JPH08311548A - Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone - Google Patents

Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone

Info

Publication number
JPH08311548A
JPH08311548A JP7411095A JP7411095A JPH08311548A JP H08311548 A JPH08311548 A JP H08311548A JP 7411095 A JP7411095 A JP 7411095A JP 7411095 A JP7411095 A JP 7411095A JP H08311548 A JPH08311548 A JP H08311548A
Authority
JP
Japan
Prior art keywords
steel
toughness
rolling
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7411095A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Hiroshi Tamehiro
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7411095A priority Critical patent/JPH08311548A/en
Publication of JPH08311548A publication Critical patent/JPH08311548A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To produce a steel sheet for a ultrahigh strength steel pipe in which low temp. toughness in the base metal and weld zone and spot weldability are attained by subjecting a low C-Ni-Cu-Mo-Nb-Ti steel in which the content of Cu is specified to heating under specified conditions and executing controlled rolling and accelerated cooling. CONSTITUTION: The compsn. of a steel is constituted of the one contg., by weight, 0.02 to 0.10% C, <=0.6% Si, 1.0 to 2.0% Mn, <=0.015% P, <=0.010% Si, 0.3 to 1.6% Ni, 0.9 to 1.3% Cu, 0.1 to 0.5% Mo, 0.005 to 0.06% Nb, 0.005 o 0.03% Ti, <=0.004% Al, 0.001 to 0.006% N and <=0.003% O, and the balance Fe. The slab having the same compsn. is reheated at 950 to 1200 deg.C and is rolled in such a manner that the cumulative draft at <=900 deg.C is regulated to >=70%, the cumlative rolling reduction in the two phase region of ferrite-austenite at the Ar3 to the Ar1 point is regulated to 15 to 35% and the rolling finishing temp. is regulated to 680 to 820 deg.C. It is cooled at a cooling rate of >=10 deg.C/sec and is subjected to aging treatment at 400 to 650 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は米国石油協会(API)
規格でX100以上(降伏強度で約689N/mm2
上)の超高強度と優れた母材および溶接部の低温靭性、
現地溶接性を有する鋼板の製造方法に関するものであ
る。
This invention relates to the American Petroleum Institute (API)
Ultra high strength of X100 or more as standard (yield strength of about 689 N / mm 2 or more) and excellent low temperature toughness of base material and welded part,
The present invention relates to a method for manufacturing a steel sheet having on-site weldability.

【0002】[0002]

【従来の技術】原油・天然ガスを長距離輸送するパイプ
ラインに使用するラインパイプは、(1)高圧化による
輸送効率の向上や、(2)薄肉化による現地での溶接能
率向上のためますます高張力化する傾向にある。これま
でにAPI規格でX80までのラインパイプの実用化が
進行中であるが、さらに高強度のラインパイプに対する
ニーズが最近でてきた。
2. Description of the Related Art Line pipes used in pipelines for long-distance transportation of crude oil and natural gas are (1) to improve transportation efficiency by increasing pressure and (2) to improve welding efficiency in the field by reducing wall thickness. There is a tendency for the tensile strength to become higher and higher. Until now, line pipes up to X80 according to the API standard have been put into practical use, but there has recently been a need for line pipes with higher strength.

【0003】現在、X100以上の超高強度ラインパイ
プはX80級ラインパイプの製造法(NKK技報 No.
138(1992),pp24−31およびThe 7
thOffshore Mechanics and
Arctic Engineering(1988),
Volume V,pp179−185)を基本に検討
されているが、これらのラインパイプは母材および溶接
部の低温靭性、現地溶接性、継手軟化などの点で多くの
問題を抱えており、これらを克服した画期的な超高強度
鋼管(ラインパイプ)の早期開発が要望されている。
At present, ultra high strength line pipes of X100 or more are manufactured by a method for manufacturing X80 class line pipes (NKK Technical Report No.
138 (1992), pp24-31 and The 7
thOffshore Mechanics and
Arctic Engineering (1988),
Volume V, pp. 179-185), but these line pipes have many problems in terms of low temperature toughness of base metal and weld, field weldability, joint softening, etc. There is a demand for early development of an epoch-making ultra-high-strength steel pipe (line pipe) that has been overcome.

【0004】[0004]

【発明が解決しようとする課題】本発明は溶接部および
母材の低温靭性、現地溶接性などの諸特性を同時に達成
できるX100以上の超高強度鋼管用鋼板の製造技術を
提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a technique for producing a steel plate for an ultra high strength steel pipe having a strength of X100 or more, which can simultaneously achieve various characteristics such as low temperature toughness of a welded portion and a base metal and field weldability. .

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、重量%
で、C:0.02〜0.10%、Si:0.6%以下、
Mn:1.0〜2.0%、P:0.015%以下、S:
0.0010%以下、Ni:0.3〜1.6%、Cu:
0.9〜1.3%、Mo:0.1〜0.5%、Nb:
0.005〜0.06%、Ti:0.005〜0.03
%、Al:0.004%以下、N:0.001〜0.0
06%、O:0.003%以下に必要に応じて、さらに
Ca:0.001〜0.005%、V:0.01〜0.
10%、Cr:0.1〜0.5%の一種または二種以上
を含有し、残部が鉄および不可避的不純物からなる鋼片
を950〜1200℃の温度に再加熱後、900℃以下
の累積圧下量が70%以上、かつAr3 点〜Ar1 点の
フェライト・オーステナイト2相域の累積圧下量が15
〜35%で圧延終了温度が680〜820℃となるよう
に圧延を行い、その後10℃/秒以上の冷却速度で40
0℃以下任意の温度まで冷却し、400〜650℃の温
度で時効処理することである。
SUMMARY OF THE INVENTION The gist of the present invention is the weight%
And C: 0.02 to 0.10%, Si: 0.6% or less,
Mn: 1.0 to 2.0%, P: 0.015% or less, S:
0.0010% or less, Ni: 0.3 to 1.6%, Cu:
0.9-1.3%, Mo: 0.1-0.5%, Nb:
0.005-0.06%, Ti: 0.005-0.03
%, Al: 0.004% or less, N: 0.001 to 0.0
06%, O: 0.003% or less, and if necessary, Ca: 0.001 to 0.005%, V: 0.01 to 0.
10%, Cr: 0.1 to 0.5% of one or more kinds, and the balance of steel and unavoidable impurities is reheated to a temperature of 950 to 1200 ° C., and then 900 ° C. or less. The cumulative rolling reduction is 70% or more, and the cumulative rolling reduction in the ferrite-austenite two-phase region of Ar 3 point to Ar 1 point is 15
Rolling is performed so that the rolling end temperature becomes 680 to 820 ° C. at ˜35%, and then 40 at a cooling rate of 10 ° C./second or more.
It is to cool to an arbitrary temperature of 0 ° C. or lower and to perform aging treatment at a temperature of 400 to 650 ° C.

【0006】[0006]

【作用】以下に本発明の超高強度鋼管の製造方法につい
て詳細に説明する。本発明の特徴は、(1)0.9〜
1.3%Cuを含有し、実質的にAlを含有しない低C
−Ni−Cu−Mo−Nb−Ti系鋼を、(2)オース
テナイト−フェライト2相域で厳格に制御圧延した後、
加速冷却するところにあり、これによって超高強度と優
れた母材および溶接部の低温靭性、現地溶接性を同時に
達成している。
The method of manufacturing the ultra high strength steel pipe of the present invention will be described in detail below. The features of the present invention are (1) 0.9-
Low C containing 1.3% Cu and substantially free of Al
-Ni-Cu-Mo-Nb-Ti steel was subjected to strict control rolling in the (2) austenite-ferrite two-phase region,
It is in the place of accelerated cooling, which achieves ultra-high strength and excellent low-temperature toughness of the base metal and weld, and local weldability at the same time.

【0007】従来、Cu析出鋼は圧力容器用高張力鋼
(引張強さ784N/mm2 級)などに利用されていた
が、X100以上の超高強度ラインパイプにおける開発
例は見当たらない。これはCu析出硬化鋼は強度は得や
すいが、低温靭性がラインパイプとしては不十分であっ
たことによると考えられる。
Conventionally, Cu-precipitated steel was used for high-tensile steel for pressure vessels (tensile strength 784 N / mm 2 grade) and the like, but no development example of ultrahigh-strength line pipe of X100 or more is found. It is considered that this is because although the Cu precipitation hardened steel easily obtains strength, the low temperature toughness was insufficient as a line pipe.

【0008】まず母材の低温靭性であるが、パイプライ
ンでは脆性破壊の発生特性とともに伝播停止特性が極め
て重要である。従来のCu析出硬化鋼はシャルピー特性
で代表される脆性破壊の発生特性はまずまずであった
が、脆性破壊の停止特性は十分でなかった。これは
(1)ミクロ組織の微細化が不十分なことと、(2)い
わゆるシャルピー衝撃試験などの試験片破面に発生する
セパレーションの利用がなされていなかったことによる
(セパレーションは衝撃試験時生ずる板面に平行な層状
剥離現象で、脆性き裂先端での3軸応力度を低下させる
ことによって脆性き裂の伝播停止特性を向上させると考
えられている)。
First, regarding the low temperature toughness of the base material, in the pipeline, the propagation stopping characteristics as well as the brittle fracture occurrence characteristics are extremely important. In the conventional Cu precipitation hardening steel, the brittle fracture initiation characteristics represented by the Charpy characteristics were satisfactory, but the brittle fracture stopping characteristics were not sufficient. This is due to (1) insufficient microstructure miniaturization, and (2) the separation that occurs on the fracture surface of the test piece, such as the so-called Charpy impact test, has not been used (separation occurs during the impact test. It is believed that the delamination phenomenon parallel to the plate surface improves the propagation arrest property of the brittle crack by reducing the triaxial stress level at the brittle crack tip).

【0009】次に溶接部の低温靭性であるが、低合金鋼
の溶接熱影響部(HAZ)靭性は、(1)結晶粒のサイ
ズ、(2)高炭素島状マルテンサイト(M* )、上部ベ
イナイト(Bu)などの硬化相の分散状態、(3)粒界
脆化の有無、(4)元素のミクロ偏析など種々の冶金学
的要因に支配される。なかでもHAZの結晶粒のサイズ
およびM* は低温靭性に大きな影響を与えることが知ら
れている。
Next, regarding the low temperature toughness of the weld zone, the weld heat affected zone (HAZ) toughness of the low alloy steel is as follows: (1) grain size, (2) high carbon island martensite (M * ), It is governed by various metallurgical factors such as the dispersed state of a hardened phase such as upper bainite (Bu), (3) presence or absence of grain boundary embrittlement, and (4) microsegregation of elements. Especially, it is known that the size of the crystal grains and the M * of HAZ have a great influence on the low temperature toughness.

