熱温度は1180℃で、圧延直後400℃
まで水冷するという条件で行った。The above will be further described. It is known that sensitization of a high nickel alloy used as a composite material can be suppressed by water cooling after rolling in a non-recrystallization temperature range.
Here, the experimental results on the effect of the amount of C on the corrosion resistance of the composite material subjected to high pressure in the non-recrystallization temperature range of the composite material will be described. FIG. 4 shows the influence of the rolling reduction in the temperature range of 850 ° C. or less Ar 3 points −20 ° C. on the hardness of the cladding material of the clad steel using the 825 alloy shown in Table 2 below. The heating temperature is 1180 ° C and 400 ° C immediately after rolling.
It was performed under the condition that it was cooled with water.
【0018】[0018]
【表2】 [Table 2]
【0019】前述した図4において明らかなように、圧
下率の上昇とともに硬さは上昇している。次の表3は、
図4に示した種々の圧延条件で作製したクラッド鋼の粒
界腐食試験結果をまとめたものである。粒界腐食試験
は、JIS G 0572に準拠した硫酸・硫酸第二鉄
試験、いわゆるストライカー試験であり、表中の溶体化
処理とは、1100℃で10分保持後水冷するという条
件である。なお、同表には、表2に示した供試材の試験
結果とともに同様な圧延方法で作製したその他の合せ材
の結果についても示しているが、合せ材のC量を低減
し、かつ、圧延直後水冷することによって、溶体化処理
を施さなくても、その腐食速度は溶体化処理ままと同等
の値となることがわかる。As is apparent from FIG. 4 described above, the hardness increases as the rolling reduction increases. The following Table 3 shows
5 is a summary of the results of the intergranular corrosion test of the clad steel produced under various rolling conditions shown in FIG. The intergranular corrosion test is a sulfuric acid / ferric sulfate test based on JIS G 0572, a so-called striker test, and the solution treatment in the table is a condition of holding at 1100 ° C. for 10 minutes and then water cooling. The table also shows the test results of the test materials shown in Table 2 and the results of other laminated materials produced by the same rolling method. However, the C content of the laminated materials was reduced, and It can be seen that, by cooling with water immediately after rolling, the corrosion rate becomes a value equivalent to that of the solution treatment as it is, without performing the solution treatment.
【0020】[0020]
【表3】 [Table 3]
【0021】以上説明したような〜の技術の結合に
より、接合強度に優れ、かつ、母材の靭性、脆性破壊伝
播停止特性に優れた、溶体化処理ままの耐食性と同等な
合せ材を有する高ニッケル合金クラッド鋼が適切に製造
可能となる。As a result of the combination of the above-mentioned technologies (1) to (3), it is possible to obtain a high bonding material having excellent bonding strength, excellent toughness of the base material and excellent brittle fracture propagation stopping property, and equivalent corrosion resistance as the solution heat treatment. The nickel alloy clad steel can be manufactured appropriately.
【0022】本発明におけるより具体的な限定理由につ
いて説明すると、まず、合せ材の成分組成の限定理由と
して、合せ材のC量は、少ないほど耐食性の観点から望
ましい。即ちC量の増加に伴って圧延後の冷却過程での
Cr炭化物の析出による耐食性の劣化が懸念される。そこ
で、本発明において規定した圧延条件によって合せ材の
耐食性が溶体化処理材のそれと同等のレベルが得られる
0.02%を上限としてC量を限定した。A more specific reason for limitation in the present invention will be explained. First, as a reason for limiting the component composition of the composite material, the smaller the amount of C in the composite material, the more desirable it is from the viewpoint of corrosion resistance. That is, as the amount of C increases, in the cooling process after rolling
There is concern about deterioration of corrosion resistance due to precipitation of Cr carbide. Therefore, the corrosion resistance of the laminated material can be obtained at the same level as that of the solution heat-treated material by the rolling conditions specified in the present invention.
The amount of C was limited to an upper limit of 0.02%.
【0023】次に母材の成分組成の限定理由を説明する
と、以下の如くである。Cは、重要な強化元素である
が、0.02%未満では、ラインパイプ用鋼、造船用鋼、
海洋構造物用鋼としての十分な強度が得られないため、
下限を0.02%とした。一方、0.1%を越える場合には
溶接性および溶接部の靭性を損なうとともに、母材の希
釈による合せ材肉盛溶接金属のC量増加に伴って耐食性
を損なうため、上限を0.1%とした。Next, the reasons for limiting the component composition of the base material are as follows. C is an important strengthening element, but if it is less than 0.02%, steel for line pipes, steel for shipbuilding,
Since sufficient strength as steel for offshore structures cannot be obtained,
The lower limit was 0.02%. On the other hand, when the content exceeds 0.1%, the weldability and the toughness of the welded portion are impaired, and the corrosion resistance is impaired as the C content of the overlay weld metal is increased by diluting the base metal, so the upper limit is 0.1. %.
【0024】Siは、製鋼過程における脱酸用として必要
な元素であり、また、固溶強化元素である。0.05%未
満では脱酸効果が十分でなく、一方、0.5%を越えると
靭性、加工性に悪影響を及ぼすので、0.05〜0.5%の
範囲に限定した。Si is an element necessary for deoxidation in the steelmaking process and is also a solid solution strengthening element. If it is less than 0.05%, the deoxidizing effect is not sufficient, while if it exceeds 0.5%, the toughness and workability are adversely affected, so it was limited to the range of 0.05 to 0.5%.
【0025】Mnは、Cについで重要な元素である。Mnは
Ar3 点を下げるので、オーステナイト低温域における圧
延を容易となし、しかも、強度向上、靭性向上に有効に
働く元素である。しかし、0.5%未満では前述の用途に
必要な強度靭性を確保することができない。一方、過度
の添加は靭性、溶接性に悪影響を与えるため、0.5〜2.
0%に限定した。Mn is an important element after C. Mn
Since it lowers the Ar 3 point, it is an element that facilitates rolling in the low temperature range of austenite, and that works effectively for improving strength and toughness. However, if it is less than 0.5%, the strength and toughness required for the above-mentioned applications cannot be secured. On the other hand, excessive addition adversely affects toughness and weldability, so 0.5 to 2.
Limited to 0%.
【0026】Nbは、オーステナイトの再結晶を抑制し、
その再結晶温度域を広げる効力を有する。そのため、オ
ーステナイト粒の伸長化、変形帯の導入が容易となり、
著しい細粒化が達成され、靭性を向上させる。また、析
出強化元素としても有効である。これらの効果を発揮す
るためには0.005%以上の添加が必要であるが、過度
の添加は溶接性や溶接部の靭性に悪影響を与えるため、
0.005〜0.05%とした。Nb suppresses recrystallization of austenite,
It has the effect of expanding the recrystallization temperature range. Therefore, elongation of austenite grains and introduction of deformation zones become easy,
Significant grain refinement is achieved and toughness is improved. It is also effective as a precipitation strengthening element. In order to exert these effects, it is necessary to add 0.005% or more, but excessive addition adversely affects the weldability and the toughness of the welded part.
0.005 to 0.05%.
【0027】Alは、製鋼過程の脱酸用として重要な元素
であるととにも、溶接熱影響部の靭性向上にも効力を有
する。しかし、0.01%未満では脱酸効果が十分ではな
く、一方、0.06%を越えて添加しても溶接熱影響部の
靭性改善効果は飽和するため、0.01〜0.06%に限定
した。Al is an important element for deoxidation in the steelmaking process and has an effect on improving the toughness of the heat affected zone of welding. However, if it is less than 0.01%, the deoxidizing effect is not sufficient. On the other hand, if it is added in an amount exceeding 0.06%, the toughness improving effect of the weld heat affected zone is saturated, so 0.01 to 0.06% is required. Limited to.
