JPH08104922A - Production of high strength steel pipe excellent in low temperature toughness - Google Patents

Production of high strength steel pipe excellent in low temperature toughness

Info

Publication number
JPH08104922A
JPH08104922A JP24440394A JP24440394A JPH08104922A JP H08104922 A JPH08104922 A JP H08104922A JP 24440394 A JP24440394 A JP 24440394A JP 24440394 A JP24440394 A JP 24440394A JP H08104922 A JPH08104922 A JP H08104922A
Authority
JP
Japan
Prior art keywords
steel
steel pipe
low temperature
strength
temperature toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24440394A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Hiroshi Tamehiro
博 為広
Yuzuru Yoshida
譲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24440394A priority Critical patent/JPH08104922A/en
Publication of JPH08104922A publication Critical patent/JPH08104922A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE: To produce a high strength steel pipe excellent in sour resistance, low temp. toughness and weldability by working a low alloy steel having a specified compsn. into a steel pipe and thereafter executing heat treatment by induction heating. CONSTITUTION: This steel has a compsn. contg., by weight, 0.02 to 0.09% C, <=0.6% Si, 1.3 to 2.0% Mn, <=0.015% P, <=0.010% S, 0.3 to 1.2% Ni, 0.9 to 1.2% Co, 0.1 to 0.5% Mo, 0.01 to 0.06% Nb 0.005 to 0.03% Ti, <=0.06% Al and 0.001 to 0.006% N, and the balance Fe with inevitable impurities. The steel is formed into a seamless steel pipe, an electric resistance welded pipe and a UOE steel pipe, and after that, induction heating is used from <=50 deg.C, and it is hardened under heating to the temp. range of the Ac3 point to 1000 deg.C and is subjected to tempering treatment in the temp. range of 450 deg.C to the Ac1 point. Thus, the ultrahigh strength line pipe of the API specification×100 or above can stably be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、米国石油協会(AP
I)規格でX100以上の高強度(降状強度で約689
N/mm2 以上)と優れた低温靱性、現地溶接性および
耐サワー性を有する鋼管の製造方法に関するものであ
り、UOE鋼管、シームレス鋼管、電縫鋼管の製造に適
用できる。
This invention relates to the American Petroleum Institute (AP
I) High strength of X100 or more in the standard (about 689 in yield strength)
N / mm 2 or more) and excellent low-temperature toughness, on-site weldability and sour resistance, and is applicable to the production of UOE steel pipes, seamless steel pipes, and electric resistance welded steel pipes.

【0002】[0002]

【従来の技術】原油・天然ガスを長距離輸送するパイプ
ラインに使用するラインパイプは、(1)高圧化による
輸送効率の向上や、(2)薄肉化による現地での溶接能
率向上のため、ますます高張力化する傾向がある。これ
までにAPI規格でX80までのラインパイプの実用化
が進行中であるが、さらに高強度のラインパイプに対す
るニーズが最近でてきた。
2. Description of the Related Art Line pipes used in pipelines for transporting crude oil and natural gas over long distances are (1) for improving transportation efficiency by increasing pressure and (2) for improving welding efficiency in the field by reducing wall thickness. There is a tendency for the tensile strength to become higher and higher. Until now, line pipes up to X80 according to the API standard have been put into practical use, but there has recently been a need for line pipes with higher strength.

【0003】現在、X100以上の超高強度ラインパイ
プはX80級ラインパイプの製造法(NKK技法、N
o.138(1992)、pp24−31およびThe
7th Offshore Mechanics a
nd Arctic Engineering(198
8)、Volume V、pp179−185)を基本
に検討されているが、これらのラインパイプは低温靱
性、現地溶接性、継手軟化、耐サワー性(耐水素誘起割
れ性、耐硫化物応力腐食割れ性)などの点で多くの問題
を抱えており、これらを克服した画期的な超高強度鋼管
(ラインパイプ)の早期開発が要望されている。
At present, ultrahigh strength line pipes of X100 or more are manufactured by the method of manufacturing X80 class line pipe (NKK technique, N
o. 138 (1992), pp24-31 and The.
7th Offshore Mechanics a
nd Arctic Engineering (198
8), Volume V, pp179-185), but these line pipes have low temperature toughness, field weldability, joint softening, sour resistance (hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance). However, there is a demand for early development of an epoch-making ultra-high-strength steel pipe (line pipe) that overcomes these problems.

【0004】[0004]

【発明が解決しようとする課題】本発明は、低温靱性、
現地溶接性、耐サワー性などの諸特性を同時に達成でき
るX100以上の超高強度鋼管の製造方法を提供するこ
とを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention is directed to low temperature toughness,
It is an object of the present invention to provide a method for producing an ultrahigh strength steel pipe having an X100 or higher that can simultaneously achieve various properties such as field weldability and sour resistance.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量%で、C:0.02〜0.09%、Si:
0.6%以下、Mn:1.3〜2.0%、P:0.01
5%以下、S:0.0010%以下、Ni:0.3〜
1.2%、Cu:0.9〜1.2%、Mo:0.1〜
0.5%、Nb:0.01〜0.06%、Ti:0.0
05〜0.03%、Al:0.06%以下、N:0.0
01〜0.006%を含有し、必要に応じて、さらにC
a:0.001〜0.005%、V:0.01〜0.1
0%、Cr:0.1〜0.5%の1種または2種以上を
含有し、残部が鉄および不可避的不純物からなる鋼片を
再加熱後、圧延成形して製造した鋼管を、500℃以下
の温度から誘導加熱でAc3 点〜1000℃の温度範囲
に加熱して焼入処理し、続いて450℃〜Ac1 点の温
度範囲で焼戻処理することを特徴とする低温靱性の優れ
た高強度鋼管の製造方法にある。
The gist of the present invention is that, by weight%, C: 0.02 to 0.09%, Si:
0.6% or less, Mn: 1.3 to 2.0%, P: 0.01
5% or less, S: 0.0010% or less, Ni: 0.3 to
1.2%, Cu: 0.9 to 1.2%, Mo: 0.1
0.5%, Nb: 0.01 to 0.06%, Ti: 0.0
05-0.03%, Al: 0.06% or less, N: 0.0
01-0.006%, and if necessary, further C
a: 0.001 to 0.005%, V: 0.01 to 0.1
A steel pipe containing 1% or 2 or more of 0% and Cr: 0.1 to 0.5%, the balance being iron and unavoidable impurities and reheating, and rolling-molding the produced steel pipe, Of low temperature toughness characterized by heating by induction heating to a temperature range of Ac 3 point to 1000 ° C. from a temperature of ≦ ° C. or lower to perform quenching treatment, and subsequently tempering in a temperature range of 450 ° C. to Ac 1 point. It is an excellent method for manufacturing high-strength steel pipes.

【0006】以下に本発明の超高強度鋼管の製造方法に
ついて詳細に説明する。本発明の特徴は、(1)0.9
〜1.2%のCuを含有し、かつ極低S処理した低C−
Ni−Cu−Mo−Nb−Ti系鋼を圧延成形して製造
した鋼管を、(2)誘導加熱で一定の温度範囲に加熱し
て焼入処理し、続いて一定の温度範囲で焼戻処理すると
ころにあり、これによって超高強度と優れた低温靱性、
現地溶接性および耐サワー性を同時に達成している。
The method of manufacturing the ultra high strength steel pipe of the present invention will be described in detail below. The features of the present invention are (1) 0.9
Low C- containing ~ 1.2% Cu and treated with extremely low S
A steel pipe manufactured by rolling forming a Ni-Cu-Mo-Nb-Ti steel is (2) heated to a certain temperature range by induction heating for quenching treatment, and then tempered in a certain temperature range. Where the ultra high strength and excellent low temperature toughness,
It achieves local weldability and sour resistance at the same time.

【0007】従来、Cu析出鋼は圧力容器用高張力鋼
(引張強さ784N/mm2 級)などに利用されていた
が、X100以上の超高強度ラインパイプにおける開発
例は見当たらない。これは、Cu析出硬化鋼は強度は得
やすいが、低温靱性および耐サワー性(特に水素誘起割
れ(HIC)に対する抵抗、以下、耐HIC特性とい
う)がラインパイプとしては不十分であったことによる
と考えられる。
Conventionally, Cu-precipitated steel has been used for high-tensile steel for pressure vessels (tensile strength 784 N / mm 2 grade) and the like, but no development example of ultrahigh-strength line pipe of X100 or more is found. This is because Cu precipitation hardened steel is easy to obtain strength, but low temperature toughness and sour resistance (especially resistance to hydrogen induced cracking (HIC), hereinafter referred to as HIC resistance) were insufficient as a line pipe. it is conceivable that.

【0008】まず、低温靱性であるが、パイプラインで
は脆性破壊の発生特性とともに伝播停止特性が極めて重
要である。従来のCu析出硬化鋼は、シャルピー特性で
代表される脆性破壊の発生特性はまずまずであったが、
脆性破壊の停止特性は十分でなかった。これは(1)ミ
クロ組織の微細化が不十分なことと、(2)いわゆるシ
ャルピー衝撃試験などの試験片破面に発生するセパレー
ションの利用がなされていなかったことによる(セパレ
ーションは衝撃試験時生ずる板面に平行な層状剥離現象
で、脆性亀裂先端での3軸応力度を低下させることによ
って脆性亀裂の伝播停止特性を向上させると考えられて
いる)。
First, although it has low temperature toughness, in a pipeline, the propagation stopping property is extremely important as well as the brittle fracture occurrence property. Although the conventional Cu precipitation hardening steel has a definite brittle fracture generation characteristic represented by Charpy characteristics,
The brittle fracture termination properties were not sufficient. This is due to (1) insufficient microstructure miniaturization, and (2) the separation that occurs on the fracture surface of the test piece, such as the so-called Charpy impact test, has not been used (separation occurs during the impact test. It is believed that the delamination phenomenon parallel to the plate surface improves the propagation stopping property of the brittle crack by reducing the triaxial stress level at the brittle crack tip).

【0009】次に耐HIC特性が十分でなかったことが
挙げられる。これは、0.9〜1.3%Cu添加は鋼表
面での腐食反応を抑制し、耐HIC性を向上させるにも
かかわらず、鋼の高純度化やCa処理がなされていない
結果、僅かに水素が侵入してもHICが発生するためと
考えられる。一般にX100以上の超高強度ラインパイ
プは硫化水素を含有しないドライでスイートな環境で使
用されるが、場合によっては海水などの侵入により少量
の硫化水素が発生することもあり、この対策は超高強度
ラインパイプの安全性にとって極めて重要である。
Next, it can be mentioned that the HIC resistance was not sufficient. This is because the addition of 0.9 to 1.3% Cu suppresses the corrosion reaction on the steel surface and improves the HIC resistance, but as a result of not purifying the steel or treating with Ca, it is slightly It is considered that HIC is generated even if hydrogen invades. Generally, ultra high strength line pipes of X100 or more are used in a dry and sweet environment that does not contain hydrogen sulfide, but in some cases a small amount of hydrogen sulfide may be generated due to intrusion of seawater, etc. It is extremely important for the safety of strength linepipes.

【0010】まず、本発明の製造条件の限定理由につい
て説明する。再加熱後、圧延成形して製造した鋼管を5
00℃以下の温度から誘導加熱でAc3 点〜1000℃
の温度範囲に加熱して焼入処理し、続いて450℃〜A
1点の温度範囲で焼戻処理する必要がある。鋼管を5
00℃以下の温度から誘導加熱でAc3 点〜1000℃
の温度範囲に加熱する理由は、その後の焼入処理によっ
てベイナイト組織の形成などによる変態強化を活用する
ため、およびCuを十分に溶体化させて析出硬化に有効
な固溶Cuを確保するためである。しかし、加熱温度が
1000℃を超えると、再加熱時のオーステナイト粒が
成長し、結晶粒が大きくなって低温靱性や耐サワー性の
劣化を招く。このため、再加熱温度の上限を1000℃
とした。加熱温度の下限Ac3 点は、焼入時の変態強化
を活用するための最低温度である。加熱に際し、Ar1
点以下の温度から加熱する理由は、組織を均一に微細化
して、低温靱性の劣化を防止するためである。完全にオ
ーステナイト(γ)からフェライト(α)への変態が終
了する500℃以下から再加熱すると、αからγへの変
態後のγ組織が均一に微細化される。
First, the reasons for limiting the manufacturing conditions of the present invention will be described. After reheating, the steel pipe manufactured by rolling and forming is
Ac 3 points to 1000 ° C by induction heating from a temperature of 00 ° C or less
And heat treatment at 450 ℃
c It is necessary to perform tempering within the temperature range of 1 point. Steel pipe 5
Ac 3 points to 1000 ° C by induction heating from a temperature of 00 ° C or less
The reason for heating to the temperature range of 1 is to utilize transformation strengthening due to formation of bainite structure by subsequent quenching treatment, and to secure solid solution Cu effective for precipitation hardening by sufficiently solutionizing Cu. is there. However, if the heating temperature exceeds 1000 ° C., austenite grains grow during reheating and the crystal grains become large, resulting in deterioration of low temperature toughness and sour resistance. Therefore, the upper limit of the reheating temperature is 1000 ° C.
And The lower limit Ac 3 of the heating temperature is the lowest temperature for utilizing transformation strengthening during quenching. Ar 1 during heating
The reason for heating from a temperature below the point is to uniformly refine the structure and prevent deterioration of low temperature toughness. When reheating is performed from 500 ° C. or lower at which the transformation from austenite (γ) to ferrite (α) is completed, the γ structure after α to γ transformation is uniformly refined.

【0011】鋼管は10℃/秒以上の冷却速度で焼入処
理することが望ましい。これはベイナイト組織の形成な
どによる変態強化、組織の微細化と冷却中の粗大なCu
析出を抑制するためである。冷却中にCuが析出する
と、時効処理後の析出硬化量が減少し、高強度が得られ
ない。Cu析出硬化(ε−Cuによる析出硬化)による
高強度化をはかるためには、適当な温度で時効処理を行
わなければならない。時効処理温度が450℃未満であ
るとCu析出が不十分で高強度が得られず、また時効処
理温度がAc1 点超ではCu析出物が粗大化して析出硬
化能が失われる。
It is desirable that the steel pipe is quenched at a cooling rate of 10 ° C./sec or more. This is due to transformation strengthening due to formation of bainite structure, refinement of structure and coarse Cu during cooling.
This is to suppress precipitation. When Cu precipitates during cooling, the amount of precipitation hardening after aging treatment decreases, and high strength cannot be obtained. In order to increase the strength by Cu precipitation hardening (precipitation hardening by ε-Cu), aging treatment must be performed at an appropriate temperature. If the aging treatment temperature is less than 450 ° C., Cu precipitation is insufficient and high strength cannot be obtained, and if the aging treatment temperature exceeds Ac 1 point, the Cu precipitates become coarse and the precipitation hardening ability is lost.

【0012】圧延成形して製造した鋼管は、圧延鋼板を
UOE成形、溶接する鋼管、圧延鋼板を電縫溶接する鋼
管および圧延工程において直接成形する鋼管を含むもの
である。次に成分元素の限定理由について説明する。C
の下限0.02%は、母材および溶接部の強度、低温靱
性の確保ならびにNb、V添加による析出硬化、結晶粒
の微細化効果を発揮させるための最小量である。しか
し、C量が多過ぎると低温靱性、現地溶接性や耐サワー
性の著しい劣化を招くので、上限を0.09%とした。
The steel pipe manufactured by roll forming includes a steel pipe for UOE forming and welding a rolled steel plate, a steel pipe for electric resistance welding of a rolled steel plate, and a steel pipe directly formed in the rolling process. Next, the reasons for limiting the constituent elements will be described. C
The lower limit of 0.02% is the minimum amount for ensuring the strength of the base material and the welded portion, the low temperature toughness, the precipitation hardening by the addition of Nb and V, and the effect of refining the crystal grains. However, if the C content is too large, the low temperature toughness, the field weldability and the sour resistance are significantly deteriorated, so the upper limit was made 0.09%.

【0013】Siは脱酸や強度向上のために添加する元
素であるが、多量に添加すると現地溶接性、HAZ靱性
を劣化させるので、上限を0.6%とした。鋼の脱酸は
TiあるいはAlのみでも十分であり、Siは必ずしも
添加する必要はない。Mnは強度、低温靱性を確保する
上で不可欠な元素であり、その下限は1.3%である。
しかし、Mnが多過ぎると鋼の焼入性が増加して現地溶
接性、HAZ靱性を劣化させるだけでなく、連続鋳造鋼
片の中心偏析を助長し、耐サワー性、低温靱性も劣化さ
せるので、上限を2.0%とした。
Si is an element added for deoxidation and strength improvement, but if added in a large amount, it deteriorates the field weldability and HAZ toughness, so the upper limit was made 0.6%. Only Ti or Al is sufficient for deoxidizing steel, and Si is not necessarily added. Mn is an essential element for ensuring strength and low temperature toughness, and its lower limit is 1.3%.
However, if Mn is too much, not only the hardenability of the steel increases and the field weldability and HAZ toughness deteriorate, but also the center segregation of the continuously cast steel slab is promoted, and sour resistance and low temperature toughness also deteriorate. , The upper limit was 2.0%.

【0014】Ni、Cuを添加する目的は、低Cの本発
明鋼の強度を低温靱性や耐サワー性を劣化させることな
く向上させるためである。Ni、Cu添加はMnやC
r、Mo添加に比較して圧延組織(特にスラブの中心偏
析帯)中に低温靱性、耐サワー性に有害な硬化組織を形
成することが少なく、強度を増加させることが判明し
た。Cu添加は主としてCu析出硬化によって強度を増
加させる。このため、Cu添加量は最低0.9%が必要
である。しかし、多く添加すると現地溶接性やHAZ靱
性などを劣化させるので、その上限を1.2%とした。
Niは連続鋳造時、熱間圧延時のCuクラックを防止す
るために添加するものであり、その下限は0.3%であ
る。しかし、1.2%を超えてNiを添加すると現地溶
接性などに好ましくないため、上限を1.2%とした。
The purpose of adding Ni and Cu is to improve the strength of the low C steel of the present invention without deteriorating the low temperature toughness and sour resistance. Ni and Cu additions are Mn and C
It was found that compared with the addition of r and Mo, a hardened structure detrimental to low temperature toughness and sour resistance is less likely to be formed in the rolled structure (especially the central segregation zone of the slab), and the strength is increased. Cu addition increases strength mainly by Cu precipitation hardening. Therefore, the added amount of Cu must be at least 0.9%. However, if a large amount is added, the field weldability and HAZ toughness are deteriorated, so the upper limit was made 1.2%.
Ni is added to prevent Cu cracks during continuous casting and hot rolling, and the lower limit is 0.3%. However, if Ni is added in excess of 1.2%, it is not preferable for field weldability and the like, so the upper limit was made 1.2%.

【0015】また本発明鋼では、必須の元素として、N
b:0.01〜0.06%、Ti:0.005〜0.0
3%を含有する。Nbは制御圧延において結晶粒の微細
化や析出硬化に寄与し、鋼を強靱化する作用を有する。
しかし、Nbを0.06%超添加すると、現地溶接性や
HAZ靱性に悪影響をもたらすので、その上限を0.0
6%とした。また、Ti添加は微細なTiNを形成し、
スラブ再加熱時および溶接HAZのオーステナイト粒の
粗大化を抑制してミクロ組織を微細化し、母材およびH
AZの低温靱性を改善する。このようなTiNの効果を
発現させるためには、最低0.005%のTi添加が必
要である。しかし、Ti量が多過ぎると、TiNの粗大
化やTiCによる析出硬化が生じ、低温靱性が劣化する
ので、その上限は0.03%に限定しなければならな
い。
In the steel of the present invention, N is an essential element.
b: 0.01 to 0.06%, Ti: 0.005 to 0.0
Contains 3%. Nb contributes to refinement of crystal grains and precipitation hardening in controlled rolling, and has an effect of strengthening steel.
However, if Nb is added in excess of 0.06%, the field weldability and HAZ toughness are adversely affected, so the upper limit is 0.0
It was 6%. Also, addition of Ti forms fine TiN,
When the slab is reheated and the austenite grains of the welded HAZ are suppressed from coarsening, the microstructure is refined, and the base metal and H
Improves low temperature toughness of AZ. In order to bring out such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the amount of Ti is too large, coarsening of TiN and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit must be limited to 0.03%.

【0016】Alは、通常脱酸剤として鋼に含まれる元
素であり、組織の微細化にも効果を有する。しかし、A
l量が0.06%を超えるとAl系非金属介在物が増加
して鋼の清浄度を害するので、上限を0.06%とし
た。脱酸はTiあるいはSiでも可能であり、Alは必
ずしも添加する必要はない。さらに本発明では、不純物
元素であるP、S量を、それぞれ0.015%以下、
0.0010%以下とする。その主たる理由は、耐サワ
ー性の改善と母材、HAZ靱性の低温靱性をより一層向
上させるためである。P量の低減は連続鋳造スラブの中
心偏析を低減し、耐サワー性を向上させるとともに、粒
界破壊を防止し、低温靱性を向上させる。また、S量の
低減は延伸化したMnSを低減して耐サワー性や延靱性
を向上させる効果がある。
Al is an element usually contained in steel as a deoxidizing agent, and has an effect on the refinement of the structure. However, A
When the amount of l exceeds 0.06%, Al-based nonmetallic inclusions increase and impair the cleanliness of steel, so the upper limit was made 0.06%. Deoxidation is also possible with Ti or Si, and Al does not necessarily have to be added. Furthermore, in the present invention, the amounts of P and S that are impurity elements are 0.015% or less,
It is made 0.0010% or less. The main reason is to improve sour resistance and further improve low temperature toughness of the base material and HAZ toughness. Reduction of the amount of P reduces center segregation of the continuously cast slab, improves sour resistance, prevents intergranular fracture, and improves low temperature toughness. Further, the reduction of the amount of S has the effect of reducing the stretched MnS and improving the sour resistance and the ductility and toughness.

【0017】NはTiNを形成してスラブ再加熱時およ
び溶接HAZのオーステナイト粒の粗大化を抑制して母
材、HAZの低温靱性を向上させる。このために必要な
最小量は0.001%である。しかし、N量が多過ぎる
とスラブ表面疵や固溶NによるHAZ靱性の劣化の原因
となるので、その上限は0.006%に抑える必要があ
る。
N forms TiN and suppresses coarsening of austenite grains in the slab reheating and in the welded HAZ and improves the low temperature toughness of the base metal and HAZ. The minimum amount required for this is 0.001%. However, if the amount of N is too large, it may cause a flaw in the surface of the slab or deterioration of the HAZ toughness due to solid solution N, so the upper limit must be suppressed to 0.006%.

【0018】次にCa、V、Crを添加する理由につい
て説明する。基本となる成分にさらにこれらの元素を添
加する主たる目的は、本発明鋼の優れた特徴を損なうこ
となく、製造可能な板厚の拡大や母材の強度・靱性など
の特性の向上をはかるためである。従って、その添加量
は自ら制限されるべき性質のものである。
Next, the reason for adding Ca, V and Cr will be explained. The main purpose of adding these elements to the basic composition is to increase the manufacturable plate thickness and improve the properties such as the strength and toughness of the base material without impairing the excellent characteristics of the steel of the present invention. Is. Therefore, the amount added is of a nature that should be limited by itself.

【0019】Caは硫化物(MnS)の形態を制御し、
低温靱性を向上(シャルピー試験における吸収エネルギ
ーの増加など)させるほか、耐サワー性の向上にも著し
い効果を発揮する。特に衝撃試験でのセパレーションを
利用する本発明鋼では、シャルピー試験などの吸収エネ
ルギーは低下する傾向にあるので、Caの添加は必須で
ある。しかし、Ca量が0.001%未満では実用上効
果がなく、また、0.005%を超えて添加するとCa
O−CaSが大量に生成してクラスター、大型介在物と
なり、鋼の清浄度を害するだけでなく、現地溶接性にも
悪影響を及ぼす。このため、Ca添加量を0.001〜
0.005%に制限した。
Ca controls the morphology of sulfide (MnS),
In addition to improving low temperature toughness (increasing absorbed energy in the Charpy test, etc.), it also exerts a remarkable effect in improving sour resistance. In particular, in the steel of the present invention utilizing the separation in the impact test, the absorbed energy in the Charpy test and the like tends to decrease, so that the addition of Ca is essential. However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it exceeds 0.005%, Ca
O-CaS is produced in a large amount to form clusters and large inclusions, which not only impairs the cleanliness of steel, but also adversely affects on-site weldability. Therefore, the amount of Ca added is 0.001
It was limited to 0.005%.

【0020】VはほぼNbと同様の効果を有するが、そ
の効果はNbに比較して格段に弱い。その上限は現地溶
接性、HAZ靱性の点から0.10%まで許容できる。
Crは母材、溶接部の強度を増加させるが、多過ぎると
現地溶接性やHAZ靱性を著しく劣化させる。このた
め、Cr量の上限は0.5%とする。V、Cr量の下限
0.01%、0.1%は、それぞれの元素添加による材
質上の効果が顕著になる最小量である。
V has almost the same effect as Nb, but its effect is much weaker than that of Nb. The upper limit is 0.10% in terms of field weldability and HAZ toughness.
Cr increases the strength of the base material and the welded portion, but if it is too large, the local weldability and HAZ toughness are significantly deteriorated. Therefore, the upper limit of the amount of Cr is 0.5%. The lower limits of 0.01% and 0.1% of the amounts of V and Cr are the minimum amounts in which the effect on the material due to the addition of the respective elements becomes remarkable.

【0021】[0021]

【実施例】本発明の実施例について述べる。転炉−連続
鋳造法で種々の鋼成分の鋼片から種々の製造法により鋼
管を製造した。これらを種々の条件で熱処理して、諸性
質を調査した。機械的性質は鋼管軸方向と直角方向で調
査した。Ca添加の鋼管については耐サワー性を調査し
た。耐サワー性はBP溶液(硫化水素飽和の人工海水、
pH4.8〜5.4)に96時間浸漬後、試験片表面よ
り超音波探傷し、試験片の割れ面積率(%)で評価し
た。
EXAMPLES Examples of the present invention will be described. Steel pipes were manufactured by various manufacturing methods from billets of various steel components by a converter-continuous casting method. These were heat-treated under various conditions and various properties were investigated. The mechanical properties were investigated in the direction perpendicular to the axial direction of the steel pipe. The sour resistance of the steel pipe containing Ca was investigated. Sour resistance is BP solution (hydrogen sulfide saturated artificial seawater,
After immersion in a pH of 4.8 to 5.4) for 96 hours, ultrasonic flaw detection was performed on the surface of the test piece, and the crack area ratio (%) of the test piece was evaluated.

【0022】実施例を表1、表2(表1のつづき−
1)、表3(表1のつづき−2)に示す。
Examples are shown in Tables 1 and 2 (continued from Table 1-
1) and Table 3 (continued from Table 1-2).

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】本発明に従って製造した鋼管は優れた強度
・低温靱性、耐サワー性を有する。これに対して比較鋼
は化学成分または鋼管の熱処理条件が適切でなく、いず
れかの特性が劣る。鋼9はC量が多過ぎるため、低温靱
性(シャルピー吸収エネルギー、遷移温度)、耐HIC
性が劣る。鋼10はMo添加量が少なく、Mn量が多過
ぎるため、シャルピー吸収エネルギーが低く、かつ耐H
IC性が悪い。鋼11はNbが添加されていないため、
Nb添加鋼よりもやや強度が低く、シャルピー遷移温度
が高い(強度・低温靱性バランスが悪い)。鋼12はT
iが添加されていないため、シャルピー遷移温度が高
く、耐HIC性が劣る。鋼13はCu添加量が少な過ぎ
るため、目標とする強度が達成できていない。鋼14は
Ni量が少な過ぎるため、機械的性質はまずまずである
が、鋼管表面に微小な疵が多数発生し、ラインパイプと
して使えない。鋼15は化学成分は適当であるが、製造
条件中の加熱開始温度が高過ぎるため、シャルピー遷移
温度が高い。鋼16は加熱温度が低過ぎるため、強度が
低く、低温靱性が劣る。鋼17は加熱温度が高過ぎるた
め、低温靱性が悪い。鋼18は焼戻温度が低過ぎるた
め、Cu析出効果能が発揮されず、強度が低い。鋼19
は焼戻温度が高過ぎるため、Cu析出物が粗大化して析
出硬化能が失われ、強度が低い。
The steel pipe produced according to the present invention has excellent strength, low temperature toughness and sour resistance. On the other hand, the comparative steels are not suitable in terms of chemical composition or heat treatment conditions for steel pipes, and either characteristic is inferior. Steel 9 has too much C, so low temperature toughness (Charpy absorbed energy, transition temperature), HIC resistance
Inferior in nature. Steel 10 has a small amount of Mo added and an excessively large amount of Mn, so that the Charpy absorbed energy is low and the H resistance is high.
The IC property is bad. Steel 11 does not contain Nb, so
Its strength is slightly lower than that of Nb-added steel, and its Charpy transition temperature is high (balance between strength and low temperature toughness is poor). Steel 12 is T
Since i is not added, the Charpy transition temperature is high and the HIC resistance is poor. Steel 13 does not achieve the target strength because the amount of Cu added is too small. Since the steel 14 has too little Ni content, the mechanical properties are reasonable, but many minute flaws occur on the surface of the steel pipe and cannot be used as a line pipe. Steel 15 has an appropriate chemical composition, but has a high Charpy transition temperature because the heating start temperature in the manufacturing conditions is too high. Since the heating temperature of steel 16 is too low, the strength is low and the low temperature toughness is poor. Steel 17 has a low temperature toughness because the heating temperature is too high. Since the tempering temperature of steel 18 is too low, the effect of Cu precipitation effect is not exhibited and the strength is low. Steel 19
Since the tempering temperature is too high, the Cu precipitates are coarsened, the precipitation hardening ability is lost, and the strength is low.

【0027】[0027]

【発明の効果】本発明により低温靱性、現地溶接性およ
び耐サワー性が優れた超高強度ラインパイプ(API規
格X100以上)が安定して製造できるようになった。
その結果、パイプラインの安全性が著しく向上するとと
もに、パイプラインの施工能率、輸送効率の飛躍的な向
上が可能となった。
Industrial Applicability According to the present invention, it has become possible to stably manufacture an ultra-high-strength line pipe (API standard X100 or more) excellent in low temperature toughness, field weldability and sour resistance.
As a result, the safety of the pipeline was significantly improved, and the construction efficiency and transportation efficiency of the pipeline were dramatically improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、 C:0.02〜0.09%、 Si:0.6%以下、 Mn:1.3〜2.0%、 P:0.015%以下、 S:0.0010%以下、 Ni:0.3〜1.2%、 Cu:0.9〜1.2%、 Mo:0.1〜0.5%、 Nb:0.01〜0.06%、 Ti:0.005〜0.03%、 Al:0.06%以下、 N:0.001〜0.006% を含有し、残部が鉄および不可避的不純物からなる鋼片
を再加熱後、圧延成形して製造した鋼管を、500℃以
下の温度から誘導加熱でAc3 点〜1000℃の温度範
囲に加熱して焼入処理し、続いて450℃〜Ac1 点の
温度範囲で焼戻処理することを特徴とする低温靱性の優
れた高強度鋼管の製造方法。
1. By weight%, C: 0.02 to 0.09%, Si: 0.6% or less, Mn: 1.3 to 2.0%, P: 0.015% or less, S: 0. 0.0010% or less, Ni: 0.3 to 1.2%, Cu: 0.9 to 1.2%, Mo: 0.1 to 0.5%, Nb: 0.01 to 0.06%, Ti : 0.005 to 0.03%, Al: 0.06% or less, N: 0.001 to 0.006%, and the balance is iron and inevitable impurities. The steel pipe manufactured as described above is heated by induction heating from a temperature of 500 ° C. or lower to a temperature range of Ac 3 point to 1000 ° C. for quenching treatment, and then tempered in a temperature range of 450 ° C. to Ac 1 point. A method for producing a high-strength steel pipe having excellent low temperature toughness, which is characterized by the following.
【請求項2】 出発鋼片はさらにCa:0.001〜
0.005%、V:0.01〜0.10%、Cr:0.
1〜0.5%の1種または2種以上を含有することを特
徴とする請求項1記載の低温靱性の優れた高強度鋼管の
製造方法。
2. The starting steel billet further has Ca: 0.001 to 0.001.
0.005%, V: 0.01 to 0.10%, Cr: 0.
The method for producing a high-strength steel pipe having excellent low-temperature toughness according to claim 1, characterized in that it contains 1 to 0.5% of one kind or two or more kinds.
JP24440394A 1994-10-07 1994-10-07 Production of high strength steel pipe excellent in low temperature toughness Withdrawn JPH08104922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24440394A JPH08104922A (en) 1994-10-07 1994-10-07 Production of high strength steel pipe excellent in low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24440394A JPH08104922A (en) 1994-10-07 1994-10-07 Production of high strength steel pipe excellent in low temperature toughness

Publications (1)

Publication Number Publication Date
JPH08104922A true JPH08104922A (en) 1996-04-23

Family

ID=17118156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24440394A Withdrawn JPH08104922A (en) 1994-10-07 1994-10-07 Production of high strength steel pipe excellent in low temperature toughness

Country Status (1)

Country Link
JP (1) JPH08104922A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045630A (en) * 1997-02-25 2000-04-04 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
US6188037B1 (en) 1997-03-26 2001-02-13 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and method of manufacturing the same
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
EP1876254A1 (en) * 2005-03-29 2008-01-09 Sumitomo Metal Industries, Ltd. Thick seamless steel pipe for line pipe and method for production thereof
WO2011021396A1 (en) 2009-08-21 2011-02-24 住友金属工業株式会社 Method for manufacturing thick-walled seamless steel pipe
CN113441910A (en) * 2021-06-17 2021-09-28 大冶特殊钢有限公司 Ultra-thick-wall quality-adjusting pipe and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045630A (en) * 1997-02-25 2000-04-04 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
US6183573B1 (en) 1997-02-25 2001-02-06 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
US6188037B1 (en) 1997-03-26 2001-02-13 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and method of manufacturing the same
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
EP1876254A1 (en) * 2005-03-29 2008-01-09 Sumitomo Metal Industries, Ltd. Thick seamless steel pipe for line pipe and method for production thereof
EP1876254A4 (en) * 2005-03-29 2012-08-01 Sumitomo Metal Ind Thick seamless steel pipe for line pipe and method for production thereof
WO2011021396A1 (en) 2009-08-21 2011-02-24 住友金属工業株式会社 Method for manufacturing thick-walled seamless steel pipe
JP4748283B2 (en) * 2009-08-21 2011-08-17 住友金属工業株式会社 Manufacturing method of thick-walled seamless steel pipe
US8845830B2 (en) 2009-08-21 2014-09-30 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing heavy-wall seamless steel pipe
CN113441910A (en) * 2021-06-17 2021-09-28 大冶特殊钢有限公司 Ultra-thick-wall quality-adjusting pipe and preparation method thereof

Similar Documents

Publication Publication Date Title
CN111441000A (en) 690 MPa-yield-strength low-yield-ratio high-strength steel plate and manufacturing method thereof
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
WO2009125863A1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP2020500262A (en) Medium manganese steel for low temperature and its manufacturing method
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
CN113930684B (en) Economical aging-resistant high-strain precipitation-strengthened pipeline steel and production method thereof
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JPH08311549A (en) Production of ultrahigh strength steel pipe
JPH08311550A (en) Production of steel sheet for ultrahigh strength steel pipe
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP5194807B2 (en) Manufacturing method of high yield strength and high toughness thick steel plate
JP4133566B2 (en) Manufacturing method of high strength bend pipe with excellent low temperature toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115