【0010】本発明では鋼中のAl量を低減することに
より、HAZでのM* の生成量を抑制して、かつ微細に
分散させることによりHAZ靭性を向上させる。特に高
強度化すればするほど合金元素の添加量は必然的に多く
なり、HAZでのM* 生成の完全抑制は困難になる。
In the present invention, by reducing the amount of Al in the steel, the amount of M * produced in the HAZ is suppressed and finely dispersed to improve the HAZ toughness. In particular, as the strength is increased, the amount of alloying elements added is inevitably increased, and it becomes difficult to completely suppress the production of M * in HAZ.

【0011】しかしながら、この場合でも実質的にAl
を含んでいなければM* は微細に分散され、HAZ靭性
は向上する。Alを添加した場合には、Alは炭化物に
固溶しないために、未変態オーステナイト中でγが安定
化してM* の生成が顕著になる。
However, even in this case, substantially Al
If M is not included, M * is finely dispersed and HAZ toughness is improved. When Al is added, since Al does not form a solid solution with carbides, γ is stabilized in untransformed austenite and M * formation becomes remarkable.

【0012】まず本発明の製造条件の限定理由について
説明する。本発明では、鋼片を950〜1200℃の温
度範囲に再加熱後、900℃以下の累積圧下量が70%
以上、かつAr3 点〜Ar1 点のフェライト・オーステ
ナイト2相域の累積圧下量が15〜35%で圧延終了温
度が680〜820℃となるように圧延を行い、その後
10℃/秒以上の冷却速度で400℃以下任意の温度ま
で冷却し、400〜650℃の温度で時効処理する。
First, the reasons for limiting the manufacturing conditions of the present invention will be described. In the present invention, after reheating the billet to a temperature range of 950 to 1200 ° C., the cumulative rolling reduction of 900 ° C. or less is 70%.
Above, rolling is carried out so that the cumulative rolling reduction in the ferrite-austenite two-phase region of Ar 3 point to Ar 1 point is 15 to 35% and the rolling end temperature is 680 to 820 ° C., and thereafter 10 ° C./sec or more. It is cooled to an arbitrary temperature of 400 ° C. or lower at a cooling rate, and is aged at a temperature of 400 to 650 ° C.

【0013】鋼片(スラブ)の再加熱温度を950℃以
上とする理由は、粗大な鋳造組織である鋼片をオーステ
ナイト域で十分に溶体化させ、圧延終了温度を確保する
ためである。しかし再加熱温度が1200℃を超える
と、再加熱時のオーステナイト粒が成長し、圧延後の結
晶粒も大きくなって低温靭性や耐サワー性の劣化を招
く。このため再加熱温度の上限は1200℃とした。
The reason why the reheating temperature of the steel slab (slab) is set to 950 ° C. or higher is that the steel slab having a coarse casting structure is sufficiently solution-treated in the austenite region to secure the rolling end temperature. However, if the reheating temperature exceeds 1200 ° C., austenite grains grow during reheating and the crystal grains after rolling also increase, resulting in deterioration of low temperature toughness and sour resistance. Therefore, the upper limit of the reheating temperature is 1200 ° C.

【0014】再加熱した鋼片は900℃以下の累積圧下
量が70%以上、かつAr3 点〜Ar1 点のフェライト
・オーステナイト2相域の累積圧下量が15〜35%で
圧延終了温度が680〜820℃となるように圧延しな
ければならない。900℃以下の累積圧下量を70%以
上とする理由はオーステナイト未再結晶域での圧延を強
化し、変態前のオーステナイト組織の微細化を図るため
である。X100ラインパイプでは特に安全上、従来に
も増して高靭性を必要とするので、その累積圧下量は7
0%としなければならない(累積圧下量は大きいほど望
ましく、その上限については限定しない)。
The reheated steel slab has a cumulative reduction of 900% or less of 70% or more, a cumulative reduction of 15 to 35% in the ferrite-austenite two-phase region of Ar 3 point to Ar 1 point, and a rolling end temperature. It must be rolled to 680-820 ° C. The reason why the cumulative reduction amount at 900 ° C. or less is 70% or more is to strengthen rolling in the austenite unrecrystallized region and to refine the austenite structure before transformation. Since the X100 line pipe requires higher toughness than ever before, especially for safety, the cumulative reduction amount is 7
It should be 0% (the larger the cumulative reduction amount is, the more desirable it is, and the upper limit thereof is not limited).

【0015】さらに本発明では、フェライト・オーステ
ナイト2相域の累積圧下量を15〜35%とし、圧延終
了温度を680〜820℃とする。これはオーステナイ
ト未再結晶域で細粒化したオーステナイト組織を一層微
細化し、かつフェライトを加工してフェライトの強化と
衝撃試験時にセパレーションの発生を容易にするためで
ある。
Further, in the present invention, the cumulative reduction amount in the ferrite-austenite two-phase region is set to 15 to 35%, and the rolling end temperature is set to 680 to 820 ° C. This is because the austenite structure finely grained in the unrecrystallized austenite region is further refined, and the ferrite is processed to strengthen the ferrite and facilitate the occurrence of separation during the impact test.