【0028】この発明における対象鋼は前記組成を基本
成分とするものであるが、必要とする靱性等の調整のた
めに、Cu、Ni、Cr、Mo、V、Ti、B、Caの1種または2
種以上を含有させてもよい。即ち、以下に、上記基本成
分に更に含有させる、上記元素の限定理由について説明
する。The object steel in the present invention has the above-mentioned composition as a basic component, but one kind of Cu, Ni, Cr, Mo, V, Ti, B and Ca is used for adjusting required toughness and the like. Or 2
More than one species may be included. That is, the reasons for limiting the above-mentioned elements that are further contained in the above-mentioned basic components will be described below.
【0029】Cuは、低C含有鋼において焼入性向上を通
して組織の微細化に効果があり、これによって靱性向上
に寄与する。また、時効処理することにより、ε−Cu相
で析出し著しい強度向上が達成される。しかし、1.5%
を越えて添加する場合には、加熱時にCuに起因する表面
割れが発生しやすいため、1.5%以下に限定した。Cu has the effect of refining the microstructure by improving the hardenability of the low C steel and thus contributes to the improvement of the toughness. Further, by aging treatment, precipitation in the ε-Cu phase is achieved and a remarkable improvement in strength is achieved. However, 1.5%
If added in excess of 0.5%, surface cracking due to Cu tends to occur during heating, so the content was limited to 1.5% or less.
【0030】Niは、靭性向上に有効な元素であり、Cu疵
の発生を防止する作用もあるが、多量の添加は溶接性を
損なうとともに経済的にも不利となるため、3.0%を上
限とした。Ni is an element effective for improving the toughness and also has an effect of preventing the generation of Cu defects. However, addition of a large amount impairs weldability and is economically disadvantageous. The upper limit was set.
【0031】Cr、Mo、Vは、ともに低C含有鋼において
焼入性向上を通して組織の微細化に効果があり、これに
よって靱性向上に寄与する。しかし、過度の添加は靭性
や溶接性に悪影響を及ぼすため、Crを0.3%、Moを0.3
%以下、Vを0.08%以下に限定した。Cr, Mo, and V all have the effect of refining the microstructure by improving the hardenability of the low C content steel, and thereby contribute to the improvement of the toughness. However, excessive addition adversely affects toughness and weldability, so Cr is 0.3% and Mo is 0.3%.
% And V is limited to 0.08% or less.
【0032】Tiは、Nbと同様にオーステナイトの再結晶
の抑制、組織の微細化を通して靱性向上に有効な元素で
ある。また、溶接熱影響部の靭性向上にも有効である。
しかし、過度に添加すると靭性や溶接性に悪影響を及ぼ
すため、0.08%以下とした。Like Nb, Ti is an element effective in improving the toughness by suppressing the recrystallization of austenite and refining the structure. It is also effective in improving the toughness of the weld heat affected zone.
However, excessive addition adversely affects toughness and weldability, so the content was made 0.08% or less.
【0033】Bは、少量の添加で著しく焼入性を向上せ
しめる。低C含有鋼においては、焼入れ性向上を通して
組織の微細化に効果があり、これによって靱性向上に寄
与する。しかし、0.0020%を越える添加は、溶接部
の靭性を著しく損なうことになるので、0.0020%以
下に限定した。B can improve the hardenability remarkably even if added in a small amount. In the low C content steel, it has an effect of refining the structure by improving the hardenability, which contributes to the improvement of the toughness. However, if the content exceeds 0.0020%, the toughness of the welded portion is significantly impaired, so the content is limited to 0.0020% or less.
【0034】Caは、硫化物の形態制御に効果があり、こ
れによって靱性向上に寄与する。しかし、過度の添加は
靱性のみならず溶接性の劣化をもたらすため0.004%
以下とした。Ca has the effect of controlling the morphology of sulfides, which contributes to the improvement of toughness. However, excessive addition causes deterioration of weldability as well as toughness, so 0.004%
Below.
【0035】次に、本発明における製造条件の限定理由
を説明すると、まず、加熱温度であるが、前述のように
界面の接合強度を高めるためには1000℃以上で必要
量圧下する必要がある。1100℃未満では、1000
℃までに所定の圧下量を付与することが困難となる。ま
た、合せ材のCr炭化物をマトリックス中に固溶させるた
めには高温に加熱することが望ましい。以上を勘案し
て、加熱温度を1100℃以上に限定した。Next, the reason for limiting the manufacturing conditions in the present invention will be explained. First, the heating temperature is, but as described above, in order to increase the bonding strength at the interface, it is necessary to reduce the necessary amount at 1000 ° C. or higher. . Below 1100 ° C, 1000
It becomes difficult to apply a predetermined reduction amount up to ° C. Further, it is desirable to heat to a high temperature in order to form a solid solution of the Cr carbide of the composite material in the matrix. Considering the above, the heating temperature was limited to 1100 ° C or higher.
【0036】また、1000℃以上の必要圧下比は、図
1に示したように合せ材を高ニッケル合金とした場合に
安定して高いせん断強度が得られる3.0以上に限定すべ
きである。Further, the necessary reduction ratio of 1000 ° C. or higher should be limited to 3.0 or higher, which can stably obtain high shear strength when the alloy material is a high nickel alloy as shown in FIG. .
【0037】さらに、母材の靭性、脆性破壊伝播停止特
性のために圧下を施す温度を850℃以下Ar3 点−20
℃までの範囲に限定した理由について述べると、850
℃を越えるとオーステナイト粒の再結晶のためオーステ
ナイト粒の伸長化、変形帯の導入が困難であり、圧延後
に微細化した組織が得られないこと、Ar3 点−20℃未
満の二相域で圧下を施した後450℃以下まで水冷した
母材の組織には島状マルテンサイトが顕れ易く、靭性が
劣化することのためである。850℃以下Ar3点−20
℃までの温度範囲での圧下率については、図3に示した
ように、50%未満であると一般に炭素鋼ラインパイプ
用材料に要求される−10℃でのDWTTの延性破面率
85%以上という目標を確保できなくなるため、50%
以上に限定した。Further, for the toughness of the base material and the brittle fracture propagation stopping property, the temperature at which the reduction is applied is 850 ° C. or less, Ar 3 point −20.
The reason for limiting the range to ℃ is 850
° C. The excess when austenite grains lengthening for austenite grains recrystallization, the introduction of deformation zones are difficult, that the tissue finer after rolling can not be obtained, in a two-phase range below Ar 3 point -20 ° C. This is because island-like martensite is likely to appear in the structure of the base material that has been subjected to reduction and then water-cooled to 450 ° C. or less, resulting in deterioration of toughness. 850 ° C or less Ar 3 points -20
As for the rolling reduction in the temperature range up to ℃, as shown in FIG. 3, it is generally required for carbon steel line pipe materials to be less than 50%, and the ductile fracture surface ratio of DWTT at −10 ° C. is 85%. 50% because the above goal cannot be secured
Limited to the above.
【0038】圧延直後に施す水冷の停止温度について
は、図2に示したように強度とともにDWTT特性に影
響を与え、550℃といった高い温度で水冷を停止する
とDWTT特性が上記要求値を確保できなくなる。ま
た、合せ材の鋭敏化抑制のためには550℃以下の低温
まで水冷することが望ましい。以上の2点を勘案して、
水冷停止温度を450℃以下に限定した。なお、水冷に
おける冷却速度については特に限定はしないが、母材の
靭性、合せ材の耐食性を勘案すると、2〜20℃/sec
とすることが望ましい。As for the stop temperature of the water cooling applied immediately after rolling, as shown in FIG. 2, the DWTT characteristics are affected together with the strength, and if the water cooling is stopped at a high temperature of 550 ° C., the DWTT characteristics cannot secure the above required value. . Further, in order to suppress the sensitization of the laminated material, it is desirable to perform water cooling to a low temperature of 550 ° C. or lower. Considering the above two points,
The water cooling stop temperature was limited to 450 ° C or lower. The cooling rate in water cooling is not particularly limited, but when considering the toughness of the base material and the corrosion resistance of the laminated material, it is 2 to 20 ° C / sec.
Is desirable.
【0039】[0039]
【実施例】本発明による具体的実施例について説明する
と、次の表4に示す成分組成を有する母材と合せ材を、
下記する表5に示す組み合わせおよび条件で製造した。
得られたクラッド鋼板について、引張試験、Vノッチシ
ャルピー試験、DWTT、せん断試験、粒界腐食試験を
実施した。引張試験片、DWTT試験片は合せ材を機械
加工で除去した母材全厚試験片である。ただし、板厚が
大きいNo. 20のDWTT試験片については、試験機容
量の制約からAPI RP 5L3 SecondEdition
(1978)に従って19mmに減厚した試験片を用い
た。Vノッチシャルピー試験片は母材の板厚中央から採
取した。せん断試験はJIS G 0601、合せ材の
粒界腐食試験はJIS G 0507(硫酸・硫酸第二
鉄試験)に従った。EXAMPLES Specific examples according to the present invention will be described. A base material and a composite material having the component compositions shown in Table 4 below are prepared.
It was manufactured in the combinations and conditions shown in Table 5 below.
A tensile test, a V-notch Charpy test, a DWTT, a shear test, and an intergranular corrosion test were performed on the obtained clad steel sheet. The tensile test piece and the DWTT test piece are base material full-thickness test pieces in which the laminated material is removed by machining. However, for the No. 20 thick DWTT test piece, API RP 5L3 Second Edition was used due to the limitation of tester capacity.
A test piece reduced in thickness to 19 mm according to (1978) was used. The V-notch Charpy test piece was taken from the center of the plate thickness of the base material. The shear test was performed according to JIS G 0601, and the intergranular corrosion test of the laminated material was according to JIS G 0507 (sulfuric acid / ferric sulfate test).
【0040】[0040]
【表4】 [Table 4]
【0041】[0041]
【表5】 [Table 5]
【0042】上記したような各試験の結果は次の表6に
示す如くである。The results of each test as described above are shown in Table 6 below.
【0043】[0043]
【表6】 [Table 6]
【0044】即ち表6の結果によるならば、比較クラッ
ド鋼板No. 5は、850℃以下Ar3点−20℃以上の温
度範囲における圧下率が50%未満となっており、DW
TTの85%SATTが0℃以上であって、その目標値
である−10℃という用途には用いることはできない。
比較クラッド鋼板No. 6は、圧延後の水冷を施しておら
ず、DWTT特性が不十分であるとともに、耐食性が劣
っている。That is, according to the results of Table 6, the comparative clad steel plate No. 5 has a reduction rate of less than 50% in the temperature range of 850 ° C. or lower Ar 3 points −20 ° C. or higher, and DW
The 85% SATT of TT is 0 ° C or higher, and the target value of -10 ° C cannot be used.
Comparative clad steel plate No. 6 was not water-cooled after rolling, had insufficient DWTT characteristics, and was inferior in corrosion resistance.
【0045】また、比較クラッド鋼板No. 16は、85
0℃以下Ar3 点−20℃の温度範囲における圧下率が5
0%未満となっており、かつ、水冷停止温度が450℃
より高くなっているため、DWTT特性が劣っている。
比較クラッド鋼No. 17は、圧延後の水冷停止温度が4
50℃より高くなっており、DWTT特性が劣ってい
る。さらに、比較クラッド鋼板No. 19は、仕上げ圧延
条件は本発明範囲内にあるが、1000℃以上の圧下比
が3.0未満となっており、母材の靭性と合せ材の耐食性
は優れるものの、接合強度が十分ではない。また比較ク
ラッド鋼板No. 20は接合強度のみを考慮して1000
℃以上で高圧下を施したためにDWTT特性が劣ってお
り、更に、圧延後水冷を施していないために耐食性も劣
っている。Further, the comparative clad steel plate No. 16 is 85
0 ° C or less Ar 3 points, a reduction rate of 5 in the temperature range of -20 ° C
It is less than 0% and the water cooling stop temperature is 450 ° C.
