JPH08176731A - High tensile steel and production thereof - Google Patents
High tensile steel and production thereofInfo
- Publication number
- JPH08176731A JPH08176731A JP32707594A JP32707594A JPH08176731A JP H08176731 A JPH08176731 A JP H08176731A JP 32707594 A JP32707594 A JP 32707594A JP 32707594 A JP32707594 A JP 32707594A JP H08176731 A JPH08176731 A JP H08176731A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- strength
- effective
- heat input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は橋梁、タンク、鉄管、倉
庫、建築物などの鉄鋼構造物に用いられる溶接割れ感受
性と大入溶接性に優れた600N/mm2 級高張力鋼お
よびその製造方法に関する。FIELD OF THE INVENTION The present invention relates to a 600 N / mm 2 class high strength steel excellent in weld cracking susceptibility and large penetration weldability, which is used for steel structures such as bridges, tanks, iron pipes, warehouses and buildings, and its production. Regarding the method.
【0002】[0002]
【従来の技術】従来より600N/mm2 級高張力鋼の
性能向上に関する要望は多く、これまでに数多くの検討
がなされている。これらのうち、溶接割れ感受性の改良
を目的に低C化とTi−B添加を特徴とした技術として
特開昭49−37814号公報、特公平4−13406
号公報などが公知となっている。これらに代表される技
術により、溶接割れ感受性が改良された600N/mm
2 級高張力鋼が得られるが、600N/mm2 級高張力
鋼に要求される引張強さはBの活用により達成されてい
るため、化学成分や製造条件の変動による母材特性の不
安定さが懸念され、さらに溶接熱影響部の硬さ上昇が著
しい。この溶接熱影響部の硬さ上昇は特に大入熱溶接継
手において最も懸念されるボンド部の靭性劣化をもたら
すため好ましくない。 2. Description of the Related Art Conventionally, there have been many demands for improving the performance of 600 N / mm 2 class high strength steel, and many studies have been made so far. Among these, as a technique characterized by lowering C and adding Ti-B for the purpose of improving susceptibility to welding cracks, JP-A-49-37814 and Japanese Patent Publication No. 4-13406.
The gazette is known. 600N / mm with improved weld crack susceptibility by the technologies represented by these
Although class 2 high-strength steel can be obtained, the tensile strength required for 600 N / mm 2 class high-strength steel is achieved by utilizing B, so the base material properties are unstable due to changes in chemical composition and manufacturing conditions. Is a concern, and the hardness of the weld heat affected zone increases significantly. This increase in the hardness of the weld heat affected zone is not preferable because it causes deterioration of the toughness of the bond portion, which is most feared particularly in the high heat input welded joint.
【0003】特開平2−8322号公報は、低C化と析
出硬化元素の活用と直接焼入れ法を組み合わせ、耐SS
C性と溶接割れ感受性の改良を目的とした技術である。
この技術による鋼板は、耐SSC性を確保するため徹底
した低C化が図られているので、一般的な大入溶接によ
り継手を作製すると溶接金属の性能が確保されず十分な
継手強度が得られ難い。また、600N/mm2 級高張
力鋼に要求される強度を低C化により達成しているた
め、多量の析出硬化元素の添加に加えて、焼入れ性向上
元素も多量に添加する必要があり、このため大入熱溶接
時の熱影響部粗粒域の硬度上昇を招くため継手靭性も懸
念される。Japanese Unexamined Patent Publication (Kokai) No. 2-8322 discloses a combination of low carbon content, utilization of precipitation hardening elements, and direct quenching method to improve SS resistance.
This is a technique aimed at improving the C property and the weld cracking susceptibility.
Steel plates produced by this technology have been thoroughly reduced in carbon content to ensure SSC resistance. Therefore, when joints are made by general large penetration welding, the performance of the weld metal is not secured and sufficient joint strength is obtained. It's hard to be beaten. Further, since the strength required for high-strength steel of 600 N / mm 2 class has been achieved by lowering C, it is necessary to add a large amount of hardenability improving element in addition to a large amount of precipitation hardening element. As a result, the hardness of the coarse-grained zone of the heat-affected zone is increased during high heat input welding, and there is concern about joint toughness.
【0004】特公昭61−12970号公報は、低C化
とV添加および直接焼入れを組み合わせることで、溶接
割れ感受性に優れた600N/mm2 級高張力鋼を提供
しようとするものである。この公報の記載によれば、少
なくとも鋼板の板厚が30mmまでは溶接割れ感受性に
優れた600N/mm2 級高張力鋼が得られることが示
されているが、溶接継手性能に関わる記述はなく、大入
熱溶接性については未解決と言える。Japanese Examined Patent Publication No. 61-12970 is intended to provide a 600 N / mm 2 class high-strength steel excellent in susceptibility to welding cracks by combining reduction of C, addition of V and direct quenching. According to the description of this publication, 600N / mm 2 class high-strength steel having excellent weld crack susceptibility can be obtained at least up to a plate thickness of 30 mm, but there is no description relating to weld joint performance. It can be said that the large heat input weldability is unsolved.
【0005】特開昭55−69241号公報は大入熱溶
接性に優れた600N/mm2 級高張力鋼に関わる提案
である。この技術の特徴は、低Si化と高Al添加にあ
り溶接割れ感受性は必ずしも解決されていない。Japanese Unexamined Patent Publication No. 55-69241 is a proposal relating to a 600 N / mm 2 class high-strength steel excellent in high heat input weldability. The characteristics of this technique are low Si content and high Al content, and the weld crack susceptibility is not always solved.
【0006】これらの他の従来技術として、渡邊ら「大
入熱溶接用鋼NK−HIWELの開発」日本鋼管技報N
o.97(1983)や特開昭60−174820号公
報などを挙げることができるが、これらは主に500N
/mm2 級鋼を対象とした技術であり、600N/mm
2 級高張力鋼はその対象から外れる。As other conventional techniques, Watanabe et al., "Development of steel NK-HIWEL for large heat input welding", Nippon Steel Pipe Technical Report N
o. 97 (1983) and Japanese Patent Laid-Open No. 174820/1985, but these are mainly 500 N.
/ Mm 2 It is a technology for 2 class steel, 600N / mm
Grade 2 high-strength steel is out of the scope.
【0007】[0007]
【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたもので、溶接割れ感受性と大入熱溶接性に
優れた600N/mm2 級高張力鋼を提供することを目
的とする。The present invention has been made in view of the above circumstances, and an object thereof is to provide a 600 N / mm 2 class high-strength steel excellent in weld cracking susceptibility and high heat input weldability. .
【0008】[0008]
【課題を解決するための手段】溶接割れ感受性を改善す
るためには、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5B で定義されるPcm値を低減することが有効である。係
数の比較からCの低減が最も有効であることが容易に知
れるが、極端な低C化は継手強度の確保を困難とする。
さらに母材強度を確保するため多量の合金元素の添加が
必要となりコスト高を招くばかりか溶接熱影響部粗粒域
の硬化に伴う継手靭性が懸念される。In order to improve the weld crack susceptibility, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
It is effective to reduce the Pcm value defined by i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B. From the comparison of the coefficients, it is easily known that the reduction of C is most effective, but extremely low C makes it difficult to secure the joint strength.
Furthermore, in order to secure the strength of the base metal, it is necessary to add a large amount of alloying elements, which not only leads to an increase in cost, but there is a concern about joint toughness associated with hardening of the coarse-grained zone of the heat-affected zone of the welding heat affected zone.
【0009】多量の合金元素の添加に替って母材の強度
を確保する手段としてB添加が考えられるが、溶接熱影
響部の著しい硬度上昇に伴う継手靭性の劣化が懸念され
る。As a means of securing the strength of the base material instead of adding a large amount of alloying elements, B addition is considered, but there is a concern that the joint toughness may deteriorate due to a marked increase in hardness of the weld heat affected zone.
【0010】従ってBを有効に活用する観点からのTi
添加は必須ではなく、むしろ安定に良好な母材靭性を得
る上でTiは添加しないことが好ましい。そこで、60
0N/mm2 級高張力鋼の溶接割れ感受性改善と大入熱
溶接性確保を目的にC量と添加合金元素量の最適化を検
討し以下の知見を得、本発明を完成した。Therefore, Ti from the viewpoint of effectively utilizing B
Addition is not essential, but it is preferable not to add Ti in order to stably obtain good base material toughness. So 60
In order to improve the weld crack susceptibility of 0 N / mm 2 class high-strength steel and to secure high heat input weldability, optimization of C content and additive alloy element content was investigated and the following findings were obtained to complete the present invention.
【0011】(1)健全な溶接金属を得、十分な継手強
度を得、かつ合金元素の多量添加を避けるためには母材
に0.06%以上のCを含有させる必要がある。(1) In order to obtain a sound weld metal, obtain sufficient joint strength, and avoid adding a large amount of alloying elements, it is necessary to contain 0.06% or more of C in the base material.
【0012】(2)しかし、0.1%を越えるC添加
は、溶接割れ感受性を高め、継手靭性を劣化させる。(2) However, the addition of C exceeding 0.1% increases the weld crack susceptibility and deteriorates the joint toughness.
【0013】(3)直接焼入れ法の採用により母材強度
の確保に加熱時に固溶した有効Nbによる析出硬化を活
用できる。(3) By adopting the direct quenching method, it is possible to utilize the precipitation hardening by the effective Nb solid-soluted during heating to secure the strength of the base material.
【0014】(4)Nb添加により大入熱溶接継手強度
が安定に確保できる。(4) The addition of Nb makes it possible to stably secure the high heat input welded joint strength.
【0015】(5)鋼板厚に応じた合金元素の最適添加
量の範囲が存在する。(5) There is a range of optimum addition amounts of alloying elements depending on the steel plate thickness.
【0016】すなわち本発明は、重量%で、C:0.0
6〜0.1%、Si:0.01〜0.4%、Mn:0.
5〜1.6%、Mo:0.3%以下、Nb:0.005
〜0.05%、V:0.1%以下、Al:0.005〜
0.1%、N:0.0005〜0.008%、Ti<
0.005%、B<0.0003%を含み、さらに必要
によりCu:0.5%以下、Ni:1.5%以下、C
r:0.5%以下の1種又は2種以上を含み、Pcm=
C+Si/30+Mn/20+Cu/20+Ni/60
+Cr/20+Mo/15+V/10+5Bで定義され
るPcm値が0.2以下で、かつ、Ceq=C+Mn/
6+Si/24+Ni/40+Cr/5+Mo/4+V
/14で定義されるCeq値および、Nb、V含有量、
鋼板厚t(mm)を用いて、 625Nb+250V+210Ceq≧40+t の関係を満たし、残部が鉄および不可避不純物よりなる
ことを特徴とする溶接割れ感受性と大入熱溶接性に優れ
た高張力鋼である。That is, in the present invention, C: 0.0% by weight.
6 to 0.1%, Si: 0.01 to 0.4%, Mn: 0.
5 to 1.6%, Mo: 0.3% or less, Nb: 0.005
~ 0.05%, V: 0.1% or less, Al: 0.005-
0.1%, N: 0.0005 to 0.008%, Ti <
0.005%, B <0.0003% included, and if necessary, Cu: 0.5% or less, Ni: 1.5% or less, C
r: contains 0.5% or less of one kind or two or more kinds, and Pcm =
C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60
Pcr value defined by + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.2 or less, and Ceq = C + Mn /
6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V
Ceq value defined by / 14 and Nb, V content,
It is a high-strength steel excellent in weld cracking susceptibility and large heat input weldability, characterized by satisfying a relation of 625Nb + 250V + 210Ceq ≧ 40 + t using a steel plate thickness t (mm), and the balance consisting of iron and inevitable impurities.
【0017】また、この化学組成を有する鋼を、100
0〜1250℃の温度範囲に加熱し、所定の板厚に熱間
圧延の後、引続きAr3変態点以上から直接焼入れし、
Acl変態点以下の温度で焼戻し処理することを特徴と
する溶接割れ感受性と大入熱溶融性に優れた高張力鋼の
製造方法である。A steel having this chemical composition is 100
After heating to a temperature range of 0 to 1250 ° C., hot rolling to a predetermined plate thickness, and then directly quenching from the Ar3 transformation point or higher,
A method for producing a high-strength steel excellent in weld crack susceptibility and high heat input meltability, characterized by performing tempering treatment at a temperature not higher than the Acl transformation point.
【0018】そして、本発明は、上述の化学組成の鋼を
製造するに際し、1000〜1250℃の温度範囲に加
熱し、1050℃以下で20%以上の累積圧下率で熱間
圧延の後、引続きAr3変態点以上から直接焼入れし、
Acl変態点以下の温度で焼戻し処理することを特徴と
する溶接割れ感受性と大入熱溶接性に優れた高張力鋼の
製造方法である。In the present invention, when the steel having the above-mentioned chemical composition is produced, the steel is heated to a temperature range of 1000 to 1250 ° C., hot rolled at a cumulative reduction of 20% or more at 1050 ° C. or less, and then continued. Quench directly from the Ar3 transformation point or higher,
A method for producing high-strength steel excellent in weld crack sensitivity and high heat input weldability, characterized by performing tempering at a temperature not higher than the Acl transformation point.
【0019】[0019]
【作用】以下に本発明での構成要件の限定理由等につい
て説明する。The reasons for limiting the constituent features of the present invention will be described below.
【0020】<C>Cは先述の様に継手強度の確保と合
金元素の多量添加を避けるため0.06%以上添加す
る。C量0.06%未満では0.2%以上のMo添加な
どが必要となりコスト高、大入熱継手靭性の劣化を招く
上、大入熱溶接継手強を確保できない。C量が0.1%
を越えると溶接割れ感受性が劣化し、また大入熱継手靭
性の劣化が懸念される。<C> C is added in an amount of 0.06% or more in order to secure joint strength and avoid adding a large amount of alloying elements, as described above. If the C content is less than 0.06%, it is necessary to add 0.2% or more of Mo, which leads to high cost, deterioration of the toughness of the large heat input joint, and the strength of the large heat input welded joint cannot be secured. C amount is 0.1%
If it exceeds, the susceptibility to welding cracks deteriorates, and the toughness of large heat input joints may deteriorate.
【0021】<Si>Siは母材強度と大入熱溶接強度
を確保する上で有効に働くので0.01%以上添加す
る。しかし、0.4%を越える添加は溶接割れ感受性と
大入溶接継手靭性を劣化させる。<Si> Si is effective in ensuring the strength of the base metal and the high heat input welding strength, so 0.01% or more is added. However, the addition of more than 0.4% deteriorates the weld crack susceptibility and the toughness of large welded joints.
【0022】<Mn>Mnは母材強度と大入熱溶接強度
を確保する上で有効に働くので0.5%以上添加する。
しかし、1.6%を越える添加は溶接割れ感受性を劣化
させる。<Mn> Mn works effectively in securing the strength of the base metal and the high heat input welding strength, so it is added in an amount of 0.5% or more.
However, addition of more than 1.6% deteriorates the weld crack susceptibility.
【0023】<Mo>Moは溶接割れ感受性と大入溶接
継手靭性を劣化させる傾向が認められるため、上限は
0.3%とする。ただし、Moは母材強度と大入熱溶接
強度を確保する上で有効に働くので必要に応じて0.0
1%以上0.2%以下添加するのが好ましい。<Mo> Mo has a tendency to deteriorate weld crack susceptibility and toughness of large-entry welded joints, so the upper limit is made 0.3%. However, since Mo works effectively in securing the base material strength and the high heat input welding strength, 0.0
It is preferable to add 1% or more and 0.2% or less.
【0024】<Nb>Nbは母材強度と大入熱溶接強度
を確保する上で有効に働くので0.005%以上添加す
る。しかし、0.05%を越える添加は、溶接金属の靭
性を劣化させる。<Nb> Nb works effectively in securing the strength of the base metal and the high heat input welding strength, so 0.005% or more is added. However, the addition of more than 0.05% deteriorates the toughness of the weld metal.
【0025】尚、上記のNb添加範囲で、Nb炭窒化物
の固溶温度は本発明の加熱温度より高くなる場合が有り
得る。後述の計算式:625(有効Nb)+250V+
210Ceqにおいて、有効Nbの項は焼戻し後のNb
の析出硬化に伴う母材強度の上昇分を示すものであり、
有効Nbとは熱間圧延前の加熱段階で固溶したNbを指
す。従って、この計算式による限定を用いるにあたり、
Nb炭窒化物の固溶温度と圧延加熱温度の関係を考慮
し、Nb炭窒化物の固溶温度が加熱温度より高い場合は
C,N含有量から求まる固溶Nb量を有効Nb量として
計算式に用いることとする。In the above Nb addition range, the solution temperature of Nb carbonitride may be higher than the heating temperature of the present invention. Calculation formula described later: 625 (effective Nb) + 250V +
In 210 Ceq, the term of effective Nb is Nb after tempering.
It shows the amount of increase in base metal strength due to precipitation hardening of
Effective Nb refers to Nb which is solid-solved in the heating stage before hot rolling. Therefore, in using the limitation by this formula,
In consideration of the relationship between the solid solution temperature of Nb carbonitride and the rolling heating temperature, when the solid solution temperature of Nb carbonitride is higher than the heating temperature, the solid solution Nb amount obtained from the C and N contents is calculated as the effective Nb amount. It will be used in the formula.
【0026】<V>Vは0.1%を越える添加は溶接割
れ感受性を劣化させ、かつ母材靭性を損なうので0.1
%以下とする。ただし、母材強度と大入熱溶接強度を確
保する上で有効に働くので必要に応じて0.01%以上
添加する。<V> If V exceeds 0.1%, the weld crack susceptibility is deteriorated and the base metal toughness is impaired.
% Or less. However, 0.01% or more is added if necessary because it works effectively in securing the base material strength and the high heat input welding strength.
【0027】尚、本発明の範囲でのV炭窒化物の固溶温
度は通常の熱間圧延で採用される加熱温度より低く、従
って上述のNbの項で述べた配慮は不要である。Incidentally, the solid solution temperature of V carbonitride within the scope of the present invention is lower than the heating temperature adopted in ordinary hot rolling, and therefore the consideration described in the item of Nb above is unnecessary.
【0028】<Al>Alは鋼の脱酸のため添加され、
通常0.005%以上は含有する。また、ミクロ組織の
微細化による母材靭性の確保のために0.01%以上添
加するのがよい。しかし、0.1%を越えるAl添加は
母材靭性を損なう。<Al> Al is added for deoxidizing steel,
Usually, 0.005% or more is contained. Further, 0.01% or more is preferably added to secure the toughness of the base metal due to the refinement of the microstructure. However, addition of Al in excess of 0.1% impairs base material toughness.
【0029】<Ti,B>Tiはミクロ組織の細粒化を
通じて母材および溶接継手の靭性を改善する効果を有す
る。また、B添加鋼では、焼入れ性に有効に働くBを確
保するためしばしば積極的に添加される。しかし、本発
明では、溶接熱影響部の硬化が懸念されるBを添加せず
に母材強度を確保し、特に熱影響部粗粒域の硬度低減に
より溶接継手靭性を達成するため、Tiを添加する必然
性はない。むしろTi添加による母材性能の不安定さを
懸念し、不純物元素として0.005%未満に規制す
る。特に、後述するN含有量の3.4倍を下回ることが
望ましい。<Ti, B> Ti has the effect of improving the toughness of the base material and the welded joint through grain refinement of the microstructure. In addition, B-added steel is often positively added in order to secure B that works effectively for hardenability. However, in the present invention, Ti is added in order to secure the base metal strength without adding B, which may cause hardening of the heat-affected zone of the weld, and to achieve the weld joint toughness by reducing the hardness of the coarse-grained zone of the heat-affected zone. There is no need to add it. Rather, there is concern about instability of the base material performance due to the addition of Ti, so the content of the impurity element is limited to less than 0.005%. In particular, it is desirable that the N content is less than 3.4 times the content.
【0030】Bは上述の熱影響部の硬さ低減のため不純
物元素として0.0003%未満に規制しなければなら
ない。B must be regulated to less than 0.0003% as an impurity element to reduce the hardness of the heat-affected zone.
【0031】<N>Nは、Al,Nbなどと反応し析出
物を形成することでミクロ組織を微細化し、母材靭性を
向上させるため、および焼戻し時にNb,Vなどと反応
し析出硬化による強度確保のために添加する。<N> N reacts with Al, Nb, etc. to form a precipitate, thereby refining the microstructure and improving the toughness of the base metal, and reacting with Nb, V, etc. during tempering to cause precipitation hardening. Add to secure strength.
【0032】0.0005%未満の添加ではミクロ組織
の微細化および強度確保に必要な析出物が形成されず、
0.008%を越える添加はむしろ母材および溶接継手
の靭性を損なう。If added in an amount of less than 0.0005%, the precipitates necessary for refining the microstructure and ensuring the strength are not formed,
Addition of more than 0.008% rather impairs the toughness of the base metal and the welded joint.
【0033】<P,S>P,Sは、いずれも不純物元素
であり、健全な母材および溶接継手を得るために0.0
15%以下、好ましくは0.01%以下に規制されるこ
とが望ましい。<P, S> P and S are both impurity elements, and are 0.0 to obtain a sound base metal and weld joint.
It is desired to be regulated to 15% or less, preferably 0.01% or less.
【0034】<Cu,Ni,Cr>Cu,Crは母材お
よび溶接継手強度を向上させる効果を有する。Niはさ
らに靭性を改善する働きを示す。これらの合金元素は本
発明において化学成分の限定式の範囲内で選択的に添加
しても差し支えない。特にMnの一部をこれらの元素に
置き換えることで靭性の向上や偏析の軽減などを期待で
きる。<Cu, Ni, Cr> Cu, Cr has the effect of improving the strength of the base material and the welded joint. Ni has a function of further improving toughness. In the present invention, these alloying elements may be selectively added within the range of the limited formula of chemical components. In particular, by replacing a part of Mn with these elements, improvement of toughness and reduction of segregation can be expected.
【0035】<Pcm>Pcmは溶接割れ感受性を表す
指数であり、通常の環境において溶接施工時の予熱を不
要にするために0.2以下に規制する。<Pcm> Pcm is an index showing the susceptibility to welding cracks, and is regulated to 0.2 or less in order to eliminate the need for preheating during welding in a normal environment.
【0036】<計算式:625(有効Nb)+250V
+210Ceq>計算式:625(有効Nb)+250
V+210Ceqは母材の板厚1/2tにおける強度を
表す指数であり、当該業者間で一般に知られる炭素等量
式(Ceq)に板厚効果を考慮し、さらに本発明の要で
あるNb,Vの寄与を加味しさらに概ね15〜60mm
の板厚範囲における板厚効果を考慮して整理した数式で
ある。<Calculation formula: 625 (effective Nb) + 250V
+210 Ceq> Calculation formula: 625 (effective Nb) +250
V + 210Ceq is an index representing the strength of the base material at a plate thickness of 1 / 2t, and the plate thickness effect is taken into consideration in the carbon equivalent formula (Ceq) generally known by those skilled in the art. In addition to the contribution of 15 to 60 mm
It is a mathematical formula arranged in consideration of the plate thickness effect in the plate thickness range.
【0037】尚、板厚効果とは、熱間圧延後の直接焼入
れにより鋼板をAr3 変態点以上から強制冷却する際、
板厚に応じてその冷却速度が必然的に変化し、それため
母材強度が変化することを指す。The plate thickness effect means that when the steel plate is forcibly cooled from the Ar3 transformation point or higher by direct quenching after hot rolling,
It means that the cooling rate inevitably changes depending on the plate thickness, and therefore the base metal strength changes.
【0038】600N/mm2 級高張力鋼に分類される
JIS G3106 SM570Qに適合する鋼板を得
るためには計算式:625(有効Nb)+250V+2
10Ceqが板厚(mm)に40を加えた値を上回る必
要がある。In order to obtain a steel sheet that complies with JIS G3106 SM570Q, which is classified as 600 N / mm 2 class high-strength steel, the calculation formula is: 625 (effective Nb) + 250V + 2
It is necessary that 10 Ceq exceeds the value obtained by adding 40 to the plate thickness (mm).
【0039】<熱間圧延前の加熱温度>合金元素の均質
化とNbの固溶を図るため、加熱温度は1000℃以上
に設定する必要がある。しかし、加熱温度が1250℃
を越えるとミクロ組織の粗大化により母材の靭性が確保
されなくなるので上限を1250℃、好ましくは120
0℃とする。<Heating temperature before hot rolling> In order to homogenize alloy elements and form a solid solution of Nb, it is necessary to set the heating temperature to 1000 ° C. or higher. However, the heating temperature is 1250 ° C
If it exceeds, the toughness of the base material cannot be ensured due to the coarsening of the microstructure, so the upper limit is 1250 ° C., preferably 120.
Set to 0 ° C.
【0040】<圧延条件>均一に加熱された本発明鋼を
所定の板厚まで熱間圧延する工程は、通常の条件に依っ
て差し支えない。1050℃以下の温度域で20%以上
の累積圧下を付与することによりγ粒の再結晶に伴う細
粒化を達成し、母材の靭性をより安定に確保、向上させ
ることができる。同じ理由から、圧延1パス毎の圧下率
を5%以上、更に好ましくは10%以上確保することが
望ましい。<Rolling Conditions> The step of hot rolling the uniformly heated steel of the present invention to a predetermined plate thickness may be performed under ordinary conditions. By applying a cumulative reduction of 20% or more in a temperature range of 1050 ° C. or less, grain refinement due to recrystallization of γ grains can be achieved, and the toughness of the base material can be secured and improved more stably. For the same reason, it is desirable to secure a rolling reduction of 5% or more, more preferably 10% or more, for each pass of rolling.
【0041】圧延仕上げ温度は、Ar3変態点以上でな
ければならない。Ar3変態点を下回る温度で圧延を終
了すると、後の直接焼入れにて、焼入れが不完全なもの
となり良好な母材特性が確保できない。尚、母材の音響
異方性確保の観点からは、圧延仕上げ温度は900℃を
上回り、高温であるほど望ましい。The rolling finishing temperature must be above the Ar3 transformation point. If the rolling is completed at a temperature below the Ar3 transformation point, the subsequent direct quenching will result in incomplete quenching, and good base material properties cannot be secured. From the viewpoint of ensuring the acoustic anisotropy of the base material, the rolling finish temperature is preferably higher than 900 ° C. and higher.
【0042】<直接焼入れ>熱間圧延終了後、Ar3変
態点を上回る温度の鋼板を強制冷却により焼入れ処理を
施すことが必要である。強制冷却は水等の冷却媒体を鋼
板に均一に付与し、板厚1/2tの変態温度付近にて概
ね3℃/sec以上の冷却速度を達成させるようにする
ことが必要である。<Direct Quenching> After completion of hot rolling, it is necessary to quench the steel sheet having a temperature higher than the Ar3 transformation point by forced cooling. For forced cooling, it is necessary to uniformly apply a cooling medium such as water to the steel sheet so as to achieve a cooling rate of approximately 3 ° C./sec or more near the transformation temperature of the sheet thickness 1 / 2t.
【0043】<焼戻し温度>焼戻しは、Acl変態点を
越える温度で焼戻しを行うと強度の低下が著しく、60
0N/mm2 級高張力鋼としての強度が確保されないた
め、Acl変態点以下でおこなう。ただし、溶接継手強
度確保のため、およびNbの析出効果による母材強度確
保のため570℃、好ましくは600℃以上で実施する
のがよい。<Tempering Temperature> In tempering, if the tempering is carried out at a temperature exceeding the Acl transformation point, the strength is remarkably lowered.
Since the strength as 0 N / mm 2 class high-strength steel cannot be ensured, it is performed below the Ac1 transformation point. However, in order to secure the strength of the welded joint and to secure the strength of the base metal due to the precipitation effect of Nb, it is preferable to carry out at 570 ° C, preferably 600 ° C or higher.
【0044】[0044]
【実施例】表1に本発明の実施例に用いた鋼の化学成分
を示す。表1に示した化学成分の鋼を溶製して鋼塊とな
し、表2に示した製造条件にて所定の板厚に熱間圧延
後、直接焼入れし、更に焼戻し処理を施し供試鋼を得
た。尚、熱間圧延の仕上げ温度はいずれも900〜10
00℃の範囲とし、焼戻し温度は580〜680℃の範
囲とした。尚、一部の供試鋼を再加熱焼入れ焼戻し処理
し、実施例との比較に用いた。EXAMPLES Table 1 shows the chemical composition of the steel used in the examples of the present invention. Steel with the chemical composition shown in Table 1 was melted to form a steel ingot, hot rolled to a prescribed plate thickness under the manufacturing conditions shown in Table 2, directly quenched, and further tempered. Got The finishing temperature of hot rolling is 900 to 10 in all cases.
The temperature was set to 00 ° C and the tempering temperature was set to 580 to 680 ° C. In addition, a part of the test steel was subjected to reheating quenching and tempering treatment and used for comparison with the examples.
【0045】全ての供試鋼の板厚中央部より、引張試験
およびシャルピー衝撃試験を圧延方向と垂直な方向にて
採取し600N/mm2 級鋼としての母材の機械的性質
を評価した。Tensile tests and Charpy impact tests were taken in the direction perpendicular to the rolling direction from the center part of the plate thickness of all the test steels to evaluate the mechanical properties of the base metal as 600N / mm 2 class steel.
【0046】また、併せて、JIS Z3158に準拠
して斜めY型溶接割れ試験を、JIS Z3101に準
拠して最高硬さ試験をそれぞれ実施し、溶接割れ感受性
を評価した。これらの試験雰囲気は20℃、−60%に
管理し、試験片初期温度は25℃とした。In addition, an oblique Y-type weld cracking test was carried out according to JIS Z3158 and a maximum hardness test was carried out according to JIS Z3101 to evaluate the weld cracking susceptibility. These test atmospheres were controlled at 20 ° C and -60%, and the initial temperature of the test piece was 25 ° C.
【0047】大入熱溶製性は、通常のエレクトロガスア
ーク溶接により継手を作製し、その強度を測定すると共
に、靭性が最も懸念されるボンド部についてシャルピー
衝撃試験を実施し評価した。The large heat input meltability was evaluated by making a joint by ordinary electrogas arc welding, measuring the strength of the joint, and conducting a Charpy impact test on the bond portion where the toughness is most concerned.
【0048】尚、エレクトロガスアーク溶接継手は、板
厚25mmの供試鋼についてのみ片面1層溶接により作
製し、それ以上の板厚の供試鋼については、板厚中央に
て両面1層に振り分けて溶接し作製した。表2にファイ
ナル側の溶接入熱を明記したが、バッキング側の入熱は
いずれも7〜8kJ/mmである。The electrogas arc welded joint was prepared by welding one side of one layer only to the sample steel having a plate thickness of 25 mm, and for the sample steel having a plate thickness larger than that, it was divided into one layer on both sides at the center of the plate thickness. Welded and manufactured. The welding heat input on the final side is specified in Table 2, but the heat input on the backing side is 7 to 8 kJ / mm in all cases.
【0049】表2に示す実施例No.1に用いた鋼番A
の鋼は、表1から明らかなように比較鋼である。鋼番A
の鋼の計算値(625(有効Nb)+250V+210
Ceq=82)は供試鋼板厚(38)に40を加えた値
(78)を上回り、そのため母材の引張り強さは570
N/mm2 を越えた。また、Pcm値は0.17と低
く、Y割れ試験において溶接割れは発生しなかった。し
かし、Nbが添加されていないため大入熱溶接継手強度
が570N/mm2 を下回った。Example No. 1 shown in Table 2 Steel No. A used for 1
The steel No. 1 is a comparative steel as is clear from Table 1. Steel number A
Calculated value of steel (625 (effective Nb) + 250V + 210
Ceq = 82) exceeds the value (78) obtained by adding 40 to the test steel plate thickness (38), and therefore the tensile strength of the base metal is 570.
N / mm 2 was exceeded. Further, the Pcm value was as low as 0.17, and no welding cracks occurred in the Y crack test. However, the high heat input welded joint strength was less than 570 N / mm 2 because Nb was not added.
【0050】実施例No.2〜4は、鋼番Bの鋼を用い
た本発明の実施例である。板厚25mmおよび38mm
の供試鋼母材の機械的性質および溶接割れ感受性は良好
であり、かつ、健全な大入熱溶接継手が実現できた。Example No. 2 to 4 are examples of the present invention using steel No. B. Plate thickness 25 mm and 38 mm
The mechanical properties and weld crack susceptibility of the test steel base metal of No. 3 were good, and a sound large heat input welded joint was realized.
【0051】実施例No.5〜11は、Mn,Mo,N
bの含有量を変化させた鋼番C〜I鋼による本発明の実
施例である。いずれも健全な母材および大入熱溶接継手
の機械的性質が確認され、溶接割れ感受性も良好であっ
た。また、これらの実施例のようにMn,Mo,Nb含
有量を変化させても計算値と母材強度の相関は良く、こ
の計算式が工業上有用であることが示される。Example No. 5-11 are Mn, Mo, N
It is an Example of this invention by the steel No. C-I steel which changed the content of b. In all cases, the mechanical properties of the sound base metal and the high heat input welded joint were confirmed, and the weld crack susceptibility was also good. Further, even if the Mn, Mo, and Nb contents are changed as in these examples, the correlation between the calculated value and the base material strength is good, which shows that this calculation formula is industrially useful.
【0052】実施例No.12,13はVを添加しない
鋼番J鋼による本発明実施例である。No.12は加熱
温度が1000℃の場合であり、圧延前にNbは全て固
溶していない。このような場合に於ても計算値に代入す
るNb量を析出硬化に働く有効Nb量とすることで、計
算式の精度は保たれる。Example No. Reference numerals 12 and 13 are examples of the present invention using steel No. J steel in which V is not added. No. No. 12 is the case where the heating temperature is 1000 ° C., and all Nb is not solid-solved before rolling. Even in such a case, the accuracy of the calculation formula can be maintained by setting the Nb amount substituted for the calculated value as the effective Nb amount that works for precipitation hardening.
【0053】実施例No.14はJ鋼に、再加熱焼入れ
焼戻しプロセスを適用した比較例であり、600N/m
m2 級高張力鋼としての母材強度が確保されない。Example No. No. 14 is a comparative example in which the reheating quenching and tempering process is applied to the J steel, which is 600 N / m.
The strength of the base metal as m 2 class high-strength steel is not secured.
【0054】実施例No.15はC量が本発明の規定を
外れる鋼番K鋼による比較例である。計算式により適正
な合金元素の添加量を見いだしても、大入熱溶接継手に
おいて、健全な溶接金属が得られず、この場合は継手引
張試験において溶接金属部より破断し継手強度が確保さ
れなかった。Example No. No. 15 is a comparative example with steel No. K steel whose C content is out of the range of the present invention. Even if an appropriate amount of alloying element is found from the calculation formula, a sound weld metal cannot be obtained in the high heat input welded joint, and in this case, the joint is fractured from the weld metal part in the joint tensile test and the joint strength cannot be secured. It was
【0055】実施例No.16は、C含有量の高い鋼番
L鋼による比較例であり、斜めY型溶接割れ試験におい
て溶接割れが発生した。Example No. No. 16 is a comparative example of steel No. L steel having a high C content, and welding cracks occurred in the oblique Y-type welding crack test.
【0056】実施例No.17は、C含有量が高く、N
bを含まない鋼番M鋼による比較例である。斜めY型溶
接割れ試験において溶接割れは発生なかったが、最高硬
さは290Hvを越え良好とは言えない。また、大入熱
溶接継手の靭性は、本発明例のいずれよりも劣る。Example No. 17 has a high C content, and N
It is a comparative example by the steel number M steel which does not contain b. No weld cracks were found in the oblique Y-type weld crack test, but the maximum hardness exceeds 290 Hv and cannot be said to be good. Further, the toughness of the high heat input welded joint is inferior to any of the examples of the present invention.
【0057】実施例No.18〜21,23は、Cu,
Ni,Crを含有する場合の鋼番N,O,P,Q,Sの
鋼による本発明例である。Example No. 18 to 21 and 23 are Cu,
It is an example of the present invention by the steel of steel numbers N, O, P, Q, and S when it contains Ni and Cr.
【0058】No.22は鋼番Rの鋼による比較鋼であ
る。Crを本発明の規定範囲を越えて含有し、かつPc
m値が0.2を越えたため、斜めY型溶接割れ試験にお
いて、溶接割れが発生した。No. 22 is a comparative steel made of steel No. R steel. Contains Cr in an amount exceeding the range specified in the present invention, and has Pc
Since the m value exceeded 0.2, weld cracking occurred in the oblique Y-type weld cracking test.
【0059】No.24,25はBが添加された鋼番
N,Oの鋼による比較例である。いずれも良好な母材強
度が得られているが、母材靭性はTiが複合添加された
O鋼によるNo.25の方が良好である。いずれも溶接
割れ感受性は良好であるが、大入熱溶接継手の靭性は悪
い。No. 24 and 25 are comparative examples of steels with steel numbers N and O containing B. In all cases, good base metal strength was obtained, but the base metal toughness was no. 25 is better. Both have good weld crack susceptibility, but the toughness of the high heat input welded joint is poor.
【0060】No.26は、鋼番Dの鋼について、10
00℃にて加熱し製造した本発明例である。有効Nb量
により規定された計算式を満たすもののNo.6の実施
例に比べて有効Nb量の減少に対応した母材強度の低下
が認められた。No. 26 is 10 for steel No. D steel.
It is an example of the present invention manufactured by heating at 00 ° C. Although the calculation formula defined by the effective Nb amount is satisfied, No. A decrease in the base metal strength corresponding to the decrease in the amount of effective Nb was recognized as compared with the example of No. 6.
【0061】[0061]
【表1】 [Table 1]
【0062】[0062]
【表2】 [Table 2]
【0063】[0063]
【表3】 [Table 3]
【0064】[0064]
【表4】 [Table 4]
【0065】[0065]
【発明の効果】以上のように、本発明により、溶接割れ
感受性が低く、かつ大入熱溶接性に優れた600N/m
m2 級高張力鋼およびその製造方法を提供できる。As described above, according to the present invention, 600 N / m, which has low weld crack susceptibility and excellent large heat input weldability.
An m 2 class high-strength steel and a manufacturing method thereof can be provided.
【図1】実施例No.6に対応する本発明例の大入熱溶
接継手部の硬度分布を示した図。図中矢印がボンド部を
表し、その極近傍の母材側熱影響部の硬度は低い値を示
している。1 is an example No. 1; The figure which showed the hardness distribution of the large heat input welding joint part of this invention example corresponding to 6. The arrow in the figure represents the bond portion, and the hardness of the base material side heat affected zone in the immediate vicinity thereof shows a low value.
【図2】実施例No.7に対応する本発明例の大入熱溶
接継手部の硬度分布を示した図。図中矢印がボンド部を
表し、その極近傍の母材側熱影響部の硬度は低い値を示
している。2 is an example No. The figure which showed the hardness distribution of the large heat input welding joint part of the example of this invention corresponding to 7. The arrow in the figure represents the bond portion, and the hardness of the base material side heat affected zone in the immediate vicinity thereof shows a low value.
【図3】実施例No.9に対応する本発明例の大入熱溶
接継手部の硬度分布を示した図。図中矢印がボンド部を
表し、その極近傍の母材側熱影響部の硬度は低い値を示
している。3 is an example No. The figure which showed the hardness distribution of the large heat input welding joint part of the example of this invention corresponding to 9. The arrow in the figure represents the bond portion, and the hardness of the base material side heat affected zone in the immediate vicinity thereof shows a low value.
【図4】実施例No.10に対応する本発明例の大入熱
溶接継手部の硬度分布を示した図。図中矢印がボンド部
を表し、その極近傍の母材側熱影響部の硬度は低い値を
示している。4 is an example No. The figure which showed the hardness distribution of the large heat input welding joint part of the example of this invention corresponding to 10. The arrow in the figure represents the bond portion, and the hardness of the base material side heat affected zone in the immediate vicinity thereof shows a low value.
【図5】実施例No.24に対応する比較例の大入熱溶
接継手部の硬度分布を示した図。熱影響部のボンド部近
傍で本発明例と比べて著しい硬度上昇が認められる。5: Example No. The figure which showed the hardness distribution of the large heat input welding joint part of the comparative example corresponding to 24. A marked increase in hardness is recognized in the vicinity of the bond portion in the heat-affected zone as compared with the inventive examples.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川中 徹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松井 和幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Kawanaka, Toru Kawanaka, 1-2, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Kazuyuki Matsui, 1-2, Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd.
Claims (4)
i:0.01〜0.4%、Mn:0.5〜1.6%、M
o:0.3%以下、Nb:0.005〜0.05%、
V:0.1%以下、Al:0.005〜0.1%、N:
0.0005〜0.008%、Ti<0.005%、B
<0.0003%を含み、Pcm=C+Si/30+M
n/20+Cu/20+Ni/60+Cr/20+Mo
/15+V/10+5Bで定義されるPcm値が0.2
以下、の化学組成を有する鋼を熱間圧延に際し、100
0〜1250℃の温度範囲に設定された加熱温度Tを用
いて、log(Nb)×(C+12N/14)=2.2
6−6770/(T+273.15)の関係より計算さ
れる固溶Nb量を有効Nb量として、Ceq=C+Mn
/6+Si/24+Ni/40+Cr/5+Mo/4+
V/14で定義されるCeq値および、有効Nb量、V
含有量、鋼板厚t(mm)を用いて、 625(有効Nb)+250V+210Ceq≧40+
t の関係を満たし、残部が鉄および不可避不純物よりなる
ことを特徴とする溶接割れ感受性と大入熱溶接性に優れ
た高張力鋼。1. C: 0.06 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.6%, M
o: 0.3% or less, Nb: 0.005 to 0.05%,
V: 0.1% or less, Al: 0.005-0.1%, N:
0.0005-0.008%, Ti <0.005%, B
<Including 0.0003%, Pcm = C + Si / 30 + M
n / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo
Pcm value defined by / 15 + V / 10 + 5B is 0.2
When hot rolling a steel having the following chemical composition:
Using the heating temperature T set in the temperature range of 0 to 1250 ° C., log (Nb) × (C + 12N / 14) = 2.2
Ceq = C + Mn, where the amount of solid solution Nb calculated from the relationship of 6-6770 / (T + 273.15) is the effective Nb amount.
/ 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 +
Ceq value defined by V / 14, effective Nb amount, V
Using the content and the steel plate thickness t (mm), 625 (effective Nb) + 250V + 210Ceq ≧ 40 +
A high-strength steel excellent in weld cracking susceptibility and high heat input weldability, characterized by satisfying the relationship of t 3 with the balance consisting of iron and unavoidable impurities.
i:0.01〜0.4%、Mn:0.5〜1.6%、M
o:0.3%以下、Nb:0.005〜0.05%、
V:0.1%以下、Al:0.005〜0.1%、N:
0.0005〜0.008%、Ti<0.005%、B
<0.0003%を含み、さらにCu:0.5%以下、
Ni:1.5%以下、Cr:0.5%以下の1種又は2
種以上を含み、Pcm=C+Si/30+Mn/20+
Cu/20+Ni/60+Cr/20+Mo/15+V
/10+5Bで定義されるPcm値が0.2以下、の化
学組成を有する鋼を熱間圧延に際し、1000〜125
0℃の温度範囲に設定された加熱温度Tを用いて、lo
g(Nb)×(C+12N/14)=2.26−677
0/(T+273.15)の関係より計算される固溶N
b量を有効Nb量として、Ceq=C+Mn/6+Si
/24+Ni/40+Cr/5+Mo/4+V/14で
定義されるCeq値および、有効Nb量、V含有量、鋼
板厚t(mm)を用いて、 625(有効Nb)+250V+210Ceq≧40+
t の関係を満たし、残部が鉄および不可避不純物よりなる
ことを特徴とする溶接割れ感受性と大入熱溶接性に優れ
た高張力鋼。2. C: 0.06 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.6%, M
o: 0.3% or less, Nb: 0.005 to 0.05%,
V: 0.1% or less, Al: 0.005-0.1%, N:
0.0005-0.008%, Ti <0.005%, B
<Including 0.0003%, further Cu: 0.5% or less,
Ni: 1.5% or less, Cr: 0.5% or less, one or two
Including more than one species, Pcm = C + Si / 30 + Mn / 20 +
Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V
When a steel having a chemical composition with a Pcm value defined by / 10 + 5B of 0.2 or less is hot-rolled, 1000 to 125
Using the heating temperature T set in the temperature range of 0 ° C.,
g (Nb) × (C + 12N / 14) = 2.26−677
Solid solution N calculated from the relationship of 0 / (T + 273.15)
Ceq = C + Mn / 6 + Si with b amount as effective Nb amount
Using the Ceq value defined by / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 and the effective Nb amount, V content, and steel plate thickness t (mm), 625 (effective Nb) + 250V + 210Ceq ≧ 40 +
A high-strength steel excellent in weld cracking susceptibility and high heat input weldability, characterized by satisfying the relationship of t 3 with the balance consisting of iron and unavoidable impurities.
際し、所定の板厚に熱間圧延の後、引続きAr3変態点
以上から直接焼入れし、Acl変態点以下の温度で焼戻
し処理することを特徴とする溶接割れ感受性と大入熱溶
接性に優れた高張力鋼の製造方法。3. When producing the steel according to claim 1 or 2, after hot rolling to a predetermined plate thickness, subsequently quenching directly from the Ar3 transformation point or higher and tempering at a temperature not higher than the Ac1 transformation point. A method for producing high-strength steel excellent in weld cracking susceptibility and high heat input weldability.
際し、1000〜1250℃の温度範囲に加熱し、10
50℃以下で20%以上の累積圧下率で熱間圧延の後、
引続きAr3変態点以上から直接焼入れし、Acl変態
点以下の温度で焼戻し処理することを特徴とする溶接割
れ感受性と大入熱溶接性に優れた高張力鋼の製造方法。4. When producing the steel according to claim 1 or 2, heating to a temperature range of 1000 to 1250 ° C.
After hot rolling at a cumulative reduction of 20% or more at 50 ° C or less,
A method for producing a high-strength steel having excellent weld crack sensitivity and high heat input weldability, which comprises directly quenching from an Ar3 transformation point or higher and tempering at a temperature not higher than the Ac transformation point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32707594A JPH08176731A (en) | 1994-12-28 | 1994-12-28 | High tensile steel and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32707594A JPH08176731A (en) | 1994-12-28 | 1994-12-28 | High tensile steel and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08176731A true JPH08176731A (en) | 1996-07-09 |
Family
ID=18195016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32707594A Pending JPH08176731A (en) | 1994-12-28 | 1994-12-28 | High tensile steel and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08176731A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024467A (en) * | 2008-07-15 | 2010-02-04 | Sumitomo Metal Ind Ltd | Welded joint having excellent fatigue property |
CN109487163A (en) * | 2018-12-13 | 2019-03-19 | 河钢股份有限公司 | Direct quenching type surrenders 800MPa level structure steel plate and its production method |
CN111621708A (en) * | 2020-06-30 | 2020-09-04 | 南阳汉冶特钢有限公司 | Novel steel plate with impact toughness higher than P690QL2 steel plate for LPG ship storage tank and production method thereof |
-
1994
- 1994-12-28 JP JP32707594A patent/JPH08176731A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024467A (en) * | 2008-07-15 | 2010-02-04 | Sumitomo Metal Ind Ltd | Welded joint having excellent fatigue property |
CN109487163A (en) * | 2018-12-13 | 2019-03-19 | 河钢股份有限公司 | Direct quenching type surrenders 800MPa level structure steel plate and its production method |
CN109487163B (en) * | 2018-12-13 | 2020-08-28 | 河钢股份有限公司 | Direct quenching type 800 MPa-level yield structural steel plate and production method thereof |
CN111621708A (en) * | 2020-06-30 | 2020-09-04 | 南阳汉冶特钢有限公司 | Novel steel plate with impact toughness higher than P690QL2 steel plate for LPG ship storage tank and production method thereof |
CN111621708B (en) * | 2020-06-30 | 2021-09-24 | 南阳汉冶特钢有限公司 | Novel steel plate with impact toughness higher than P690QL2 steel plate for LPG ship storage tank and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012002567A1 (en) | Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance | |
JP5407478B2 (en) | High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same | |
JP5089224B2 (en) | Manufacturing method of on-line cooling type high strength steel sheet | |
JP2000256795A (en) | Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab | |
JP2002047532A (en) | High tensile strength steel sheet excellent in weldability and its production method | |
JPH10298706A (en) | High tensile strength steel excellent in high heat input weldability and weld crack sensitivity and its production | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JP5170212B2 (en) | Method for producing high-tensile steel with high yield point | |
JP3374688B2 (en) | Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness | |
JP7410438B2 (en) | steel plate | |
JP2002161330A (en) | Wear resistant steel | |
JP4655372B2 (en) | Method for producing high-tensile steel with high yield point | |
JP2000192140A (en) | Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity | |
JP4250113B2 (en) | Steel plate manufacturing method with excellent earthquake resistance and weldability | |
JPH08176731A (en) | High tensile steel and production thereof | |
JP3503345B2 (en) | High-tensile steel excellent in large heat input weldability, susceptibility to weld cracking and weather resistance and method for producing the same | |
JP2020204091A (en) | High strength steel sheet for high heat input welding | |
JPH1017929A (en) | Production of thick 600n class steel excellent in weldability and toughness in center part of plate thickness | |
JPH1068045A (en) | 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production | |
JPH05117745A (en) | Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose | |
JP3474954B2 (en) | High tensile steel and method for producing the same | |
JPH05112823A (en) | Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint | |
JP3739997B2 (en) | High-tensile steel plate with excellent weldability | |
JP3312516B2 (en) | Method for producing high strength steel excellent in weld cracking susceptibility, large heat input weldability and acoustic anisotropy | |
JP3823628B2 (en) | Method for producing high-strength steel of 60 kg with excellent weldability and toughness after strain aging |