【0016】2相域の累積圧下量が15%以下では、セ
パレーションの発生が十分でなく脆性き裂の伝播停止特
性の向上は得られない。また累積圧下量が35%以上で
は、加工によるフェライトの脆化が顕著となって低温靭
性はかえって劣化する。このため、2相域での累積圧下
量の範囲を15〜35%とした。一方、累積圧下量が適
切であっても、その圧延温度が不適切であると優れた低
温靭性は達成できない。
When the cumulative rolling reduction in the two-phase region is 15% or less, the separation is not sufficiently generated and the propagation stopping property of the brittle crack cannot be improved. When the cumulative reduction is 35% or more, embrittlement of ferrite due to working becomes remarkable and the low temperature toughness deteriorates rather. Therefore, the range of the cumulative reduction amount in the two-phase region is set to 15 to 35%. On the other hand, even if the cumulative reduction amount is appropriate, excellent low temperature toughness cannot be achieved if the rolling temperature is inappropriate.

【0017】圧延終了温度が680℃以下では、フェラ
イト変態が進行して続く加速冷却の効果がなくなるばか
りか、加工によるフェライトの脆化も顕著となるので、
圧延終了温度の下限を680℃とした。しかし圧延終了
温度が820℃以上では、オーステナイト組織の微細化
やセパレーション発生が十分でないため、圧延終了温度
の上限を820℃に限定した。
When the rolling end temperature is 680 ° C. or lower, not only the effect of accelerated cooling due to the progress of ferrite transformation disappears but also the embrittlement of ferrite becomes remarkable due to working.
The lower limit of the rolling end temperature was 680 ° C. However, if the rolling end temperature is 820 ° C. or higher, refinement of the austenite structure and occurrence of separation are not sufficient, so the upper limit of the rolling end temperature is limited to 820 ° C.

【0018】圧延終了後、鋼板は10℃/秒以上の冷却
速度で600℃以下任意の温度まで冷却する必要があ
る。これはベイナイト組織の形成などによる変態強化、
組織の微細化と冷却中の粗大なCu析出を抑制するため
である。冷却中にCuが析出すると時効処理後の析出硬
化量が減少し、高強度が得られない。
After the completion of rolling, the steel sheet needs to be cooled at a cooling rate of 10 ° C./sec or more to an arbitrary temperature of 600 ° C. or less. This is transformation strengthening due to the formation of bainite structure,
This is for refining the structure and suppressing coarse Cu precipitation during cooling. If Cu precipitates during cooling, the amount of precipitation hardening after aging treatment decreases, and high strength cannot be obtained.

【0019】冷却速度が10℃/秒以下であったり、水
冷停止温度が400℃以上であると、変態強化やCu析
出硬化による強度・低温靭性バランスの向上が十分に期
待できない。冷却速度が大きいほど変態強化に有効であ
り、特に上限は限定しないが、実用上可能な冷却速度は
板厚にも依存するが、40℃/秒程度である。
When the cooling rate is 10 ° C./sec or less and the water cooling stop temperature is 400 ° C. or more, improvement in strength / low temperature toughness balance due to transformation strengthening and Cu precipitation hardening cannot be expected sufficiently. The higher the cooling rate, the more effective the transformation strengthening is. The upper limit is not particularly limited, but the practically possible cooling rate is about 40 ° C./sec, although it depends on the plate thickness.

【0020】さらに圧延・冷却後の鋼板は400〜65
0℃の温度で時効処理する必要がある。冷却ままでは、
Cuはほとんど析出しておらずCu析出硬化は期待でき
ない。Cu析出硬化(ε−Cuによる析出硬化)による
高強度化を図るためには、適当な温度で時効処理を行わ
なければならない。時効処理温度が400℃以下である
と、Cu析出が不十分で高強度が得られず、時効処理温
度が650℃以上ではCu析出物が粗大化して析出硬化
能が失われる。
Further, the steel plate after rolling and cooling is 400 to 65
It is necessary to perform aging treatment at a temperature of 0 ° C. If it is still cooled,
Cu is hardly precipitated and Cu precipitation hardening cannot be expected. In order to increase the strength by Cu precipitation hardening (precipitation hardening by ε-Cu), aging treatment must be performed at an appropriate temperature. When the aging treatment temperature is 400 ° C. or lower, Cu precipitation is insufficient and high strength cannot be obtained, and when the aging treatment temperature is 650 ° C. or higher, Cu precipitates become coarse and the precipitation hardening ability is lost.

【0021】次に成分元素の限定理由について説明す
る。Cの下限0.02%は母材および溶接部の強度、低
温靭性の確保ならびにNb,V添加による析出硬化、結
晶粒の微細化効果を発揮させるための最小量である。し
かしC量が多過ぎると低温靭性、現地溶接性や耐サワー
性の著しい劣化を招くので、上限を0.10%とした。
Next, the reasons for limiting the constituent elements will be described. The lower limit of 0.02% of C is the minimum amount for ensuring the strength and low temperature toughness of the base material and the welded portion, precipitation hardening by addition of Nb and V, and the effect of refining crystal grains. However, if the C content is too large, the low temperature toughness, the field weldability and the sour resistance are significantly deteriorated, so the upper limit was made 0.10%.

【0022】Siは脱酸や強度向上のため添加する元素
であるが、多く添加すると現地溶接性、HAZ靭性を劣
化させるので、上限を0.6%とした。鋼の脱酸はTi
あるいはAlのみでも十分であり、Siは必ずしも添加
する必要はない。
Si is an element added for deoxidation and strength improvement, but if added in a large amount, it deteriorates on-site weldability and HAZ toughness, so the upper limit was made 0.6%. Deoxidation of steel is Ti
Alternatively, Al alone is sufficient, and Si does not necessarily have to be added.

【0023】Mnは強度、低温靭性を確保する上で不可
欠な元素であり、その下限は1.0%、好ましくは1.
3%である。しかしMnが多過ぎると鋼の焼入性が増加
して現地溶接性、NAZ靭性を劣化させるだけでなく、
連続鋳造鋼片の中心偏析を助長し、耐サワー性、低温靭
性も劣化させるので上限を2.0%とした。
Mn is an essential element for ensuring strength and low temperature toughness, and its lower limit is 1.0%, preferably 1.
3%. However, if Mn is too much, not only the hardenability of steel increases and the field weldability and NAZ toughness deteriorate,
The upper limit was set to 2.0% because it promotes center segregation of continuously cast steel pieces and also deteriorates sour resistance and low temperature toughness.

【0024】Ni,Cuを添加する目的は低Cの本発明
鋼の強度を低温靭性や耐サワー性を劣化させることなく
向上させるためである。Ni,Cu添加はMnやCr,
Mo添加に比較して圧延組織(特にスラブの中心偏析
帯)中に低温靭性、耐サワー性に有害な硬化組織を形成
することが少なく、強度を増加させることが判明した。
The purpose of adding Ni and Cu is to improve the strength of the low C steel of the present invention without deteriorating the low temperature toughness and sour resistance. Ni, Cu addition is Mn, Cr,
It was found that, compared with the addition of Mo, a hardened structure detrimental to low temperature toughness and sour resistance is less likely to be formed in the rolled structure (especially the central segregation zone of the slab), and the strength is increased.

【0025】Cu添加は主としてCu析出硬化によって
強度を増加させる。このため、Cu添加量は最低0.9
%必要である。しかし、多く添加すると現地溶接性やN
AZ靭性などを劣化させるので、その上限を1.3%、
好ましくは1.2%とした。Niは連続鋳造時、熱間圧
延時のCuクラックを防止するために添加するものであ
り、その下限は0.3%である。しかし1.6%を超え
て添加すると現地溶接性などに好ましくないため上限を
1.6%とした。
The addition of Cu increases the strength mainly by Cu precipitation hardening. Therefore, the amount of Cu added is at least 0.9.
%is necessary. However, if a large amount is added, local weldability and N
As it deteriorates AZ toughness, its upper limit is 1.3%,
It is preferably 1.2%. Ni is added to prevent Cu cracks during continuous casting and hot rolling, and the lower limit is 0.3%. However, if it is added in excess of 1.6%, it is not preferable for the field weldability, so the upper limit was made 1.6%.

【0026】Moを添加する理由は鋼の焼入れ性を向上
させるためである。またMoはNbと共存して制御圧延
時にオーステナイトの再結晶を強力に抑制し、オーステ
ナイト組織の微細化にも効果がある。このような効果を
得るためには、Moは最低0.1%必要である。しかし
過剰なMo添加はHAZ靭性、現地溶接性を劣化させる
ので、その上限を0.5%とした。
The reason for adding Mo is to improve the hardenability of steel. Further, Mo coexists with Nb to strongly suppress recrystallization of austenite during controlled rolling, and is also effective for refining the austenite structure. In order to obtain such an effect, Mo must be at least 0.1%. However, excessive addition of Mo deteriorates HAZ toughness and field weldability, so the upper limit was made 0.5%.

【0027】また本発明鋼では、必須の元素としてN
b:0.005%、好ましくは0.01〜0.06%、
Ti:0.005〜0.03%を含有する。Nbは制御
圧延において結晶粒の微細化や析出硬化に寄与し、鋼を
強靭化する作用を有する。しかしNbを0.06%以上
添加すると、現地溶接性やHAZ靭性に悪影響をもたら
すので、その上限を0.06%とした。またTi添加は
微細なTiNを形成し、スラブ再加熱時および溶接HA
Zのオーステナイト粒の粗大化を抑制してミクロ組織を
微細化し、母材およびHAZの低温靭性を改善する。
In the steel of the present invention, N is an essential element.
b: 0.005%, preferably 0.01 to 0.06%,
Ti: 0.005 to 0.03% is contained. Nb contributes to refinement of crystal grains and precipitation hardening in controlled rolling, and has an action of strengthening steel. However, if Nb is added in an amount of 0.06% or more, the field weldability and HAZ toughness are adversely affected, so the upper limit was made 0.06%. When Ti is added, fine TiN is formed, and when the slab is reheated and when welding HA
It suppresses coarsening of the austenite grains of Z to make the microstructure finer and improves the low temperature toughness of the base material and HAZ.

【0028】このようなTiNの効果を発現させるため
には、最低0.005%のTi添加が必要である。しか
しTi量が多過ぎると、TiNの粗大化やTiCによる
析出硬化が生じ、低温靭性が劣化するので、その上限は
0.03%に限定しなければならない。
In order to bring out such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the Ti content is too large, coarsening of TiN and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit must be limited to 0.03%.

【0029】Alは通常脱酸剤として鋼に含まれるが、
本発明では好ましくない元素である。Al量が0.00
4%を超えるとHAZでのM* の生成量が顕著となり、
HAZ靭性の劣化を招くので上限を0.004%とし
た。脱酸はTiあるいはSiでも可能であり、必ずしも
添加する必要はない。
Al is usually contained in steel as a deoxidizer,
It is an element that is not preferred in the present invention. Al amount is 0.00
If it exceeds 4%, the amount of M * produced in HAZ becomes remarkable,
Since the HAZ toughness is deteriorated, the upper limit was made 0.004%. Deoxidation is also possible with Ti or Si, and it is not always necessary to add it.

【0030】さらに本発明では、不純物元素であるP,
S,O量をそれぞれ、0.015%以下、0.0010
%以下、0.003%以下とする。この主たる理由とは
母材、HAZ靭性の低温靭性をより一層向上させるため
である。P量の低減は連続鋳造スラブの中心偏析を低減
し、粒界破壊を防止し低温靭性を向上させる。またS量
の低減は延伸化したMnSを低減して耐サワー性や低温
靭性を向上させる効果がある。O量の低減は鋼中の酸化
物を少なくして、耐サワー性や低温靭性の改善に効果が
ある。したがってP,S,O量は低いほど好ましい。
Further, in the present invention, P, which is an impurity element,
0.015% or less of S and O, 0.0010
% Or less and 0.003% or less. The main reason for this is to further improve the low temperature toughness of the base material and HAZ toughness. Reduction of the amount of P reduces center segregation of the continuously cast slab, prevents intergranular fracture, and improves low temperature toughness. Further, the reduction of the amount of S has the effect of reducing the stretched MnS and improving the sour resistance and the low temperature toughness. The reduction of the amount of O reduces the oxides in the steel and is effective in improving the sour resistance and the low temperature toughness. Therefore, the lower the amount of P, S, O, the more preferable.

【0031】NはTiNを形成してスラブ再加熱時およ
び溶接HAZのオーステナイト粒の粗大化を抑制して母
材、HAZの低温靭性を向上させる。このために必要な
最小量は0.001%である。しかし多過ぎるとスラブ
表面疵や固溶NによるHAZ靭性の劣化の原因となるの
で、その上限は0.006%に抑える必要がある。
N forms TiN to suppress coarsening of austenite grains in the slab during reheating and in the welded HAZ to improve the low temperature toughness of the base metal and HAZ. The minimum amount required for this is 0.001%. However, if it is too large, it may cause deterioration of the HAZ toughness due to slab surface defects and solid solution N, so the upper limit must be suppressed to 0.006%.

【0032】次にCa,V,Crを添加する理由につい
て説明する。基本となる成分にさらにこれらの元素を添
加する主たる目的は本発明鋼の優れた特徴を損なうこと
なく、製造可能な板厚の拡大や母材の強度・靭性などの
特性の向上を図るためである。したがって、その添加量
は自ら制限されるべき性質のものである。
Next, the reason for adding Ca, V and Cr will be explained. The main purpose of adding these elements to the basic composition is to increase the manufacturable plate thickness and improve the properties such as strength and toughness of the base metal without impairing the excellent characteristics of the steel of the present invention. is there. Therefore, the amount added is of a nature that should be limited by itself.

【0033】Caは硫化物(MnS)の形態を制御し、
低温靭性を向上(シャルピー試験における吸収エネルギ
ーの増加など)させる他、耐サワー性の向上にも著しい
効果を発揮する。特に衝撃試験でのセパレーションを利
用する本発明鋼ではシャルピー試験などの吸収エネルギ
ーは低下する傾向にあるので、Caの添加は必須であ
る。
Ca controls the morphology of sulfide (MnS),
In addition to improving low temperature toughness (such as increasing absorbed energy in the Charpy test), it also exerts a marked effect in improving sour resistance. In particular, in the steel of the present invention utilizing the separation in the impact test, the absorbed energy in the Charpy test and the like tends to decrease, so that the addition of Ca is essential.

【0034】しかしCa量が0.001%以下では実用
上効果がなく、また0.005%を超えて添加するとC
aO−CaSが大量に生成してクラスター、大型介在物
となり、鋼の清浄度を害するだけでなく、現地溶接性に
も悪影響をおよぼす。このためCa添加量を0.001
〜0.005%に制限した。
However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it is added over 0.005%, it becomes C.
A large amount of aO-CaS is formed to form clusters and large inclusions, which not only impairs the cleanliness of steel, but also adversely affects on-site weldability. Therefore, the amount of Ca added is 0.001
Limited to ~ 0.005%.

【0035】VはほぼNbと同様の効果を有するが、そ
の効果はNbに比較して格段に弱い。その上限は現地溶
接性、HAZ靭性の点から0.10%まで許容できる。
Crは母材、溶接部の強度を増加させるが、多過ぎると
現地溶接性やHAZ靭性を著しく劣化させる。このため
Cr量の上限は0.5%である。V,Cr量の下限0.
01%,0.1%はそれぞれの元素添加による材質上の
効果が顕著になる最小量である。
V has almost the same effect as Nb, but its effect is much weaker than that of Nb. The upper limit is 0.10% in terms of field weldability and HAZ toughness.
Cr increases the strength of the base material and the welded portion, but if it is too much, it causes a remarkable deterioration in the on-site weldability and HAZ toughness. Therefore, the upper limit of the amount of Cr is 0.5%. Lower limit of V, Cr amount 0.
01% and 0.1% are the minimum amounts at which the effect on the material due to the addition of each element becomes remarkable.

【0036】[0036]

【実施例】転炉−連続鋳造法で種々の鋼成分の鋼片から
種々の製造法により鋼板を製造して、諸性質を調査し
た。機械的性質は圧延と直角方向で調査した。HAZ靭
性は入熱5kJ/mm相当の再現熱サイクルを付与して調査
した。
EXAMPLES Steel sheets were manufactured by various manufacturing methods from billets having various steel components by a converter-continuous casting method, and various properties were investigated. The mechanical properties were investigated in the direction perpendicular to rolling. HAZ toughness was investigated by applying a simulated heat cycle equivalent to a heat input of 5 kJ / mm.

【0037】実施例を表1に示す。本発明にしたがって
製造した鋼板は優れた強度・低温靭性を有する。これに
対して比較鋼は化学成分または鋼板製造条件が適切でな
く、いずれかの特性が劣る。鋼9はC量が多過ぎるた
め、低温靭性(シャルピー吸収エネルギー、遷移温
度)、HAZ靭性が劣る。鋼10はMo添加量が少なく
Mn量が多過ぎるため、シャルピー吸収エネルギーが低
く、かつHAZ靭性が悪い。鋼11はNbが添加されて
いないため、Nb添加鋼よりもやや強度が低く、シャル
ピー遷移温度が高く(強度・低温靭性バランスが悪
い)、またHAZ靭性も悪い。
Examples are shown in Table 1. The steel sheet produced according to the present invention has excellent strength and low temperature toughness. On the other hand, the comparative steel is not suitable in terms of chemical composition or steel plate manufacturing conditions, and either characteristic is inferior. Steel 9 has a low C toughness (Charpy absorbed energy, transition temperature) and HAZ toughness because it contains too much C. Steel 10 has a small amount of Mo added and an excessively large amount of Mn, so that the Charpy absorbed energy is low and the HAZ toughness is poor. Since Steel 11 does not contain Nb, it has a slightly lower strength, a higher Charpy transition temperature (a poor balance between strength and low temperature toughness) and poor HAZ toughness as compared with Nb-added steel.

【0038】鋼12はTiが添加されていないため、シ
ャルピー遷移温度が高く、HAZ靭性が劣る。鋼13は
Cu添加量が少な過ぎるため、目標とする強度が達成で
きない。鋼14はNi量が少な過ぎる。その結果、機械
的性質はまずまずであるが、鋼管表面に微小な疵が多数
発生、ラインパイプとして使えない。
Since Steel 12 does not contain Ti, it has a high Charpy transition temperature and inferior HAZ toughness. Steel 13 cannot achieve the target strength because the amount of Cu added is too small. Steel 14 has too little Ni content. As a result, the mechanical properties are reasonable, but many small flaws occur on the surface of the steel pipe, and it cannot be used as a line pipe.

【0039】鋼15はAl量が多過ぎるため、HAZ靭
性が悪い。鋼16は化学成分は適当であるが、製造条件
中の鋼片再加熱開始温度が高過ぎるため、シャルピー遷
移温度が高い。鋼17は鋼片の再加熱温度が低過ぎるた
め、溶体化が不十分で強度が低い。鋼18は900℃以
下の累積圧下量が少な過ぎるため、低温靭性が今一歩で
ある。鋼19はオーステナイト−フィライト2相域での
累積圧下量が少な過ぎるため、シャルピー遷移温度が高
い。
Steel 15 has a high HAZ toughness because it contains too much Al. Steel 16 has an appropriate chemical composition, but has a high Charpy transition temperature because the reheating start temperature of the billet in the manufacturing conditions is too high. Since the reheating temperature of the steel slab is too low, steel 17 is insufficient in solution treatment and has low strength. Steel 18 has too little cumulative reduction below 900 ° C., so low temperature toughness is a step ahead. Steel 19 has a high Charpy transition temperature because the cumulative rolling reduction in the austenite-phyllite two-phase region is too small.

【0040】鋼20は2相域での累積圧下量が多過ぎる
ため、かえって低温靭性が劣化している。鋼21は2相
域での圧延がなく圧延終了温度が高過ぎるため、低温靭
性が劣る。鋼22は圧延終了温度が低過ぎるため、低温
靭性が劣る。鋼23は水冷停止温度が高過ぎるため強度
が低い。鋼24は時効温度が高過ぎるため強度が低い。
鋼25は時効温度が低過ぎるため強度が低い。
Since the steel 20 has too much cumulative reduction in the two-phase region, the low temperature toughness is rather deteriorated. Steel 21 is not rolled in the two-phase region and the rolling end temperature is too high, so the low temperature toughness is poor. Steel 22 has an inferior low temperature toughness because the rolling end temperature is too low. Steel 23 has low strength because the water cooling stop temperature is too high. Steel 24 has a low strength because the aging temperature is too high.
Steel 25 has a low strength because the aging temperature is too low.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】本発明により低温靭性、現地溶接性が優
れた超高強度ラインパイプ(API規格X100以上)
の鋼板が安定して製造できるようになった。その結果、
パイプラインの安全性が著しく向上するとともに、パイ
プラインの施工能率、輸送効率の飛躍的な向上が可能と
なった。
EFFECTS OF THE INVENTION According to the present invention, an ultra-high strength line pipe excellent in low temperature toughness and field weldability (API standard X100 or more)
Now, the steel plate can be manufactured stably. as a result,
The safety of the pipeline has been significantly improved, and the pipeline construction efficiency and transportation efficiency have been dramatically improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.02〜0.10% Si:0.6%以下 Mn:1.0〜2.0% P :0.015%以下 S :0.0010%以下 Ni:0.3〜1.6% Cu:0.9〜1.3% Mo:0.1〜0.5% Nb:0.005〜0.06% Ti:0.005〜0.03% Al:0.004%以下 N :0.001〜0.006% O :0.003%以下 に必要に応じて、さらにCa:0.001〜0.005
%、V:0.01〜0.10%、Cr:0.1〜0.5
%の一種または二種以上を含有し、残部が鉄および不可
避的不純物からなる鋼片を950〜1200℃の温度に
再加熱後、900℃以下の累積圧下量が70%以上、か
つAr3 点〜Ar1 点のフェライト・オーステナイト2
相域の累積圧下量が15〜35%で圧延終了温度が68
0〜820℃となるように圧延を行い、その後10℃/
秒以上の冷却速度で400℃以下任意の温度まで冷却
し、400〜650℃の温度で時効処理することを特徴
とする溶接部靭性の優れた超高強度鋼管用鋼板の製造方
法。
1. By weight%, C: 0.02 to 0.10% Si: 0.6% or less Mn: 1.0 to 2.0% P: 0.015% or less S: 0.0010% or less Ni: 0.3-1.6% Cu: 0.9-1.3% Mo: 0.1-0.5% Nb: 0.005-0.06% Ti: 0.005-0.03% Al: 0.004% or less N: 0.001 to 0.006% O: 0.003% or less If necessary, further Ca: 0.001 to 0.005%
%, V: 0.01 to 0.10%, Cr: 0.1 to 0.5
%, One or two or more, and the balance consisting of iron and inevitable impurities is reheated to a temperature of 950 to 1200 ° C., and then a cumulative rolling reduction of 900 ° C. or less is 70% or more, and an Ar 3 point. ~ Ar 1 point ferrite austenite 2
The cumulative rolling reduction in the phase region is 15 to 35% and the rolling end temperature is 68.
Rolling is performed at 0 to 820 ° C, and then 10 ° C /
A method for producing a steel plate for ultra-high-strength steel pipe with excellent weld toughness, which comprises cooling to an arbitrary temperature of 400 ° C or lower at a cooling rate of at least 2 seconds and aging at a temperature of 400 to 650 ° C.
JP7411095A 1995-03-13 1995-03-30 Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone Withdrawn JPH08311548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7411095A JPH08311548A (en) 1995-03-13 1995-03-30 Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5292395 1995-03-13
JP7-52923 1995-03-13
JP7411095A JPH08311548A (en) 1995-03-13 1995-03-30 Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone

Publications (1)

Publication Number Publication Date
JPH08311548A true JPH08311548A (en) 1996-11-26

Family

ID=26393588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7411095A Withdrawn JPH08311548A (en) 1995-03-13 1995-03-30 Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone

Country Status (1)

Country Link
JP (1) JPH08311548A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
WO2006104261A1 (en) 2005-03-31 2006-10-05 Jfe Steel Corporation High-strength steel plate and process for production thereof, and high-strength steel pipe
JP2007260715A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing superhigh strength welded steel pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
WO2006104261A1 (en) 2005-03-31 2006-10-05 Jfe Steel Corporation High-strength steel plate and process for production thereof, and high-strength steel pipe
US8758528B2 (en) 2005-03-31 2014-06-24 Jfe Steel Corporation High-strength steel plate, method of producing the same, and high-strength steel pipe
JP2007260715A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing superhigh strength welded steel pipe

Similar Documents

Publication Publication Date Title
JP5590253B2 (en) High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP5157072B2 (en) Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JPH10298707A (en) High toughness and high tensile strength steel and its production
JPH0941074A (en) Ultra-high tensile strength steel excellent in low temperature tougheness
JP4477707B2 (en) Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JP2009084598A (en) Method for manufacturing steel sheet superior in deformability and low-temperature toughness for ultrahigh-strength line pipe, and method for manufacturing steel pipe for ultrahigh-strength line pipe
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JPH08311549A (en) Production of ultrahigh strength steel pipe
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JPH08311550A (en) Production of steel sheet for ultrahigh strength steel pipe
JPH0941080A (en) Weldability high strength steel having low yield ratio and excellent in low temperature toughness
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP5472423B2 (en) High-strength, high-toughness steel plate with excellent cutting crack resistance
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604