Since it is higher, the DWTT characteristic is inferior.
Comparative clad steel No. 17 had a water cooling stop temperature of 4 after rolling.
The temperature is higher than 50 ° C, and the DWTT characteristics are inferior. Further, although the comparative clad steel sheet No. 19 has finish rolling conditions within the scope of the present invention, the reduction ratio at 1000 ° C. or higher is less than 3.0, and the toughness of the base material and the corrosion resistance of the laminated material are excellent. , The joint strength is not enough. The comparative clad steel sheet No. 20 is 1000
DWTT characteristics are inferior because they are subjected to high pressure at a temperature of ℃ or more, and further, corrosion resistance is inferior because they are not water-cooled after rolling.
【0046】上記のような比較材に対し、本発明の実施
例では、安定して高いせん断強度が得られており、ま
た、合せ材の耐食性は、表3との比較によって明らかな
ように、溶体化処理ままの材料と同等である。また、D
WTTの8も−10℃以下と優れていることが確認され
た。In contrast to the above-mentioned comparative materials, in the examples of the present invention, a high shear strength was stably obtained, and the corrosion resistance of the laminated materials was as shown by comparison with Table 3, It is equivalent to the as-solution treated material. Also, D
It was confirmed that WTT 8 was also excellent at −10 ° C. or lower.
【0047】[0047]
【発明の効果】以上詳述したように、本発明法によると
きは、安定して高い接合強度が得られ、また、合せ材に
おいては溶体化処理ままと同等の耐食性が得られ、さら
に、母材の脆性破壊伝播停止特性を含めた低温靭性に優
れた高ニッケル合金を合せ材とするクラッド鋼板を製造
することができるものであって、工業的にその効果の大
きい発明である。As described above in detail, according to the method of the present invention, a stable and high bonding strength is obtained, and in the composite material, the same corrosion resistance as that obtained by the solution heat treatment is obtained. It is possible to manufacture a clad steel sheet using a high nickel alloy having excellent low temperature toughness including brittle fracture propagation stopping properties of the material as a composite material, and is an invention having a great industrial effect.
【図1】せん断強度に及ぼす1000℃以上の圧下比の
影響を示す図表である。FIG. 1 is a chart showing the effect of a rolling reduction ratio of 1000 ° C. or higher on shear strength.
【図2】母材の機械的性質に及ぼす圧延後の水冷停止温
度の影響を示した図表である。FIG. 2 is a chart showing the influence of the water cooling stop temperature after rolling on the mechanical properties of the base material.
【図3】母材の機械的性質に及ぼす850℃以下Ar3 点
−20℃間の圧下率の影響を示す図表である。FIG. 3 is a chart showing the influence of the reduction rate between 850 ° C. and below Ar 3 points and −20 ° C. on the mechanical properties of the base material.
【図4】合せ材の硬さに及ぼす850℃以下Ar3 点−2
0℃間の圧下率の影響を示した図表である。[Fig. 4] Ar 3 points-2 at 850 ° C or lower that affects the hardness of the laminated material
It is a chart showing the influence of the rolling reduction between 0 ° C.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 片平 正宏 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 伊沢 徹 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭63−130283(JP,A) 特開 平4−75791(JP,A) 特開 平4−128314(JP,A) 特開 平4−182080(JP,A) 特開 平4−197588(JP,A) 特開 平5−261567(JP,A) 特開 平5−214446(JP,A) 特開 平5−214499(JP,A) 特開 昭60−43465(JP,A) 特開 昭61−235084(JP,A) 特開 昭62−179878(JP,A) 特開 昭62−214887(JP,A) 特開 昭64−40189(JP,A) 特開 平4−263016(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masahiro Katahira 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Co., Ltd. (72) Toru Izawa 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Pipe Incorporated (56) Reference JP 63-130283 (JP, A) JP 4-75791 (JP, A) JP 4-128314 (JP, A) JP 4-182080 (JP, A) JP 4-197588 (JP, A) JP 5-261567 (JP, A) JP 5-214446 (JP, A) JP 5-214499 (JP, A) JP S60 -43465 (JP, A) JP 61-235084 (JP, A) JP 62-179878 (JP, A) JP 62-214887 (JP, A) JP 64-40189 (JP, A) ) JP-A-4-263016 (JP, A)
Claims (2)
ケル合金を合せ材とし、母材として、 C:0.02〜0.1%、 Si:0.05〜0.5%、
Mn:0.5〜2.0%、 Nb:0.005〜0.05%、 Al:0.01〜0.06%を含
有し、残部鉄および不可避的不純物からなる鋼を用いて
組み立てたスラブを1100℃以上に加熱した後、10
00℃以上の温度範囲において圧下比で3.0以上、85
0℃以下で母材のAr3 点−20℃までの温度範囲におい
て圧下率50%以上の圧延を施し、該圧延完了後直ちに
450℃以下の温度まで水冷することを特徴とする母材
の脆性破壊伝播停止特性に優れた高ニッケル合金クラッ
ド鋼板の製造方法。1. A high nickel alloy having a C content of 0.02% or less by weight as a composite material, and as a base material, C: 0.02 to 0.1%, Si: 0.05 to 0.5. %,
Mn: 0.5-2.0%, Nb: 0.005-0.05%, Al: 0.01-0.06%, assembled with steel consisting of balance iron and inevitable impurities After heating the slab to over 1100 ° C, 10
In a temperature range of 00 ° C or higher, a reduction ratio of 3.0 or higher, 85
The brittleness of the base material, which is characterized in that the base material is rolled at a rolling reduction of 50% or more in a temperature range of up to Ar 3 point −20 ° C. at a temperature of 0 ° C. or lower, and immediately water-cooled to a temperature of 450 ° C. or lower after completion of the rolling. A method for producing a high nickel alloy clad steel sheet having excellent fracture propagation stopping properties.
ケル合金を合せ材とし、母材として、 C:0.02〜0.1%、 Si:0.05〜0.5%、
Mn:0.5〜2.0%、 Nb:0.005〜0.05%、 Al:0.01〜0.06%を含
有すると共に、 Cu:1.5%以下、 Ni:3.0%以下、 Cr:0.
3 %以下、 Mo:0.3%以下、 V:0.08%以下、 Ti:0.
08%以下、 B:0.0020%以下、 Ca:0.004%以下の何れか
1種または2種以上を含有し、残部が鉄および不可避的
不純物からなる鋼を用いて組み立てたスラブを1100
℃以上に加熱した後、1000℃以上の温度範囲におい
て圧下比で3.0以上、850℃以下で母材のAr3 点−2
0℃までの温度範囲において圧下率で50%以上の圧延
を施し、その後直ちに450℃以下の温度まで水冷する
ことを特徴とする母材の脆性破壊伝播停止特性に優れた
高ニッケル合金クラッド鋼板の製造方法。2. A high nickel alloy having a C content of 0.02% or less in weight% is used as a composite material, and as a base material, C: 0.02 to 0.1% and Si: 0.05 to 0.5. %,
Mn: 0.5-2.0%, Nb: 0.005-0.05%, Al: 0.01-0.06%, Cu: 1.5% or less, Ni: 3.0 % Or less, Cr: 0.
3% or less, Mo: 0.3% or less, V: 0.08% or less, Ti: 0.0.
1100 of a slab assembled from steel containing one or more of B: 0.0020% or less, B: 0.0020% or less, and Ca: 0.004% or less, with the balance being iron and unavoidable impurities.
After heating to ℃ or more, in the temperature range of 1000 ℃ or more, the reduction ratio of 3.0 or more, 850 ℃ or less of the base material Ar 3 points-2
A high-nickel alloy clad steel sheet excellent in brittle fracture propagation stopping properties of a base material, which is characterized by rolling at a rolling reduction of 50% or more in a temperature range up to 0 ° C. and immediately followed by water cooling to a temperature of 450 ° C. or less. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4082934A JP2541070B2 (en) | 1992-03-06 | 1992-03-06 | Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4082934A JP2541070B2 (en) | 1992-03-06 | 1992-03-06 | Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05245657A JPH05245657A (en) | 1993-09-24 |
JP2541070B2 true JP2541070B2 (en) | 1996-10-09 |
Family
ID=13788062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4082934A Expired - Lifetime JP2541070B2 (en) | 1992-03-06 | 1992-03-06 | Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2541070B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6079165B2 (en) * | 2012-11-22 | 2017-02-15 | Jfeスチール株式会社 | High toughness and corrosion resistant Ni alloy clad steel plate with excellent weld toughness and method for producing the same |
JP6024643B2 (en) * | 2013-10-30 | 2016-11-16 | Jfeスチール株式会社 | Manufacturing method of Ni alloy clad steel sheet excellent in low temperature toughness and HAZ toughness of base metal and corrosion resistance of laminated material |
JP6079611B2 (en) * | 2013-12-18 | 2017-02-15 | Jfeスチール株式会社 | Ni alloy clad steel plate excellent in low temperature toughness and HAZ toughness of base metal and corrosion resistance of laminated material, and method for producing the same |
JP6172077B2 (en) * | 2014-07-22 | 2017-08-02 | Jfeスチール株式会社 | Method for producing Ni alloy clad steel with excellent intergranular corrosion resistance |
WO2016075925A1 (en) * | 2014-11-11 | 2016-05-19 | Jfeスチール株式会社 | Nickel alloy clad steel sheet and method for producing same |
DE102016115026B4 (en) * | 2016-08-12 | 2018-03-08 | Vdm Metals International Gmbh | Process for the production of roll-coated sheets and roll-coated sheets |
CN108116006A (en) * | 2016-11-30 | 2018-06-05 | 宝山钢铁股份有限公司 | A kind of super austenitic stainless steel Rolling compund steel plate and its manufacturing method |
-
1992
- 1992-03-06 JP JP4082934A patent/JP2541070B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05245657A (en) | 1993-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4521258A (en) | Method of making wrought high tension steel having superior low temperature toughness | |
EP2272994A1 (en) | High-tensile strength steel and manufacturing method thereof | |
JP4071906B2 (en) | Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness | |
JP5407478B2 (en) | High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same | |
JP2009127069A (en) | High toughness steel plate for line pipe, and its manufacturing method | |
JP3247908B2 (en) | High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same | |
JP3612115B2 (en) | Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness | |
JP4112733B2 (en) | Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness | |
JP2541070B2 (en) | Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material | |
JP2002129280A (en) | Ni ALLOY STEEL FOR LOW TEMPERATURE AND ITS PRODUCTION METHOD | |
JP2006241510A (en) | Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method | |
JP3344305B2 (en) | High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same | |
JP3526722B2 (en) | Ultra high strength steel pipe with excellent low temperature toughness | |
JP2004162085A (en) | Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method | |
JPH07292416A (en) | Production of ultrahigh strength steel plate for line pipe | |
JPH03211230A (en) | Production of low alloy steel for line pipe with high corrosion resistance | |
JP3374688B2 (en) | Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness | |
JPH05261567A (en) | Manufacture of clad steel plate having excellent low temperature toughness | |
WO2011043287A1 (en) | Steel for linepipe having good strength and malleability, and method for producing the same | |
JP2737525B2 (en) | Manufacturing method of austenitic stainless clad steel sheet with excellent brittle fracture arrestability of base metal | |
JP4105990B2 (en) | High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same | |
JP3244981B2 (en) | Weldable high-strength steel with excellent low-temperature toughness | |
JPH093591A (en) | Extremely thick high tensile strength steel plate and its production | |
JPH06256844A (en) | Production of composite steel sheet having excellent corrosion resistance and low-temperature toughness | |
JPH08311548A (en) | Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone |