JP4655372B2 - Method for producing high-tensile steel with high yield point - Google Patents

Method for producing high-tensile steel with high yield point Download PDF

Info

Publication number
JP4655372B2
JP4655372B2 JP2001016558A JP2001016558A JP4655372B2 JP 4655372 B2 JP4655372 B2 JP 4655372B2 JP 2001016558 A JP2001016558 A JP 2001016558A JP 2001016558 A JP2001016558 A JP 2001016558A JP 4655372 B2 JP4655372 B2 JP 4655372B2
Authority
JP
Japan
Prior art keywords
steel
less
yield point
strength
high yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001016558A
Other languages
Japanese (ja)
Other versions
JP2002220622A (en
Inventor
照輝 貞末
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001016558A priority Critical patent/JP4655372B2/en
Publication of JP2002220622A publication Critical patent/JP2002220622A/en
Application granted granted Critical
Publication of JP4655372B2 publication Critical patent/JP4655372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い降伏点を有する高張力鋼材の製造方法に関し、詳しくは、橋梁、建築物、建産機等に代表されるような溶接構造物の主要部材を対象とした降伏強度が450MPa以上の優れた靭性および溶接性を有する高張力鋼材の製造方法に関する。
【0002】
【従来の技術】
橋梁、建築物、建産機等に代表される溶接構造物は近年、大型化、高度化の方向にある。これに伴い、このような構造物の主要鋼材には高張力鋼が適用される事例が多くなってきている。高張力鋼材の使用による鋼材重量の低減、薄肉化、さらにこれらに伴う溶接の省力化が狙いである。
【0003】
従来、このような高張力鋼材の中でも450MPa以上の高降伏点を有する鋼材は、焼入れ・焼戻し処理する方法や種々の合金元素を添加する方法により製造されてきた。しかし、前者の処理方法は製造コストが増大すること、後者の方法は合金元素添加によるコスト増大に加えて靭性および溶接性が悪くなること、という問題がある。
【0004】
このような問題を解決するために熱間圧延後の鋼材への加速冷却の適用が試みられている。特開昭62−89814号公報には圧延後さらにAr3点-30℃からAr3点-150℃の温度域でレベラー掛けまたは軽圧下処理を施すことでNb、Vの析出を促進しつつ、その後の加速冷却にて高降伏点鋼を得る手法が開示されている。また、特開平4−221015号公報には圧延後、Ar3点-70℃からAr3点-150℃の温度範囲で2分間以上保持する間にNb、Vを析出させ、その後に加速冷却することで高降伏点鋼板を得る手法が開示されている。これらの技術に共通する問題点は圧延後に特殊な工程を必要とし作業が煩雑となることにある。また、特開昭63−161119号公報には降伏強度46kgf/mm2(451MPa)以上を得るために、Cu、Ni、Ti、REMを含有する鋼を圧延後、引き続き350〜500℃の温度域まで加速冷却する手法が開示されている。しかし、この場合でも高価な合金元素を添加する必要があるためコスト増大を招くという問題がある。
【0005】
上記のように、従来提案された加速冷却を用いた手法においては、所望特性を得るための製造工程が複雑であったり、或いは素材鋼として特殊な成分系のものを必要とするなど、実用的な手段とは言えなかった。
【0006】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであって、特殊な工程や多量の合金元素の添加を必要とせずに、優れた靭性および溶接性を有し、かつ450MPa以上の高い降伏点を有する高張力鋼材の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、450MPa以上の高降伏点を有し、かつ、靭性および溶接性に優れた鋼材の製造方法について鋭意研究を行った。その結果、VとNbを複合添加することによりマトリクスの強化と析出強化とを効果的に活用することで、加速冷却時において広範囲の停止温度でも安定的に高降伏点が得られるとの知見を得た。また、上記鋼材の成分を特定の範囲とすることにより、優れた靭性および溶接性を併せ持たせることができるとの知見を得た。
【0008】
本発明はこのような知見に基づいてなされたものであって、質量%で、C:0.03〜0.15%、Si:0.10〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Nb:0.001〜0.10%、V:0.001〜0.10%を含有し、残部Fe及び不可避不純物からなり、かつPCM≦0.25%である鋼を加熱後、熱間圧延し、直ちにAr3点以上の温度域から5℃/s以上の冷却速度で350〜650℃の温度域まで冷却することを特徴とする450MPa以上の高い降伏点を有する靭性および溶接性に優れた高張力鋼材の製造方法である。
但し、PCMは溶接割れ感受性指数であり、以下の(1)式で与えられる。(1)式中の元素記号は鋼材中の各成分元素の含有率(質量%)である。
【0010】
CM=C+Si/30+(Mn+Cu+Cr)/20+Mo/15+Ni/60+V/10+5B…(1)
【0011】
【発明の実施の形態】
本発明者らは鋼材の高降伏点化のためには、NbおよびV添加によるマトリクスの強化および析出強化が必要と考え、これを加速冷却により最大限に発揮させることを目的として研究を行い、本発明を完成した。
【0012】
本発明の鋼の成分および製造条件の限定理由を詳細に説明する。まず、化学成分の限定理由について説明する。
【0013】
C:0.03〜0.15%;
Cは強度確保のために0.03%以上の添加が必要である。しかし、0.15%を越える添加は溶接性を阻害する。したがって0.03%以上0.15%以下に限定する。
【0014】
Si:0.10〜0.50%;
Siは脱酸剤として有効であるとともに高強度化のためには0.10%以上必要であるが、0.50%を越えて添加すると溶接性、靭性を劣化させる。したがって0.10%以上0.50%以下に限定する。
【0015】
Mn:0.5〜2.0%;
Mnは安価に焼入れ性を増加させ、強度を高めるだけでなく、靭性向上にも寄与する。この観点から0.5%以上必要であるが、2.0%を越えると溶接性の劣化に繋がる。したがって0.5%以上2.0%以下に限定する。
【0016】
P:0.05%以下;
Pは鋼の靭性を劣化させるため、その含有量はできるだけ低いことが望ましい。このため上限を0.05%とした。好ましくは0.03%以下とする。
【0017】
S:0.02%以下;
Sは多量に添加すると鋼の靭性を低下させるため極力低減するのが望ましい。
このため、上限を0.02%とした。好ましくは0.01%以下とする。
【0018】
Nb:0.001〜0.10%;
Nbは本発明において非常に重要な元素であり、マトリクスの強化ならびに析出強化を通じて高降伏点化をもたらす働きを有する。この効果を発揮させるには0.001%以上の添加が必要であるが、0.10%を越えて添加すると靭性が劣化する。したがって0.001%以上0.10%以下に限定する。
【0019】
V:0.001〜0.10%;
VもNbと同様、本発明において重要な働きをなす元素であり、マトリクスの強化及び析出強化による高降伏点化をもたらす。このため0.001%以上の添加が必要となるが、0.10%を越える添加は溶接性および靭性の低下を招く。したがって0.001%以上0.10%以下に限定する。
【0020】
Cu:1%以下;
Cuは固溶による強度上昇効果をもたらすとともに耐候性確保のため必要により添加される。しかし、その含有量が1%を超えると溶接性を損なうとともに鋼材製造時に疵が生じやすくなる。したがってその上限を1%とする。好ましくは0.5%以下とする。
【0021】
Ni:2%以下;
Niは低温靭性を向上させるとともにCuを添加した場合に生ずる熱間脆性の改善に有効であるために必要に応じて添加される。しかし、その添加量が2%を超えると溶接性を阻害する上、コスト上昇に繋がる。したがってその上限を2%とする。好ましくは1%以下とする。
【0022】
Cr:1%以下;
Crは耐候性や強度の観点から必要に応じて添加されるが、その含有量が1%を超えると溶接性および靭性を損なう。したがって上限を1%とする。好ましくは0.5%以下とする。
【0023】
Mo:1%以下;
Moは強度上昇のために必要に応じて添加されるが、1%を超えると溶接性および靭性の劣化が生じる。したがってその上限を1%とする。好ましくは0.5%以下とする。
【0024】
Ti:0.1%以下;
Tiは強度上昇と溶接部靭性の改善のために必要に応じて添加される。しかし、その含有量が0.1%を超えるとコスト上昇を招く傾向にある。したがって上限を0.1%とする。好ましくは0.05%以下とする。
【0025】
B:0.005%以下;
Bは焼入れ性を高め強度上昇に寄与するため必要に応じて添加される。しかし、0.005%を超えて添加すると溶接性を害する。したがって上限を0.005%とする。
好ましくは0.003%以下とする。
【0026】
PCM≦0.25%
本発明においては溶接性の向上も目的としている。このためPCMで表される溶接割れ感受性指数を0.25%以下とし、低温割れの抑制を図るものである。好ましくはPCM≦0.22%とする。
【0027】
本発明の鋼の成分の残部は実質的にFeである。残部が実質的にFeであるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0028】
次に製造条件についての限定理由を述べる。
【0029】
本発明による製造方法は上記組成を有する鋼を加熱する工程と、その後に熱間圧延する工程と、この鋼材を直ちにAr3点以上の温度域から5℃/s以上の冷却速度で350〜650℃の温度域まで冷却する工程とを備える。なお、上記温度および冷却速度は鋼板表面から板厚中央部にかけての平均温度および平均冷却速度とする。
【0030】
上記の圧延前の鋼の加熱温度としては特に制限は設けないが、950〜1300℃にすることが望ましい。上記加熱温度を950℃未満にするとNbおよびVの固溶が不十分となる。また、1300℃を超える温度にすると鋼の結晶粒が粗大化するので靭性の確保が困難となる。
【0031】
上記加熱後の鋼の熱間圧延に際しては特に制限は設けない。但し、オーステナイト再結晶域圧延あるいはオーステナイト未再結晶域圧延のどちらであっても、その仕上温度が後述するAr3点を超える温度域とする必要がある。
【0032】
上記圧延後の鋼材の冷却に際しては、熱間圧延後直ちにAr3点以上の温度域から5℃/s以上の冷却速度で350〜650℃の温度域まで冷却する。Ar3点は例えば以下の(2)式のような関係式により鋼材の成分組成に基づいて導くことが出来る。(2)式中の元素記号は鋼材中の各成分元素の含有率(質量%)である。
【0033】
上記冷却開始温度をAr3点以上とするのは冷却開始時点までにフェライトの生成が生じないようにするためである。冷却開始時点までにフェライトが生じた場合には降伏点の低下が著しい。
【0034】
冷却速度を5℃/s以上とするのは金属組織をベイナイト主体、あるいはベイナイトとマルテンサイト主体の混合組織とし、鋼材の強度上昇を図るためである。
【0035】
冷却停止温度を350〜650℃とするのは、この温度域でNbとVの複合添加によるマトリクスの強化と析出強化をバランスさせて鋼材の降伏強度を高めることが出来るためである。
【0036】
Ar3(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo…(2)
【0037】
【実施例】
[実施例1] NbとVの複合添加の効果を調べるため、組成をC:0.10%、Si:0.30%、Mn1.45%、P:0.010%、S:0.003%とした鋼(鋼▲1▼)、鋼▲1▼に0.04%のVを単独添加した鋼(鋼▲2▼)、さらに鋼▲1▼に0.04%のVと0.02%のNbとを複合添加した鋼(鋼▲3▼)を用意した。これらの鋼を1100℃に加熱して板厚30mmの鋼板に圧延し、その後、直ちにAr3点以上の温度域から冷却し、冷却停止温度を変化させた。これらの鋼板について板厚の4分の1の位置で圧延方向に直角方向に採取したJIS Z 2201の4号試験片により引張試験を行って強度(降伏強度:YS、引張強度:TS)を評価した。結果を図1に示す。
【0038】
図1において横軸は冷却停止温度、縦軸は降伏強度、引張強度を示している。
【0039】
まず、鋼▲1▼の降伏強度に及ぼす冷却停止温度の影響に注目する。この場合、降伏強度は、いずれの停止温度においても450MPaを上回ることは出来ない。次に、鋼▲2▼で示すV単独添加の降伏強度に注目すると冷却停止温度450℃〜550℃において450MPa以上の降伏強度を有しているがその温度幅は100℃であり安定的に高降伏点鋼材が製造可能とは言い難い。次に、鋼▲3▼に示すさらにNbを添加したNb+V複合添加に注目した場合、450MPa以上の高降伏点が確保できる冷却停止温度は350〜650℃までと大幅に広がっている。
【0040】
以上の結果より、Nb+Vの複合添加により高降伏点化が達成できる冷却停止温度が広がり、安定的に高降伏点鋼材が製造可能であることがわかった。これは、低い冷却停止温度範囲(例えば350〜450℃)においては、NbとVの複合添加によるマトリクス強化が主として作用し、高降伏点化が達成され、高い冷却停止温度範囲(例えば450〜650℃)においては、NbおよびVの析出強化機構により、高降伏点が得られたものと考えられる。
【0041】
[実施例2] 表1に示す組成を有する鋼を溶製して得られた鋼片を、表2に示す条件に基づいて加熱・圧延・冷却して、板厚20〜100mmの鋼板を製造し、強度・靭性・溶接性を測定した。
【0042】
強度(降伏強度:YS、引張強度:TS)は板厚の4分の1の位置で圧延方向に直角方向に採取したJIS Z 2201の4号試験片により評価した。
【0043】
靭性は板厚の4分の1の位置で圧延方向と平行方向に採取したJIS Z 2202のVノッチ試験片により評価した。この場合、破面遷移温度で-30℃以下を合格とした。
【0044】
溶接性(y割れ)はJIS Z 3158に準拠し、雰囲気20℃-60%、予熱温度25℃としたy形溶接割れ試験において割れの生じないものを合格とした。
【0045】
得られた結果を表2に併せて示す。
【0046】
【表1】

Figure 0004655372
【0047】
【表2】
Figure 0004655372
【0048】
本発明に規定の成分および製造方法を採用した本発明例1〜9の鋼板は、いずれもYSは450MPa以上であり、破面遷移温度は-30℃以下、y形溶接割れ試験での割れは認められなかった。このように、本発明方法を用いると高降伏点化が達成され、かつ、靭性および溶接性にも優れた鋼材を製造することができた。
【0049】
これに対し、VとNbの添加を行わなかった比較例1の鋼板、Vのみ添加しNbを添加しなかった比較例2の鋼板は、いずれも本発明の製造条件を適用しても析出強化が発揮されず、高降伏点化が達成されなかった。
【0050】
C、Si、Mnを本発明の下限に満たない添加量とした比較例3の鋼板は、本発明の製造条件を適用しても、マトリクスの強化と析出強化とのバランスが適性ではないために高降伏点化が達成されなかった。
【0051】
C、Si、Mnを本発明の上限を超える添加量とし、かつ、PCMが0.25%を超えた比較例4の鋼板は、本発明の製造条件を適用しても、靭性が劣化し、かつ、溶接性も劣っていた。
【0052】
P、Sを本発明の上限を超える添加量とした比較例5の鋼板、ならびにV、Nbを本発明の上限を超える添加量とした比較例6の鋼板は、本発明の製造条件を適用しても、靭性が劣っていた。
【0053】
冷却停止温度を本発明の下限に満たない温度とした比較例7の鋼板、ならびに本発明の上限を超える温度とした比較例8の鋼板は、ともにマトリクスと析出強化のバランスが適性ではなく高降伏点化が達成されなかった。
【0054】
冷却開始温度がAr3点よりも低く、かつ、冷却速度が5℃/sに満たない比較例9の鋼板はフェライトが多量に生成したために高降伏点化が達成されなかった。
【0055】
【発明の効果】
本発明を用いると、特殊な工程や多量の合金元素の添加を必要とせずに、優れた靭性と溶接性を兼ね備えた、450MPa以上の高い降伏点を有する高張力鋼材を製造することができる。従って、橋梁、建築物、建産機等に代表されるような溶接構造物の主要部材に対して十分な特性を有する鋼材を安価に提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る強度に及ぼす冷却停止温度の影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength steel material having a high yield point. Specifically, the yield strength for a main member of a welded structure such as a bridge, a building, or a construction machine is 450 MPa or more. The present invention relates to a method for producing a high-tensile steel material having excellent toughness and weldability.
[0002]
[Prior art]
In recent years, welded structures represented by bridges, buildings, industrial machinery, etc. have been increasing in size and sophistication. Along with this, there are an increasing number of cases in which high-strength steel is applied to the main steel materials of such structures. The aim is to reduce the weight of steel materials by using high-tensile steel materials, to reduce the thickness, and to save labor in welding.
[0003]
Conventionally, steel materials having a high yield point of 450 MPa or higher among such high-tensile steel materials have been manufactured by a method of quenching / tempering or a method of adding various alloy elements. However, the former treatment method has a problem that the manufacturing cost is increased, and the latter method has a problem that the toughness and weldability are deteriorated in addition to the cost increase due to the addition of the alloy element.
[0004]
In order to solve such a problem, application of accelerated cooling to a steel material after hot rolling has been attempted. JP-A-62-89814 further promotes the precipitation of Nb and V by performing leveling or light reduction treatment at a temperature range of Ar 3 point-30 ° C. to Ar 3 point-150 ° C. after rolling, A technique for obtaining high yield point steel by subsequent accelerated cooling is disclosed. JP-A-4-221015 discloses that after rolling, Nb and V are precipitated while being held for 2 minutes or more in the temperature range of Ar 3 point -70 ° C to Ar 3 point -150 ° C, and then accelerated cooling is performed. Thus, a technique for obtaining a high yield point steel sheet is disclosed. A problem common to these techniques is that a special process is required after rolling, and the work becomes complicated. Japanese Patent Laid-Open No. 63-161119 discloses a temperature range of 350 to 500 ° C. after rolling a steel containing Cu, Ni, Ti and REM in order to obtain a yield strength of 46 kgf / mm 2 (451 MPa) or more. A method of accelerating cooling to a maximum is disclosed. However, even in this case, it is necessary to add an expensive alloy element, which causes a problem of increasing the cost.
[0005]
As described above, in the conventionally proposed method using accelerated cooling, the manufacturing process for obtaining desired characteristics is complicated, or a special component system is required as the material steel. It could not be said that it was a safe means.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and has excellent toughness and weldability without requiring a special process or addition of a large amount of alloying elements, and has a capacity of 450 MPa or more. It aims at providing the manufacturing method of the high strength steel materials which have a high yield point.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied a method for producing a steel material having a high yield point of 450 MPa or more and excellent in toughness and weldability. As a result, it has been found that by effectively using matrix strengthening and precipitation strengthening by the combined addition of V and Nb, a high yield point can be obtained stably even at a wide range of stop temperatures during accelerated cooling. Obtained. Moreover, the knowledge that the outstanding toughness and weldability could be made to have was acquired by making the component of the said steel materials into a specific range.
[0008]
The present invention has been made on the basis of such findings. In mass%, C: 0.03 to 0.15%, Si: 0.10 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02% or less, Nb: 0.001 to 0.10 percent, V: containing 0.001 to 0.10 percent, and the balance Fe and unavoidable impurities, and after heating the steel is P CM ≦ 0.25% to hot rolling immediately Ar 3 Production of high-tensile steel with excellent toughness and weldability having a high yield point of 450 MPa or more, characterized by cooling from a temperature range of 350 ° C to a temperature range of 350-650 ° C at a cooling rate of 5 ° C / s or more Is the method.
However, P CM is weld crack sensitivity index is given by the following equation (1). The element symbol in the formula (1) is the content (mass%) of each component element in the steel material.
[0010]
P CM = C + Si / 30 + (Mn + Cu + Cr) / 20 + Mo / 15 + Ni / 60 + V / 10 + 5B (1)
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors consider that it is necessary to strengthen the matrix by Nb and V addition and precipitation strengthening to increase the yield point of the steel material, and conduct research for the purpose of maximizing this by accelerated cooling, The present invention has been completed.
[0012]
The reasons for limiting the components and production conditions of the steel of the present invention will be described in detail. First, the reasons for limiting chemical components will be described.
[0013]
C: 0.03-0.15%;
C needs to be added in an amount of 0.03% or more to ensure strength. However, addition exceeding 0.15% inhibits weldability. Therefore, it is limited to 0.03% or more and 0.15% or less.
[0014]
Si: 0.10 to 0.50%;
Si is effective as a deoxidizer and needs to be 0.10% or more for increasing the strength, but if added over 0.50%, weldability and toughness are deteriorated. Therefore, it is limited to 0.10% or more and 0.50% or less.
[0015]
Mn: 0.5-2.0%;
Mn inexpensively increases hardenability and increases strength, but also contributes to improved toughness. From this viewpoint, 0.5% or more is necessary, but if it exceeds 2.0%, it leads to deterioration of weldability. Therefore, it is limited to 0.5% or more and 2.0% or less.
[0016]
P: 0.05% or less;
Since P deteriorates the toughness of steel, its content is desirably as low as possible. For this reason, the upper limit was made 0.05%. Preferably it is 0.03% or less.
[0017]
S: 0.02% or less;
If S is added in a large amount, the toughness of the steel is lowered, so it is desirable to reduce it as much as possible.
For this reason, the upper limit was made 0.02%. Preferably it is 0.01% or less.
[0018]
Nb: 0.001 to 0.10%;
Nb is a very important element in the present invention, and has a function of increasing the yield point through matrix strengthening and precipitation strengthening. In order to exert this effect, 0.001% or more must be added, but if added over 0.10%, the toughness deteriorates. Therefore, it is limited to 0.001% or more and 0.10% or less.
[0019]
V: 0.001 to 0.10%;
V, like Nb, is an element that plays an important role in the present invention, and brings about a high yield point due to matrix strengthening and precipitation strengthening. For this reason, addition of 0.001% or more is necessary, but addition exceeding 0.10% causes a decrease in weldability and toughness. Therefore, it is limited to 0.001% or more and 0.10% or less.
[0020]
Cu: 1% or less;
Cu brings about an effect of increasing strength due to solid solution and is added if necessary to ensure weather resistance. However, if its content exceeds 1%, weldability is impaired and flaws are likely to occur during the manufacture of steel materials. Therefore, the upper limit is set to 1%. Preferably it is 0.5% or less.
[0021]
Ni: 2% or less;
Ni is added as necessary because it is effective in improving the low temperature toughness and improving hot brittleness that occurs when Cu is added. However, if the added amount exceeds 2%, weldability is hindered and the cost increases. Therefore, the upper limit is 2%. Preferably it is 1% or less.
[0022]
Cr: 1% or less;
Cr is added as necessary from the viewpoint of weather resistance and strength, but if its content exceeds 1%, weldability and toughness are impaired. Therefore, the upper limit is 1%. Preferably it is 0.5% or less.
[0023]
Mo: 1% or less;
Mo is added as necessary to increase the strength, but if it exceeds 1%, weldability and toughness deteriorate. Therefore, the upper limit is set to 1%. Preferably it is 0.5% or less.
[0024]
Ti: 0.1% or less;
Ti is added as necessary to increase strength and improve weld toughness. However, if the content exceeds 0.1%, the cost tends to increase. Therefore, the upper limit is set to 0.1%. Preferably it is 0.05% or less.
[0025]
B: 0.005% or less;
B is added as necessary to increase the hardenability and contribute to the increase in strength. However, if added over 0.005%, the weldability is impaired. Therefore, the upper limit is made 0.005%.
Preferably it is 0.003% or less.
[0026]
P CM ≤0.25%
Another object of the present invention is to improve weldability. Therefore the weld cracking sensitivity index represented by P CM and 0.25% or less, is intended to achieve inhibition of cold cracking. Preferably, P CM ≦ 0.22%.
[0027]
The balance of the components of the steel of the present invention is substantially Fe. That the balance is substantially Fe means that an element containing other trace elements including inevitable impurities can be included in the scope of the present invention unless the effects of the present invention are lost.
[0028]
Next, the reasons for limiting the manufacturing conditions will be described.
[0029]
The production method according to the present invention comprises a step of heating a steel having the above composition, a step of hot rolling thereafter, and the steel material is immediately cooled at a cooling rate of 5 ° C./s or more from a temperature range of Ar 3 or higher. And a step of cooling to a temperature range of ° C. The above temperature and cooling rate are the average temperature and average cooling rate from the steel plate surface to the center of the plate thickness.
[0030]
The heating temperature of the steel before rolling is not particularly limited, but is preferably 950 to 1300 ° C. When the heating temperature is less than 950 ° C., the solid solution of Nb and V becomes insufficient. Further, if the temperature exceeds 1300 ° C., the crystal grains of the steel become coarse and it becomes difficult to ensure toughness.
[0031]
There are no particular restrictions on the hot rolling of the steel after heating. However, in either austenite recrystallization zone rolling or austenite non-recrystallization zone rolling, the finishing temperature needs to be a temperature range exceeding the Ar 3 point described later.
[0032]
When cooling the steel material after rolling, the steel material is immediately cooled to a temperature range of 350 to 650 ° C. at a cooling rate of 5 ° C./s or more from a temperature range of 3 or more points at Ar. The Ar 3 point can be derived on the basis of the component composition of the steel material by a relational expression such as the following expression (2). The element symbol in the formula (2) is the content (mass%) of each component element in the steel material.
[0033]
The reason why the cooling start temperature is set to the Ar 3 point or higher is to prevent generation of ferrite before the cooling start time. When ferrite is generated before the start of cooling, the yield point is remarkably lowered.
[0034]
The reason why the cooling rate is 5 ° C./s or more is to increase the strength of the steel material by making the metal structure a bainite-based or mixed structure of bainite and martensite.
[0035]
The reason why the cooling stop temperature is set to 350 to 650 ° C. is that the yield strength of the steel material can be increased by balancing the strengthening of the matrix and the precipitation strengthening by the combined addition of Nb and V in this temperature range.
[0036]
Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (2)
[0037]
【Example】
[Example 1] In order to investigate the effect of the combined addition of Nb and V, a steel having a composition of C: 0.10%, Si: 0.30%, Mn 1.45%, P: 0.010%, S: 0.003% (steel ▲ 1 ▼), steel (1) with 0.04% V added alone (steel (2)), and steel (1) combined with 0.04% V and 0.02% Nb (steel (3)) ) Was prepared. These steels were heated to 1100 ° C. and rolled into a steel plate with a thickness of 30 mm, and then immediately cooled from the temperature range of Ar 3 or higher to change the cooling stop temperature. These steel sheets were subjected to a tensile test using a JIS Z 2201 No. 4 specimen taken at a position perpendicular to the rolling direction at a quarter of the sheet thickness to evaluate the strength (yield strength: YS, tensile strength: TS). did. The results are shown in Figure 1.
[0038]
In FIG. 1, the horizontal axis indicates the cooling stop temperature, and the vertical axis indicates the yield strength and tensile strength.
[0039]
First, pay attention to the influence of the cooling stop temperature on the yield strength of steel (1). In this case, the yield strength cannot exceed 450 MPa at any stop temperature. Next, paying attention to the yield strength of V addition alone shown in steel (2), it has a yield strength of 450 MPa or more at a cooling stop temperature of 450 ° C to 550 ° C, but its temperature range is 100 ° C and is stable and high. It is hard to say that yield point steel can be manufactured. Next, when attention is paid to the Nb + V composite addition in which Nb is further added as shown in Steel (3), the cooling stop temperature at which a high yield point of 450 MPa or more can be secured is greatly expanded to 350 to 650 ° C.
[0040]
From the above results, it was found that the cooling stop temperature at which a high yield point can be achieved by the combined addition of Nb + V is widened, and a steel with a high yield point can be produced stably. This is because, in a low cooling stop temperature range (for example, 350 to 450 ° C.), matrix strengthening by the combined addition of Nb and V mainly acts to achieve a high yield point, and a high cooling stop temperature range (for example, 450 to 650 ° C.). (° C), it is considered that a high yield point was obtained by the precipitation strengthening mechanism of Nb and V.
[0041]
[Example 2] A steel piece obtained by melting steel having the composition shown in Table 1 is heated, rolled and cooled based on the conditions shown in Table 2 to produce a steel plate having a thickness of 20 to 100 mm. The strength, toughness, and weldability were measured.
[0042]
The strength (yield strength: YS, tensile strength: TS) was evaluated by a No. 4 test piece of JIS Z 2201, which was taken in a direction perpendicular to the rolling direction at a position of a quarter of the plate thickness.
[0043]
Toughness was evaluated by a JIS Z 2202 V-notch specimen taken in a direction parallel to the rolling direction at a position of a quarter of the plate thickness. In this case, a fracture surface transition temperature of −30 ° C. or lower was regarded as acceptable.
[0044]
The weldability (y-crack) conformed to JIS Z 3158, and passed the y-type weld crack test in which the atmosphere was 20 ° C.-60% and the preheating temperature was 25 ° C. and no crack occurred.
[0045]
The obtained results are also shown in Table 2.
[0046]
[Table 1]
Figure 0004655372
[0047]
[Table 2]
Figure 0004655372
[0048]
The steel sheets of Invention Examples 1 to 9 adopting the components and production methods defined in the present invention all have a YS of 450 MPa or more, a fracture surface transition temperature of −30 ° C. or less, and cracks in the y-type weld crack test. I was not able to admit. As described above, when the method of the present invention was used, a steel material having a high yield point and excellent in toughness and weldability could be produced.
[0049]
In contrast, the steel sheet of Comparative Example 1 in which V and Nb were not added, and the steel sheet of Comparative Example 2 in which only V was added and Nb was not added were precipitation strengthened even when the production conditions of the present invention were applied. Was not achieved, and a high yield point was not achieved.
[0050]
The steel plate of Comparative Example 3 in which C, Si, and Mn are added in amounts not less than the lower limit of the present invention is not suitable for the balance between matrix strengthening and precipitation strengthening even when the production conditions of the present invention are applied. A high yield point was not achieved.
[0051]
And C, Si, and the addition amount exceeds the upper limit of the present invention the Mn, and the steel plate of Comparative Example 4 P CM exceeds 0.25%, even by applying the manufacturing conditions of the present invention, the toughness is degraded, and The weldability was also poor.
[0052]
The steel sheet of Comparative Example 5 in which P and S were added in amounts exceeding the upper limit of the present invention, and the steel sheet of Comparative Example 6 in which V and Nb were added in amounts exceeding the upper limit of the present invention were applied with the production conditions of the present invention. Even toughness was inferior.
[0053]
The steel plate of Comparative Example 7 in which the cooling stop temperature is less than the lower limit of the present invention, and the steel plate of Comparative Example 8 in which the temperature exceeds the upper limit of the present invention are both high in yield because the balance between matrix and precipitation strengthening is not appropriate. Pointing was not achieved.
[0054]
The steel sheet of Comparative Example 9 having a cooling start temperature lower than the Ar 3 point and a cooling rate of less than 5 ° C./s did not achieve a high yield point because a large amount of ferrite was generated.
[0055]
【The invention's effect】
By using the present invention, it is possible to produce a high-tensile steel material having a high yield point of 450 MPa or more and having excellent toughness and weldability without requiring a special process or adding a large amount of alloy elements. Therefore, it is possible to provide a steel material having sufficient characteristics for the main members of a welded structure represented by a bridge, a building, a construction machine, and the like at a low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing an influence of a cooling stop temperature on strength according to Embodiment 1 of the present invention.

Claims (1)

質量%で、
C:0.03〜0.15%、
Si:0.10〜0.50%、
Mn:0.5〜2.0%、
P:0.05%以下、
S:0.02%以下、
Nb:0.001〜0.10%、
V:0.001〜0.10%、
を含有し、残部Fe及び不可避不純物からなり、かつ下記(1)式に示すPCM≦0.25%である鋼を加熱後、熱間圧延し、直ちにAr3点以上の温度域から5℃/s以上の冷却速度で350〜650℃の温度域まで冷却することを特徴とする450MPa以上の高い降伏点を有する高張力鋼材の製造方法。
CM=C+Si/30+(Mn+Cu+Cr)/20+Mo/15+Ni/60+V/10+5B…(1)
(1)式に示す元素記号は各元素の質量%を表す。
% By mass
C: 0.03-0.15%,
Si: 0.10 to 0.50%,
Mn: 0.5 to 2.0%
P: 0.05% or less,
S: 0.02% or less,
Nb: 0.001 to 0.10%,
V: 0.001 to 0.10%,
After heating steel with P CM ≦ 0.25% shown in the following formula (1) , which is composed of the remainder Fe and inevitable impurities, it is hot-rolled and immediately heated from the temperature range of Ar 3 point or higher to 5 ° C./s A method for producing a high-tensile steel material having a high yield point of 450 MPa or more, characterized by cooling to a temperature range of 350 to 650 ° C. at the above cooling rate.
P CM = C + Si / 30 + (Mn + Cu + Cr) / 20 + Mo / 15 + Ni / 60 + V / 10 + 5B (1)
The element symbol shown in the formula (1) represents mass% of each element.
JP2001016558A 2001-01-25 2001-01-25 Method for producing high-tensile steel with high yield point Expired - Fee Related JP4655372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001016558A JP4655372B2 (en) 2001-01-25 2001-01-25 Method for producing high-tensile steel with high yield point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001016558A JP4655372B2 (en) 2001-01-25 2001-01-25 Method for producing high-tensile steel with high yield point

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010249620A Division JP5170212B2 (en) 2010-11-08 2010-11-08 Method for producing high-tensile steel with high yield point

Publications (2)

Publication Number Publication Date
JP2002220622A JP2002220622A (en) 2002-08-09
JP4655372B2 true JP4655372B2 (en) 2011-03-23

Family

ID=18882905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016558A Expired - Fee Related JP4655372B2 (en) 2001-01-25 2001-01-25 Method for producing high-tensile steel with high yield point

Country Status (1)

Country Link
JP (1) JP4655372B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194572B2 (en) * 2007-06-07 2013-05-08 新日鐵住金株式会社 Method for producing high-tensile steel material with excellent weld crack resistance
JP5170212B2 (en) * 2010-11-08 2013-03-27 Jfeスチール株式会社 Method for producing high-tensile steel with high yield point
KR101917453B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Steel plate having excellent ultra low-temperature toughness and method for manufacturing same
RU2652281C1 (en) * 2017-05-31 2018-04-25 Публичное акционерное общество "Северсталь" Method of production of hot-rolled sheets from high-strength steel
RU2676543C1 (en) * 2018-01-09 2019-01-09 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Hot-rolled products from the structural steel manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174324A (en) * 1986-01-24 1987-07-31 Kobe Steel Ltd Manufacture of high yield point steel for low temperature superior in toughness welding heat affected-zone
JPH05112823A (en) * 1991-10-18 1993-05-07 Kobe Steel Ltd Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2000119746A (en) * 1998-10-14 2000-04-25 Nkk Corp Production of high temsile strength steel plate small in difference of material quality in plate thickness direction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174324A (en) * 1986-01-24 1987-07-31 Kobe Steel Ltd Manufacture of high yield point steel for low temperature superior in toughness welding heat affected-zone
JPH05112823A (en) * 1991-10-18 1993-05-07 Kobe Steel Ltd Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2000119746A (en) * 1998-10-14 2000-04-25 Nkk Corp Production of high temsile strength steel plate small in difference of material quality in plate thickness direction

Also Published As

Publication number Publication date
JP2002220622A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
JP2020037734A (en) High strength and low yield ratio thick steel plate having excellent toughness in base material and weld heat-affected zone, while having smaller acoustic anisotropy, and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP3668713B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP3863647B2 (en) H-section steel for tunnel support and manufacturing method thereof
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP3970801B2 (en) High strength high toughness steel plate
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3698082B2 (en) Wear resistant steel
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JP3877028B2 (en) Manufacturing method of thick steel plate with excellent strength, toughness and weldability
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees