JP3303647B2 - Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance - Google Patents

Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance

Info

Publication number
JP3303647B2
JP3303647B2 JP00799996A JP799996A JP3303647B2 JP 3303647 B2 JP3303647 B2 JP 3303647B2 JP 00799996 A JP00799996 A JP 00799996A JP 799996 A JP799996 A JP 799996A JP 3303647 B2 JP3303647 B2 JP 3303647B2
Authority
JP
Japan
Prior art keywords
base material
weld metal
less
resistance
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00799996A
Other languages
Japanese (ja)
Other versions
JPH09194991A (en
Inventor
隆弘 櫛田
康人 深田
昌彦 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP00799996A priority Critical patent/JP3303647B2/en
Publication of JPH09194991A publication Critical patent/JPH09194991A/en
Application granted granted Critical
Publication of JP3303647B2 publication Critical patent/JP3303647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、湿潤硫化水素環境
や湿潤炭酸ガス環境に曝される原油輸送用ラインパイプ
や石油精製装置用圧力配管等に長期間、安定して使用し
うる耐水素誘起割れ性、耐硫化物応力割れ性および耐炭
酸ガス腐食性のいずれにも優れた溶接鋼管に関するもの
である。
BACKGROUND OF THE INVENTION The present invention relates to a hydrogen-induced hydrogen source which can be stably used for a long time in a line pipe for transporting crude oil or a pressure pipe for a petroleum refining unit exposed to a wet hydrogen sulfide environment or a wet carbon dioxide gas environment. The present invention relates to a welded steel pipe having excellent cracking resistance, sulfide stress cracking resistance, and carbon dioxide gas corrosion resistance.

【0002】[0002]

【従来の技術】図1は、原油あるいはガスの採掘、輸送
および精製時に遭遇する環境において発生する問題、お
よびそれらに対処するため溶接鋼管母材である鋼板に対
してとってきた従来の対策をまとめた図面である。同図
に即して、従来の技術の説明を行う。
2. Description of the Related Art FIG. 1 shows the problems encountered in the environment encountered during the extraction, transportation and refining of crude oil or gas, and the conventional countermeasures that have been taken against the steel plate which is the base material of the welded steel pipe in order to address them. It is a summarized drawing. A conventional technique will be described with reference to FIG.

【0003】硫化水素を含む原油あるいはガスを輸送す
るラインパイプ、または硫化水素を含む原油あるいはガ
スを精製する槽塔類に用いられる配管では水素誘起割れ
(以下、HIC:Hydrogen Induced
Cracking:という)あるいは硫化物応力割れ
(以下、SSC:Sulfide Stress Cr
acking:と称する)が問題となる。
[0003] Hydrogen induced cracking (hereinafter referred to as HIC) occurs in line pipes for transporting crude oil or gas containing hydrogen sulfide, or piping used for tank towers for refining crude oil or gas containing hydrogen sulfide.
Cracking :) or sulfide stress cracking (hereinafter, SSC: Sulfide Stress Cr).
acking) is a problem.

【0004】HICとは外部応力のない状態で鋼材に生
じる割れであり、SSCは静的な応力下で起きる割れで
ある。HICおよびSSCは、どちらも湿潤硫化水素環
境(サワー環境という)で鋼が腐食したときに発生する
水素が鋼中に侵入することによって起きる割れまたは損
傷である。耐HIC性および耐SSC性の両者を合わせ
た性能を、耐サワー性という。
[0004] HIC is a crack that occurs in a steel material without external stress, and SSC is a crack that occurs under a static stress. HIC and SSC are both cracks or damage caused by the penetration of hydrogen into the steel that occurs when the steel corrodes in a wet hydrogen sulfide environment (referred to as a sour environment). The combined performance of both the HIC resistance and the SSC resistance is called sour resistance.

【0005】サワー環境でのHICおよびSSCの抑制
方法として、以下のものが知られている。
The following methods are known as methods for suppressing HIC and SSC in a sour environment.

【0006】・Cu添加による水素の鋼への侵入抑制。[0006] Suppression of intrusion of hydrogen into steel by addition of Cu.

【0007】・Ca添加による硫化物の形態制御、すな
わち硫化物の割れの起点としての作用抑制(特公昭60
−35982号公報)。
[0007] Morphological control of sulfide by addition of Ca, ie, suppression of action as a starting point of sulfide cracking (Japanese Patent Publication No. Sho 60
-35982).

【0008】・中心偏析部での高いHICおよびSSC
感受性低減のための偏析軽減、すなわち拡散焼鈍による
連続鋳造スラブ中心偏析部でのMnおよびPの偏析軽
減。
High HIC and SSC at the center segregation part
Reduction of segregation for reducing sensitivity, that is, reduction of Mn and P segregation at the center segregation part of the continuous casting slab by diffusion annealing.

【0009】・制御圧延および圧延後の加速冷却による
硬化組織の生成防止(特公昭63−1369号公報)。
[0009] Prevention of formation of a hardened structure by controlled rolling and accelerated cooling after rolling (Japanese Patent Publication No. 63-1369).

【0010】・高強度化と耐HIC性維持のための、中
心偏析を軽減するMn低減およびCr増量(特公平2−
50967号公報および特公平3−68101号公
報)。
[0010] Mn reduction and Cr increase to reduce center segregation to increase strength and maintain HIC resistance
50967 and JP-B-3-68101).

【0011】これらの耐サワー性の改善が行われる一方
で、良質な石油資源の枯渇に伴い、過酷な環境の油田お
よびガス田の開発が進められたため、従来よりもpHが
低く、かつ硫化水素圧力の高い環境(この場合も、同じ
ようにサワー環境という)での使用に耐える鋼管の要求
が増大することとなった。
While these sour resistances have been improved, the depletion of high-quality petroleum resources has led to the development of oil and gas fields in harsh environments. The demand for steel pipes that can withstand use in high pressure environments (again, also in sour environments) has increased.

【0012】さらに、耐サワー性と同時に、または耐サ
ワー性とは関係なく、炭酸ガス腐食に対する抵抗性が高
い鋼が望まれるようになってきた。この要求に応えた耐
炭酸ガス腐食性の高い鋼材として、Crを高めた低合金
鋼が開示されている(特開平3−110071号公報お
よび特開平4−341540号公報)。とくに、特開平
3−110071号公報には、母材のCrを制限するだ
けでなく溶接金属のCrも母材のCrに対して一定量以
上とする溶接鋼管自体の発明が提示されている。
[0012] Further, a steel having high resistance to carbon dioxide corrosion simultaneously with or independently of sour resistance has been desired. As a steel material having a high resistance to carbon dioxide gas corrosion that meets this demand, a low alloy steel with an increased Cr is disclosed (Japanese Patent Application Laid-Open Nos. 3-100711 and 4-341540). In particular, Japanese Patent Application Laid-Open No. H3-110071 discloses an invention of a welded steel pipe itself in which not only the Cr of the base material is restricted but also the Cr of the weld metal is at least a certain amount with respect to the Cr of the base material.

【0013】しかしながら、Crの増量は、湿潤炭酸ガ
ス環境での腐食を抑制するが、低pHの湿潤硫化水素環
境での腐食に対しては促進する作用がある。とくに溶接
金属の腐食速度および局部腐食深さは大きくなる。した
がって、低pHの硫化水素環境ではむしろCrを低減す
るほうが腐食を抑制するうえで好ましい。
However, an increase in the amount of Cr suppresses corrosion in a wet carbon dioxide gas environment, but has an effect of promoting corrosion in a low pH wet hydrogen sulfide environment. In particular, the corrosion rate and local corrosion depth of the weld metal increase. Therefore, it is preferable to reduce Cr in a low pH hydrogen sulfide environment in order to suppress corrosion.

【0014】本説明において、合金元素の“量”という
とき、その合金元素の“濃度”をさし、両者をとくべつ
区別せずに用いる。また、合金元素そのもの、たとえば
Crというとき、Cr量あるいはCr濃度をさす場合が
ある。
In the present description, the "quantity" of an alloy element means the "concentration" of the alloy element, and the two are used without distinction. Further, when the alloy element itself, for example, Cr, is used, it may mean the amount of Cr or the concentration of Cr.

【0015】特開平7−216500号公報は、低pH
の硫化水素環境も含めたサワー環境および炭酸ガス環境
のいずれにも使用可能なX80級の強度(API (米国
石油協会) 規格:規格下限の降伏強さ80ksi=55
1MPa)をカバーする溶接鋼管母材として、低C−低
Mn−低Cr−微量Ti−中Nからなるフェライト−ベ
イナイト2相組織鋼を、提示している。しかし、これは
鋼管母材の鋼板に対する発明であって、溶接鋼管自体に
対する発明ではない。
JP-A-7-216500 discloses a low pH
X80 class strength (API (American Petroleum Institute) standard: Yield strength of the lower limit of the standard: 80 ksi = 55) that can be used in both sour and carbon dioxide environments including hydrogen sulfide environment
As a welded steel pipe base material covering 1 MPa), a ferrite-bainite two-phase structure steel composed of low C-low Mn-low Cr-trace Ti-N in N is presented. However, this is an invention for a steel plate of a steel pipe base material, not for a welded steel pipe itself.

【0016】径が16インチを超えるような大径管は一
般的には溶接鋼管であり、とくに24インチを超えるよ
うな大径鋼管は、サブマージアーク溶接(SAW)によ
って溶接される。SAW溶接鋼管全体の、低pHの硫化
水素も含めた環境での耐サワー性と耐炭酸ガス腐食性の
両者を同時に考慮した技術は開示されていない。とく
に、X80級以上の、耐サワー性と耐炭酸ガス腐食性と
を同時に備えた溶接鋼管の発明は見あたらない。
A large-diameter pipe having a diameter exceeding 16 inches is generally a welded steel pipe, and a large-diameter steel pipe having a diameter exceeding 24 inches is welded by submerged arc welding (SAW). No technique is disclosed that simultaneously considers both the sour resistance and the carbon dioxide gas corrosion resistance of an entire SAW welded steel pipe in an environment including low pH hydrogen sulfide. In particular, there is no invention of a welded steel pipe having a sour resistance and a carbon dioxide corrosion resistance of X80 class or higher.

【0017】[0017]

【発明が解決しようとする課題】本発明は、低pHの硫
化水素も含めたサワー環境での耐HIC性および耐SS
C性に優れ、同時に耐炭酸ガス腐食性も備えた溶接鋼
管、とくにX80級高強度溶接鋼管を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention is directed to HIC resistance and SS resistance in a sour environment including low pH hydrogen sulfide.
It is an object of the present invention to provide a welded steel pipe having excellent C properties and also having carbon dioxide gas corrosion resistance, particularly an X80 class high strength welded steel pipe.

【0018】各性能の具体的な目標は下記のとおりであ
る。なお、溶接部とは、溶接金属を指し、溶接熱影響部
(HAZ)は、その硬さおよび組織が母材の化学組成で
ほぼ決まるので、母材として取り扱う。ただし、“フェ
ライトとベイナイトの2相組織の母材”というときは、
溶接熱影響部(HAZ:Heat Affected Zone)を除いた
母材を指す。HAZでは溶接の熱サイクルを受けて、
“フェライトとベイナイトの2相組織”でなくなるから
である。
The specific goals of each performance are as follows. The welded portion refers to a weld metal, and the HAZ is treated as a base metal because its hardness and structure are substantially determined by the chemical composition of the base material. However, when referring to the “base material of the two-phase structure of ferrite and bainite”,
It refers to the base metal excluding the heat affected zone (HAZ: Heat Affected Zone). HAZ is subject to the heat cycle of welding,
This is because it is no longer a “two-phase structure of ferrite and bainite”.

【0019】(a-1 )母材の耐HIC性:割れ破面率
(CAR:Crack Area Ratio)2%以
下。
(A-1) HIC resistance of base material: crack area ratio (CAR: crack area ratio) 2% or less.

【0020】ただし、CAR=(HIC面積)/(試験
片幅×試験片長さ)である。
Here, CAR = (HIC area) / (test piece width × test piece length).

【0021】(a-2 )母材および溶接部の耐SSC性:
「SSCを発生しない最大応力である割れ発生限界応力
σth」を実降伏強さの80%以上とする。割れ発生限界
応力における「実降伏強さ」とは、母材の実際の降伏強
さのことをいう。
(A-2) SSC resistance of base metal and welded part:
The “crack initiation limit stress σ th, which is the maximum stress that does not generate SSC”, is set to 80% or more of the actual yield strength. The “actual yield strength” at the crack initiation critical stress refers to the actual yield strength of the base material.

【0022】(a-3 )母材および溶接部の耐炭酸ガス腐
食性:無対策材に比べて、1/2以下の腐食速度とす
る。
(A-3) Carbon dioxide corrosion resistance of the base metal and the welded portion: The corrosion rate is set to 1/2 or less of that of the untreated material.

【0023】(a-4 )強度レベル:とくに降伏強さの下
限を限定する後記する〔発明3〕および〔発明4〕の場
合、X80級(溶接鋼管として、降伏強さ551MPa
以上)とする。
(A-4) Strength level: In particular, in the case of [Invention 3] and [Invention 4] described below, which limit the lower limit of yield strength, X80 class (yield strength of 551 MPa as welded steel pipe)
Above).

【0024】ただし、〔発明1〕および〔発明2〕の場
合には、強度はとくに限定しない。
However, in the case of [Invention 1] and [Invention 2], the strength is not particularly limited.

【0025】なお、〔発明3〕は〔発明1〕の、また、
〔発明4〕は〔発明2〕の限定した実施の態様の一例で
ある。
[Invention 3] is the same as [Invention 1],
[Invention 4] is an example of the limited embodiment of [Invention 2].

【0026】[0026]

【課題を解決するための手段】従来からある知見および
本発明者が今回新たに確認することができた課題解決手
段は、下記のようにまとめられる。
Means for solving the problems Conventional knowledge and means for solving the problems which the present inventors have newly confirmed this time are summarized as follows.

【0027】(a) 低pHの硫化水素環境下でのSAW溶
接部の腐食速度を低下させることを通じてSAW溶接部
のσthを向上させるために、溶接金属のCr量を一定範
囲以下とする。
(A) In order to improve the σ th of the SAW weld by lowering the corrosion rate of the SAW weld in a low pH hydrogen sulfide environment, the Cr content of the weld metal is set to a certain range or less.

【0028】図2は、低pHの硫化水素環境であるNA
CE TM0177浴中での母材の腐食速度に及ぼす母
材のCr量の影響を表す図面である。同図において母材
のCr量の増大につれて腐食速度が増大していることが
分かる。
FIG. 2 shows NA, which is a low pH hydrogen sulfide environment.
It is a drawing showing the influence of the amount of Cr of the base material on the corrosion rate of the base material in the CE TM0177 bath. It can be seen from the figure that the corrosion rate increases as the Cr content of the base material increases.

【0029】また、図3は溶接金属における選択腐食深
さに及ぼす溶接金属のCr量および(Cu+Ni)含有
の影響を表す図面である。溶接金属のCrの増大に伴い
選択腐食深さも増大することは明白である。また、Cu
とNiを含有させることにより溶接部の選択腐食は抑制
されることも分かる。後記するように、選択腐食深さが
増大することにより、耐SSC性が劣化する。したがっ
て、つぎに述べる耐炭酸ガス腐食性を劣化させない範囲
で溶接金属のCrは低くしなければならない。
FIG. 3 is a drawing showing the influence of the Cr content and (Cu + Ni) content of the weld metal on the selective corrosion depth of the weld metal. It is clear that the selective corrosion depth increases with increasing Cr in the weld metal. Also, Cu
It can also be seen that the inclusion of Ni and Ni suppresses the selective corrosion of the weld. As described later, the SSC resistance is deteriorated by the increase in the selective corrosion depth. Therefore, the Cr of the weld metal must be low as long as the carbon dioxide corrosion resistance described below is not deteriorated.

【0030】(b) 上記(a) に記載したCrを低下した溶
接金属の炭酸ガス環境下での腐食を防止するために、溶
接金属のCuとNiを適正量増加する。
(B) In order to prevent corrosion of the Cr-reduced weld metal described in (a) above in a carbon dioxide gas environment, appropriate amounts of Cu and Ni in the weld metal are increased.

【0031】図4は、湿潤炭酸ガス環境での母材の腐食
速度に及ぼす母材のCr量およびCuとNiの影響を表
す図面である。同図によれば、母材のCrが0.2%以
下で、CuとNiがともにゼロの場合、腐食速度はきわ
めて高いものになる。これに対して、たとえ母材のCr
が0.2%以下であっても、CuとNiが適正量含まれ
ていれば、その腐食速度は母材のCrがゼロで、Cuと
Niがいずれもゼロのものに比較して、その腐食速度を
確実に1/2以下にすることができる。
FIG. 4 is a graph showing the effects of the amount of Cr in the base material and the contents of Cu and Ni on the corrosion rate of the base material in a wet carbon dioxide gas environment. According to the figure, when Cr of the base material is 0.2% or less and Cu and Ni are both zero, the corrosion rate becomes extremely high. On the other hand, even if the base material Cr
Is less than 0.2%, if the proper amount of Cu and Ni is contained, the corrosion rate is zero compared to the case where the base material Cr is zero and both Cu and Ni are zero. The corrosion rate can be reliably reduced to 1 / or less.

【0032】また、図5は湿潤炭酸ガス中での溶接金属
の選択腐食深さに及ぼす[溶接金属のCr量−母材のC
r量]の影響を表す図面である。母材に比べて溶接金属
のCrが少ないほど(横軸がマイナス側ほど)、選択腐
食深さは大きくなるが、溶接金属にCuとNiが適正量
含まれているときには、サワー環境中と同様に選択腐食
深さは抑制される。
FIG. 5 shows the effect of the selected corrosion depth of the weld metal in wet carbon dioxide gas [Cr content of the weld metal−C of the base metal.
[r amount]. The lower the Cr content of the weld metal compared to the base metal (the more the horizontal axis is on the minus side), the greater the selected corrosion depth, but when the weld metal contains appropriate amounts of Cu and Ni, the same as in a sour environment In addition, the selective corrosion depth is suppressed.

【0033】(c) 上記の発明をX80級以上の高強度鋼
に適用する場合、母材の耐サワー性の維持のため、Mn
はむしろ低下させて連続鋳造スラブの中心偏析を軽減す
る。Mn低下による強度低下をCの適正量によって補う
ことによって、耐サワー性と耐炭酸ガス腐食性を同時に
満足させる化学組成とする。これらの化学組成の調整を
おこなった鋼に対して、制御圧延と加速冷却を組み合わ
せた製造方法を適用することによりフェライトとベイナ
イトの2相組織とする。これらの化学組成と組織を同時
に満たすことにより、X80級以上の強度を得て同時
に、耐サワー性および耐炭酸ガス腐食性を十分なものと
することができる。
(C) When the above invention is applied to a high-strength steel of X80 class or higher, Mn is used to maintain the sour resistance of the base metal.
Rather, it reduces the center segregation of the continuously cast slab. A chemical composition that simultaneously satisfies sour resistance and carbon dioxide gas corrosion resistance by compensating for a decrease in strength due to a decrease in Mn with an appropriate amount of C. A two-phase structure of ferrite and bainite is obtained by applying a manufacturing method combining controlled rolling and accelerated cooling to the steel whose chemical composition has been adjusted. By simultaneously satisfying these chemical compositions and structures, it is possible to obtain a strength of X80 class or higher, and at the same time, to have sufficient sour resistance and carbon dioxide gas corrosion resistance.

【0034】(d) 高強度鋼の場合、鋼の焼入性は必然的
に高まるので、HAZの硬さが高くなり耐SSC性が劣
化するのでHAZ硬さを低減する対策を付加する必要が
ある。
(D) In the case of a high-strength steel, the hardenability of the steel is inevitably increased, so that the hardness of the HAZ increases and the SSC resistance deteriorates. Therefore, it is necessary to add a measure for reducing the HAZ hardness. is there.

【0035】この目的のためにTi、より好ましくはT
iとNを適正量添加して、HAZ組織を微細化し硬さ上
昇を抑制して溶接部のσthを実降伏強さの80%以上
とする。
For this purpose, Ti, more preferably T
Appropriate amounts of i and N are added to refine the HAZ structure and suppress the increase in hardness, so that σ th of the welded portion is set to 80% or more of the actual yield strength.

【0036】図6は、これらを総合した溶接鋼管の母材
および溶接金属における本発明の要旨をまとめた図面で
ある。同図において、HAZに関する対策は、母材に対
する対策として挙げてある。
FIG. 6 is a drawing summarizing the gist of the present invention in a base material and a weld metal of a welded steel pipe integrating these. In the figure, the measures for HAZ are listed as measures for the base material.

【0037】これらのことを確認する実験に用いた低p
Hのサワー環境としては、現在最も厳しい試験浴である
NACE TM0177浴と呼ばれる、〔1気圧の硫化
水素を飽和させた25℃の0.5%酢酸+5%食塩水溶
液〕とした。判定基準は、「耐HIC性に関してはCA
R2%以下」、また「耐SSC性に関してはNACET
M0177浴中で実降伏強さの80%以上の割れ発生限
界応力σth」を示すものを合格とした。後者は、従来
は、規格最小降伏強さ(SMYS:Specified
Minimum Yield Strength)の
80%以上とされていた。通常、溶接部よりも鋼管母材
のほうが強度は低いので、実降伏強さとしては、溶接鋼
管母材の降伏強さを採用する。母材の降伏強さは規格最
小降伏強さより高い値であることはいうまでもない。
The low p used in experiments confirming these facts
The sour environment for H was so-called NACE TM0177 bath, which is currently the most severe test bath, and was [0.5% acetic acid + 5% saline solution at 25 ° C. saturated with 1 atm of hydrogen sulfide]. The criterion is "CA for HIC resistance.
R2% or less ”and“ SSC resistance is NACET
Those showing a crack initiation limit stress σ th of 80% or more of the actual yield strength in the M0177 bath were accepted. The latter is conventionally known as a standard minimum yield strength (SMYS: Specified).
(Minimum Yield Strength). Usually, the strength of the steel pipe base material is lower than that of the welded portion, and therefore, the yield strength of the welded steel pipe base material is adopted as the actual yield strength. It goes without saying that the yield strength of the base material is higher than the specified minimum yield strength.

【0038】本発明は上記の改良を総合したもので、下
記の化学組成および組織からなるX80級の溶接鋼管を
要旨とする。
The present invention is a synthesis of the above-mentioned improvements, and has a gist of an X80 grade welded steel pipe having the following chemical composition and structure.

【0039】(1)重量%で、C:0.02〜0.15
%、Si:0.01〜0.5%、Mn:0.1〜2%、
P:0.015%以下、S:0.002%以下、Cr:
0.2〜1%、Cu:0〜0.5%、Ni:0〜0.7
%、Mo:0〜0.3%、Nb:0〜0.1%、V:0
〜0.1%、Ti:0〜0.05%、Al:0.005
〜0.1%およびCa:0.0005〜0.005%を
含み残部Feおよび不可避的不純物の化学組成を有する
母材と、母材のCrに対してそのCrが下記の(イ)ま
たは(ロ)の範囲にある溶接金属とからなることを特徴
とする耐サワー性と耐炭酸ガス腐食性とに優れた溶接鋼
管(〔発明1〕とする)。
(1) C: 0.02 to 0.15% by weight
%, Si: 0.01 to 0.5%, Mn: 0.1 to 2%,
P: 0.015% or less, S: 0.002% or less, Cr:
0.2-1%, Cu: 0-0.5%, Ni: 0-0.7
%, Mo: 0 to 0.3%, Nb: 0 to 0.1%, V: 0
-0.1%, Ti: 0-0.05%, Al: 0.005
To 0.1% and Ca: 0.0005 to 0.005%, the base material having the chemical composition of the balance Fe and unavoidable impurities, and the base material having the following Cr (A) or ( A welded steel pipe comprising a weld metal in the range of b) and having excellent sour resistance and carbon dioxide gas corrosion resistance (referred to as [Invention 1]).

【0040】Crを母材のCr量とし、Crを溶接
金属のCr量とするとき、 (イ)Crが0.4%超え1%以下の場合: Cr(%)≦(1/2)×Cr(%) (ロ)Crが0.2%以上0.4%以下の場合: Cr(%)<Cr(%)−0.2 (2)重量%で、C:0.02〜0.15%、Si:
0.01〜0.5%、Mn:0.1〜2%、P:0.0
15%以下、S:0.002%以下、Cr:0.2〜1
%、Cu:0〜0.5%、Ni:0〜0.7%、Mo:
0〜0.3%、Nb:0〜0.1%、V:0〜0.1
%、Ti:0〜0.05%、Al:0.005〜0.1
%およびCa:0.0005〜0.005%を含み残部
Feおよび不可避的不純物の化学組成を有する母材と、
母材のCrおよびCuとNiの和に対してそのCrおよ
びCuとNiの和が下記(イ)または(ロ)の範囲にあ
る溶接金属とからなることを特徴とする耐サワー性と耐
炭酸ガス腐食性とに優れた溶接鋼管(〔発明2〕とす
る)。
When Cr O is the Cr content of the base material and Cr W is the Cr content of the weld metal, (a) When Cr O is more than 0.4% and 1% or less: Cr W (%) ≦ (1) / 2) × Cr 2 O (%) (b) When Cr 2 O is 0.2% or more and 0.4% or less: Cr W (%) <Cr 2 O (%) − 0.2 (2) wt% C: 0.02 to 0.15%, Si:
0.01 to 0.5%, Mn: 0.1 to 2%, P: 0.0
15% or less, S: 0.002% or less, Cr: 0.2 to 1
%, Cu: 0 to 0.5%, Ni: 0 to 0.7%, Mo:
0 to 0.3%, Nb: 0 to 0.1%, V: 0 to 0.1
%, Ti: 0 to 0.05%, Al: 0.005 to 0.1
% And Ca: 0.0005 to 0.005%, and a base material having a chemical composition of balance Fe and unavoidable impurities;
Sour resistance and carbonic acid resistance, characterized in that the sum of Cr, Cu and Ni in the base metal is made of a weld metal whose sum of Cr, Cu and Ni is in the range of (a) or (b) below. A welded steel pipe excellent in gas corrosion (referred to as [Invention 2]).

【0041】Cr、CuおよびNiを、母材のC
r量、Cu量およびNi量とし、Cr、Cuおよび
Niを、溶接金属のCr量、Cu量およびNi量とす
るとき、 (イ)Crが0.4%超え1%以下の場合: Cr(%)≦(1/2)×Cr(%) Cu(%)+Ni(%)+(1/10)×{Cr
(%)−Cr(%)} ≦Cu(%)+Ni(%) ≦Cu(%)+Ni(%)+0.5 (ロ)Crが0.2%以上0.4%以下の場合: Cr(%)<Cr(%)−0.2 Cu(%)+Ni(%)+(1/10)×{Cr
(%)−Cr(%)} ≦Cu(%)+Ni(%) ≦Cu(%)+Ni(%)+0.5 (3)重量%で、C:0.03〜0.07%、Si:
0.01〜0.5%、Mn:0.7〜1.3%、P:
0.015%以下、S:0.002%以下、Cr:0.
2〜1%、Cu:0〜0.5%、Ni:0〜0.7%、
Mo:0〜0.3%、Nb:0〜0.1%、V:0〜
0.1%、Ti:0〜0.05%、Al:0.005〜
0.1%およびCa:0.0005〜0.005%を含
み残部Feおよび不可避的不純物の化学組成を有し、フ
ェライトとベイナイトの2相組織からなる母材と、母材
のCrに対してそのCrが下記の(イ)または(ロ)の
範囲にある溶接金属とからなり、降伏強さ551MPa
以上であることを特徴とする耐サワー性と耐炭酸ガス腐
食性とに優れた溶接鋼管(〔発明3〕とする)。
Cr O 2 , Cu O and Ni O are replaced with the base material C
r amount, the Cu content and Ni content, the Cr W, Cu W and Ni W, Cr content in the weld metal, when the Cu amount and Ni amount, (b) Cr O is less 1% greater than 0.4% If: Cr W (%) ≦ ( 1/2) × Cr O (%) Cu O (%) + Ni O (%) + (1/10) × {Cr
O (%) - Cr W ( %)} ≦ Cu W (%) + Ni W (%) ≦ Cu O (%) + Ni O (%) + 0.5 ( b) Cr O is 0.2% or more 0.4 % the following cases: Cr W (%) <Cr O (%) - 0.2 Cu O (%) + Ni O (%) + (1/10) × {Cr
O (%) - with Cr W (%)} ≦ Cu W (%) + Ni W (%) ≦ Cu O (%) + Ni O (%) + 0.5 (3) wt%, C: from 0.03 to 0 0.07%, Si:
0.01-0.5%, Mn: 0.7-1.3%, P:
0.015% or less, S: 0.002% or less, Cr: 0.
2-1%, Cu: 0-0.5%, Ni: 0-0.7%,
Mo: 0 to 0.3%, Nb: 0 to 0.1%, V: 0
0.1%, Ti: 0-0.05%, Al: 0.005-
0.1% and Ca: 0.0005 to 0.005%, with the balance being Fe and unavoidable impurities, and having a chemical composition of a two-phase structure of ferrite and bainite; The Cr is composed of a weld metal in the range of (A) or (B) below, and has a yield strength of 551 MPa.
A welded steel pipe excellent in sour resistance and carbon dioxide gas corrosion resistance characterized by the above (referred to as [Invention 3]).

【0042】Crを母材のCr量とし、Crを溶接
金属のCr量とするとき、 (イ)Crが0.4%超え1%以下の場合: Cr(%)≦(1/2)×Cr(%) (ロ)Crが0.2%以上0.4%以下の場合: Cr(%)<Cr(%)−0.2 (4)重量%で、C:0.03〜0.07%、Si:
0.01〜0.5%、Mn:0.7〜1.3%、P:
0.015%以下、S:0.002%以下、Cr:0.
2〜1%、Cu:0〜0.5%、Ni:0〜0.7%、
Mo:0〜0.3%、Nb:0〜0.1%、V:0〜
0.1%、Ti:0〜0.05%、Al:0.005〜
0.1%およびCa:0.0005〜0.005%を含
み残部Feおよび不可避的不純物の化学組成を有し、フ
ェライトとベイナイトの2相組織からなる母材と、母材
のCrおよびCuとNiの和に対してそのCrおよびC
uとNiの和が下記の(イ)または(ロ)の範囲にある
溶接金属とからなり、降伏強さ551MPa以上である
ことを特徴とする耐サワー性と耐炭酸ガス腐食性とに優
れた溶接鋼管(〔発明4〕とする)。
When Cr O is the Cr content of the base material and Cr W is the Cr content of the weld metal, (a) When Cr O is more than 0.4% and 1% or less: Cr W (%) ≦ (1) / 2) × Cr 2 O (%) (b) When Cr 2 O is 0.2% or more and 0.4% or less: Cr W (%) <Cr 2 O (%) − 0.2 (4) wt% C: 0.03-0.07%, Si:
0.01-0.5%, Mn: 0.7-1.3%, P:
0.015% or less, S: 0.002% or less, Cr: 0.
2-1%, Cu: 0-0.5%, Ni: 0-0.7%,
Mo: 0 to 0.3%, Nb: 0 to 0.1%, V: 0
0.1%, Ti: 0-0.05%, Al: 0.005-
0.1% and Ca: 0.0005 to 0.005%, the balance has a chemical composition of Fe and unavoidable impurities, a base material composed of a two-phase structure of ferrite and bainite, and a base material of Cr and Cu. Cr and C to the sum of Ni
It is made of a weld metal having a sum of u and Ni in the following range (a) or (b) and has a yield strength of 551 MPa or more, and is excellent in sour resistance and carbon dioxide gas corrosion resistance. Welded steel pipe (referred to as [Invention 4]).

【0043】Cr0 、Cu0 およびNi0 を母材のCr
量、Cu量およびNi量とし、CrW 、CuW およびN
W を溶接金属のCr量、Cu量およびNi量とすると
き、 (イ)Cr0 が0.4%超え1%以下の場合: CrW (%)≦(1/2)×Cr0 (%)Cu
0 (%)+Ni0 (%)+(1/10)×{Cr
0 (%)−CrW (%)}≦CuW (%)+Ni
W (%)≦Cu0 (%)+Ni0 (%)+0.5 (ロ)Cr0 が0.2%以上0.4%以下の場合: CrW (%)<Cr0 (%)−0.2 Cu0 (%)+Ni0 (%)+(1/10)×{Cr
0 (%)−CrW (%)}≦CuW (%)+Ni
W (%)≦Cu0 (%)+Ni0 (%)+0.5 上記の「溶接金属」は、大径管のいわゆる縦シーム溶接
部(シングルシームおよびダブルシーム)に限らず、ス
パイラル溶接部、またはこれら溶接管どうしの接合部で
ある円周溶接部にも適用される。また、“フェライトと
ベイナイトの2相組織の母材”とは、HAZを除いた母
材を指す。
Cr 0 , Cu 0, and Ni 0 are used as base material Cr
Amount, Cu amount and Ni amount, and Cr W , Cu W and N
When i W is the Cr amount, Cu amount and Ni amount of the weld metal, (a) When Cr 0 is more than 0.4% and 1% or less: Cr W (%) ≦ (1/2) × Cr 0 ( %) Cu
0 (%) + Ni 0 (%) + (1/10) × {Cr
0 (%)-Cr W (%)} ≦ Cu W (%) + Ni
W (%) ≦ Cu 0 (%) + Ni 0 (%) + 0.5 (b) When Cr 0 is 0.2% or more and 0.4% or less: Cr W (%) <Cr 0 (%) − 0 .2 Cu 0 (%) + Ni 0 (%) + (1/10) × ΔCr
0 (%)-Cr W (%)} ≦ Cu W (%) + Ni
W (%) ≦ Cu 0 (%) + Ni 0 (%) + 0.5 The above “weld metal” is not limited to so-called vertical seam welds (single seam and double seam) of large-diameter pipes. Alternatively, the present invention is also applied to a circumferential weld, which is a joint between these welded pipes. The “base material having a two-phase structure of ferrite and bainite” refers to a base material excluding HAZ.

【0044】図7は本発明(〔発明1〕、〔発明2〕、
〔発明3〕および〔発明4〕)における溶接金属のCr
量(CrW )と母材のCr量(Cr0 )の範囲を表す図
面である。同図において、1の範囲が本発明の範囲を表
す。母材のCr量と溶接金属のCr量の差、[Cr
0 (%)−CrW (%)]は、母材のCrが1%であ
り、かつ溶接金属のCrがゼロのとき最大となり、最大
値は1%であり、また最小となるのは母材のCrが0.
4%、かつ溶接金属のCrが0.2%のときで、最小値
は0.2%である。
FIG. 7 shows the present invention ([Invention 1], [Invention 2],
Cr of the weld metal in [Invention 3] and [Invention 4])
3 is a drawing showing a range of the amount (Cr W ) and the amount of Cr (Cr 0 ) of the base material. In the figure, the range 1 indicates the range of the present invention. The difference between the Cr content of the base metal and the Cr content of the weld metal, [Cr
0 (%) − Cr W (%)] is the maximum when the base material Cr is 1% and the weld metal Cr is zero, the maximum value is 1%, and the minimum value is the base value. Cr of the material is 0.
The minimum value is 0.2% when 4% and Cr of the weld metal is 0.2%.

【0045】Cr以外のそのほかの溶接金属の合金元素
については、CaとSを除いて母材に対して設定された
化学組成の範囲内にあるのが望ましい。耐食性等は母材
と溶接金属とにかかわらず化学組成できまるからであ
る。ただし、C量のみは、母材に対して設定された範囲
内にありながら母材に比べて低めにすることが望まし
い。
It is desirable that other alloying elements of the weld metal other than Cr be within the range of the chemical composition set for the base metal except Ca and S. This is because the corrosion resistance and the like can be determined by the chemical composition regardless of the base metal and the weld metal. However, it is desirable that only the C amount is lower than that of the base material while being within the range set for the base material.

【0046】Caは溶接中に酸化して溶接金属中に留ま
る量は溶接材料のそれよりも少なくなり、一般に母材よ
り低くなる傾向がある。しかし後記するように溶接金属
中のSは、たとえばMnSを形成しても母材中のMnS
のように圧延により展伸しないために耐HIC性を劣化
させる程度が小さいので、溶接金属中のCa量は母材に
対して設定された範囲より低くてもよい。
The amount of Ca that oxidizes during welding and remains in the weld metal is smaller than that of the welding material, and generally tends to be lower than that of the base metal. However, as will be described later, S in the weld metal may contain MnS even if MnS is formed.
As described above, since the degree of deterioration of HIC resistance is small because the HIC resistance is not expanded by rolling, the amount of Ca in the weld metal may be lower than the range set for the base metal.

【0047】Sも同様な理由により、溶接金属中でMn
Sを形成しても圧延されることがないので、耐HICを
劣化させる程度は小さく、母材に対して設定された範囲
より多くてもよい。
[0047] For the same reason, S is also Mn in the weld metal.
Since S is not rolled even if formed, the degree of deterioration of HIC resistance is small, and may be larger than the range set for the base material.

【0048】図8は〔発明2〕および〔発明4〕におけ
る[(CuW +NiW )(%)]と[(Cu0 +N
0 )(%)]との範囲を表す図面である。溶接金属の
CuとNiの和が母材に比べて多い量の上限は0.5%
である(図7の直線12)。しかし、下限は溶接金属お
よび母材のCrがともに決まらないと決まらない。上記
の図7で述べた溶接金属と母材のCrの差の最大値と最
小値をもとにすると、(1/10)×[Cr0 (%)−
CrW (%)]は、最大値が0.1%であり、最小値が
0.02%となる。したがって、溶接金属のCuとNi
の和の下限は、図8に示すように、最大の場合、直線1
3となり、最小の場合、直線14となる。
FIG. 8 shows [(Cu W + Ni W ) (%)] and [(Cu 0 + N) in [Invention 2] and [Invention 4].
i 0 ) (%)]. The upper limit of the amount in which the sum of Cu and Ni in the weld metal is larger than that of the base metal is 0.5%
(Straight line 12 in FIG. 7). However, the lower limit is not determined unless both Cr of the weld metal and the base metal are determined. Based on the maximum value and the minimum value of the difference between Cr of the weld metal and the base metal described in FIG. 7, (1/10) × [Cr 0 (%) −
[Cr W (%)] has a maximum value of 0.1% and a minimum value of 0.02%. Therefore, the weld metal Cu and Ni
As shown in FIG. 8, the lower limit of the sum of
3 and the minimum is a straight line 14.

【0049】CrおよびCu+Ni以外のそのほかの溶
接金属中の合金元素については、〔発明1〕および〔発
明3〕と同様である。
The alloying elements in the weld metal other than Cr and Cu + Ni are the same as in [Invention 1] and [Invention 3].

【0050】[0050]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

1.鋼管母材の化学組成 以下の説明で、「%」は「重量%」を表示する。 1. Chemical composition of steel pipe base material In the following description, "%" indicates "% by weight".

【0051】C:〔発明1〕および〔発明2〕の場合、
Cは、強度を確保するために0.02%以上添加しなけ
ればならない。しかし、0.15%を超えると中心偏析
が著しく生じ溶接部の耐SSC性が損なわれるので0.
15%以下とする。〔発明3〕および〔発明4〕のX8
0級以上の高強度鋼管に対しては、Cはより狭く制限す
ることが必要である。0.03%未満とすると、後記す
る製造方法を駆使しても必要な降伏強さが得られない
が、0.07%を超えるとHAZの硬さが上昇し、HA
Z最外線近傍においてパーライトバンドが生成して耐S
SC性が低下するので、0.03〜0.07%とする。
〔発明3〕および〔発明4〕において、適切な強度と良
好な耐SSC性のバランスをほど良く得るには、さらに
0.04〜0.06%とすることが望ましい。
C: In the case of [Invention 1] and [Invention 2],
C must be added at 0.02% or more to ensure strength. However, when the content exceeds 0.15%, center segregation is remarkable and the SSC resistance of the welded part is impaired.
15% or less. X8 of [Invention 3] and [Invention 4]
For high-strength steel pipes of class 0 or higher, it is necessary to limit C more narrowly. If the content is less than 0.03%, the required yield strength cannot be obtained even by making full use of the production method described later, but if it exceeds 0.07%, the hardness of the HAZ increases, and the HA is increased.
A pearlite band is formed in the vicinity of the outermost Z line to prevent S
Since the SC property decreases, the content is set to 0.03 to 0.07%.
In [Invention 3] and [Invention 4], in order to obtain a proper balance between appropriate strength and good SSC resistance, the content is further desirably 0.04 to 0.06%.

【0052】Si:Siは製鋼時に脱酸剤として使用す
るが、0.01%未満では脱酸が十分に行われず、後記
するAlの歩留まりを低下させるが、0.5%を超える
と靭性が劣化するので0.01〜0.5%とする。
Si: Si is used as a deoxidizing agent at the time of steel making. If it is less than 0.01%, deoxidation is not sufficiently performed, and the yield of Al described below is lowered. Since it deteriorates, it is made 0.01 to 0.5%.

【0053】Mn:〔発明1〕および〔発明2〕におい
て、Mnは安価に高強度を得るのに有効である。0.1
%未満では必要な降伏強さを得ることができないが、2
%を超えると中心偏析がいちじるしく生じ、かつHAZ
が著しく硬化して耐SSC性が損なわれるので0.1〜
2%とする。
Mn: In [Invention 1] and [Invention 2], Mn is effective for obtaining high strength at low cost. 0.1
%, The required yield strength cannot be obtained.
%, Center segregation is remarkably generated and HAZ
Is significantly hardened and SSC resistance is impaired,
2%.

【0054】〔発明3〕および〔発明4〕では、このM
n量をさらに限定する。X80級の降伏強さを確保する
には0.7%以上必要である。しかし、1.3%を超え
て多くすると、上記したように中心偏析部でMnとPの
共偏析による異常組織(硬化組織)を生じて耐HIC性
および耐SSC性が劣化するので0.7〜1.3%とす
る。
In [Invention 3] and [Invention 4], this M
The amount of n is further limited. 0.7% or more is required to secure the yield strength of the X80 class. However, if the content exceeds 1.3%, an abnormal structure (hardened structure) due to co-segregation of Mn and P occurs in the central segregation portion as described above, and the HIC resistance and the SSC resistance are deteriorated. To 1.3%.

【0055】P:Pは低いことが好ましい。しかしPを
低減するにはコスト上昇を伴うので、性能劣化が著しく
ない範囲以下とする。0.015%を超えると連続鋳造
スラブの中心部にMnと共に濃厚偏析し、異常組織を生
じて耐HIC性を著しく劣化するので0.015%以下
としなければならない。
P: P is preferably low. However, reducing P involves an increase in cost. Therefore, the P is set to a value below the range where performance is not significantly deteriorated. If it exceeds 0.015%, it segregates with Mn in the central part of the continuous casting slab with Mn, resulting in an abnormal structure and significantly deteriorating the HIC resistance.

【0056】S:Sは低いことが望ましい。しかしSを
低下することもコスト上昇を伴うので、許容範囲以下と
する。0.002%を超えるとCaによる硫化物の形状
制御を行っても、中心偏析部ではMnSを生成し、耐H
IC性が損なわれるので0.002%以下とする。
S: S is desirably low. However, lowering the value of S also increases the cost, so that the value is set to an allowable range or less. If the content exceeds 0.002%, MnS is generated in the center segregation portion even if the shape control of the sulfide by Ca is performed, and the resistance to H
Since the IC property is impaired, the content is made 0.002% or less.

【0057】Cr:耐炭酸ガス腐食性を高めるため、お
よびX80級の降伏強さを確保して良好な耐SSC性を
得るために0.2%以上必要である。しかし1%を超え
ると母材の耐SSC性が劣化するため、0.2〜1%と
する。さらに高い母材強度、例えばX80級以上の強度
および耐SSC性と耐炭酸ガス腐食性を同時に確保する
には、0.4〜0.7%とすることが望ましい。
Cr: 0.2% or more is required in order to enhance the corrosion resistance to carbon dioxide gas and to secure the X80-class yield strength and obtain good SSC resistance. However, if it exceeds 1%, the SSC resistance of the base material deteriorates. In order to simultaneously secure a higher base material strength, for example, a strength of X80 class or higher, SSC resistance and carbon dioxide gas corrosion resistance, the content is preferably 0.4 to 0.7%.

【0058】Cu:Cuは添加しなくてもよい。しか
し、Cuは耐炭酸ガス腐食性を高めることができ、同時
に水素の侵入を防止して耐HIC性および低pHの硫化
水素環境下での耐SSC性を向上させるので、これらの
性能をさらに向上させる場合には添加する。しかし、添
加する場合でも0.5%を超えると、連続鋳造スラブの
表面に亀甲状の割れを発生し、製品歩留まりを著しく低
下するので、0.5%以下とする。
Cu: Cu need not be added. However, Cu can enhance the carbon dioxide gas corrosion resistance, and at the same time, prevents the invasion of hydrogen, thereby improving the HIC resistance and the SSC resistance under a low pH hydrogen sulfide environment. If it is to be added, it is added. However, even if it is added, if it exceeds 0.5%, the surface of the continuous casting slab will be cracked and the product yield will be significantly reduced.

【0059】Ni:Niは添加しなくてもよい。しか
し、Niは靭性を高め、同時に耐炭酸ガス腐食性を高め
るので、これら性能をとくに向上させる場合には添加す
る。しかし、0.7%を超えると、耐SSC性および耐
HIC性能を劣化させるので、添加するとしても0.7
%以下とする。靭性をより向上し耐SSC性および耐H
IC性を劣化させない範囲としては、0.2〜0.5%
が望ましい。
Ni: Ni may not be added. However, Ni enhances toughness and at the same time enhances carbon dioxide gas corrosion resistance. Therefore, Ni is added when these properties are particularly improved. However, if it exceeds 0.7%, the SSC resistance and the HIC resistance are deteriorated.
% Or less. Improved toughness, SSC resistance and H resistance
0.2 to 0.5% as a range that does not deteriorate the IC property
Is desirable.

【0060】Mo:Moは添加しなくてもよい。しか
し、添加することにより、強度および靭性を向上させ、
また、NACE TM0177浴のようにpHの低い環
境ではNiとの相乗作用で水素侵入を抑制して耐HIC
性を向上させるので、これら性能をさらに向上させる場
合には添加する。添加する場合でも0.3%を超えると
靭性および溶接部の耐SSC性が低下するので、0.3
%以下とする。より良好な強度および靭性を確保し、溶
接部の耐SSC性を維持するには、0.05〜0.15
%とするのが望ましい。
Mo: Mo may not be added. However, by adding, improve the strength and toughness,
Further, in an environment having a low pH, such as a NACE TM0177 bath, synergistic action with Ni suppresses hydrogen intrusion and reduces HIC resistance.
It is added when these properties are to be further improved because the properties are improved. Even if it is added, if it exceeds 0.3%, the toughness and the SSC resistance of the welded part decrease.
% Or less. In order to ensure better strength and toughness and maintain the SSC resistance of the weld, 0.05 to 0.15
% Is desirable.

【0061】Nb:Nbは添加しなくてもよい。しか
し、Nbは細粒化と炭化物の析出により、強度および靭
性を向上させ、また、細粒化によって耐SSC性を向上
させるので、これらをさらに向上させる場合には添加す
る。しかし、添加する場合でも、0.1%を超えるとか
えって靭性の著しい低下を招くので、0.1%以下とす
る。より良好な強度靭性バランスを保つには、0.02
〜0.05%とするのが望ましい。
Nb: Nb may not be added. However, Nb improves the strength and toughness by grain refinement and precipitation of carbides, and improves SSC resistance by grain refinement. Therefore, Nb is added when further improving them. However, even in the case where it is added, if it exceeds 0.1%, the toughness is remarkably reduced rather than 0.1%. To maintain a better balance of strength and toughness, 0.02
It is desirable to set it to 0.05%.

【0062】V:Vは添加しなくてもよい。しかし、V
はNbと同様に細粒化と炭化物析出により強度および靭
性を向上させ、かつ細粒化によって耐SSC性を向上さ
せる。したがって、これら性能をさらに向上させる場合
には添加する。しかし、添加する場合でも、0.1%を
超えると、靭性の著しい低下を招くので、0.1%以下
とする。より適度の強度靭性バランスを得るには、0.
02〜0.07%とするのが望ましい。
V: V may not be added. But V
Improves the strength and toughness by grain refinement and carbide precipitation similarly to Nb, and improves the SSC resistance by grain refinement. Therefore, when these properties are further improved, they are added. However, even if it is added, if it exceeds 0.1%, the toughness is remarkably reduced. In order to obtain a more appropriate balance of strength and toughness, it is necessary to use 0.1%.
It is desirably set to 02 to 0.07%.

【0063】Al:Alは製鋼時の脱酸剤として有効で
ある。0.005%未満では脱酸が十分行われず、連続
鋳造の凝固の際ピンホールを生成するので、0.005
%以上とする。しかし、0.1%を超えると、鋼の清浄
度および靭性が劣化するので、0.005〜0.1%と
する。ピンホールの発生を抑制し、良好な靭性を得るに
は0.01〜0.03%とするのが望ましい。
Al: Al is effective as a deoxidizing agent in steel making. If the content is less than 0.005%, deoxidation is not sufficiently performed, and pinholes are generated during solidification in continuous casting.
% Or more. However, if it exceeds 0.1%, the cleanliness and toughness of the steel deteriorate, so the content is made 0.005 to 0.1%. In order to suppress the generation of pinholes and obtain good toughness, the content is desirably 0.01 to 0.03%.

【0064】Ca:Caは硫化物系介在物の形態を制御
するのに有効な元素であるが、0.0005%未満では
圧延により延伸するMnSを生成し、耐HIC性が損な
われるので0.0005%以上とする。しかし、0.0
05%を超えると、過剰のCaが酸化物の集合を形成し
て耐HIC性を劣化するので0.0005〜0.005
%とする。より一層の耐HIC性を得るには、0.00
1〜0.003%とするのが望ましい。
Ca: Ca is an effective element for controlling the morphology of sulfide inclusions, but if it is less than 0.0005%, MnS is formed by rolling and the HIC resistance is impaired. 0005% or more. However, 0.0
If it exceeds 0.05%, excessive Ca forms aggregates of oxides and degrades HIC resistance.
%. To obtain even higher HIC resistance, 0.00
It is desirable to set it to 1 to 0.003%.

【0065】Ti:〔発明1〕および〔発明2〕におい
ては、Tiは添加しなくてもよい。しかし、Nと結合し
TiNを析出することにより、HAZ硬さを低下させる
ので〔発明3〕および〔発明4〕の対象とするX80級
の高強度鋼管のHAZの硬さを抑制し耐SSC性を高め
る効果があるので、〔発明3〕および〔発明4〕におい
ては0.005%以上としなければならない。0.00
5%未満では明確な効果が得られないからである。しか
し、その含有量が0.05%を超えると、高強度および
低強度の如何によらず母材および溶接部の靭性が劣化す
るので0.05%以下とする。〔発明1〕〜〔発明4〕
において、靭性を確保したうえで十分な耐SSC性を得
るには、0.01〜0.02%とするのが望ましい。
Ti: In [Invention 1] and [Invention 2], Ti may not be added. However, since the HAZ hardness is lowered by bonding with N and precipitating TiN, the hardness of the HAZ of the high-strength steel pipe of X80 class which is the object of [Invention 3] and [Invention 4] is suppressed, and the SSC resistance is reduced. Therefore, in [Invention 3] and [Invention 4], the content must be 0.005% or more. 0.00
If it is less than 5%, a clear effect cannot be obtained. However, when the content exceeds 0.05%, the toughness of the base material and the welded portion is deteriorated regardless of the high strength and the low strength. [Invention 1] to [Invention 4]
In order to obtain sufficient SSC resistance while securing toughness, the content is preferably 0.01 to 0.02%.

【0066】N:Nについては、とくに制限しないが、
Tiを添加する場合は、やや高め、例えば0.004〜
0.01%とし、またTiを添加しない場合はやや低
め、例えば0.002〜0.006%とするのが望まし
い。Tiを添加する場合は、HAZの軟化を図るためT
iNを積極的に生成させるためであり、Tiを添加しな
い場合は、低強度鋼においてはHAZはあまり硬化せ
ず、Nを低減してHAZの固溶N量を低くしたほうが靭
性が向上するからである。
N: N is not particularly limited.
When adding Ti, it is slightly higher, for example, 0.004 to
The content is set to 0.01%, and when Ti is not added, it is desirably slightly lower, for example, 0.002 to 0.006%. When Ti is added, T is used to soften the HAZ.
In order to actively generate iN, and when Ti is not added, HAZ hardly hardens in a low-strength steel, and toughness is improved by reducing N and decreasing the amount of solute N in HAZ. It is.

【0067】2.母材の組織 〔発明1〕および〔発明2〕では、とくに母材の組織は
限定しない。〔発明3〕および〔発明4〕の場合は、つ
ぎのように母材の組織を限定する。X80級以上の高強
度溶接鋼管の母材の組織は、“フェライトとベイナイト
の2相組織”、すなわち“フェライトとベイナイトが均
一に混合した組織”とする。このような組織とすること
により、優れた母材の耐HICおよび耐SSC性が確保
されるからである。このような組織は、上記の母材の化
学組成と後記する製造方法により製造しないと得られな
い。強度を高めるために合金元素を増量すると、“Cが
濃縮した残留オーステナイトの混じった組織”、“中心
偏析部の硬いマルテンサイト組織”、“ブロック状ベイ
ナイト組織”あるいは“パーライトの混じった組織”が
生じやすいが、このような組織では良好な耐HIC性お
よび耐SSC性を得られない。このような組織を避ける
ために後記する製造方法により溶接鋼管母材である鋼板
を製造する。ここで“ブロック状ベイナイト組織”と
は、初析フェライトがオーステナイト粒界から十分成長
した後、Cが濃縮したオーステナイトから生成するベイ
ナイトをいう。
2. Structure of Base Material In [Invention 1] and [Invention 2], the structure of the base material is not particularly limited. In the case of [Invention 3] and [Invention 4], the structure of the base material is limited as follows. The structure of the base material of the high-strength welded steel pipe of X80 class or higher is “two-phase structure of ferrite and bainite”, that is, “structure in which ferrite and bainite are uniformly mixed”. This is because such a structure ensures excellent HIC resistance and SSC resistance of the base material. Such a structure cannot be obtained unless it is manufactured by the chemical composition of the base material and a manufacturing method described later. When the amount of alloying elements is increased to increase the strength, the “structure containing residual austenite enriched with C”, the “hard martensite structure in the center segregation part”, the “block-like bainite structure” or the “structure containing pearlite” are obtained. Although it is likely to occur, such a structure does not provide good HIC resistance and SSC resistance. In order to avoid such a structure, a steel plate as a base material of a welded steel pipe is manufactured by a manufacturing method described later. Here, the “block-like bainite structure” refers to bainite formed from austenite in which C is concentrated after proeutectoid ferrite has sufficiently grown from austenite grain boundaries.

【0068】3.溶接金属 上記したように低pHの硫化水素環境下では、Cr濃度
が高いほど母材および溶接金属ともに腐食速度は大き
い。また、Cr濃度および腐食環境によらず、一般的に
母材よりも溶接金属のほうが腐食速度は大きいので、同
一Cr量の溶接金属および母材が低pHの湿潤硫化水素
に曝されるとき、溶接金属は母材に比べて選択的に腐食
される。このような腐食の不均衡が溶接金属の耐SSC
性を劣化させるので、溶接金属に対して以下の成分制限
を行う(図6〜図8参照)。
3. Weld metal As described above, in a low pH hydrogen sulfide environment, the higher the Cr concentration, the higher the corrosion rate of both the base metal and the weld metal. In addition, regardless of the Cr concentration and the corrosive environment, the corrosion rate of the weld metal is generally higher than that of the base metal. Therefore, when the weld metal and the base material having the same Cr amount are exposed to low pH wet hydrogen sulfide, The weld metal is selectively corroded compared to the base metal. Such an imbalance of corrosion is caused by the SSC resistance of the weld metal.
Therefore, the following components are limited for the weld metal (see FIGS. 6 to 8).

【0069】Cr: (イ)母材のCr量(Cr0 )が0.4%超え1%以下
の範囲にある場合、溶接金属のCr量(CrW )は
[(1/2)×Cr0 (%)]以下とする。溶接金属の
Cr量が[(1/2)×Cr0 (%)]を超えて母材の
Cr量に近づくか、等しくなるか、または母材のCr量
を上回ると、図2および図3に示すように低pHの硫化
水素環境下での母材および溶接金属の腐食が大となる。
その結果、溶接金属と母材の腐食速度の不均衡が生じる
と、溶接部の耐SSC性が劣化して、溶接部の割れ発生
限界応力σthが実降伏強さの80%以上とならない。
Cr: (a) When the Cr content (Cr 0 ) of the base metal is in the range of more than 0.4% and 1% or less, the Cr content (Cr W ) of the weld metal is [(1/2) × Cr 0 (%)] or less. When the Cr content of the weld metal exceeds [(1/2) × Cr 0 (%)] and approaches or equals the Cr content of the base material, or exceeds the Cr content of the base material, FIGS. As shown in (1), the corrosion of the base metal and the weld metal under a low pH hydrogen sulfide environment increases.
As a result, when the corrosion rate of the weld metal and the base metal becomes unbalanced, the SSC resistance of the welded portion is deteriorated, and the crack initiation limit stress σ th of the welded portion does not become 80% or more of the actual yield strength.

【0070】溶接金属が低pHの硫化水素環境下で良好
な耐食性および耐SSC性をもちながら同時に、良好な
耐炭酸ガス腐食性をも備えるには、溶接金属のCr量
(CrW )を上記の範囲内で出来るだけ高くすることが
望ましい。例えば、母材のCr量(Cr0 )を0.4〜
0.7%とするとき、溶接金属のCr量(CrW )は、
[(1/2)×Cr0 (%)]以下を満たした上で、で
きるだけ高いこと、すなわち0.15〜0.3%とする
ことが望ましい。
In order for the weld metal to have good corrosion resistance and SSC resistance in a low pH hydrogen sulfide environment and at the same time to have good carbon dioxide gas corrosion resistance, the Cr content (Cr W ) of the weld metal must be as described above. It is desirable to make the height as high as possible within the range. For example, the amount of Cr (Cr 0 ) of the base material is set to 0.4 to
When the content is 0.7%, the Cr content (Cr W ) of the weld metal is
After satisfying [(1/2) × Cr 0 (%)] or less, it is desirable to be as high as possible, that is, 0.15 to 0.3%.

【0071】(ロ)母材のCr量(Cr0 )が0.2%
以上0.4%以下の範囲にある場合、溶接金属のCr量
(CrW )は、[Cr0 (%)−0.2(%)]未満と
する。溶接金属のCr量(CrW )が、[Cr0 (%)
−0.2(%)]以上となり、母材のCr量に近づく
か、等しくなるか、またはそれを超えると、低pHの硫
化水素環境下での腐食速度の絶対値は小さいものの、上
記したように、溶接金属と母材の腐食速度の不均衡が生
じ、それが原因で溶接金属の耐SSC性が劣化する。ま
た、上記したように、耐炭酸ガス腐食性も同時に備える
には、溶接金属のCr量(CrW )は[Cr0 (%)−
0.2(%)]未満であることを満足しつつ、できるだ
け高いことが望ましい。
(B) Cr content of base material (Cr 0 ) is 0.2%
When it is in the range of not less than 0.4% and not more than 0.4%, the Cr content (Cr W ) of the weld metal is less than [Cr 0 (%)-0.2 (%)]. The Cr content (Cr W ) of the weld metal is [Cr 0 (%)
-0.2 (%)] or more, and approaching or equal to or exceeding the Cr content of the base material, the absolute value of the corrosion rate in a low pH hydrogen sulfide environment is small, Thus, an imbalance in the corrosion rate between the weld metal and the base metal occurs, which degrades the SSC resistance of the weld metal. Further, as described above, in order to simultaneously provide carbon dioxide corrosion resistance, the Cr content (Cr W ) of the weld metal is [Cr 0 (%) −
0.2 (%)], and preferably as high as possible.

【0072】〔発明1〕および〔発明3〕においては、
上記した溶接金属のCr量(CrW)のみ限定する。C
r以外のほかの溶接金属の元素は、CaおよびSを除い
て、〔発明1〕および〔発明3〕ともに母材に対して設
定された化学組成範囲と同じとすることが望ましい。た
だし、溶接金属のC量は母材の化学組成範囲内を満足し
ながら、母材よりも低めにするのがよい。急冷凝固した
溶接ままの状態においては、母材と同じC量では硬さが
高くなりすぎて耐SSC性が劣化するからである。
In [Invention 1] and [Invention 3],
Only the Cr content (Cr W ) of the above weld metal is limited. C
The elements of the weld metal other than r, except for Ca and S, are preferably the same as the chemical composition ranges set for the base material in both [Invention 1] and [Invention 3]. However, the C content of the weld metal is preferably set to be lower than that of the base metal, while satisfying the chemical composition range of the base metal. This is because, in the rapidly solidified as-welded state, if the C content is the same as that of the base metal, the hardness becomes too high and the SSC resistance is deteriorated.

【0073】溶接金属のCaは前述の理由により母材に
対して設定された範囲より低くてもよく、また溶接金属
のSは母材に対して設定されたSの範囲より高くてもよ
い。
The Ca of the weld metal may be lower than the range set for the base metal for the reason described above, and the S of the weld metal may be higher than the range of S set for the base metal.

【0074】〔発明2〕および〔発明4〕においては、
上記したCrについての限定の他に、溶接金属の耐炭酸
ガス腐食性をさらに向上させるためにCuおよびNiに
ついてつぎのような限定をつけ加える。
In [Invention 2] and [Invention 4],
In addition to the above limitation on Cr, the following limitation is added on Cu and Ni in order to further improve the carbon dioxide corrosion resistance of the weld metal.

【0075】CuおよびNi:CuおよびNiは、図4
に示すように耐炭酸ガス腐食性を向上させ、pHの高い
湿潤硫化水素環境下では水素侵入を抑制して耐HIC性
をも向上させる。また、溶接金属のCuおよびNiを母
材に比べて高くすることは、同時に低pHの硫化水素環
境での耐SSC性も向上させる効果がある。
Cu and Ni: Cu and Ni are shown in FIG.
As shown in (1), the carbon dioxide gas corrosion resistance is improved, and in a wet hydrogen sulfide environment having a high pH, hydrogen intrusion is suppressed and the HIC resistance is also improved. Further, increasing Cu and Ni of the weld metal as compared with the base metal has an effect of simultaneously improving SSC resistance in a low pH hydrogen sulfide environment.

【0076】〔発明2〕および〔発明4〕においては、
溶接金属のCuおよびNiを適正量増加して耐炭酸ガス
腐食性を向上できるので、低pHの硫化水素環境下での
耐サワー性を向上するために溶接金属のCrを十分下げ
られる利点もある。
In [Invention 2] and [Invention 4],
Since an appropriate amount of Cu and Ni in the weld metal can be increased to improve the carbon dioxide corrosion resistance, there is also an advantage that the Cr of the weld metal can be sufficiently reduced in order to improve the sour resistance under a low pH hydrogen sulfide environment. .

【0077】溶接金属のCuとNiの和(CuW +Ni
W )は、母材のそれ(Cu0 +Ni0 )よりも[(1/
10)×{Cr0 (%)−CrW (%)}]以上高くな
ければならない。それ未満の量では、溶接金属の耐炭酸
ガス腐食性は十分でなく、溶接金属が選択腐食を受け溶
接金属の耐SSC性が劣化する。上記したように、この
量は溶接金属および母材のCrが両方とも決まらなけれ
ば決まらないが、最大値は0.1%であり(図8の直線
13)最小値は0.02%である(図8の直線14)。
しかし、溶接金属のCuとNiの和(CuW +NiW
が、母材のそれ(Cu0 +Ni0 )より0.5%(図8
の直線12)を超えて多くなると、耐炭酸ガス腐食性が
飽和するばかりか、耐SCC性が逆に低下するので、母
材のそれを超える量は0.5%以下とする。
The sum of Cu and Ni of the weld metal (Cu W + Ni
W ) is [(1/1) than that of the base material (Cu 0 + Ni 0 ).
10) × {Cr 0 (%) − Cr W (%)}] or more. If the amount is less than this, the carbon dioxide corrosion resistance of the weld metal is not sufficient, and the weld metal undergoes selective corrosion and the SSC resistance of the weld metal deteriorates. As described above, this amount cannot be determined unless both the Cr of the weld metal and the base metal are determined, but the maximum value is 0.1% (the straight line 13 in FIG. 8) and the minimum value is 0.02%. (Line 14 in FIG. 8).
However, the sum of Cu and Ni of the weld metal (Cu W + Ni W )
Is 0.5% higher than that of the base material (Cu 0 + Ni 0 ) (FIG. 8).
When the amount exceeds the straight line 12), not only the carbon dioxide gas corrosion resistance is saturated, but also the SCC resistance is reduced, so the amount of the base material exceeding 0.5% is set to 0.5% or less.

【0078】〔発明2〕または〔発明4〕においては、
それぞれ〔発明1〕または〔発明3〕のCrの限定につ
け加えて上記のCuおよびNiの限定を行う。そのほか
の元素は、〔発明1〕または〔発明3〕と同様である。
In [Invention 2] or [Invention 4],
In addition to the limitation of Cr of [Invention 1] or [Invention 3], respectively, the limitation of Cu and Ni is performed. Other elements are the same as [Invention 1] or [Invention 3].

【0079】4.母材の製造方法 以下において、〔発明3〕および〔発明4〕において、
溶接鋼管の素材である鋼板の組織を“フェライトとベイ
ナイトの2相組織”、すなわち“フェライトとベイナイ
トが均一に混合した組織”とし、降伏強さ551MPa
以上を確保する方法について説明する。
4. In the following, in [Invention 3] and [Invention 4],
The structure of the steel sheet, which is the material of the welded steel pipe, is referred to as a “two-phase structure of ferrite and bainite”, that is, a “structure in which ferrite and bainite are uniformly mixed”, and has a yield strength of 551 MPa.
A method for securing the above will be described.

【0080】(1)圧延 スラブ加熱温度は1050〜1250℃とする。105
0℃未満では、炭化物が固溶せず粗大化したままなので
強度が上昇せず、また所定の圧延温度の確保が困難とな
る。一方、1250℃を超えると組織が粗くなり靭性が
確保できない。
(1) Rolling The slab heating temperature is set to 1,050 to 1,250 ° C. 105
If the temperature is less than 0 ° C., the carbide does not form a solid solution and remains coarse, so that the strength does not increase and it is difficult to secure a predetermined rolling temperature. On the other hand, when the temperature exceeds 1250 ° C., the structure becomes coarse and toughness cannot be secured.

【0081】同時に、耐SSC性も劣化するので、12
50℃以下とする。組織が微細なまま高強度を得るに
は、1100〜1200℃とするのが望ましい。
At the same time, the SSC resistance also deteriorates.
50 ° C. or less. In order to obtain high strength with a fine structure, the temperature is desirably 1100 to 1200 ° C.

【0082】スラブから溶接鋼管の素材である鋼板への
圧延は、950℃以下で50%以上の圧下率(圧下率=
〔(スラブ厚さ−鋼板厚さ)/スラブ厚さ〕)となるよ
うにする。950℃以下での圧下率が50%未満では、
オーステナイト粒の再結晶による微細化が得られず、そ
の結果微細なフェライト粒が得られず、靭性および耐S
SC性が不十分となる。一層の耐SSC性の向上を得る
には950℃以下での圧下率を60%以上とするのが望
ましい。
Rolling of the slab to a steel sheet, which is a material of the welded steel pipe, is performed at a reduction rate of 950 ° C. or less and a reduction rate of 50% or more (reduction rate =
[(Slab thickness-steel plate thickness) / slab thickness]). If the rolling reduction at 950 ° C. or less is less than 50%,
Austenite grains cannot be refined by recrystallization, so that fine ferrite grains cannot be obtained.
SC property becomes insufficient. In order to further improve the SSC resistance, it is desirable that the rolling reduction at 950 ° C. or less is 60% or more.

【0083】圧延の仕上げ温度はAr3 点以上とする。
仕上げ温度がAr3 点未満では、加速冷却の開始が、初
析フェライトが多量に生成したフェライトとオーステナ
イトの2相域の状態からとなり、“Cの濃縮した残留オ
ーステナイト組織”や“中心偏析部が硬いマルテンサイ
ト組織”や“ブロック状ベイナイト組織”となり耐サワ
ー性が低下する。このような硬化組織をより一層抑制す
るには〔Ar3 点から30℃以上高温〕で仕上げること
が望ましい。
The finishing temperature of the rolling is set to three or more Ar points.
If the finishing temperature is lower than the Ar 3 point, the accelerated cooling starts from the two-phase region of ferrite and austenite in which a large amount of pro-eutectoid ferrite is formed, and “C-enriched residual austenite structure” and “central segregation part” The structure becomes "hard martensite structure" or "block-like bainite structure", and the sour resistance decreases. In order to further suppress such a hardened structure, it is desirable to finish with [high temperature of 30 ° C. or more from the Ar 3 point].

【0084】(2)加速冷却 加速冷却開始は、〔Ar3 点から30℃低い温度〕以上
からとする。〔Ar3点から30℃低い温度〕よりも低
い温度から冷却を始めると、初析フェライトが多量に生
成したフェライトとオーステナイトの2相域からの冷却
となり、“Cの濃縮した残留オーステナイト組織”や
“中心偏析部が硬いマルテンサイト組織”や“ブロック
状ベイナイト組織”となり耐サワー性が低下する。この
ような組織の生成を中心偏析部においても一層抑制する
ためには、加速冷却開始温度はAr3 点以上とするのが
望ましい。加速冷却開始温度の上限は圧延仕上げ温度と
する。
(2) Accelerated Cooling The accelerated cooling is started at a temperature lower than the Ar 3 point by 30 ° C. or higher. When cooling is started from a temperature lower than [the temperature lower by 30 ° C. from the Ar 3 point], cooling takes place from the two-phase region of ferrite and austenite in which a large amount of pro-eutectoid ferrite is formed, and “C-enriched residual austenite structure” The center segregated portion becomes a hard martensite structure or a block-like bainite structure, and the sour resistance is reduced. In order to further suppress the generation of such a structure even in the center segregation portion, it is desirable that the accelerated cooling start temperature be set to the Ar 3 point or higher. The upper limit of the accelerated cooling start temperature is the rolling finish temperature.

【0085】加速冷却停止温度は、400℃以上550
℃以下とする。550℃を超えると加速冷却時に未変態
のオーステナイトが残るので、偏析部にCが濃縮し、母
材の耐SSC性を損なうパーライト等に変態するので耐
HIC性が低下する。400℃未満では、硬化したブロ
ック状ベイナイトが生成しやすく母材の耐サワー性が低
下する。硬化組織をより完全に避けるには450℃以上
500℃以下とすることが望ましい。
The accelerated cooling stop temperature is 400 ° C. or more and 550
It should be below ° C. If the temperature exceeds 550 ° C., untransformed austenite remains during accelerated cooling, so that C is concentrated in the segregated portion and transforms into pearlite or the like that impairs the SSC resistance of the base material, so that the HIC resistance decreases. If the temperature is lower than 400 ° C., hardened block bainite is likely to be generated, and the sour resistance of the base material is reduced. In order to completely avoid the hardened structure, the temperature is desirably 450 ° C. or more and 500 ° C. or less.

【0086】加速冷却を停止した後は、放冷または徐冷
する。また、この後焼戻ししてもよいし、しなくてもよ
い。
After the accelerated cooling is stopped, it is allowed to cool or cool slowly. After this, tempering may or may not be performed.

【0087】上記の条件で製造された溶接鋼管の母材で
ある鋼板は、厚鋼板でも、また熱延鋼板、すなわちいわ
ゆるホットコイルでもよい。ホットコイルの場合は、加
速冷却停止した後は巻取られ、コイルの状態で徐冷さ
れ、通常、焼戻しは行われない。ホットコイルは、厚鋼
板よりも幅が狭いので大径鋼管に加工し溶接する場合、
スパイラル溶接鋼管か、あるいはダブルシームの溶接鋼
管とする場合が多い。
The steel plate as the base material of the welded steel pipe manufactured under the above conditions may be a thick steel plate or a hot-rolled steel plate, that is, a so-called hot coil. In the case of a hot coil, the coil is wound after the accelerated cooling is stopped, and is gradually cooled in the state of the coil, and is usually not tempered. Hot coil is narrower than thick steel plate, so when processing and welding to large diameter steel pipe,
Spiral welded steel pipe or double seam welded steel pipe is often used.

【0088】5.製管 上記の方法で製造された鋼板は、管状に加工を受けた
後、SAWによって溶接鋼管とされる。製管方法は、厚
鋼板に対してUプレスおよびOプレスを施し加工するU
O法、熱延鋼板をスパイラル状に溶接するスパイラル法
および狭幅の熱延鋼板または厚鋼板を加工したものを2
枚合わせ、2本の縦シームをもつ鋼管とするダブルシー
ム法のいずれでもよい。
5. Pipe Making The steel sheet manufactured by the above method is processed into a tubular shape, and then is made into a welded steel pipe by SAW. The pipe making method is to apply U press and O press to a thick steel plate for processing.
O method, spiral method of welding hot-rolled steel sheets in a spiral shape, and processing of narrow-width hot-rolled steel sheets or thick steel sheets
Any of the double seam method in which a steel pipe having two vertical seams is used.

【0089】図9(a)は、溶接前の開先の形状を、ま
た、図9(b)は、溶接後の溶接線垂直断面を表す図面
である。同図において、溶接金属21は、溶接に際して
溶解した開先近傍の母材および溶接材料から移行した分
により構成されることが分かる。溶接材料から溶接金属
に移行した分を、とくに“溶着金属”という。HAZ2
2は、溶接による熱影響は受けるが、水素などの特殊な
元素を除いて、化学組成は母材23の組成そのものであ
る。
FIG. 9A is a view showing a shape of a groove before welding, and FIG. 9B is a view showing a vertical section of a welding line after welding. In the figure, it can be seen that the weld metal 21 is constituted by the base metal melted during welding and the part transferred from the welding material near the groove. The transition from the welding material to the welding metal is particularly called "weld metal". HAZ2
In No. 2, the chemical composition is the same as that of the base material 23 except for a special element such as hydrogen, which is affected by heat due to welding.

【0090】溶接金属のCrを母材に比べて低くするに
は、それに見合ったCr濃度の溶接材料を用いなければ
ならない。SAWでは、溶接金属の元素量は、母材の寄
与が4割〜6割、また“溶着金属”の寄与が6割〜4割
となる。したがって、 〔溶接金属のCr濃度(%)〕 =〔母材のCr濃度(%)〕×(0.4〜0.6) + 〔溶接材料のC r濃度(%)〕×(0.6〜0.4)・・・・・・・・・・・(A) なる式において、母材および溶接金属のCr濃度を設定
すると、使用すべき溶接材料のCr濃度を算出でき、使
用すべき溶接材料を選択することができる。すなわち、
母材と溶接材料の比重は同一とみてよいので、溶接金属
の4〜6割は母材から移行したものであり、また、溶接
金属の6〜4割は“溶着金属”である。Crあるいは後
記するCuおよびNiは溶接中に大気中に消失すること
がない。
In order to make the Cr of the weld metal lower than that of the base metal, it is necessary to use a welding material having a Cr concentration suitable for it. In SAW, the contribution of the base metal is 40% to 60%, and the contribution of the "weld metal" is 60% to 40%. Therefore, [Cr concentration of weld metal (%)] = [Cr concentration of base metal (%)] × (0.4 to 0.6) + [Cr concentration of weld material (%)] × (0.6 In the formula (A), if the Cr concentration of the base metal and the weld metal is set, the Cr concentration of the welding material to be used can be calculated and used. Welding material can be selected. That is,
Since the specific gravities of the base metal and the welding material may be considered to be the same, 40 to 60% of the weld metal is shifted from the base material, and 60 to 40% of the weld metal is "weld metal". Cr or Cu and Ni described later do not disappear into the atmosphere during welding.

【0091】溶接金属のCuおよびNiを高めるには、
CuおよびNiともに4〜6割が母材から、また6〜4
割が溶接材料から移行するとして、同様の方法により使
用すべき溶接材料のCu量およびNi量を算出し、適当
な規格の溶接材料を選定することができる。
To increase Cu and Ni in the weld metal,
40-60% of both Cu and Ni are from the base metal, and 6-40%
Assuming that the ratio shifts from the welding material, the amount of Cu and the amount of Ni of the welding material to be used are calculated by the same method, and a welding material having an appropriate standard can be selected.

【0092】溶接鋼管の降伏強さは、溶接部を含んだ部
分の降伏強さをいうが、通常は溶接部は母材よりも高い
強度となるように溶接材料を選定するので、母材の降伏
強さを溶接鋼管の降伏強さとして採用する。〔発明3〕
および〔発明4〕では、降伏強さは551MPa(AP
I規格X80の規格最小降伏強さ)以上でなければなら
ない。
The yield strength of the welded steel pipe refers to the yield strength of the portion including the welded portion. Usually, the welding material is selected so that the welded portion has a strength higher than that of the base material. The yield strength is adopted as the yield strength of the welded steel pipe. [Invention 3]
And [Invention 4], the yield strength is 551 MPa (AP
(Specific minimum yield strength of I standard X80).

【0093】溶接の入熱は、大きいほうが溶接能率から
も、またHAZの硬さ低減からも望ましいが、あまり大
きくし過ぎると、HAZの靭性が劣化するので、20〜
150kJ/cmとするのがよい。
It is desirable to increase the heat input of welding from the viewpoint of the welding efficiency and also from the viewpoint of reducing the hardness of the HAZ. However, if the heat input is too large, the toughness of the HAZ deteriorates.
It is good to be 150 kJ / cm.

【0094】上記はSAWの場合の溶接鋼管のシーム溶
接の場合の説明である。溶接鋼管を使用する際には溶接
鋼管どうしを溶接する円周溶接を行わなければならな
い。円周溶接は通常、ガスメタルアーク溶接(GMA
W)により行う。GMAWは、通常、入熱15〜50k
J/cmで行うため、母材のとけ込みは小さいので上記
の(A)式において、母材の寄与は0.3〜0.5(S
AWでは0.4〜0.6)、溶接材料の寄与は0.7〜
0.5(SAWでは0.6〜0.4)として計算する。
The above description is for the case of seam welding of a welded steel pipe in the case of SAW. When using welded steel pipes, circumferential welding for welding the welded steel pipes must be performed. Circumferential welding is usually performed by gas metal arc welding (GMA
W). GMAW usually has a heat input of 15-50k
Since the melting is performed at J / cm, the melting of the base material is small. Therefore, in the above equation (A), the contribution of the base material is 0.3 to 0.5 (S
0.4 to 0.6 for AW), contribution of welding material is 0.7 to
It is calculated as 0.5 (0.6 to 0.4 in SAW).

【0095】[0095]

【実施例】表1〜表4は、それぞれ〔発明1〕〜〔発明
4〕の実施の効果を示すために区分けした、溶接鋼管母
材の化学組成の一覧表である。すなわち、例えば、表1
は〔発明1〕の実施の効果を示すために用いた溶接鋼管
母材の一覧表である。
EXAMPLES Tables 1 to 4 are lists of the chemical compositions of the base materials of the welded steel pipes classified to show the effects of the implementation of [Invention 1] to [Invention 4]. That is, for example, Table 1
Is a list of welded steel pipe preforms used to show the effects of the [Invention 1].

【0096】表5は、これらの溶接鋼管母材を製造する
圧延および熱処理条件を示す一覧表である。比較例の鋼
Iは、母材の化学組成に関しては〔発明3〕の範囲内に
入るが、組織がフェライトとマルテンサイトの2相組織
であるので、母材組織に関して〔発明3〕の範囲外の母
材である。また、鋼A〜鋼Eは組織は、フェライトとベ
イナイトの2相組織ではないものの、〔発明1〕におい
ては組織をとくに限定しないので、組織に関しては〔発
明1〕の範囲外のものではない。
Table 5 is a table showing the rolling and heat treatment conditions for producing these welded steel pipe base materials. The steel I of the comparative example falls within the range of [Invention 3] with respect to the chemical composition of the base material, but has a two-phase structure of ferrite and martensite, and thus has a base material structure outside the range of [Invention 3]. Is the base material. Further, although the structure of steels A to E is not a two-phase structure of ferrite and bainite, the structure is not particularly limited in [Invention 1], and therefore the structure is not out of the range of [Invention 1].

【0097】[0097]

【表1】 [Table 1]

【0098】[0098]

【表2】 [Table 2]

【0099】[0099]

【表3】 [Table 3]

【0100】[0100]

【表4】 [Table 4]

【0101】[0101]

【表5】 [Table 5]

【0102】表6〜表9は、UプレスおよびOプレスを
経て突き合わされた上記の溶接鋼管母材のエッジ部を縦
シームSAWする際に用いた溶接ワイヤの組成、SAW
の結果形成された溶接金属の組成などを示す一覧表であ
る。これら表6〜表9は、それぞれ〔発明1〕〜〔発明
4〕の実施の効果を説明するための溶接金属に対応す
る。これらの表には、それぞれの発明において限定した
溶接金属の合金元素のみが表示されているが、他の合金
元素はそれぞれの試番の対応する鋼(母材)とほぼ同じ
である。縦シームを形成するSAWは、溶接入熱40k
J/cmの両面一層溶接であり、製造した溶接鋼管の寸
法は、径36インチ(914.4mm) ×肉厚1インチ(25.4mm)
である。これら表6〜9の「溶接金属−母材」の欄に、
CrおよびCu+Niに関して溶接金属と母材の組成の
差を示す。
Tables 6 to 9 show the composition of the welding wire used for longitudinal seam SAW of the edge portion of the above-mentioned welded steel pipe base material that was abutted through the U press and the O press.
5 is a list showing the composition of the weld metal formed as a result of the above. Tables 6 to 9 correspond to weld metals for describing the effects of the implementation of [Invention 1] to [Invention 4], respectively. In these tables, only the alloy elements of the weld metal limited in each invention are shown, but the other alloy elements are almost the same as the corresponding steel (base metal) of each trial number. SAW forming a vertical seam has a welding heat input of 40k
J / cm single-sided, single-sided welding. The dimensions of the manufactured welded steel pipe are 36 inches in diameter (914.4 mm) x 1 inch in wall thickness (25.4 mm).
It is. In the columns of “weld metal-base metal” in Tables 6 to 9,
The difference between the composition of the weld metal and the base metal for Cr and Cu + Ni is shown.

【0103】[0103]

【表6】 [Table 6]

【0104】[0104]

【表7】 [Table 7]

【0105】[0105]

【表8】 [Table 8]

【0106】[0106]

【表9】 [Table 9]

【0107】図10(a)は、耐SSC性を評価するた
めに用いた試験片を、また、図10(b)はその採取位
置を表す図面である。図示するように、試験片の形状は
丸棒であり、管内面側より溶接金属部が試験片平行部中
央に位置するように採取した。負荷応力は、母材の実Y
S(降伏強さ)の80%とした。試験溶液はNACET
M0177−90(Test Method by National Associat
ion of Corrosion Engineering)に規定されるNACE
TM0177浴(0.5%酢酸+5%食塩水、1気圧
硫化水素飽和、25℃)とした。720hの試験期間中
に破断しなかったものを耐SSC性良好とした。
FIG. 10A shows a test piece used for evaluating SSC resistance, and FIG. 10B shows a sampling position. As shown in the figure, the shape of the test piece was a round bar, and the test piece was sampled from the inner surface of the tube so that the weld metal portion was located at the center of the parallel portion of the test piece. The applied stress is the actual material Y
80% of S (yield strength). Test solution is NACET
M0177-90 (Test Method by National Associat
ion of Corrosion Engineering)
A TM0177 bath (0.5% acetic acid + 5% saline, 1 atm hydrogen sulfide saturation, 25 ° C.) was used. Those which did not break during the test period of 720 h were regarded as having good SSC resistance.

【0108】図11(a)は耐食性を評価するために用
いた試験片を、また、図11(b)はその採取位置を表
す図面である。試験片は、厚さ3mm、幅10mm、長
さ40mmの板状試験片とした。耐SSC性試験片と同
様に、溶接部から溶接金属が中央に位置するように管内
表面から試験片を採取した。評価は、母材部の全面腐食
速度と溶接部の選択腐食深さにより評価した。母材部の
全面腐食速度は、脱スケール後の腐食減量を単位時間単
位面積あたりに換算して求めた。溶接部の選択腐食深さ
は、脱スケール後に、孔食深さ測定用のマイクロメータ
ーで、溶接金属部と母材部の肉厚差から求めた。母材部
の孔食深さのほうが溶接金属部のそれより深い場合は、
後記する表10〜13においてマイナス(−)の値とし
て表示した。試験溶液は硫化水素環境としてNACE
TM0177浴を、炭酸ガス環境として1気圧CO
で飽和させた50℃の人工海水の2種類とした。なお、
96hの試験期間中試験溶液は常に撹拌した。
FIG. 11A shows a test piece used for evaluating corrosion resistance, and FIG. 11B shows a sampling position. The test piece was a plate-shaped test piece having a thickness of 3 mm, a width of 10 mm, and a length of 40 mm. Similar to the SSC-resistant test piece, a test piece was taken from the inner surface of the pipe so that the weld metal was located at the center from the welded portion. The evaluation was made based on the overall corrosion rate of the base material and the selected corrosion depth of the weld. The overall corrosion rate of the base material portion was obtained by converting the corrosion loss after descaling into a unit area per unit time. The selected corrosion depth of the weld was determined from the thickness difference between the weld metal and the base metal using a micrometer for measuring the pit depth after descaling. If the pit depth of the base metal is deeper than that of the weld metal,
In Tables 10 to 13 described below, the values are shown as minus (-) values. Test solution is NACE as hydrogen sulfide environment
The TM0177 bath was set to 1 atmosphere CO 2 as a carbon dioxide gas environment.
And two types of artificial seawater at 50 ° C. saturated with In addition,
The test solution was constantly stirred during the 96 h test period.

【0109】表10〜表13は、上記の耐SSC性と耐
食性を評価した結果を表す一覧表である。表10〜表1
3は、それぞれ〔発明1〕〜〔発明4〕の実施の効果を
説明するものである。これらの表に記載した鋼管強度は
溶接鋼管母材の引張試験によって求めたものである。降
伏強さの“551MPa”の応力値は“79.9ks
i”に相当する。
Tables 10 to 13 are lists showing the results of the evaluation of the SSC resistance and corrosion resistance described above. Table 10 to Table 1
No. 3 explains the effect of the implementation of [Invention 1] to [Invention 4]. The steel pipe strengths described in these tables were obtained by a tensile test of a welded steel pipe base material. The stress value of the yield strength “551 MPa” is “79.9 ks
i ".

【0110】[0110]

【表10】 [Table 10]

【0111】[0111]

【表11】 [Table 11]

【0112】[0112]

【表12】 [Table 12]

【0113】[0113]

【表13】 [Table 13]

【0114】鋼E(表1)、鋼I〜K(表3)および鋼
N(表4)を用いた試番9(表10)、試番20〜22
(表12)および試番30(表13)は、母材部の耐S
SC性が良好でなかった。鋼Eと鋼Nは母材のCr量が
1%超、高強度の溶接鋼管を対象とする鋼Iはフェライ
ト−マルテンサイト2相組織鋼(表5参照)、また、鋼
Jは母材のC量が高すぎ、鋼Kは母材のMn量が高すぎ
るからである。
Test No. 9 (Table 10) and Test No. 20 to 22 using Steel E (Table 1), Steels I to K (Table 3) and Steel N (Table 4)
(Table 12) and test number 30 (Table 13) show the S
SC property was not good. Steel E and steel N have a Cr content of the base material of more than 1%, steel I for high-strength welded steel pipe is a ferritic-martensitic two-phase structure steel (see Table 5), and steel J is a base metal. This is because the amount of C is too high, and the amount of Mn in the base material of steel K is too high.

【0115】母材のCr量が本発明の範囲に満たない鋼
C、D(表1)および鋼G(表2)を用いた試番7、8
(表10)および試番13(表11)は、耐SSC性と
NACE TM0177浴中における耐食性は良好であ
るが、CO 環境における母材部の全面腐食速度が4
mm/年以上と他の例に比べて著しく高い。
Test Nos. 7 and 8 using steels C and D (Table 1) and steel G (Table 2) in which the Cr content of the base material is less than the range of the present invention.
Table 10 and Test No. 13 (Table 11) show that the SSC resistance and the corrosion resistance in the NACE TM0177 bath are good, but the overall corrosion rate of the base material in the CO 2 environment is 4%.
mm / year or more, significantly higher than other examples.

【0116】これに対して、母材のCr量が0.2〜1
%の、本発明範囲内の鋼A、B(表1)、鋼F(表2)
および鋼H(表3)〜鋼M(表4)を用いた試番1〜6
(表10)、10〜12(表11)および14(表1
2)〜29(表13)は、炭酸ガス中で、Cr量が高い
ほど全面腐食速度は小さく、2mm/年以下と良好であ
る。とくに、Cr量が0.5%程度以上の鋼B、Fおよ
びH〜Mを用いた試番4〜6、10〜12および14〜
29は、全面腐食速度が約1mm/年以下と良好であ
る。また、Cr量に関わらず、CuとNiを含む鋼F、
LおよびMを用いた試番10〜12、23〜28および
29は、図4に示したようにCuとNiのいずれも含ま
ない鋼A、BおよびH〜Kを用いた試番1〜6および1
4〜22よりも腐食速度が低めである。
On the other hand, when the amount of Cr in the base material is 0.2 to 1
% Steels A, B (Table 1), steel F (Table 2) within the scope of the invention
No. 1 to 6 using steel H (Table 3) to steel M (Table 4)
(Table 10), 10 to 12 (Table 11) and 14 (Table 1)
2) to 29 (Table 13) show that the higher the Cr content in carbon dioxide gas, the smaller the overall corrosion rate is, that is, 2 mm / year or less. In particular, trial numbers 4 to 6, 10 to 12, and 14 to using steels B, F, and H to M having a Cr content of about 0.5% or more.
No. 29 has a good overall corrosion rate of about 1 mm / year or less. Further, regardless of the amount of Cr, steel F containing Cu and Ni,
Test numbers 10 to 12, 23 to 28, and 29 using L and M are test numbers 1 to 6 using steels A, B, and H to K containing neither Cu nor Ni as shown in FIG. And 1
Corrosion rate is lower than 4 to 22.

【0117】溶接金属においてそのCr量が母材のCr
量の1/2以下または(母材のCr量−0.2)%未満
で、同時に母材のCrが0.2〜1%の試番1〜6(表
6、表10)、10〜12(表7、表11)、14〜2
2(表8、表12)および23〜29(表9、表13)
は、溶接金属の(Cu+Ni)量が母材部のそれより
0.1〜0.5%高い試番2、5(表6、表10)、1
0(表7、表11)、16、17(表8、表12)、2
3、24および29(表9、表13)では、溶接部の選
択腐食深さがCO 環境においては0.1mm未満、
NACE TM0177浴中においては0.11mm以
下に抑えられる。これに対して、試番1、4(表6、表
10)、14、15(表8、表12)、20〜22(表
9、表12)のようにCuとNiをともに含まないもの
は、溶接部の選択腐食深さがNACE TM0177浴
中においては0.10mm以下に抑えられるが、CO
環境において0.1mmを超える。
In the weld metal, the amount of Cr is the same as that of the base metal.
番 of the amount or less than (Cr amount of base material−0.2)%, and at the same time, Cr of base material is 0.2 to 1%. 12 (Table 7, Table 11), 14-2
2 (Table 8, Table 12) and 23 to 29 (Table 9, Table 13)
Are sample numbers 2, 5 (Tables 6 and 10) in which the (Cu + Ni) amount of the weld metal is 0.1 to 0.5% higher than that of the base metal portion.
0 (Table 7, Table 11), 16, 17 (Table 8, Table 12), 2
In 3, 24 and 29 (Tables 9 and 13), the selected corrosion depth of the weld is less than 0.1 mm in a CO 2 environment,
In a NACE TM0177 bath, it can be suppressed to 0.11 mm or less. On the other hand, samples containing neither Cu nor Ni, such as test numbers 1, 4 (Table 6, Table 10), 14, 15 (Table 8, Table 12) and 20 to 22 (Table 9, Table 12) is selected corrosion depth of weld is suppressed below 0.10mm in NACE TM0177 bath, CO 2
More than 0.1 mm in the environment.

【0118】母材と溶接金属のCr量を揃えるほうが、
CO2 環境における選択腐食を抑え易いが、CuとNi
を適正量含有させることによっても効果がある。したが
ってサワー環境も考慮すると、溶接金属中のCuとNi
の和を母材よりも高めることが必要である。
It is better to make the Cr amounts of the base metal and the weld metal uniform.
It is easy to suppress selective corrosion in CO 2 environment, but Cu and Ni
It is also effective to contain an appropriate amount of. Therefore, considering the sour environment, Cu and Ni
It is necessary to increase the sum of

【0119】NACE TM0177浴中においては、
母材のCrが高いほど母材の全面腐食は大きい。ただ
し、CuとNiを含むものは、図3に示した傾向と同様
に腐食速度が低い。
In the NACE TM0177 bath,
The higher the Cr of the base material, the greater the overall corrosion of the base material. However, those containing Cu and Ni have a low corrosion rate similarly to the tendency shown in FIG.

【0120】また、試番3、6(表6、表10)、12
(表7、表11)、18(表8、表12)および27
(表9、表13)のように、NACE TM0177浴
中では溶接金属中のCr量が高いほど選択腐食深さが大
きく、これが溶接部の耐SSC性の良くない理由の1つ
と考えられる。また、試番11、12(表7、表11)
および26、27(表9、表13)のように溶接金属の
(Cu+Ni)量が低く本発明(〔発明2〕あるいは
〔発明4〕)の範囲に入らないものも溶接部の耐SSC
性は良くない。逆に、試番19(表8、表12)および
28(表9、表13)は、溶接金属の(Cu+Ni)量
が母材よりも0.5%を超えて高いので溶接部にSSC
による破断を生じた。試番2、5(表6、表10)、1
0(表7、表11)、16、17(表8、表12)、2
3〜25(表9、表13)および29(表9、表13)
のように、溶接金属の(Cu+Ni)量が、母材よりも
高いものは選択腐食が抑えられている。したがって、耐
SSC性の観点からも溶接金属の(Cu+Ni)量を、
0.5%以下の範囲で母材より高める必要がある。
In addition, test numbers 3, 6 (Tables 6 and 10), 12
(Tables 7, 11), 18 (Tables 8, 12) and 27
As shown in Tables 9 and 13, in the NACE TM0177 bath, the higher the amount of Cr in the weld metal, the greater the selective corrosion depth. This is considered to be one of the reasons why the SSC resistance of the weld is not good. Also, test numbers 11 and 12 (Tables 7 and 11)
Also, as shown in Tables 26 and 27 (Tables 9 and 13), those having a low (Cu + Ni) content of the weld metal and falling outside the range of the present invention ([Invention 2] or [Invention 4]) also have SSC resistance of the welded portion.
Sex is not good. Conversely, test numbers 19 (Table 8, Table 12) and 28 (Table 9, Table 13) show that the amount of (Cu + Ni) in the weld metal is more than 0.5% higher than that of the base metal, so that the SSC
Rupture. Test numbers 2, 5 (Table 6, Table 10), 1
0 (Table 7, Table 11), 16, 17 (Table 8, Table 12), 2
3 to 25 (Table 9, Table 13) and 29 (Table 9, Table 13)
In the case where the amount of (Cu + Ni) of the weld metal is higher than that of the base metal, the selective corrosion is suppressed. Therefore, from the viewpoint of SSC resistance, the (Cu + Ni) amount of the weld metal is
It must be higher than the base material within a range of 0.5% or less.

【0121】[0121]

【発明の効果】本発明は、耐HIC性、耐SSC性およ
び耐炭酸ガス腐食性のいずれにも優れた溶接鋼管、とく
にAPI規格X80級の高強度溶接鋼管を提供するもの
であり、石油および天然ガス関連産業等にとってきわめ
て有用である。
Industrial Applicability The present invention provides a welded steel pipe excellent in all of HIC resistance, SSC resistance and carbon dioxide corrosion resistance, particularly a high-strength welded steel pipe of API standard X80 class. It is extremely useful for natural gas related industries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、原油あるいはガスの採掘、輸送および
精製時に遭遇する環境で発生する問題、およびそれらに
対処するため溶接鋼管母材である鋼板にとった従来の対
策をまとめた図面である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a drawing summarizing the problems encountered in the environment encountered during the extraction, transportation and refining of crude oil or gas, and the conventional countermeasures taken against the steel plate as a welded steel pipe base material in order to deal with them. is there.

【図2】図2は、低pHの硫化水素環境であるNACE
TM0177浴中での母材の腐食速度に及ぼす母材の
Cr量(Cr0 )の影響を表す図面である。
FIG. 2 shows a low pH hydrogen sulfide environment, NACE.
It is a drawing showing the influence of the amount of Cr (Cr 0 ) of the base material on the corrosion rate of the base material in the TM0177 bath.

【図3】図3は溶接金属における選択腐食深さに及ぼす
CrW の影響を表す図面である。
FIG. 3 is a drawing showing the effect of Cr W on the selective corrosion depth in a weld metal.

【図4】図4は、湿潤炭酸ガス環境での母材の腐食速度
に及ぼすCr0 、Cu0 およびNi0 の影響を表す図面
である。
FIG. 4 is a drawing showing the influence of Cr 0 , Cu 0 and Ni 0 on the corrosion rate of a base material in a wet carbon dioxide gas environment.

【図5】図5は、湿潤炭酸ガス中での溶接金属の選択腐
食深さに及ぼす(CrW −Cr0 )の影響を表す図面で
ある。
FIG. 5 is a drawing showing the effect of (Cr W −Cr 0 ) on the selective corrosion depth of the weld metal in wet carbon dioxide gas.

【図6】図6は、溶接鋼管の母材および溶接金属におけ
る本発明の要旨をまとめた図面である。
FIG. 6 is a drawing summarizing the gist of the present invention in a base material and a weld metal of a welded steel pipe.

【図7】図7は、本発明(〔発明1〕〜〔発明4〕にお
ける溶接金属のCr量(CrW)と母材のCr量(Cr
0 )の範囲を表す図面である。
FIG. 7 is a graph showing the Cr content (Cr W ) of the weld metal and the Cr content (Cr) of the base metal in the present invention ([Invention 1] to [Invention 4]).
It is a drawing showing the range of 0 ).

【図8】図8は、〔発明2〕および〔発明4〕における
溶接金属のCuとNiの和(CuW +NiW )と母材の
CuとNiの和(Cu0 +Ni0 )の範囲を表す図面で
ある。
FIG. 8 shows the range of the sum of Cu and Ni of the weld metal (Cu W + Ni W ) and the sum of Cu and Ni of the base material (Cu 0 + Ni 0 ) in [Invention 2] and [Invention 4]. FIG.

【図9】図9(a)は、溶接前の開先の形状を、また、
図9(b)は、溶接後の溶接線垂直断面を表す図面であ
る。
FIG. 9 (a) shows the shape of a groove before welding;
FIG. 9B is a drawing showing a vertical cross section of a welding line after welding.

【図10】図10(a)はSSC試験片の形状を、また
図10(b)は同試験片の採取位置を表す図面である。
FIG. 10 (a) is a drawing showing the shape of an SSC test piece, and FIG. 10 (b) is a drawing showing the sampling position of the same test piece.

【図11】図11(a)は腐食試験片の形状を、また図
11(b)は同試験片の採取位置を表す図面である。
11 (a) is a drawing showing a shape of a corrosion test piece, and FIG. 11 (b) is a drawing showing a sampling position of the test piece.

【符号の説明】 1…本発明の溶接鋼管の溶接金属および母材のCr量の
範囲、 2…CrW (%)=(1/2)×Cr0 (%)の関係を
あらわす直線 3…CrW (%)=CrW (%)−0.2の関係をあら
わす直線(点線) 4…Cr0 (%)=1をあらわす直線 5…CrW (%)=Cr0 (%) をあらわす直線(一
点鎖線) 11…本発明の溶接鋼管の溶接金属および母材のCuと
Niの和の範囲(すなわち、CuW (%)+Ni
W (%)とCu0 (%)+Ni0 (%)の範囲) 12…CuW (%)+NiW (%)=Cu0 (%)+N
0 (%)+0.5 をあらわす直線 13…CuW (%)+NiW (%)=Cu0 (%)+N
0 (%)+(1/10)×{(Cr0 (%)−CrW
(%))の最大値)}=Cu0 (%)+Ni0 (%)+
0.1をあらわす直線(点線) 14…CuW (%)+NiW (%)=Cu0 (%)+N
0 (%)+(1/10)×{(Cr0 (%)−CrW
(%))の最小値}=Cu0 (%)+Ni0 (%)+
0.02をあらわす直線(破線) 15…CuW (%)+NiW (%)=Cu0 (%)+N
0 (%)をあらわす直線(一点鎖線) 21…溶接金属、 22…溶接熱影響部(HAZ)、 23…母材(鋼板)
[Description of Signs] 1 ... Range of Cr content of weld metal and base metal of welded steel pipe of the present invention, 2 ... Straight line expressing relationship of Cr W (%) = (1/2) × Cr 0 (%) 3 ... A straight line (dotted line) representing the relationship of Cr W (%) = Cr W (%) − 0.2 4 ... A straight line representing Cr 0 (%) = 1 5 ... Cr W (%) = Cr 0 (%) Straight line (dashed-dotted line) 11: range of the sum of Cu and Ni of the weld metal and the base metal of the welded steel pipe of the present invention (that is, Cu W (%) + Ni)
W (%) and Cu 0 (%) + Ni 0 (%) range 12... Cu W (%) + Ni W (%) = Cu 0 (%) + N
a straight line representing i 0 (%) + 0.5 13... Cu W (%) + Ni W (%) = Cu 0 (%) + N
i 0 (%) + (1/10) × {(Cr 0 (%) − Cr W
(%)) 最大 = Cu 0 (%) + Ni 0 (%) +
Straight line (dotted line) representing 0.1 14 ... Cu W (%) + Ni W (%) = Cu 0 (%) + N
i 0 (%) + (1/10) × {(Cr 0 (%) − Cr W
(%)) = Cu 0 (%) + Ni 0 (%) +
Straight line (broken line) representing 0.02 15 Cu W (%) + Ni W (%) = Cu 0 (%) + N
Straight line (dot-dash line) representing i 0 (%) 21: weld metal, 22: heat affected zone (HAZ), 23: base material (steel plate)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−110071(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-110071 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.02〜0.15%、S
i:0.01〜0.5%、Mn:0.1〜2%、P:
0.015%以下、S:0.002%以下、Cr:0.
2〜1%、Cu:0〜0.5%、Ni:0〜0.7%、
Mo:0〜0.3%、Nb:0〜0.1%、V:0〜
0.1%、Ti:0〜0.05%、Al:0.005〜
0.1%およびCa:0.0005〜0.005%を含
み残部Feおよび不可避的不純物の化学組成を有する母
材と、母材のCrに対してそのCrが下記の(イ)また
は(ロ)の範囲にある溶接金属とからなることを特徴と
する耐サワー性と耐炭酸ガス腐食性とに優れた溶接鋼
管。Crを母材のCr量とし、Crを溶接金属のC
r量とするとき、 (イ)Crが0.4%超え1%以下の場合: Cr(%)≦(1/2)×Cr(%) (ロ)Crが0.2%以上0.4%以下の場合: Cr(%)<Cr(%)−0.2
(1) C: 0.02 to 0.15% by weight, S
i: 0.01 to 0.5%, Mn: 0.1 to 2%, P:
0.015% or less, S: 0.002% or less, Cr: 0.
2-1%, Cu: 0-0.5%, Ni: 0-0.7%,
Mo: 0 to 0.3%, Nb: 0 to 0.1%, V: 0
0.1%, Ti: 0-0.05%, Al: 0.005-
0.1% and Ca: 0.0005 to 0.005%, the base material having the chemical composition of the balance Fe and unavoidable impurities, and the base material having the following Cr (a) or (b) A welded steel pipe excellent in sour resistance and carbon dioxide gas corrosion resistance, comprising a weld metal in the range of (1). Cr O is defined as the amount of Cr in the base metal, and Cr W is defined as C in the weld metal.
When the r volume, (b) Cr if O is less than 1% greater than 0.4%: Cr W (%) ≦ (1/2) × Cr O (%) ( b) Cr O is 0.2% In the case of not less than 0.4% or less: Cr W (%) <Cr O (%) − 0.2
【請求項2】重量%で、C:0.02〜0.15%、S
i:0.01〜0.5%、Mn:0.1〜2%、P:
0.015%以下、S:0.002%以下、Cr:0.
2〜1%、Cu:0〜0.5%、Ni:0〜0.7%、
Mo:0〜0.3%、Nb:0〜0.1%、V:0〜
0.1%、Ti:0〜0.05%、Al:0.005〜
0.1%およびCa:0.0005〜0.005%を含
み残部Feおよび不可避的不純物の化学組成を有する母
材と、母材のCrおよびCuとNiの和に対してそのC
rおよびCuとNiの和が下記(イ)または(ロ)の範
囲にある溶接金属とからなることを特徴とする耐サワー
性と耐炭酸ガス腐食性とに優れた溶接鋼管。Cr、C
およびNiを、母材のCr量、Cu量およびNi
量とし、Cr、CuおよびNiを、溶接金属のC
r量、Cu量およびNi量とするとき、 (イ)Crが0.4%超え1%以下の場合: Cr(%)≦(1/2)×Cr(%) Cu(%)+Ni(%)+(1/10)×{Cr
(%)−Cr(%)} ≦Cu(%)+Ni(%) ≦Cu(%)+Ni(%)+0.5 (ロ)Crが0.2%以上0.4%以下の場合: Cr(%)<Cr(%)−0.2 Cu(%)+Ni(%)+(1/10)×{Cr
(%)−Cr(%)} ≦Cu(%)+Ni(%) ≦Cu(%)+Ni(%)+0.5
2. C: 0.02 to 0.15% by weight, S
i: 0.01 to 0.5%, Mn: 0.1 to 2%, P:
0.015% or less, S: 0.002% or less, Cr: 0.
2-1%, Cu: 0-0.5%, Ni: 0-0.7%,
Mo: 0 to 0.3%, Nb: 0 to 0.1%, V: 0
0.1%, Ti: 0-0.05%, Al: 0.005-
A base material containing 0.1% and Ca: 0.0005 to 0.005% and having a chemical composition of the balance Fe and unavoidable impurities; and a C of the base material with respect to the sum of Cr and Cu and Ni.
A welded steel pipe excellent in sour resistance and carbon dioxide gas corrosion resistance, characterized by being composed of a weld metal in which the sum of r, Cu and Ni is in the following range (a) or (b). Cr O, C
The u O and Ni O, Cr amount of the base material, Cu amount and Ni
And Cr W , Cu W and Ni W are the
When the r weight, Cu content and Ni content, if (i) Cr O is 0.4% more than 1% or less: Cr W (%) ≦ ( 1/2) × Cr O (%) Cu O (% ) + Ni 2 O (%) + (1/10) × ΔCr
O (%) - Cr W ( %)} ≦ Cu W (%) + Ni W (%) ≦ Cu O (%) + Ni O (%) + 0.5 ( b) Cr O is 0.2% or more 0.4 % the following cases: Cr W (%) <Cr O (%) - 0.2 Cu O (%) + Ni O (%) + (1/10) × {Cr
O (%) - Cr W ( %)} ≦ Cu W (%) + Ni W (%) ≦ Cu O (%) + Ni O (%) + 0.5
【請求項3】重量%で、C:0.03〜0.07%、S
i:0.01〜0.5%、Mn:0.7〜1.3%、
P:0.015%以下、S:0.002%以下、Cr:
0.2〜1%、Cu:0〜0.5%、Ni:0〜0.7
%、Mo:0〜0.3%、Nb:0〜0.1%、V:0
〜0.1%、Ti:0〜0.05%、Al:0.005
〜0.1%およびCa:0.0005〜0.005%を
含み残部Feおよび不可避的不純物の化学組成を有し、
フェライトとベイナイトの2相組織からなる母材と、母
材のCrに対してそのCrが下記の(イ)または(ロ)
の範囲にある溶接金属とからなり、降伏強さ551MP
a以上であることを特徴とする耐サワー性と耐炭酸ガス
腐食性とに優れた溶接鋼管。Crを母材のCr量と
し、Crを溶接金属のCr量とするとき、 (イ)Crが0.4%超え1%以下の場合: Cr(%)≦(1/2)×Cr(%) (ロ)Crが0.2%以上0.4%以下の場合: Cr(%)<Cr(%)−0.2
3. C: 0.03 to 0.07% by weight, S
i: 0.01 to 0.5%, Mn: 0.7 to 1.3%,
P: 0.015% or less, S: 0.002% or less, Cr:
0.2-1%, Cu: 0-0.5%, Ni: 0-0.7
%, Mo: 0 to 0.3%, Nb: 0 to 0.1%, V: 0
-0.1%, Ti: 0-0.05%, Al: 0.005
~ 0.1% and Ca: 0.0005-0.005%, with the balance being Fe and unavoidable impurities,
A base material having a two-phase structure of ferrite and bainite, and the base material Cr has the following Cr (a) or (b)
And a yield strength of 551MP
a. A welded steel pipe excellent in sour resistance and carbon dioxide gas corrosion resistance, which is not less than a. When Cr O is the Cr content of the base material and Cr W is the Cr content of the weld metal, (a) When Cr O is more than 0.4% and 1% or less: Cr W (%) ≦ (1/2) × Cr O (%) (b) Cr if O is less than 0.4% or more 0.2%: Cr W (%) <Cr O (%) - 0.2
【請求項4】重量%で、C:0.03〜0.07%、S
i:0.01〜0.5%、Mn:0.7〜1.3%、
P:0.015%以下、S:0.002%以下、Cr:
0.2〜1%、Cu:0〜0.5%、Ni:0〜0.7
%、Mo:0〜0.3%、Nb:0〜0.1%、V:0
〜0.1%、Ti:0〜0.05%、Al:0.005
〜0.1%およびCa:0.0005〜0.005%を
含み残部Feおよび不可避的不純物の化学組成を有し、
フェライトとベイナイトの2相組織からなる母材と、母
材のCrおよびCuとNiの和に対してそのCrおよび
CuとNiの和が下記の(イ)または(ロ)の範囲にあ
る溶接金属とからなり、降伏強さ551MPa以上であ
ることを特徴とする耐サワー性と耐炭酸ガス腐食性とに
優れた溶接鋼管。Cr、CuおよびNiを、母材
のCr量、Cu量およびNi量とし、Cr、Cu
よびNiを、溶接金属のCr量、Cu量およびNi量
とするとき、 (イ)Crが0.4%超え1%以下の場合: Cr(%)≦(1/2)×Cr(%) Cu(%)+Ni(%)+(1/10)×{Cr
(%)−Cr(%)} ≦Cu(%)+Ni(%) ≦Cu(%)+Ni(%)+0.5 (ロ)Crが0.2%以上0.4%以下の場合: Cr(%)<Cr(%)−0.2 Cu(%)+Ni(%)+(1/10)×{Cr
(%)−Cr(%)} ≦Cu(%)+Ni(%) ≦Cu(%)+Ni(%)+0.5
4. C: 0.03 to 0.07% by weight, S
i: 0.01 to 0.5%, Mn: 0.7 to 1.3%,
P: 0.015% or less, S: 0.002% or less, Cr:
0.2-1%, Cu: 0-0.5%, Ni: 0-0.7
%, Mo: 0 to 0.3%, Nb: 0 to 0.1%, V: 0
-0.1%, Ti: 0-0.05%, Al: 0.005
~ 0.1% and Ca: 0.0005-0.005%, with the balance being Fe and unavoidable impurities,
A base metal having a two-phase structure of ferrite and bainite, and a weld metal in which the sum of Cr, Cu, and Ni is in the following range (a) or (b) with respect to the sum of Cr, Cu, and Ni in the base material A welded steel pipe excellent in sour resistance and carbon dioxide gas corrosion resistance, characterized by having a yield strength of 551 MPa or more. When Cr O , Cu O and Ni O are the amounts of Cr, Cu and Ni in the base material, and Cr W , Cu W and Ni W are the amounts of Cr, Cu and Ni in the weld metal, ) Cr if O is less than 1% greater than 0.4%: Cr W (%) ≦ (1/2) × Cr O (%) Cu O (%) + Ni O (%) + (1/10) × { Cr
O (%) - Cr W ( %)} ≦ Cu W (%) + Ni W (%) ≦ Cu O (%) + Ni O (%) + 0.5 ( b) Cr O is 0.2% or more 0.4 % the following cases: Cr W (%) <Cr O (%) - 0.2 Cu O (%) + Ni O (%) + (1/10) × {Cr
O (%) - Cr W ( %)} ≦ Cu W (%) + Ni W (%) ≦ Cu O (%) + Ni O (%) + 0.5
JP00799996A 1996-01-22 1996-01-22 Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance Expired - Lifetime JP3303647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00799996A JP3303647B2 (en) 1996-01-22 1996-01-22 Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00799996A JP3303647B2 (en) 1996-01-22 1996-01-22 Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance

Publications (2)

Publication Number Publication Date
JPH09194991A JPH09194991A (en) 1997-07-29
JP3303647B2 true JP3303647B2 (en) 2002-07-22

Family

ID=11681100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00799996A Expired - Lifetime JP3303647B2 (en) 1996-01-22 1996-01-22 Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance

Country Status (1)

Country Link
JP (1) JP3303647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465236A (en) * 2010-11-18 2012-05-23 中国石油天然气集团公司 Method for producing X70 or X80 high-strain steel tube
EP3428299A4 (en) * 2016-07-06 2019-08-21 Nippon Steel Corporation Electroseamed steel pipe for line pipe

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709568B2 (en) * 2005-04-01 2011-06-22 新日本製鐵株式会社 UO steel pipe with excellent sour resistance
JP5751012B2 (en) * 2011-05-24 2015-07-22 Jfeスチール株式会社 Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5751013B2 (en) * 2011-05-24 2015-07-22 Jfeスチール株式会社 Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5811591B2 (en) * 2011-05-24 2015-11-11 Jfeスチール株式会社 High strength line pipe excellent in crush resistance and weld heat-affected zone toughness and method for producing the same
JP5870561B2 (en) * 2011-09-06 2016-03-01 Jfeスチール株式会社 High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
KR101505260B1 (en) * 2013-01-31 2015-03-24 현대제철 주식회사 Hot rolled steel sheet for steel pipe and method of manufacturing the steel pope
CN108893677A (en) * 2018-06-20 2018-11-27 南京钢铁股份有限公司 A kind of acid-resistant pipeline steel and production method
CN108866432A (en) * 2018-06-20 2018-11-23 南京钢铁股份有限公司 A kind of acid-resistant pipeline steel and smelting process
CN108546884A (en) * 2018-06-20 2018-09-18 南京钢铁股份有限公司 A kind of acid-resistant pipeline steel and pipe-making method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465236A (en) * 2010-11-18 2012-05-23 中国石油天然气集团公司 Method for producing X70 or X80 high-strain steel tube
CN102465236B (en) * 2010-11-18 2013-07-31 中国石油天然气集团公司 Method for producing X70 or X80 high-strain steel tube
EP3428299A4 (en) * 2016-07-06 2019-08-21 Nippon Steel Corporation Electroseamed steel pipe for line pipe

Also Published As

Publication number Publication date
JPH09194991A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
JP4696615B2 (en) High-tensile steel plate, welded steel pipe and manufacturing method thereof
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
KR101247089B1 (en) Steel plate for line pipes and steel pipes
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP3427387B2 (en) High strength welded steel structure with excellent corrosion resistance
EP2105513A1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP4700741B2 (en) Manufacturing method of steel plate for thick-walled sour line pipe with excellent toughness
JPH07216500A (en) High strength steel material excellent in corrosion resistance and its production
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP4700740B2 (en) Manufacturing method of steel plate for sour line pipe
WO2005075694A1 (en) Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JPH06220577A (en) High tensile strength steel excellent in hic resistance and its production
JP2023022159A (en) Steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen-induced cracking (hic) resistance, and method of manufacturing steel thereof
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
EP2093302B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP6241434B2 (en) Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP2003328080A (en) High-strength steel pipe superior in low-temperature toughness and deformability, and method for manufacturing steel plate for steel pipe
JP2003293078A (en) Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

EXPY Cancellation because of completion of term