JPH1180833A - Production of steel sheet for high strength line pipe excellent in hic resistance - Google Patents

Production of steel sheet for high strength line pipe excellent in hic resistance

Info

Publication number
JPH1180833A
JPH1180833A JP25623297A JP25623297A JPH1180833A JP H1180833 A JPH1180833 A JP H1180833A JP 25623297 A JP25623297 A JP 25623297A JP 25623297 A JP25623297 A JP 25623297A JP H1180833 A JPH1180833 A JP H1180833A
Authority
JP
Japan
Prior art keywords
steel
steel sheet
accelerated cooling
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25623297A
Other languages
Japanese (ja)
Inventor
Shigeru Endo
茂 遠藤
Shinichi Suzuki
伸一 鈴木
Minoru Suwa
稔 諏訪
Ryuji Muraoka
隆二 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25623297A priority Critical patent/JPH1180833A/en
Publication of JPH1180833A publication Critical patent/JPH1180833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce steel which is high strength material of APIX70 and X80 grades and excellent in HIC resistance by an economical producing method. SOLUTION: A slab having a compsn. contg., by weight, 0.03 to 0.08% C, 0.05 to 0.50% Si, 1.0 to 1.9% Mn, <=0.010% P, <=0.002% S, 0.005 to 0.05% Nb, 0.005 to 0.02% Ti, 0.01 to 0.07% Al and 0.0005 to 0.0040% Ca, also satisfying >=0.32 Ceq, and the balance Fe with inevitable impurities is subjected to slab heating at 1,000 to 1,200 deg.C, and accelerated cooling for the steel sheet after the completion of hot rolling is executed in such a manner that, at first, it is executed till the surface temp. of the steel sheet reaches <=500 deg.C, thereafter, the accelerated cooling is once stopped, it is reculerated till the surface temp. of the steel sheet reaches >=500 deg.C, and after that, the steel sheet is again subjected to accelerated cooling to >=600 deg.C at a cooling rate of 3 to 50 deg.C/s, where Ceq=C+Mn/64(Cu+Ni)/15+(Cr+Mo+V)/15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術の分野】本発明は、耐水素誘起割れ
性(耐HIC)に優れた、強度レベルが米国石油協会
(API)規格X70グレード以上のラインパイプ用鋼
管の素材として使用される鋼板の製造方法に関する。な
お、当該鋼板は厚板ミルや熱延ミルにて製造される。ま
た当該鋼管は、冷間にてUOE、プレス曲げ、ロール曲
げ等の方法により鋼管に成形後、サブマージアーク溶接
や電気抵抗溶接等の方法により製造され、原油や天然ガ
スを輸送するためのラインパイプとして利用されるもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet used as a material for a steel pipe for a line pipe having excellent resistance to hydrogen-induced cracking (HIC) and having a strength level of X70 grade or more, which is the American Petroleum Institute (API) standard. And a method for producing the same. In addition, the said steel plate is manufactured by a thick plate mill or a hot rolling mill. Further, the steel pipe is formed into a steel pipe by a method such as UOE, press bending, roll bending or the like in a cold state, and then manufactured by a method such as submerged arc welding or electric resistance welding, and is a line pipe for transporting crude oil or natural gas. It is used as

【0002】[0002]

【従来の技術】一般に、硫化水素を含む原油や天然ガス
の輸送に用いられるラインパイプには、強度、靭性、溶
接性などパイプラインとして必要な基本特性の他、耐水
素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐S
SCC性)などの、いわゆる耐サワー性能が要求され
る。ここでHICとは、腐食反応により生成した水素イ
オンが鋼材の表面に吸着し、原子状の水素として鋼材の
内部に侵入して、鋼中のMnSなどの非金属介在物や硬
い第2相組織の周囲に拡散、集積し、分子状の水素とな
り、その内圧により生ずる割れをいう。
2. Description of the Related Art In general, line pipes used for transporting crude oil and natural gas containing hydrogen sulfide have basic properties required for pipelines such as strength, toughness, weldability, and resistance to hydrogen-induced cracking (HIC resistance). Resistance) and stress corrosion cracking resistance (S
SCC resistance) is required. Here, HIC means that hydrogen ions generated by the corrosion reaction are adsorbed on the surface of the steel material and penetrate into the steel material as atomic hydrogen, and non-metallic inclusions such as MnS in the steel and a hard second phase structure Around the surface of the steel, and become molecular hydrogen, which means cracks generated by the internal pressure.

【0003】このため、HICの発生を防ぐために、以
下の方法がこれまでに開示されている。 1)MnS介在物の形態制御(例えば、特開昭54−1
10119号公報) 鋼中のMnSは、圧延により長く伸ばされ、それに沿っ
てHICが発生、伝播することから、鋼中のS含有量を
下げ、同時に、CaやREMなどを適量含有させること
により、介在物の形態を、長く伸長したMnSから、応
力集中の小さい微細に分散した球状に変えて、割れの発
生と伝播を抑制する方法である。
For this reason, the following methods have been disclosed to prevent the occurrence of HIC. 1) Morphological control of MnS inclusions (for example, see JP-A-54-1)
No. 10119) Since MnS in steel is elongated by rolling and HIC is generated and propagated along with it, by lowering the S content in the steel and simultaneously containing an appropriate amount of Ca or REM, This is a method of suppressing the generation and propagation of cracks by changing the form of inclusions from long elongated MnS to finely dispersed spheres with small stress concentration.

【0004】2)偏析組織の軽減(例えば、特開昭61
−60866号公報、特開昭61−165207号公報
など) HICは、連続鋳造スラブの中央偏析帯に対応する鋼板
の板厚中央部で発生することが多いことから、割れの起
点となりうる硬い島状マルテンサイト等の組織の生成を
抑制するとともに、割れの伝播経路となりやすいマルテ
ンサイトやベイナイトなどの硬化組織の生成を抑制し、
耐HIC性の改善を図る方法である。
2) Reduction of segregated structure (for example, see
HIC is often generated at the central portion of the steel sheet corresponding to the central segregation zone of the continuous cast slab, and thus a hard island that can be a starting point of cracking. In addition to suppressing the formation of microstructure such as martensite, the formation of hardened structures such as martensite and bainite, which are likely to be crack propagation paths,
This is a method for improving the HIC resistance.

【0005】このために、C、Mn、Pなどの偏析しや
すい元素を低減するほか、圧延前のスラブ加熱段階で合
金元素の拡散を促進する均熱処理を採用したり、あるい
は圧延後の冷却時に起こる変態に伴うCの拡散によって
生ずる硬化組織の生成を防止するために加速冷却を採用
する。
[0005] For this purpose, in addition to reducing elements that are easily segregated, such as C, Mn, and P, a soaking heat treatment that promotes diffusion of alloy elements in a slab heating step before rolling is employed, or cooling during rolling after rolling is performed. Accelerated cooling is employed to prevent the formation of a hardened structure caused by the diffusion of C accompanying the transformation.

【0006】3)ミクロ組織の改善(例えば、特開昭5
4−12782号公報、特開昭62−7819号公報、
特開平6−73450号公報) 圧延後に、焼入れ−焼戻しの熱処理を施したり、圧延仕
上温度をオーステナイトの再結晶温度以上として展伸粒
を防止するなどして、割れ感受性の低いミクロ組織を得
る。
3) Improvement of microstructure (for example, see Japanese Unexamined Patent Publication No.
JP-A-4-12782, JP-A-62-7819,
After the rolling, a microstructure having low crack susceptibility is obtained by performing a heat treatment of quenching and tempering after rolling, or by setting the finishing temperature of the rolling at a temperature equal to or higher than the recrystallization temperature of austenite to prevent wrought grains.

【0007】4)保護皮膜の形成(例えば、特開昭52
−111815号公報) 鋼にCuを含有させることにより、鋼材の表面にCu保
護皮膜を形成し、鋼中への水素の侵入を抑制する。
4) Formation of a protective film (for example, see
By including Cu in the steel, a Cu protective film is formed on the surface of the steel material to suppress intrusion of hydrogen into the steel.

【0008】これらの方法を採用することにより、耐H
IC性は向上し、強度レベルAPI規格X65グレード
までの、耐サワー性が求められるラインパイプが大量に
生産されてきた。しかしながら、近年、輸送効率の向上
やパイプの敷設費低減のために、より高強度の鋼管のニ
ーズが高まり、サワー環境で使用されるラインパイプに
も、X70、X80グレードという高強度鋼管が要求さ
れるようになった。一方、HICは、強度の上昇ととも
にその割れ感受性が高まり、HICが発生しやすくなる
ため、上記の1)〜4)の方法では、HICの発生を完
全に抑制することが困難になってきた。
By adopting these methods, the resistance to H
The IC properties have been improved, and line pipes requiring sour resistance up to the strength level API standard X65 grade have been mass-produced. However, in recent years, the need for higher-strength steel pipes has increased in order to improve transportation efficiency and reduce pipe laying costs, and high-strength steel pipes of X70 and X80 grades have been required for line pipes used in sour environments. It became so. On the other hand, HIC has a higher cracking sensitivity with an increase in strength and is more likely to generate HIC. Therefore, it has become difficult to completely suppress the generation of HIC by the above methods 1) to 4).

【0009】すなわち、X70,X80グレードのよう
な高強度材では、HICに対する割れ感受性が著しく高
まるため、上記1)の形態制御を行った球状の介在物か
らも割れが発生する場合があり、また、2)の中央偏析
の影響を軽減する対策を施しても、板厚中心部以外の部
分でも割れが発生するようになる。一方、3)の焼入れ
−焼戻し処理や再結晶温度域以上での圧延仕上による組
織制御は、高強度材では有力な方法であるが、ラインパ
イプ用鋼板の大量生産にはコスト、能率の面から不適当
であり、また、充分な低温靭性も得にくい。
That is, in the case of high-strength materials such as X70 and X80 grades, cracking susceptibility to HIC is remarkably increased, so that cracks may be generated from spherical inclusions whose shape is controlled in the above 1). Even if the countermeasure for reducing the influence of the central segregation of 2) is taken, cracks will occur in portions other than the central portion of the sheet thickness. On the other hand, microstructure control by quenching-tempering treatment or rolling finish in the recrystallization temperature range or higher in 3) is a promising method for high-strength materials. However, mass production of steel sheets for line pipes requires cost and efficiency. It is inappropriate and it is difficult to obtain sufficient low-temperature toughness.

【0010】さらに、4)のCu皮膜の効果も、pHの
低い環境ではその効果が期待できず、実際にpHが約3
の、硫化水素を飽和させた5%NaCl+0.5%CH
3COOH水溶液(通称NACE溶液)では、皮膜の効
果が得られていない。
[0010] Furthermore, the effect of the Cu film of 4) cannot be expected in an environment having a low pH.
Of 5% NaCl + 0.5% CH saturated with hydrogen sulfide
With a 3COOH aqueous solution (so-called NACE solution), the effect of the film is not obtained.

【0011】このような課題に対応すべく、最近、耐サ
ワー性を有するX80グレードのラインパイプ用鋼板の
製造方法がいくつか開示されている。その骨子は、極低
S鋼にCaを添加して介在物の形態制御を行いつつ、低
Cとともに、特に連続鋳造スラブの中央偏析帯に偏析し
やすい Mn含有量を制限し、それに伴う強度低下を、
Cr添加で補う方法(特開平5−9575号公報)、C
r−Mo添加で補う方法(特開平5−271766号公
報、特開平7−109519号公報)、あるいはNi−
Cr−Mo添加で補う方法(特開平7−173536号
公報)であり、いずれも圧延終了後に加速冷却を施して
いる。
To cope with such a problem, recently, several methods for producing a sour-resistant X80 grade steel sheet for line pipe have been disclosed. The main feature is that while adding Ca to the ultra-low S steel to control the morphology of the inclusions, it also controls the Mn content, which tends to segregate in the central segregation zone of continuous cast slabs, in addition to the low C, resulting in a reduction in strength. To
A method of supplementing with the addition of Cr (JP-A-5-9575),
A method of supplementing with the addition of r-Mo (JP-A-5-271766, JP-A-7-109519) or Ni-
This is a method of supplementing with the addition of Cr-Mo (JP-A-7-173536), in which accelerated cooling is performed after rolling is completed.

【0012】しかし、これらのX80グレード鋼板の製
造方法に関する先行技術は、いずれも中央偏析帯のHI
Cの発生を防止するのに有効な方法であるものの、中央
偏析帯以外の部分で発生するHICの防止については、
具体的な割れ対策とはなっていない。すなわち、サワー
環境で使用される鋼管の強度水準が上昇すると、素材で
ある鋼板の介在物の形態制御と板厚中心の中央偏析部の
組織制御を行っても、HICが発生しやくなり、特に加
速冷却を適用すると、中央偏析部だけでなく板厚方向の
表面側にもHICが発生しやすくなり、このようなHI
Cの発生防止が大きな課題となる。
However, any of the prior arts relating to the production method of these X80 grade steel sheets is characterized by the HI of the central segregation zone.
Although it is an effective method for preventing the generation of C, regarding the prevention of HIC generated in a portion other than the central segregation zone,
There is no concrete cracking measure. That is, when the strength level of the steel pipe used in the sour environment rises, HIC is more likely to occur even if the form control of the inclusions of the steel plate as the material and the structure control of the central segregation part at the center of the plate thickness are performed, When accelerated cooling is applied, HIC is likely to be generated not only at the central segregation portion but also on the surface side in the thickness direction.
Preventing the generation of C is a major issue.

【0013】[0013]

【解決しようとする課題】本発明では、このようなAP
I X70、X80グレードの高強度材で、耐HIC性
に優れた鋼材を、経済的な製造方法での製造を可能とす
ることを課題とする。
According to the present invention, such an AP is used.
It is an object of the present invention to make it possible to manufacture a steel material having high strength of IX70 and X80 grades and excellent in HIC resistance by an economical manufacturing method.

【0014】[0014]

【課題を解決するための手段】本発明者らは、高強度の
ラインパイプ用鋼の合金成分、鋼板の製造条件、特に加
速冷却条件を種々変化させ、鋼板の強度、靭性と耐HI
C性との関係について調査を行った。その結果、X7
0、X80の高強度材においても、加速冷却は、中央偏
析部の耐HIC性の改善に効果が認められる。しかし、
従来の加速冷却方法では、鋼板表面近傍にベイナイト等
の硬化組織が生成し硬さが上昇するため、これらの組織
の境界部分でHICが発生しやすくなる。特に、X7
0、X80のような高強度材では、合金元素の添加量が
多いため、この傾向は顕著である。一方、加速冷却方法
をいわゆる間欠型とすることで、X70、X80グレー
ドの高強度材においても、鋼板の表面近傍の硬さの上昇
を抑制することができ、その結果、HICの発生を防止
することが可能であることを見出した。
Means for Solving the Problems The present inventors varied the alloy composition of high-strength steel for line pipes, the manufacturing conditions of steel plates, especially the conditions of accelerated cooling, to thereby change the strength, toughness and HI resistance of steel plates.
A survey was conducted on the relationship with the C property. As a result, X7
Even with a high-strength material of 0 or X80, accelerated cooling is effective in improving the HIC resistance of the central segregation portion. But,
In the conventional accelerated cooling method, a hardened structure such as bainite is generated near the surface of the steel sheet and the hardness increases, so that HIC is easily generated at the boundary between these structures. In particular, X7
This tendency is remarkable in high-strength materials such as 0 and X80 because the amount of alloying elements added is large. On the other hand, by making the accelerated cooling method a so-called intermittent type, even in the case of high-strength materials of X70 and X80 grades, it is possible to suppress an increase in hardness in the vicinity of the surface of the steel sheet, thereby preventing the occurrence of HIC. Found that it is possible.

【0015】すなわち、本発明の骨子は、加速冷却方法
をいわゆる間欠型とすることにある。この方法を、従来
の加速冷却方法と比較して、以下に説明する。図1及び
図2は、従来の方法及び本発明の方法について、熱間圧
延した鋼板の加速冷却過程の温度履歴を、模式的に示し
たものである。
That is, the gist of the present invention resides in that the accelerated cooling method is a so-called intermittent type. This method will be described below in comparison with the conventional accelerated cooling method. FIG. 1 and FIG. 2 schematically show the temperature histories during the accelerated cooling process of a hot-rolled steel sheet in the conventional method and the method of the present invention.

【0016】従来の方法では、圧延鋼板に加速冷却を施
すと、冷却は鋼板の表面及び裏面から行われるため、当
然のことながら、板厚方向に温度分布を有しつつ、所定
の加速冷却停止温度(一般的には500℃前後)まで加
速冷却され、その後の空冷により、この温度分布を減少
しつつ室温まで冷却される。従って、X70、X80グ
レードの高強度材では、この鋼板の表面近傍の速い冷却
速度のため、表面側はベイナイトあるいはマルテンサイ
ト変態しやすく、硬い組織を生じる。その結果、板厚中
央部分のHICを防止できたにしても、表面側でHIC
が発生しやすくなる。
In the conventional method, when accelerated cooling is performed on a rolled steel sheet, cooling is performed from the front and back surfaces of the steel sheet. Therefore, naturally, a predetermined accelerated cooling stop is performed while maintaining a temperature distribution in the sheet thickness direction. It is accelerated to a temperature (generally around 500 ° C.), and then cooled to room temperature by air cooling while reducing this temperature distribution. Therefore, in the high-strength materials of X70 and X80 grades, due to the high cooling rate near the surface of the steel sheet, bainite or martensite transformation is likely to occur on the surface side, and a hard structure is generated. As a result, even if HIC in the central part of the plate thickness could be prevented,
Is more likely to occur.

【0017】一方、本発明の間欠型の加速冷却方法で
は、圧延後の最初の加速冷却により板厚方向に温度分布
のついた鋼板を、一旦加速冷却を中断し、一定時間空冷
する。この空冷処理により、まだ十分に冷え切っていな
い鋼板の中央部分が保有する熱により、鋼板表面側は温
度が復熱し、温度分布の均一化が図られるとともに、表
面側に生成した硬化組織は焼戻し処理を受ける。そし
て、復熱した温度域から、再度加速冷却を行って、所定
の強度を得るものである。
On the other hand, in the intermittent accelerated cooling method of the present invention, the accelerated cooling of the steel sheet having a temperature distribution in the thickness direction by the first accelerated cooling after rolling is temporarily interrupted, and air-cooled for a certain time. Due to this air cooling treatment, the temperature of the steel sheet surface side is regained by the heat retained in the central part of the steel sheet that has not yet been sufficiently cooled, the temperature distribution is made uniform, and the hardened structure generated on the surface side is tempered. Receive processing. Then, accelerated cooling is performed again from the regained temperature range to obtain a predetermined strength.

【0018】このときの加速冷却を中断する表面温度
は、表面近傍での変態を充分に進行させるために、50
0℃以下であることが必要である。また、鋼板表面の復
熱温度は、自己焼戻しによる表面の硬度を低下させるた
めに、500℃以上とする必要がある。また、最終の加
速冷却は、必要強度を確保するために、600℃以下ま
で行う。なお、このような間欠型の加速冷却における温
度制御は、加速冷却装置を通過する鋼板の搬送速度、各
冷却帯の水量制御、途中での温度計測等により可能とな
るものである。
At this time, the surface temperature at which the accelerated cooling is interrupted is set at a value of 50 to sufficiently advance the transformation near the surface.
It is necessary that the temperature be 0 ° C. or less. Further, the reheat temperature of the steel sheet surface needs to be 500 ° C. or higher in order to reduce the hardness of the surface by self-tempering. Further, the final accelerated cooling is performed to 600 ° C. or less in order to secure necessary strength. The temperature control in such intermittent accelerated cooling can be performed by controlling the transport speed of the steel sheet passing through the accelerated cooling device, controlling the amount of water in each cooling zone, measuring the temperature in the middle, and the like.

【0019】以上の基本的考え方に加え、ラインパイプ
用鋼として必要な高強度、高靭性、溶接性を得るため
に、化学成分等を限定して、以下の発明をなした。すな
わち、第1の発明は、重量%で、C:0.03〜0.0
8%、Si:0.05〜0.50%、Mn:1.0〜
1.9%、P:0.010%以下、S:0.002%以
下、Nb:0.005〜0.05%、Ti:0.005
〜0.02%、Al:0.01〜0.07%、Ca:
0.0005〜0.0040%を含有し、かつ、Ce
q:0.32以上を満たし、残部がFe及びその他不可
避的不純物からなる鋼片を、1000〜1200℃でス
ラブ加熱し、熱間圧延終了後の鋼板の加速冷却を、まず
鋼板の表面温度が500℃以下となるまで行った後加速
冷却を一旦中断し、鋼板の表面温度が500℃以上にな
るまで復熱させ、その後3℃/s以上50℃/s以下の
冷却速度で再び鋼板を600℃以下の温度まで加速冷却
することを特徴とする、耐HIC性に優れた高強度ライ
ンパイプ用鋼の製造方法である。ここで、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/15 本発明の、いわゆる間欠冷却型の加速冷却を採用するこ
とで、鋼板の表面近傍の硬度上昇を抑えつつ、所定の強
度が得られ、これにより高強度材の耐HIC性を向上す
ることを可能とするものである。
In addition to the above basic concept, the following invention was made by limiting the chemical composition and the like in order to obtain high strength, high toughness and weldability required for steel for line pipes. That is, in the first invention, C: 0.03 to 0.0% by weight.
8%, Si: 0.05 to 0.50%, Mn: 1.0 to
1.9%, P: 0.010% or less, S: 0.002% or less, Nb: 0.005 to 0.05%, Ti: 0.005
-0.02%, Al: 0.01-0.07%, Ca:
0.0005-0.0040%, and Ce
q: A slab that slabs a slab satisfying 0.32 or more, the balance being Fe and other unavoidable impurities, at 1000 to 1200 ° C., accelerates cooling of the steel sheet after hot rolling is completed, After cooling to 500 ° C. or less, accelerated cooling is temporarily interrupted, and the steel sheet is re-heated until the surface temperature of the steel sheet becomes 500 ° C. or more, and then the steel sheet is cooled again at a cooling rate of 3 ° C./s or more and 50 ° C./s or less. A method for producing high-strength linepipe steel excellent in HIC resistance, characterized by accelerated cooling to a temperature of not more than ° C. Here, Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 15 By adopting the so-called intermittent cooling type accelerated cooling of the present invention, it is possible to obtain a predetermined strength while suppressing an increase in hardness near the surface of the steel sheet, thereby improving the HIC resistance of the high-strength material. It is possible to do.

【0020】第2の発明は、前記鋼が、さらに、重量%
で、Cu:0.50%以下、Ni:0.50%以下、C
r:0.50%以下、Mo:0.50%以下、V:0.
1%以下のうち1種または2種以上を含有することを特
徴とする、耐HIC性に優れた高強度ラインパイプ用鋼
の製造方法である。本発明により、合金成分の選択の自
由度が増すため、靭性、溶接性の一層の向上が可能とな
る。
According to a second aspect of the present invention, the steel further comprises:
And Cu: 0.50% or less, Ni: 0.50% or less, C
r: 0.50% or less, Mo: 0.50% or less, V: 0.
A method for producing a high-strength linepipe steel excellent in HIC resistance, characterized by containing one or more of 1% or less. According to the present invention, the degree of freedom in selecting an alloy component is increased, so that toughness and weldability can be further improved.

【0021】[0021]

【発明の実施の形態】次に、本発明における合金成分な
らびに鋼板の製造条件、加速冷却条件の限定理由を以下
に述べる。まず本発明における必須元素の限定理由を以
下に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the reasons for limiting the alloy components, steel plate manufacturing conditions and accelerated cooling conditions in the present invention will be described. First, the reasons for limiting the essential elements in the present invention are shown below.

【0022】C:Cは鋼の強化元素として必要であり、
X70,X80グレードの所定の強度を確保するために
は、0.03%以上の含有が必要である。一方、過剰に
含有すると、鋼板の靭性と耐HIC性の劣化を招くとと
もに、溶接性や耐硫化物応力腐食割れ性の観点からもC
量の低減が望ましいため、その上限を0.08%とす
る。
C: C is required as a steel strengthening element,
In order to ensure the predetermined strength of the X70 and X80 grades, the content must be 0.03% or more. On the other hand, if it is contained excessively, the toughness and the HIC resistance of the steel sheet are deteriorated, and the C content is also reduced from the viewpoint of weldability and sulfide stress corrosion cracking resistance.
Since it is desirable to reduce the amount, the upper limit is set to 0.08%.

【0023】Si:Siは脱酸のために添加され、0.
05%未満では充分な脱酸効果が得られず、一方過剰な
含有は靭性や溶接性の劣化を引き起こすため、その上限
を0.50%とする。
Si: Si is added for deoxidation, and
If it is less than 05%, a sufficient deoxidizing effect cannot be obtained, while excessive content causes deterioration of toughness and weldability, so the upper limit is made 0.50%.

【0024】Mn:Mnは鋼の強度および勒性の向上に
有効な基本元素として含有されるが、1.0%未満では
その効果が小さく、また1.9%を超えると溶接性と耐
HIC性が著しく劣化するため、その範囲を1.0〜
1.9%とする。なお、Mnは中央偏析部に偏析しやす
いため、その上限の含有量をより低く制限する先行技術
もあるが、本発明の範囲内であれば、加速冷却条件を最
適化することにより、その弊害を防止できる。
Mn: Mn is contained as a basic element effective for improving the strength and brittleness of steel, but if its content is less than 1.0%, its effect is small, and if it exceeds 1.9%, weldability and HIC resistance are exceeded. The range is 1.0 to
1.9%. In addition, since Mn tends to segregate in the central segregation part, there is a prior art in which the content of the upper limit is limited lower, but within the scope of the present invention, the harmful effect is obtained by optimizing accelerated cooling conditions. Can be prevented.

【0025】P:Pは溶接性と耐HIC性とを劣化させ
る不純物元素であり、極力低減することが望ましい。し
かし、過度の脱Pは製造コストの上昇を招くため、その
上限を0.010%とする。
P: P is an impurity element that deteriorates the weldability and the HIC resistance, and it is desirable to reduce P as much as possible. However, excessive removal of P causes an increase in manufacturing cost, so the upper limit is made 0.010%.

【0026】S:Caを含有して、介在物を伸びたMn
Sから球状のCaS系に形態制御を行ったとしても、高
強度材の場合には、微細に分散したCaS系介在物も割
れの起点となり得る。従って、S含有量は0.002%
以下にまで低減し、割れの起点を減ずる必要がある。
S: Mn containing Ca and extending inclusions
Even if form control is performed from S to spherical CaS-based, in the case of a high-strength material, finely dispersed CaS-based inclusions can also be the starting points of cracking. Therefore, the S content is 0.002%
It is necessary to reduce to below, and reduce the starting point of crack.

【0027】Nb:Nbは、析出硬化による強度上昇に
加えて、特に熱間圧延において、オーステナイトの再結
晶を抑制し結晶粒の微細化を図ることから、ラインパイ
プ用鋼として充分な勒性を付与するために必須の成分で
ある。しかし、0.005%未満ではその効果が十分で
なく、また、0.05%を超えるとその効果がほぼ飽和
するとともに溶接熱影響部の勒性を劣化させるため、そ
の範囲を0.005〜0.05%とする。
Nb: In addition to the increase in strength due to precipitation hardening, Nb suppresses austenite recrystallization and reduces the size of crystal grains, particularly in hot rolling, so that Nb has sufficient brittleness as a line pipe steel. It is an essential component to give. However, if it is less than 0.005%, the effect is not sufficient, and if it exceeds 0.05%, the effect is almost saturated and the brittleness of the heat affected zone is deteriorated. 0.05%.

【0028】Ti:Tiは、TiNを形成しスラブ加熱
時の粒成長を抑制し、組織の微細化をもたらすため勒性
を改善する効果がある。しかし、0.005%未満では
その効果が不十分であり、一方0.02%を越えると逆
に勒性の劣化を引き起こすため、その範囲を0.005
〜0.02%とする。
Ti: Ti has the effect of forming TiN, suppressing grain growth during slab heating, and bringing about microstructural refinement, thereby improving the brittleness. However, if the content is less than 0.005%, the effect is insufficient, while if it exceeds 0.02%, the brittleness is adversely deteriorated.
To 0.02%.

【0029】Al:Alは、ラインパイプ用鋼では主と
して、脱酸剤として含有される。含有量が0.01%未
満ではその効果が安定せず、一方0.07%を超えると
鋼の清浄性が低下して耐HIC性の劣化を引き起こすた
め、その範囲を0.01〜0.07%とする。
Al: Al is mainly contained as a deoxidizing agent in line pipe steel. If the content is less than 0.01%, the effect is not stable. On the other hand, if the content exceeds 0.07%, the cleanliness of the steel is reduced and the HIC resistance is deteriorated. 07%.

【0030】Ca:Caは硫化物系介在物の形態制御に
不可欠な元素であり、0.0005%以上でその効果が
認められる。一方、0.0040%を超えると効果が飽
和し、逆に鋼の清浄性を低下させて耐HIC性を劣化さ
せるため、その範囲を0.0005〜0.0040%と
する。
Ca: Ca is an element indispensable for controlling the form of sulfide-based inclusions, and its effect is recognized at 0.0005% or more. On the other hand, if the content exceeds 0.0040%, the effect is saturated, and conversely, the cleanliness of the steel is reduced and the HIC resistance is deteriorated. Therefore, the range is set to 0.0005 to 0.0040%.

【0031】Ceq:本発明の製造方法でX70グレー
ド以上の強度を安定して得るためには、Ceqは0.3
2%以上が必要であるため、その下限を0.32%とす
る。なお、上限は、耐HIC性の点からは特に限定する
必要はない。但し、溶接性の観点からは、Ceqは低い
ほど好ましいため、一般的には、強度と溶接性の要求と
のバランスにより定められる。なお、Ceqは次式で示
される。 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/15
Ceq: In order to stably obtain a strength of X70 grade or more by the production method of the present invention, Ceq is 0.3.
Since 2% or more is required, the lower limit is set to 0.32%. The upper limit does not need to be particularly limited from the viewpoint of HIC resistance. However, from the viewpoint of weldability, Ceq is preferably as low as possible, and thus is generally determined by a balance between strength and requirements for weldability. Ceq is expressed by the following equation. Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 15

【0032】本発明では、上記元素の他に、下記元素を
含有することができる。その限定理由を以下に示す。C
u:Cuは靭性の改善と強度の上昇に有効な元素の1つ
であるが、含有量が0.50%を超えと、圧延時のCu
疵が発生しやすくなることから、その上限を0・50%
とする。
In the present invention, the following elements can be contained in addition to the above elements. The reason for the limitation is shown below. C
u: Cu is one of the elements effective in improving the toughness and increasing the strength, but if the content exceeds 0.50%, Cu
Since flaws are likely to occur, the upper limit is 0.50%
And

【0033】Ni:Niは靭性の改善と強度の上昇に有
効な元素の1つであるが、含有量が0.50%を超える
とその効果が飽和するとともに、サワー環境での応力腐
食割れが発生しやすくなるため、その上限を0.50%
とする。
Ni: Ni is one of the elements effective in improving the toughness and increasing the strength. However, if the content exceeds 0.50%, the effect is saturated and stress corrosion cracking in a sour environment occurs. Because it easily occurs, the upper limit is 0.50%
And

【0034】Mo:Moは靭性の改善と強度の上昇に有
効な元素の1つであるが、含有量が0.50%を超える
とその効果が飽和するとともに、溶接性や耐HIC性を
阻害するため、その上限を0.50%とする。
Mo: Mo is one of the elements effective for improving the toughness and increasing the strength, but when the content exceeds 0.50%, the effect is saturated and the weldability and HIC resistance are impaired. Therefore, the upper limit is set to 0.50%.

【0035】Cr:Crは、Moとともに、低C系のX
70、80グレードとして充分な強度を得るために有効
な元素であるが、含有量が0.50%を超えると、溶接
性を害するために、その上限を0.50%とする。
Cr: Cr, together with Mo, is a low C type X
Although it is an element effective for obtaining sufficient strength as 70 and 80 grades, if the content exceeds 0.50%, the weldability is impaired, so the upper limit is set to 0.50%.

【0036】V:適量のVの含有は勒性、溶接性、耐サ
ワー性を劣化させずに強度を高めることができるため、
低C系のX70、80グレードとして充分な強度を得る
ために有効な元素である。しかし、0.10%を越える
と溶接性を著しく損なうため、上限を0.10%とす
る。
V: Since an appropriate amount of V can increase strength without deteriorating brittleness, weldability and sour resistance,
It is an element effective for obtaining sufficient strength as a low C type X70, 80 grade. However, if it exceeds 0.10%, the weldability is significantly impaired, so the upper limit is made 0.10%.

【0037】次に圧延条件、加速冷却条件の限定理由を
述べる。 スラブ加熱温度:1000〜1200℃とする。 スラブ加熱温度が1000℃を下回ると、Nbの固溶が
不十分となり,析出効果が小さく充分な強度が得られな
い。また加熱温度が1200℃を超えると、オーステナ
イト結晶粒が粗大化するため、良好な靭性が得られな
い。なお、圧延終了温度は特に限定しないが、低温度域
での過度な圧下は、耐HIC性の点で好ましくないの
で、Ar3変態温度以上であることが望ましい。
Next, the reasons for limiting the rolling conditions and accelerated cooling conditions will be described. Slab heating temperature: 1000-1200 ° C. When the slab heating temperature is lower than 1000 ° C., the solid solution of Nb becomes insufficient, and the precipitation effect is small and sufficient strength cannot be obtained. On the other hand, if the heating temperature exceeds 1200 ° C., the austenite crystal grains become coarse, so that good toughness cannot be obtained. Although the rolling end temperature is not particularly limited, an excessive reduction in a low temperature range is not preferable in terms of HIC resistance, and therefore it is preferable that the rolling end temperature is equal to or higher than the Ar3 transformation temperature.

【0038】加速冷却を中断する表面温度:500℃以
下とする。 加速冷却を表面温度が500℃を上回る温度で中断する
と、表面近傍での変態が充分に進行していないため、復
熱後の再度の加速冷却時に、ベイナイトなどの組織に変
態する。従って、加速冷却を中断し復熱させることによ
り、鋼板の表面近傍の硬度低下を図る、本発明の骨子を
達成できないため、加速冷却を中断する温度は、500
℃以下とする。
Surface temperature at which accelerated cooling is interrupted: 500 ° C. or less. If accelerated cooling is interrupted at a temperature where the surface temperature exceeds 500 ° C., transformation near the surface has not sufficiently progressed, so that the material is transformed into a structure such as bainite when accelerated cooling is performed again after reheating. Therefore, by reducing the hardness near the surface of the steel sheet by interrupting the accelerated cooling and reheating, the gist of the present invention cannot be achieved.
It should be below ° C.

【0039】一方、加速冷却が中断する表面温度が低温
すぎると、板厚中央部も過冷却されるため、その後の復
熱が十分に行われない。従って、加速冷却中断時の表面
温度は、復熱温度500℃以上が確保される温度以上で
ある必要がある。具体的には、鋼板の板厚、冷却方式に
より定まる、鋼板の表面と板厚中央部の冷却曲線を考慮
して設定される。
On the other hand, if the surface temperature at which the accelerated cooling is interrupted is too low, the central part of the sheet thickness is also supercooled, so that subsequent reheating is not sufficiently performed. Therefore, the surface temperature at the time of interrupting the accelerated cooling needs to be equal to or higher than the temperature at which the reheat temperature of 500 ° C. or higher is ensured. Specifically, it is set in consideration of the cooling curve of the surface of the steel sheet and the central part of the sheet thickness determined by the thickness of the steel sheet and the cooling method.

【0040】表面の復熱温度:500℃以上とする。 復熱は、加速冷却により表面温度を500℃以下まで冷
却し、表面近傍をベイナイト変態させ、その後鋼板の板
厚中央部が保有する熱により、自己焼戻しさせること
で、表面の硬度を低下させる意味を持つ。従って、表面
の復熱温度が500℃未満では、変態した表層部分の焼
戻しが十分でないため、硬さが低下せず、HICの発生
原因となるので、表面復熱温度を500℃以上とする。
Surface reheat temperature: 500 ° C. or higher. Recuperation means that the surface temperature is reduced to 500 ° C. or less by accelerated cooling, bainite transformation is performed in the vicinity of the surface, and then self-tempering is performed by the heat held in the central portion of the steel plate, thereby reducing the surface hardness. have. Therefore, if the recuperation temperature of the surface is lower than 500 ° C., the tempered portion of the transformed surface layer is not sufficiently tempered, so that the hardness does not decrease and causes HIC, so the surface recuperation temperature is set to 500 ° C. or higher.

【0041】加速冷却停止温度:600℃以下とする。 最終的な加速冷却は、板厚全体で所定の強度を確保する
ために行うものであり、加速冷却の停止温度が600℃
を超えると充分な強度が得られない場合があるので、加
速冷却の冷却停止温度は600℃以下とする。なお、本
発明においては、いわゆる間欠型の加速冷却を行うた
め、表面近傍に過剰に硬化される部分は生成されない。
従って、加速冷却停止温度は、600℃以下であれば、
特に制限を加える必要はない。すなわち、常温まで加速
冷却で冷却することも許容される。
Accelerated cooling stop temperature: 600 ° C. or less. The final accelerated cooling is performed in order to secure a predetermined strength over the entire thickness of the sheet.
If the temperature exceeds the above, sufficient strength may not be obtained in some cases. Therefore, the cooling stop temperature of the accelerated cooling is set to 600 ° C. or less. In the present invention, since so-called intermittent accelerated cooling is performed, an excessively hardened portion is not generated near the surface.
Therefore, if the accelerated cooling stop temperature is 600 ° C. or less,
No special restrictions need to be added. That is, cooling to the room temperature by accelerated cooling is also permitted.

【0042】冷却速度:3℃/s以上50℃/s以下と
する。 冷却速度が3℃/s未満では、加速冷却による組織変化
が十分でないため、所定の強度が得られない場合があ
る。また、50℃/sを超えると、マルテンサイト組織
を生じ、強度が上昇しすぎるため、耐HIC性の劣化を
まねく。従って、冷却速度はを3℃/s以上50℃/s
以下とする。
Cooling rate: 3 ° C./s or more and 50 ° C./s or less. If the cooling rate is less than 3 ° C./s, a predetermined strength may not be obtained due to insufficient structural change due to accelerated cooling. On the other hand, when the temperature exceeds 50 ° C./s, a martensite structure is generated, and the strength is excessively increased, which results in deterioration of HIC resistance. Therefore, the cooling rate should be between 3 ° C./s and 50 ° C./s.
The following is assumed.

【0043】上記の製造条件を満たすかぎり、耐HIC
性の優れた高強度鋼を製造できるので、その他の鋼板の
圧延条件は特に限定されない。また、鋼管の成型方法も
冷間であるかぎり特に限定されない。
As long as the above manufacturing conditions are satisfied, the HIC resistance
The rolling conditions of other steel sheets are not particularly limited, because a high-strength steel having excellent properties can be manufactured. The method of forming the steel pipe is not particularly limited as long as it is cold.

【0044】[0044]

【実施例】以下に、本発明で得られた実施例を、発明鋼
を比較鋼と対比して説明する。図3として示す表1は、
供試鋼の化学成分を示したものである。ここで、鋼A〜
Kは本発明の化学組成の範囲にある鋼である。これに対
し、鋼LはCeq、鋼OはMn含有量及びCeq、鋼Q
はNb含有量が、各々本発明の範囲を下回る。また、鋼
NはC含有量、鋼PはP及びS含有量、鋼RはCa含有
量及びNi含有量が、各々本発明の範囲を上回る。さら
に、鋼Mは本発明に対しC含有量が下回り、Mn含有量
が上回るものである。
EXAMPLES Examples obtained by the present invention will be described below in comparison with invention steels and comparative steels. Table 1 shown as FIG.
It shows the chemical composition of the test steel. Here, steel A ~
K is steel within the range of the chemical composition of the present invention. On the other hand, steel L is Ceq, steel O is Mn content and Ceq, steel Q
Has an Nb content below the range of the present invention. The steel N has a C content, the steel P has a P and S content, and the steel R has a Ca content and a Ni content each exceeding the scope of the present invention. Further, the steel M has a lower C content and a higher Mn content than the present invention.

【0045】これらの鋼について、図4として示す表2
に示した、熱間圧延及び加速冷却の条件で、板厚25m
mの鋼板を製造した。鋼板の機械的性質と鋼板表面と板
厚中央部の硬度差、耐HIC性、溶接性の結果を表2に
併せて示す。強度、靭性については、本発明鋼の適用を
考えて、降伏強さ448MPa以上、シヤルピー衝撃試
験での破面遷移温度が一60℃以下の場合を良好とし
た。また、鋼板の機械的性質と鋼板表面と板厚中央部の
硬度差は、表面から0.5mmの位置における硬さ(H
v10)と板厚中央部の硬さを各々5点測定し、その平
均値の差より求めた。
For these steels, Table 2 shown in FIG.
Under the conditions of hot rolling and accelerated cooling shown in
m of steel plates were manufactured. Table 2 also shows the mechanical properties of the steel sheet, the hardness difference between the steel sheet surface and the center of the sheet thickness, the HIC resistance, and the weldability. Regarding the strength and toughness, considering the application of the steel of the present invention, the case where the yield strength was 448 MPa or more and the fracture surface transition temperature in the Charpy impact test was 160 ° C. or less was regarded as good. Further, the mechanical properties of the steel sheet and the hardness difference between the steel sheet surface and the center of the sheet thickness are expressed by the hardness (H
v10) and the hardness at the center of the sheet thickness were measured at five points each, and the difference was determined from the difference between the average values.

【0046】HIC試験はpHが約3の硫化水素を飽和
させた5%NaCl+0.5%CH3COOH水溶液
(通称NACE溶液)中で行い、割れ長さ率(CLR)
が15%以下の場合を、耐HIC性は良好と判断した。
The HIC test was conducted in a 5% NaCl + 0.5% CH3COOH aqueous solution (commonly called NACE solution) saturated with hydrogen sulfide having a pH of about 3, and the crack length ratio (CLR)
Was 15% or less, the HIC resistance was judged to be good.

【0047】また溶接性は、溶接性は、実鋼管のシーム
溶接に相当するサブマージアーク溶接を行い、溶接高温
割れ、低温割れの有無を溶接部の断面観察により調査し
た。溶接部に割れの発生の無い場合を、溶接性は良好と
判断した。
The weldability was evaluated by performing submerged arc welding corresponding to seam welding of an actual steel pipe, and examining the presence or absence of high-temperature cracking and low-temperature cracking by observing the cross section of the welded portion. When there was no crack in the weld, the weldability was judged to be good.

【0048】表2に示されるように、本願発明の鋼に本
願発明の熱間圧延及び加速冷却を行ったものは、充分な
強度、靭性と良好な耐HIC性能、溶接性が得られてい
る。一方、本願発明の鋼Aを用いても、本願発明の熱間
圧延及び加速冷却を行わない鋼板(A−1、A−2、A
−3、A−5、A−6)では充分な性能が得られていな
い。
As shown in Table 2, when the steel of the present invention was subjected to the hot rolling and accelerated cooling of the present invention, sufficient strength, toughness, good HIC resistance, and weldability were obtained. . On the other hand, even if the steel A of the present invention is used, the steel sheets (A-1, A-2, A
-3, A-5, and A-6) did not provide sufficient performance.

【0049】すなわち、A−1は、加熱温度が低温の場
合であり強度が不十分である。A−2は、加熱温度が高
温の場合であり、十分な強度が得られるものの、靭性が
不足している。A−3は、復熱温度が低温であるため、
鋼板の表面−板厚中心部での硬度差が大きく、HIC性
能が不十分である。A−5は、加速冷却の冷却速度が極
めて速い場合であり、この場合も、鋼板の表面−板厚中
心部での硬度差が大きく、HIC性能が不十分である。
また、A−6は、加速冷却の冷却速度が遅い場合であ
り、強度が不足している。
That is, A-1 is a case where the heating temperature is low, and the strength is insufficient. A-2 is a case where the heating temperature is high, and although sufficient strength is obtained, toughness is insufficient. A-3 has a low recuperation temperature,
The hardness difference between the surface of the steel sheet and the center of the thickness is large, and the HIC performance is insufficient. A-5 is a case where the cooling rate of the accelerated cooling is extremely high, and also in this case, the hardness difference between the surface of the steel sheet and the center of the thickness is large, and the HIC performance is insufficient.
A-6 is a case where the cooling rate of the accelerated cooling is slow, and the strength is insufficient.

【0050】一方、本願発明でない鋼に本願発明の圧延
加速冷却を行った鋼板(L−1、Q、−1、R−1)、
あるいは、本願発明でない鋼に本願発明でない圧延加速
冷却を行った鋼板(M−1、N−1、0−1、P−1)
では充分な性能が得られていない。
On the other hand, steel sheets (L-1, Q, -1, R-1) obtained by subjecting a non-invented steel to the rolling accelerated cooling of the present invention,
Alternatively, a steel sheet (M-1, N-1, 0-1, P-1) obtained by performing rolling accelerated cooling which is not the invention of the present invention on steel not of the invention.
Does not provide sufficient performance.

【0051】すなわち、Ceqが本願発明の範囲を下回
る鋼板L−1は強度が不十分、Nbを含有しない鋼板Q
−1は靭性が不十分であり、Ca含有量及びNi含有量
が本願発明の範囲を上回る鋼板R−1は、耐HIC性と
溶接性が良くない。また、Mn含有量が高く、加熱温度
が高温である鋼板M−1は、靭性、耐HIC性、溶接性
が良くない。C含有量が高く、加速冷却中断温度が高温
である鋼板N−1は、耐HIC性、溶接性が良くない。
Mn含有量とCeqが低く、復熱温度が低温である鋼板
O−1は、強度、耐HIC性、溶接性が不十分である。
さらに、P及びSが高く、最終の加速冷却停止温度が高
温である鋼板P−1は、強度と耐HIC性が不十分であ
る。
That is, the steel sheet L-1 having a Ceq below the range of the present invention has insufficient strength and does not contain Nb.
-1 has insufficient toughness, and steel sheet R-1 having Ca content and Ni content exceeding the range of the present invention has poor HIC resistance and weldability. Further, the steel sheet M-1 having a high Mn content and a high heating temperature has poor toughness, HIC resistance, and weldability. The steel sheet N-1 having a high C content and a high accelerated cooling interruption temperature has poor HIC resistance and weldability.
The steel sheet O-1 having a low Mn content and Ceq and a low recuperation temperature has insufficient strength, HIC resistance, and weldability.
Further, the steel sheet P-1 having high P and S and having a high final accelerated cooling stop temperature has insufficient strength and HIC resistance.

【0052】[0052]

【発明の効果】本発明により、耐HIC性に優れたAP
I規格X70、X80グレードの高強度ラインパイプ用
鋼板を、経済的にかつ安定して製造することが可能とな
った。その結果、硫化水素を含有するサワー環境におい
て、HICに対する安全性とともに、応力が付加された
状態における応力腐食割れに対する信頼性も著しく向上
する。
According to the present invention, an AP having excellent HIC resistance is provided.
It has become possible to economically and stably produce high-strength steel sheets for line pipes of the I standard X70 and X80 grades. As a result, in a sour environment containing hydrogen sulfide, safety against HIC and reliability against stress corrosion cracking in a state where stress is applied are remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の加速冷却法について、熱間圧延後の加
速冷却過程の温度履歴を、模式的に示した図である。
FIG. 1 is a diagram schematically showing a temperature history in an accelerated cooling process after hot rolling in a conventional accelerated cooling method.

【図2】 本発明の方法について、熱間圧延後の加速冷
却過程の温度履歴を、模式的に示した図である。
FIG. 2 is a diagram schematically showing a temperature history in an accelerated cooling process after hot rolling in the method of the present invention.

【図3】 本発明の実施例及び比較例に用いた供試鋼の
化学成分を、表1として示す図である。
FIG. 3 is a table showing chemical compositions of test steels used in Examples and Comparative Examples of the present invention as Table 1.

【図4】 供試鋼板の熱間圧延条件、加速冷却条件、及
び機械的性質、耐HIC性、溶接性の結果を表2として
示す図である。
FIG. 4 is a table showing the results of hot rolling conditions, accelerated cooling conditions, mechanical properties, HIC resistance, and weldability of a test steel sheet as Table 2.

フロントページの続き (72)発明者 村岡 隆二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Continuation of front page (72) Inventor Ryuji Muraoka 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.03〜0.08%、
Si:0.05〜0.50%、Mn:1.0〜1.9
%、P:0.010%以下、S:0.002%以下、N
b:0.005〜0.05%、Ti:0.005〜0.
02%、Al:0.01〜0.07%、Ca:0.00
05〜0.0040%を含有し、かつ、Ceq:0.3
2%以上を満たし、残部がFe及びその他不可避的不純
物からなる鋼片を、1000〜1200℃でスラブ加熱
し、熱間圧延終了後の鋼板の加速冷却を、まず鋼板の表
面温度が500℃以下となるまで行った後加速冷却を一
旦中断し、鋼板の表面温度が500℃以上になるまで復
熱させ、その後3℃/s以上50℃/s以下の冷却速度
で再び鋼板を600℃以下の温度まで加速冷却すること
を特徴とする、耐HIC性に優れた高強度ラインパイプ
用鋼板の製造方法。ここで、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/15
(1) C: 0.03 to 0.08% by weight,
Si: 0.05 to 0.50%, Mn: 1.0 to 1.9
%, P: 0.010% or less, S: 0.002% or less, N
b: 0.005 to 0.05%, Ti: 0.005 to 0.
02%, Al: 0.01 to 0.07%, Ca: 0.00
0.05 to 0.0040%, and Ceq: 0.3
A slab of a steel slab that satisfies 2% or more and the balance is Fe and other unavoidable impurities is slab-heated at 1000 to 1200 ° C., and accelerated cooling of the steel sheet after the completion of hot rolling is performed. After that, accelerated cooling is temporarily interrupted, and the steel sheet is re-heated until the surface temperature of the steel sheet becomes 500 ° C. or more. A method for producing a high-strength linepipe steel sheet having excellent HIC resistance, characterized by accelerated cooling to a temperature. Here, Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 15
【請求項2】 前記鋼が、さらに、重量%で、Cu:
0.50%以下、Ni:0.50%以下、Cr:0.5
0%以下、Mo:0.50%以下、V:0.1%以下の
うち1種または2種以上を含有することを特徴とする、
請求項1記載の耐HIC性に優れた高強度ラインパイプ
用鋼板の製造方法。 【0001】
2. The steel according to claim 1, further comprising:
0.50% or less, Ni: 0.50% or less, Cr: 0.5
0% or less, Mo: 0.50% or less, V: 0.1% or less.
A method for producing a high-strength linepipe steel sheet having excellent HIC resistance according to claim 1. [0001]
JP25623297A 1997-09-05 1997-09-05 Production of steel sheet for high strength line pipe excellent in hic resistance Pending JPH1180833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25623297A JPH1180833A (en) 1997-09-05 1997-09-05 Production of steel sheet for high strength line pipe excellent in hic resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25623297A JPH1180833A (en) 1997-09-05 1997-09-05 Production of steel sheet for high strength line pipe excellent in hic resistance

Publications (1)

Publication Number Publication Date
JPH1180833A true JPH1180833A (en) 1999-03-26

Family

ID=17289777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25623297A Pending JPH1180833A (en) 1997-09-05 1997-09-05 Production of steel sheet for high strength line pipe excellent in hic resistance

Country Status (1)

Country Link
JP (1) JPH1180833A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087512A1 (en) 2009-01-30 2010-08-05 Jfeスチール株式会社 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
EP2309014A1 (en) * 2008-07-31 2011-04-13 JFE Steel Corporation Thick, high tensile-strength hot-rolled steel sheets with excellent low temperature toughness and manufacturing method therefor
CN102172619A (en) * 2010-12-31 2011-09-07 武汉钢铁(集团)公司 Hot rolling process capable of improving high-grade thick pipeline steel fracture toughness
WO2013002413A1 (en) 2011-06-30 2013-01-03 Jfeスチール株式会社 High strength hot-rolled steel sheet for welded steel line pipe having excellent souring resistance, and method for producing same
JP5252131B2 (en) * 2011-03-18 2013-07-31 新日鐵住金株式会社 Hardening method of steel pipe
US8784577B2 (en) 2009-01-30 2014-07-22 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
WO2015012317A1 (en) * 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
EP3309276A4 (en) * 2016-04-28 2018-04-18 Jiangyin Xingcheng Special Steel Works Co., Ltd Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor
JP2022505840A (en) * 2018-10-26 2022-01-14 ポスコ High-strength steel with excellent sulfide stress corrosion cracking resistance and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493865B2 (en) 2008-07-31 2016-11-15 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same
EP2309014A1 (en) * 2008-07-31 2011-04-13 JFE Steel Corporation Thick, high tensile-strength hot-rolled steel sheets with excellent low temperature toughness and manufacturing method therefor
EP2309014A4 (en) * 2008-07-31 2012-07-25 Jfe Steel Corp Thick, high tensile-strength hot-rolled steel sheets with excellent low temperature toughness and manufacturing method therefor
KR20110110278A (en) 2009-01-30 2011-10-06 제이에프이 스틸 가부시키가이샤 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
US9809869B2 (en) 2009-01-30 2017-11-07 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
US9580782B2 (en) 2009-01-30 2017-02-28 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
US8784577B2 (en) 2009-01-30 2014-07-22 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
WO2010087512A1 (en) 2009-01-30 2010-08-05 Jfeスチール株式会社 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
CN102172619A (en) * 2010-12-31 2011-09-07 武汉钢铁(集团)公司 Hot rolling process capable of improving high-grade thick pipeline steel fracture toughness
US9546408B2 (en) 2011-03-18 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Quenching method for steel pipe
JP5252131B2 (en) * 2011-03-18 2013-07-31 新日鐵住金株式会社 Hardening method of steel pipe
KR20160099113A (en) 2011-06-30 2016-08-19 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled steel coil for electric resistance welded line pipe having excellent sour resistance and method for manufacturing the same
US9540717B2 (en) 2011-06-30 2017-01-10 Jfe Steel Corporation High strength hot-rolled steel sheet for welded steel line pipe having excellent souring resistance, and method for producing same
WO2013002413A1 (en) 2011-06-30 2013-01-03 Jfeスチール株式会社 High strength hot-rolled steel sheet for welded steel line pipe having excellent souring resistance, and method for producing same
WO2015012317A1 (en) * 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
EP3309276A4 (en) * 2016-04-28 2018-04-18 Jiangyin Xingcheng Special Steel Works Co., Ltd Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor
JP2022505840A (en) * 2018-10-26 2022-01-14 ポスコ High-strength steel with excellent sulfide stress corrosion cracking resistance and its manufacturing method
US12037667B2 (en) 2018-10-26 2024-07-16 Posco Co., Ltd High-strength steel having excellent resistance to sulfide stress cracking, and method for manufacturing same

Similar Documents

Publication Publication Date Title
US7935197B2 (en) High strength steel plate
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
US7959745B2 (en) High-strength steel pipe of API X65 grade or higher
US20140290807A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
EP2692875B1 (en) Electroseamed steel pipe and process for producing same
WO2013011791A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
WO2013100106A1 (en) High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
WO2010052928A1 (en) Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
WO2013002413A1 (en) High strength hot-rolled steel sheet for welded steel line pipe having excellent souring resistance, and method for producing same
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPH1180833A (en) Production of steel sheet for high strength line pipe excellent in hic resistance
JPH10298707A (en) High toughness and high tensile strength steel and its production
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP4741715B2 (en) High strength steel pipe and manufacturing method thereof
JP2009174020A (en) Method for producing hot-rolled steel sheet which is excellent in ductile cracking-arresting characteristic and sour-resistance
JP6565890B2 (en) Low yield ratio and high strength hot rolled steel sheet with excellent low temperature toughness
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness