JPH08311550A - Production of steel sheet for ultrahigh strength steel pipe - Google Patents
Production of steel sheet for ultrahigh strength steel pipeInfo
- Publication number
- JPH08311550A JPH08311550A JP7411295A JP7411295A JPH08311550A JP H08311550 A JPH08311550 A JP H08311550A JP 7411295 A JP7411295 A JP 7411295A JP 7411295 A JP7411295 A JP 7411295A JP H08311550 A JPH08311550 A JP H08311550A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- rolling
- temperature
- strength
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は米国石油協会(API)
規格でX100以上(降伏強度で約689N/mm2 以
上)の超高強度と優れた低温靭性、現地溶接性を有する
鋼板の製造方法に関するものである。This invention relates to the American Petroleum Institute (API)
The present invention relates to a method for producing a steel sheet having an ultrahigh strength of X100 or more (yield strength of about 689 N / mm 2 or more) as standard, excellent low temperature toughness, and field weldability.
【0002】[0002]
【従来の技術】原油・天然ガスを長距離輸送するパイプ
ラインに使用するラインパイプは、(1)高圧化による
輸送効率の向上や、(2)薄肉化による現地での溶接能
率向上のためますます高張力化する傾向にある。これま
でにAPI規格でX80までのラインパイプの実用化が
進行中であるが、さらに高強度のラインパイプに対する
ニーズが最近でてきた。2. Description of the Related Art Line pipes used in pipelines for long-distance transportation of crude oil and natural gas are (1) to improve transportation efficiency by increasing pressure and (2) to improve welding efficiency in the field by reducing wall thickness. There is a tendency for the tensile strength to become higher and higher. Until now, line pipes up to X80 according to the API standard have been put into practical use, but there has recently been a need for line pipes with higher strength.
【0003】現在、X100以上の超高強度ラインパイ
プはX80級ラインパイプの製造法(NKK技報 No.
138(1992),pp24−31およびThe 7
thOffshore Mechanics and
Arctic Engineering(1988),
Volume V,pp179−185)を基本に検討
されているが、これらのラインパイプは低温靭性、現地
溶接性、継手軟化などの点で多くの問題を抱えており、
これらを克服した画期的な超高強度鋼管(ラインパイ
プ)の早期開発が要望されている。At present, ultra high strength line pipes of X100 or more are manufactured by a method for manufacturing X80 class line pipes (NKK Technical Report No.
138 (1992), pp24-31 and The 7
thOffshore Mechanics and
Arctic Engineering (1988),
Volume V, pp179-185), but these line pipes have many problems in terms of low temperature toughness, field weldability, joint softening, etc.,
There is a demand for early development of an epoch-making ultra-high-strength steel pipe (line pipe) that overcomes these problems.
【0004】[0004]
【発明が解決しようとする課題】本発明は低温靭性、現
地溶接性などの諸特性を同時に達成できるX100以上
の超高強度鋼管用鋼板の製造技術を提供するものであ
る。DISCLOSURE OF THE INVENTION The present invention provides a technique for producing a steel plate for an ultrahigh strength steel pipe having a strength of X100 or more which can simultaneously achieve various characteristics such as low temperature toughness and field weldability.
【0005】[0005]
【課題を解決するための手段】本発明の要旨は、重量%
で、C:0.02〜0.10%、Si:0.6%以下、
Mn:1.0〜2.0%、P:0.015%以下、S:
0.0010%以下、Ni:0.3〜1.6%、Cu:
0.9〜1.3%、Mo:0.1〜0.5%、Nb:
0.005〜0.06%、Ti:0.005〜0.03
%、Al:0.06%以下、N:0.001〜0.00
6%、O:0.003%以下に必要に応じて、さらにC
a:0.001〜0.005%、V:0.01〜0.1
0%、Cr:0.1〜0.5%の一種または二種以上を
含有し、残部が鉄および不可避的不純物からなる鋼片を
800〜1000℃の温度に再加熱後、900℃以下の
累積圧下量が70%以上、かつAr3 点〜Ar1 点のフ
ェライト・オーステナイト2相域の累積圧下量が15〜
35%で圧延終了温度が680〜820℃となるように
圧延を行い、その後10℃/秒以上の冷却速度で400
℃以下任意の温度まで冷却し、400〜650℃の温度
で時効処理することである。SUMMARY OF THE INVENTION The gist of the present invention is the weight%
And C: 0.02 to 0.10%, Si: 0.6% or less,
Mn: 1.0 to 2.0%, P: 0.015% or less, S:
0.0010% or less, Ni: 0.3 to 1.6%, Cu:
0.9-1.3%, Mo: 0.1-0.5%, Nb:
0.005-0.06%, Ti: 0.005-0.03
%, Al: 0.06% or less, N: 0.001 to 0.00
6%, O: 0.003% or less, if necessary, further C
a: 0.001 to 0.005%, V: 0.01 to 0.1
0%, Cr: 0.1 to 0.5% of one or more kinds, and the balance consisting of iron and inevitable impurities is reheated to a temperature of 800 to 1000 ° C., and then 900 ° C. or less. The cumulative reduction is 70% or more, and the cumulative reduction in the ferrite-austenite two-phase region of Ar 3 point to Ar 1 point is 15 to
Rolling is performed so that the rolling end temperature becomes 680 to 820 ° C. at 35%, and then 400 at a cooling rate of 10 ° C./second or more.
That is, the aging treatment is performed at a temperature of 400 to 650 ° C. after cooling to an arbitrary temperature of ℃ or less.
【0006】[0006]
【作用】以下に本発明の超高強度鋼管の製造方法につい
て詳細に説明する。本発明の特徴は、(1)0.9〜
1.3%Cuを含有した低C−Ni−Cu−Mo−Nb
−Ti系鋼を、(2)オーステナイトの低温域あるいは
オーステナイト−フェライトの2相域に加熱後、(3)
オーステナイト−フェライト2相域で厳格に制御圧延し
た後、加速冷却することにより、微細フェライト+マル
テンサイトの2相組織とするところにあり、これによっ
て超高強度と優れた低温靭性、現地溶接性を同時に達成
している。The method of manufacturing the ultra high strength steel pipe of the present invention will be described in detail below. The features of the present invention are (1) 0.9-
Low C-Ni-Cu-Mo-Nb containing 1.3% Cu
After heating the Ti-based steel to the low temperature region of (2) austenite or the two-phase region of austenite-ferrite, (3)
Strictly controlled rolling in the austenite-ferrite two-phase region is followed by accelerated cooling to form a two-phase structure of fine ferrite + martensite, which provides ultra-high strength, excellent low-temperature toughness, and field weldability. Achieved at the same time.
【0007】従来、Cu析出鋼は圧力容器用高張力鋼
(引張強さ784N/mm2 級)などに利用されていた
が、X100以上の超高強度ラインパイプにおける開発
例は見当たらない。これはCu析出硬化鋼は強度は得や
すいが、低温靭性がラインパイプとしては不十分であっ
たことによると考えられる。Conventionally, Cu-precipitated steel has been used for high-tensile steel for pressure vessels (tensile strength 784 N / mm 2 grade) and the like, but no development example of ultrahigh-strength line pipe of X100 or more is found. It is considered that this is because although the Cu precipitation hardened steel easily obtains strength, the low temperature toughness was insufficient as a line pipe.
【0008】まず母材の低温靭性であるが、パイプライ
ンでは脆性破壊の発生特性とともに伝播停止特性が極め
て重要である。従来のCu析出硬化鋼はシャルピー特性
で代表される脆性破壊の発生特性はまずまずであった
が、脆性破壊の停止特性は十分でなかった。これは
(1)ミクロ組織の微細化が不十分なことと、(2)い
わゆるシャルピー衝撃試験などの試験片破面に発生する
セパレーションの利用がなされていなかったことによる
(セパレーションは衝撃試験時生ずる板面に平行な層状
剥離現象で、脆性き裂先端での3軸応力度を低下させる
ことによって脆性き裂の伝播停止特性を向上させると考
えられている)。First, regarding the low temperature toughness of the base material, in the pipeline, the propagation stopping characteristics as well as the brittle fracture occurrence characteristics are extremely important. In the conventional Cu precipitation hardening steel, the brittle fracture initiation characteristics represented by the Charpy characteristics were satisfactory, but the brittle fracture stopping characteristics were not sufficient. This is due to (1) insufficient microstructure miniaturization, and (2) the separation that occurs on the fracture surface of the test piece, such as the so-called Charpy impact test, has not been used (separation occurs during the impact test. It is believed that the delamination phenomenon parallel to the plate surface improves the propagation arrest property of the brittle crack by reducing the triaxial stress level at the brittle crack tip).
【0009】まず本発明の製造条件の限定理由について
説明する。本発明では、鋼片を800〜1000℃の温
度範囲に再加熱後、900℃以下の累積圧下量が70%
以上、かつAr3 点〜Ar1 点のフェライト・オーステ
ナイト2相域の累積圧下量が15〜35%で圧延終了温
度が680〜820℃となるように圧延を行い、その後
10℃/秒以上の冷却速度で400℃以下任意の温度ま
で冷却し、400〜650℃の温度で時効処理する。First, the reasons for limiting the manufacturing conditions of the present invention will be described. In the present invention, after reheating the steel slab to a temperature range of 800 to 1000 ° C, the cumulative rolling reduction of 900 ° C or less is 70%.
Above, rolling is carried out so that the cumulative rolling reduction in the ferrite-austenite two-phase region of Ar 3 point to Ar 1 point is 15 to 35% and the rolling end temperature is 680 to 820 ° C., and thereafter 10 ° C./sec or more. It is cooled to an arbitrary temperature of 400 ° C. or lower at a cooling rate, and is aged at a temperature of 400 to 650 ° C.
【0010】鋼片(スラブ)の再加熱温度は800〜1
000℃とする必要がある。これは鋼片の再加熱時の初
期オーステナイト粒を小さく保ち、圧延組織を微細化す
るためである。さらに初期オーステナイト粒が小さいほ
ど微細フェライト−マルテンサイトの2相組織化が起こ
りやすいからである。1000℃は再加熱時のオーステ
ナイト粒が粗大化しない上限の温度である。The reheating temperature of the steel slab is 800 to 1.
It is necessary to set the temperature to 000 ° C. This is because the initial austenite grains during the reheating of the steel slab are kept small and the rolling structure is refined. Furthermore, the smaller the initial austenite grains, the easier the two-phase organization of fine ferrite-martensite occurs. 1000 ° C. is the upper limit temperature at which the austenite grains at the time of reheating do not become coarse.
【0011】一方、加熱温度が低過ぎると合金元素が十
分に溶体化されず、所定の材質が得られない。また鋼片
を均一に加熱するために長時間の加熱が必要となるこ
と、さらには圧延時の変形抵抗が大きくなることから、
エネルギーコストが増大して、好ましくない。このため
に再加熱温度の下限を800℃とする。On the other hand, if the heating temperature is too low, the alloying elements will not be sufficiently solutionized and the desired material cannot be obtained. In addition, since heating for a long time is required to uniformly heat the billet, and further, the deformation resistance during rolling increases,
Energy cost increases, which is not preferable. Therefore, the lower limit of the reheating temperature is set to 800 ° C.
【0012】再加熱した鋼片は900℃以下の累積圧下
量が70%以上、かつAr3 点〜Ar1 点のフェライト
・オーステナイト2相域の累積圧下量が15〜35%で
圧延終了温度が680〜820℃となるように圧延しな
ければならない。900℃以下の累積圧下量を70%以
上とする理由はオーステナイト未再結晶域での圧延を強
化し、変態前のオーステナイト組織の微細化を図り、変
態後の組織をフェライト−マルテンサイトの2相組織と
するためである。The reheated steel slab has a cumulative rolling reduction of 900 ° C. or lower of 70% or more, a cumulative rolling reduction of the ferrite-austenite two-phase region of Ar 3 point to Ar 1 point of 15 to 35%, and a rolling end temperature. It must be rolled to 680-820 ° C. The reason why the cumulative reduction amount at 900 ° C or less is 70% or more is to strengthen rolling in the austenite unrecrystallized region, to refine the austenite structure before transformation, and to make the structure after transformation into a ferrite-martensite two-phase structure. This is to make it an organization.
【0013】X100ラインパイプでは特に安全上、従
来にも増して高靭性を必要とするので、その累積圧下量
は70%としなければならない(累積圧下量は大きいほ
ど望ましく、その上限については限定しない)。Since the X100 line pipe requires higher toughness than ever before for the sake of safety, the cumulative reduction amount must be 70% (the larger the cumulative reduction amount is, the more preferable the upper limit is not limited. ).
【0014】さらに本発明では、フェライト・オーステ
ナイト2相域の累積圧下量を15〜35%とし、圧延終
了温度を680〜820℃とする。これはオーステナイ
ト未再結晶域で細粒化したオーステナイト組織を一層微
細化し、かつフェライトを加工してフェライトの強化と
衝撃試験時にセパレーションの発生を容易にするためで
ある。Further, in the present invention, the cumulative reduction amount in the ferrite-austenite two-phase region is set to 15 to 35%, and the rolling end temperature is set to 680 to 820 ° C. This is because the austenite structure finely grained in the unrecrystallized austenite region is further refined, and the ferrite is processed to strengthen the ferrite and facilitate the occurrence of separation during the impact test.
【0015】2相域の累積圧下量が15%以下では、セ
パレーションの発生が十分でなく脆性き裂の伝播停止特
性の向上は得られない。また累積圧下量が35%以上で
は、加工によるフェライトの脆化が顕著となって低温靭
性はかえって劣化する。このため、2相域での累積圧下
量の範囲を15〜35%とした。When the cumulative reduction amount in the two-phase region is 15% or less, the separation is not sufficiently generated and the propagation stopping property of the brittle crack cannot be improved. When the cumulative reduction is 35% or more, embrittlement of ferrite due to working becomes remarkable and the low temperature toughness deteriorates rather. Therefore, the range of the cumulative reduction amount in the two-phase region is set to 15 to 35%.
【0016】一方、累積圧下量が適切であっても、その
圧延温度が不適切であると優れた低温靭性は達成できな
い。圧延終了温度が680℃以下では、フェライト変態
が進行して続く加速冷却の効果がなくなるばかりか、加
工によるフェライトの脆化も顕著となるので、圧延終了
温度の下限を680℃とした。しかし圧延終了温度が8
20℃以上では、オーステナイト組織の微細化やセパレ
ーション発生が十分でないため、圧延終了温度の上限を
820℃に限定した。On the other hand, even if the cumulative reduction amount is appropriate, if the rolling temperature is inappropriate, excellent low temperature toughness cannot be achieved. If the rolling end temperature is 680 ° C. or lower, not only the effect of accelerated cooling due to the progress of ferrite transformation disappears but also embrittlement of ferrite becomes remarkable due to working, so the lower limit of the rolling end temperature was set to 680 ° C. However, the rolling end temperature is 8
At 20 ° C. or higher, refinement of the austenite structure and occurrence of separation are not sufficient, so the upper limit of the rolling end temperature was limited to 820 ° C.
【0017】圧延終了後、鋼板は10℃/秒以上の冷却
速度で600℃以下任意の温度まで冷却する必要があ
る。これはベイナイト組織の形成などによる変態強化、
組織の微細化と冷却中の粗大なCu析出を抑制するため
である。冷却中にCuが析出すると時効処理後の析出硬
化量が減少し、高強度が得られない。After the completion of rolling, the steel sheet needs to be cooled at a cooling rate of 10 ° C./sec or more to an arbitrary temperature of 600 ° C. or less. This is transformation strengthening due to the formation of bainite structure,
This is for refining the structure and suppressing coarse Cu precipitation during cooling. If Cu precipitates during cooling, the amount of precipitation hardening after aging treatment decreases, and high strength cannot be obtained.
【0018】冷却速度が10℃/秒以下であったり、水
冷停止温度が400℃以上であると、変態強化やCu析
出硬化による強度・低温靭性バランスの向上が十分に期
待できない。冷却速度が大きいほど変態強化に有効であ
り、特に上限は限定しないが、実用上可能な冷却速度は
板厚にも依存するが、40℃/秒程度である。If the cooling rate is 10 ° C./sec or less or the water cooling stop temperature is 400 ° C. or more, improvement in strength / low temperature toughness balance due to transformation strengthening and Cu precipitation hardening cannot be expected sufficiently. The higher the cooling rate, the more effective the transformation strengthening is. The upper limit is not particularly limited, but the practically possible cooling rate is about 40 ° C./sec, although it depends on the plate thickness.
【0019】さらに圧延・冷却後の鋼板は400〜65
0℃の温度で時効処理する必要がある。冷却ままでは、
Cuはほとんど析出しておらずCu析出硬化は期待でき
ない。Cu析出硬化(ε−Cuによる析出硬化)による
高強度化を図るためには、適当な温度で時効処理を行わ
なければならない。時効処理温度が400℃以下である
と、Cu析出が不十分で高強度が得られず、時効処理温
度が650℃以上ではCu析出物が粗大化して析出硬化
能が失われる。Further, the steel plate after rolling and cooling is 400 to 65
It is necessary to perform aging treatment at a temperature of 0 ° C. If it is still cooled,
Cu is hardly precipitated and Cu precipitation hardening cannot be expected. In order to increase the strength by Cu precipitation hardening (precipitation hardening by ε-Cu), aging treatment must be performed at an appropriate temperature. When the aging treatment temperature is 400 ° C. or lower, Cu precipitation is insufficient and high strength cannot be obtained, and when the aging treatment temperature is 650 ° C. or higher, Cu precipitates become coarse and the precipitation hardening ability is lost.
【0020】つぎに成分元素の限定理由について説明す
る。Cの下限0.02%は母材および溶接部の強度、低
温靭性の確保ならびにNb,V添加による析出硬化、結
晶粒の微細化効果を発揮させるための最小量である。し
かしC量が多過ぎると低温靭性、現地溶接性や耐サワー
性の著しい劣化を招くので、上限を0.10%とした。Next, the reasons for limiting the constituent elements will be described. The lower limit of 0.02% of C is the minimum amount for ensuring the strength and low temperature toughness of the base material and the welded portion, precipitation hardening by addition of Nb and V, and the effect of refining crystal grains. However, if the C content is too large, the low temperature toughness, the field weldability and the sour resistance are significantly deteriorated, so the upper limit was made 0.10%.
【0021】Siは脱酸や強度向上のため添加する元素
であるが、多く添加すると現地溶接性、HAZ靭性を劣
化させるので、上限を0.6%とした。鋼の脱酸はTi
あるいはAlのみでも十分であり、Siは必ずしも添加
する必要はない。Si is an element added for deoxidation and strength improvement, but if added in a large amount, it deteriorates the field weldability and HAZ toughness, so the upper limit was made 0.6%. Deoxidation of steel is Ti
Alternatively, Al alone is sufficient, and Si does not necessarily have to be added.
【0022】Mnは強度、低温靭性を確保する上で不可
欠な元素であり、その下限は1.0%、好ましくは1.
3%である。しかしMnが多過ぎると鋼の焼入性が増加
して現地溶接性、NAZ靭性を劣化させるだけでなく、
連続鋳造鋼片の中心偏析を助長し、耐サワー性、低温靭
性も劣化させるので上限を2.0%とした。Mn is an essential element for ensuring strength and low temperature toughness, and its lower limit is 1.0%, preferably 1.
3%. However, if Mn is too much, not only the hardenability of steel increases and the field weldability and NAZ toughness deteriorate,
The upper limit was set to 2.0% because it promotes center segregation of continuously cast steel pieces and also deteriorates sour resistance and low temperature toughness.
【0023】Ni,Cuを添加する目的は低Cの本発明
鋼の強度を低温靭性を劣化させることなく向上させるた
めである。Ni,Cu添加はMnやCr,Mo添加に比
較して圧延組織(特にスラブの中心偏析帯)中に低温靭
性に有害な硬化組織を形成することが少なく、強度を増
加させることが判明した。Cuは800℃程度でも鉄中
に十分固溶して、析出硬化能を発揮して強度を増加させ
る。このため、Cu添加量は最低0.9%必要である。The purpose of adding Ni and Cu is to improve the strength of the low C steel of the present invention without deteriorating the low temperature toughness. It has been found that the addition of Ni and Cu rarely forms a hardened structure detrimental to the low temperature toughness in the rolled structure (especially the central segregation zone of the slab) and increases the strength, as compared with the addition of Mn, Cr and Mo. Cu sufficiently dissolves in iron even at about 800 ° C. and exhibits precipitation hardening ability to increase strength. Therefore, the Cu addition amount must be at least 0.9%.
【0024】しかし、多く添加すると現地溶接性やNA
Z靭性などを劣化させるので、その上限を1.3%とし
た。Niは連続鋳造時、熱間圧延時のCuクラックを防
止するために添加するものであり、その下限は0.3%
である。しかし1.6%を超えて添加すると現地溶接性
などに好ましくないため上限を1.6%とした。However, if a large amount is added, local weldability and NA
Since the Z toughness is deteriorated, its upper limit is set to 1.3%. Ni is added to prevent Cu cracks during continuous casting and hot rolling, and the lower limit is 0.3%.
Is. However, if it is added in excess of 1.6%, it is not preferable for the field weldability, so the upper limit was made 1.6%.
【0025】Moを添加する理由は鋼の焼入れ性を向上
させるためである。またMoはNbと共存して制御圧延
時にオーステナイトの再結晶を強力に抑制し、オーステ
ナイト組織の微細化にも効果がある。このような効果を
得るためには、Moは最低0.1%必要である。しかし
過剰なMo添加はHAZ靭性、現地溶接性を劣化させる
ので、その上限を0.5%とした。The reason for adding Mo is to improve the hardenability of steel. Further, Mo coexists with Nb to strongly suppress recrystallization of austenite during controlled rolling, and is also effective for refining the austenite structure. In order to obtain such an effect, Mo must be at least 0.1%. However, excessive addition of Mo deteriorates HAZ toughness and field weldability, so the upper limit was made 0.5%.
【0026】また本発明鋼では、必須の元素としてN
b:0.005%、好ましくは0.01〜0.06%、
Ti:0.005〜0.03%を含有する。Nbは制御
圧延において結晶粒の微細化や析出硬化に寄与し、鋼を
強靭化する作用を有する。しかしNbを0.06%以上
添加すると、現地溶接性やHAZ靭性に悪影響をもたら
すので、その上限を0.06%とした。またTi添加は
微細なTiNを形成し、スラブ再加熱時および溶接HA
Zのオーステナイト粒の粗大化を抑制してミクロ組織を
微細化し、母材およびHAZの低温靭性を改善する。In the steel of the present invention, N is an essential element.
b: 0.005%, preferably 0.01 to 0.06%,
Ti: 0.005 to 0.03% is contained. Nb contributes to refinement of crystal grains and precipitation hardening in controlled rolling, and has an action of strengthening steel. However, if Nb is added in an amount of 0.06% or more, the field weldability and HAZ toughness are adversely affected, so the upper limit was made 0.06%. When Ti is added, fine TiN is formed, and when the slab is reheated and when welding HA
It suppresses coarsening of the austenite grains of Z to make the microstructure finer and improves the low temperature toughness of the base material and HAZ.
【0027】このようなTiNの効果を発現させるため
には、最低0.005%のTi添加が必要である。しか
しTi量が多過ぎると、TiNの粗大化やTiCによる
析出硬化が生じ、低温靭性が劣化するので、その上限は
0.03%に限定しなければならない。In order to exert such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the Ti content is too large, coarsening of TiN and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit must be limited to 0.03%.
【0028】Alは通常脱酸剤として鋼に含まれる元素
で組織の微細化にも効果を有する。しかしAl量が0.
06%を超えるとAl系非金属介在物が増加して鋼の清
浄度を害するので、上限を0.06%とした。脱酸はT
iあるいはSiでも可能であり、必ずしも添加する必要
はない。Al is an element usually contained in steel as a deoxidizing agent and also effective in refining the structure. However, the amount of Al is 0.
If it exceeds 06%, Al-based nonmetallic inclusions increase and impair the cleanliness of the steel, so the upper limit was made 0.06%. Deoxidation is T
It is also possible to use i or Si, and it is not always necessary to add.
【0029】さらに本発明では、不純物元素であるP,
S,O量をそれぞれ、0.015%以下、0.0010
%以下、0.003%以下とする。この主たる理由とは
母材、HAZ靭性の低温靭性をより一層向上させるため
である。P量の低減は連続鋳造スラブの中心偏析を低減
し、粒界破壊を防止し低温靭性を向上させる。Further, in the present invention, P, which is an impurity element,
0.015% or less of S and O, 0.0010
% Or less and 0.003% or less. The main reason for this is to further improve the low temperature toughness of the base material and HAZ toughness. Reduction of the amount of P reduces center segregation of the continuously cast slab, prevents intergranular fracture, and improves low temperature toughness.
【0030】またS量の低減は延伸化したMnSを低減
して耐サワー性や低温靭性を向上させる効果がある。O
量の低減は鋼中の酸化物を少なくして、耐サワー性や低
温靭性の改善に効果がある。したがってP,S,O量は
低いほど好ましい。The reduction of the amount of S has the effect of reducing the stretched MnS and improving the sour resistance and low temperature toughness. O
The reduction of the amount reduces the oxide in the steel and is effective in improving the sour resistance and the low temperature toughness. Therefore, the lower the amount of P, S, O, the more preferable.
【0031】NはTiNを形成してスラブ再加熱時およ
び溶接HAZのオーステナイト粒の粗大化を抑制して母
材、HAZの低温靭性を向上させる。このために必要な
最小量は0.001%である。しかし多過ぎるとスラブ
表面疵や固溶NによるHAZ靭性の劣化の原因となるの
で、その上限は0.006%に抑える必要がある。N forms TiN to suppress coarsening of austenite grains in the slab during reheating and in the welded HAZ to improve the low temperature toughness of the base metal and HAZ. The minimum amount required for this is 0.001%. However, if it is too large, it may cause deterioration of the HAZ toughness due to slab surface defects and solid solution N, so the upper limit must be suppressed to 0.006%.
【0032】つぎにCa,V,Crを添加する理由につ
いて説明する。基本となる成分にさらにこれらの元素を
添加する主たる目的は本発明鋼の優れた特徴を損なうこ
となく、製造可能な板厚の拡大や母材の強度・靭性など
の特性の向上を図るためである。したがって、その添加
量は自ら制限されるべき性質のものである。Next, the reason for adding Ca, V and Cr will be explained. The main purpose of adding these elements to the basic composition is to increase the manufacturable plate thickness and improve the properties such as strength and toughness of the base metal without impairing the excellent characteristics of the steel of the present invention. is there. Therefore, the amount added is of a nature that should be limited by itself.
【0033】Caは硫化物(MnS)の形態を制御し、
低温靭性を向上(シャルピー試験における吸収エネルギ
ーの増加など)させるほか、耐サワー性の向上にも著し
い効果を発揮する。特に衝撃試験でのセパレーションを
利用する本発明鋼ではシャルピー試験などの吸収エネル
ギーは低下する傾向にあるので、Caの添加は必須であ
る。Ca controls the morphology of sulfide (MnS),
In addition to improving low temperature toughness (increasing absorbed energy in the Charpy test, etc.), it also exerts a remarkable effect in improving sour resistance. In particular, in the steel of the present invention utilizing the separation in the impact test, the absorbed energy in the Charpy test and the like tends to decrease, so that the addition of Ca is essential.
【0034】しかしCa量が0.001%以下では実用
上効果がなく、また0.005%を超えて添加するとC
aO−CaSが大量に生成してクラスター、大型介在物
となり、鋼の清浄度を害するだけでなく、現地溶接性に
も悪影響をおよぼす。このためCa添加量を0.001
〜0.005%に制限した。However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it is added over 0.005%, it becomes C.
A large amount of aO-CaS is formed to form clusters and large inclusions, which not only impairs the cleanliness of steel, but also adversely affects on-site weldability. Therefore, the amount of Ca added is 0.001
Limited to ~ 0.005%.
【0035】VはほぼNbと同様の効果を有するが、そ
の効果はNbに比較して格段に弱い。その上限は現地溶
接性、HAZ靭性の点から0.10%まで許容できる。
Crは母材、溶接部の強度を増加させるが、多過ぎると
現地溶接性やHAZ靭性を著しく劣化させる。このため
Cr量の上限は0.5%である。V,Cr量の下限0.
01%,0.1%はそれぞれの元素添加による材質上の
効果が顕著になる最小量である。V has almost the same effect as Nb, but its effect is much weaker than that of Nb. The upper limit is 0.10% in terms of field weldability and HAZ toughness.
Cr increases the strength of the base material and the welded portion, but if it is too much, it causes a remarkable deterioration in the on-site weldability and HAZ toughness. Therefore, the upper limit of the amount of Cr is 0.5%. Lower limit of V, Cr amount 0.
01% and 0.1% are the minimum amounts at which the effect on the material due to the addition of each element becomes remarkable.
【0036】[0036]
【実施例】転炉−連続鋳造法で種々の鋼成分の鋼片から
種々の製造法により鋼板を製造して、諸性質を調査し
た。機械的性質は圧延と直角方向で調査した。実施例を
表1に示す。本発明にしたがって製造した鋼板は優れた
強度・低温靭性を有する。これに対して比較鋼は化学成
分または鋼板製造条件が適切でなく、いずれかの特性が
劣る。鋼9はC量が多過ぎるため、低温靭性(シャルピ
ー吸収エネルギー、遷移温度)が劣る。鋼10はMo添
加量が少なくMn量が多過ぎるため、シャルピー吸収エ
ネルギーが低い。鋼11はNbが添加されていないた
め、Nb添加鋼よりもやや強度が低く、シャルピー遷移
温度が高く(強度・低温靭性バランスが悪い)、鋼12
はTiが添加されていないため、シャルピー遷移温度が
高い。鋼13はCu添加量が少な過ぎるため、目標とす
る強度が達成できない。EXAMPLES Steel sheets were manufactured by various manufacturing methods from billets having various steel components by a converter-continuous casting method, and various properties were investigated. The mechanical properties were investigated in the direction perpendicular to rolling. Examples are shown in Table 1. The steel sheet produced according to the present invention has excellent strength and low temperature toughness. On the other hand, the comparative steel is not suitable in terms of chemical composition or steel plate manufacturing conditions, and either characteristic is inferior. Steel 9 has an inferior low-temperature toughness (Charpy absorbed energy, transition temperature) because it contains too much C. Steel 10 has a small amount of Mo added and an excessively large amount of Mn, so that the Charpy absorbed energy is low. Steel 11 does not have Nb added, so its strength is slightly lower than that of Nb-added steel, and its Charpy transition temperature is high (the strength / low temperature toughness balance is poor).
Has a high Charpy transition temperature because Ti is not added. Steel 13 cannot achieve the target strength because the amount of Cu added is too small.
【0037】鋼14はNi量が少な過ぎる。その結果、
機械的性質はまずまずであるが、鋼管表面に微小な疵が
多数発生、ラインパイプとして使えない。鋼15は化学
成分は適当であるが、製造条件中の鋼片再加熱開始温度
が高過ぎるため、シャルピー遷移温度が高い。鋼16は
鋼片の再加熱温度が低過ぎるため、溶体化が不十分で強
度が低い。鋼17は900℃以下の累積圧下量が少な過
ぎるため、低温靭性が今一歩である。Steel 14 has too little Ni content. as a result,
Although the mechanical properties are reasonable, many small flaws are generated on the surface of the steel pipe and it cannot be used as a line pipe. Steel 15 has an appropriate chemical composition, but has a high Charpy transition temperature because the billet reheating start temperature in the manufacturing conditions is too high. Since the reheating temperature of the steel slab is too low, the steel 16 is insufficient in solution treatment and has low strength. Steel 17 has too little cumulative reduction below 900 ° C., so low temperature toughness is a step ahead.
【0038】鋼18はオーステナイト−フィライト2相
域での累積圧下量が少な過ぎるため、シャルピー遷移温
度が高い。鋼19は2相域での累積圧下量が多過ぎるた
め、かえって低温靭性が劣化している。鋼20は2相域
での圧延がなく圧延終了温度が高過ぎるため、低温靭性
が劣る。鋼21は圧延終了温度が低過ぎるため、低温靭
性が劣る。鋼22は水冷停止温度が高過ぎるため強度が
低い。鋼23は時効温度が高過ぎるため強度が低い。鋼
24は時効温度が低過ぎるため強度が低い。Steel 18 has a high Charpy transition temperature because the cumulative rolling reduction in the austenite-phyllite two-phase region is too small. Since Steel 19 has too much cumulative reduction in the two-phase region, the low temperature toughness is rather deteriorated. Steel 20 is not rolled in the two-phase region and the rolling end temperature is too high, so the low temperature toughness is poor. Steel 21 has an inferior low temperature toughness because the rolling end temperature is too low. Steel 22 has low strength because the water cooling stop temperature is too high. Steel 23 has a low strength because the aging temperature is too high. Steel 24 has a low strength because the aging temperature is too low.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【表2】 [Table 2]
【0041】[0041]
【表3】 [Table 3]
【0042】[0042]
【発明の効果】本発明により低温靭性、現地溶接性が優
れた超高強度ラインパイプ(API規格X100以上)
の鋼板が安定して製造できるようになった。その結果、
パイプラインの安全性が著しく向上するとともに、パイ
プラインの施工能率、輸送効率の飛躍的な向上が可能と
なった。EFFECTS OF THE INVENTION According to the present invention, an ultra-high strength line pipe excellent in low temperature toughness and field weldability (API standard X100 or more)
Now, the steel plate can be manufactured stably. as a result,
The safety of the pipeline has been significantly improved, and the pipeline construction efficiency and transportation efficiency have been dramatically improved.
Claims (1)
%、V:0.01〜0.10%、Cr:0.1〜0.5
%の一種または二種以上を含有し、残部が鉄および不可
避的不純物からなる鋼片を800〜1000℃の温度に
再加熱後、900℃以下の累積圧下量が70%以上、か
つAr3 点〜Ar1 点のフェライト・オーステナイト2
相域の累積圧下量が15〜35%で圧延終了温度が68
0〜820℃となるように圧延を行い、その後10℃/
秒以上の冷却速度で400℃以下任意の温度まで冷却
し、400〜650℃の温度で時効処理することを特徴
とする超高強度鋼管用鋼板の製造方法。1. By weight%, C: 0.02 to 0.10% Si: 0.6% or less Mn: 1.0 to 2.0% P: 0.015% or less S: 0.0010% or less Ni: 0.3-1.6% Cu: 0.9-1.3% Mo: 0.1-0.5% Nb: 0.005-0.06% Ti: 0.005-0.03% Al: 0.06% or less N: 0.001 to 0.006% O: 0.003% or less If necessary, Ca: 0.001 to 0.005
%, V: 0.01 to 0.10%, Cr: 0.1 to 0.5
%, One or two or more, and the balance consisting of iron and inevitable impurities is reheated to a temperature of 800 to 1000 ° C., and then a cumulative reduction of 900 ° C. or less is 70% or more, and an Ar 3 point. ~ Ar 1 point ferrite austenite 2
The cumulative rolling reduction in the phase region is 15 to 35% and the rolling end temperature is 68.
Rolling is performed at 0 to 820 ° C, and then 10 ° C /
A method for producing a steel sheet for ultrahigh-strength steel pipe, which comprises cooling to an arbitrary temperature of 400 ° C. or lower at a cooling rate of at least 2 seconds and aging at a temperature of 400 to 650 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7411295A JPH08311550A (en) | 1995-03-13 | 1995-03-30 | Production of steel sheet for ultrahigh strength steel pipe |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-52925 | 1995-03-13 | ||
JP5292595 | 1995-03-13 | ||
JP7411295A JPH08311550A (en) | 1995-03-13 | 1995-03-30 | Production of steel sheet for ultrahigh strength steel pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08311550A true JPH08311550A (en) | 1996-11-26 |
Family
ID=26393592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7411295A Withdrawn JPH08311550A (en) | 1995-03-13 | 1995-03-30 | Production of steel sheet for ultrahigh strength steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08311550A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6224689B1 (en) | 1997-07-28 | 2001-05-01 | Exxonmobil Upstream Research Company | Ultra-high strength, weldable, essentially boron-free steels with superior toughness |
US6228183B1 (en) | 1997-07-28 | 2001-05-08 | Exxonmobil Upstream Research Company | Ultra-high strength, weldable, boron-containing steels with superior toughness |
US6248191B1 (en) | 1997-07-28 | 2001-06-19 | Exxonmobil Upstream Research Company | Method for producing ultra-high strength, weldable steels with superior toughness |
US6264760B1 (en) | 1997-07-28 | 2001-07-24 | Exxonmobil Upstream Research Company | Ultra-high strength, weldable steels with excellent ultra-low temperature toughness |
JP5846311B2 (en) * | 2012-09-06 | 2016-01-20 | Jfeスチール株式会社 | Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same |
CN108085593A (en) * | 2017-12-19 | 2018-05-29 | 钢铁研究总院 | Suitable for low temperature environment oil-gas transportation bend pipe and steel for pipe fittings and manufacturing method |
-
1995
- 1995-03-30 JP JP7411295A patent/JPH08311550A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6224689B1 (en) | 1997-07-28 | 2001-05-01 | Exxonmobil Upstream Research Company | Ultra-high strength, weldable, essentially boron-free steels with superior toughness |
US6228183B1 (en) | 1997-07-28 | 2001-05-08 | Exxonmobil Upstream Research Company | Ultra-high strength, weldable, boron-containing steels with superior toughness |
US6248191B1 (en) | 1997-07-28 | 2001-06-19 | Exxonmobil Upstream Research Company | Method for producing ultra-high strength, weldable steels with superior toughness |
US6264760B1 (en) | 1997-07-28 | 2001-07-24 | Exxonmobil Upstream Research Company | Ultra-high strength, weldable steels with excellent ultra-low temperature toughness |
JP5846311B2 (en) * | 2012-09-06 | 2016-01-20 | Jfeスチール株式会社 | Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same |
JPWO2014038200A1 (en) * | 2012-09-06 | 2016-08-08 | Jfeスチール株式会社 | Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same |
US9777358B2 (en) | 2012-09-06 | 2017-10-03 | Jfe Steel Corporation | Thick-walled, high tensile strength steel with excellent CTOD characteristics of the weld heat-affected zone, and manufacturing method thereof |
CN108085593A (en) * | 2017-12-19 | 2018-05-29 | 钢铁研究总院 | Suitable for low temperature environment oil-gas transportation bend pipe and steel for pipe fittings and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4969915B2 (en) | Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof | |
JP5055774B2 (en) | A steel plate for line pipe having high deformation performance and a method for producing the same. | |
JP3387371B2 (en) | High tensile steel excellent in arrestability and weldability and manufacturing method | |
JP5157072B2 (en) | Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance | |
JP4072009B2 (en) | Manufacturing method of UOE steel pipe with high crushing strength | |
JP2009127069A (en) | High toughness steel plate for line pipe, and its manufacturing method | |
JP5477089B2 (en) | Manufacturing method of high strength and high toughness steel | |
JP3747724B2 (en) | 60 kg class high strength steel excellent in weldability and toughness and method for producing the same | |
JP3244984B2 (en) | High strength linepipe steel with low yield ratio and excellent low temperature toughness | |
JP3612115B2 (en) | Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness | |
JP2647302B2 (en) | Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking | |
JP3303647B2 (en) | Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance | |
JP5151034B2 (en) | Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe | |
JPH10298707A (en) | High toughness and high tensile strength steel and its production | |
JPH07292416A (en) | Production of ultrahigh strength steel plate for line pipe | |
JPH0941074A (en) | Ultra-high tensile strength steel excellent in low temperature tougheness | |
JPH08104922A (en) | Production of high strength steel pipe excellent in low temperature toughness | |
JPH08311549A (en) | Production of ultrahigh strength steel pipe | |
JPH08311550A (en) | Production of steel sheet for ultrahigh strength steel pipe | |
JP3526722B2 (en) | Ultra high strength steel pipe with excellent low temperature toughness | |
JPH1180833A (en) | Production of steel sheet for high strength line pipe excellent in hic resistance | |
JPH08311548A (en) | Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone | |
JP2541070B2 (en) | Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material | |
JPH0941080A (en) | Weldability high strength steel having low yield ratio and excellent in low temperature toughness | |
JP3244981B2 (en) | Weldable high-strength steel with excellent low-temperature toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020604 |