JP3698082B2 - Wear resistant steel - Google Patents
Wear resistant steel Download PDFInfo
- Publication number
- JP3698082B2 JP3698082B2 JP2001277362A JP2001277362A JP3698082B2 JP 3698082 B2 JP3698082 B2 JP 3698082B2 JP 2001277362 A JP2001277362 A JP 2001277362A JP 2001277362 A JP2001277362 A JP 2001277362A JP 3698082 B2 JP3698082 B2 JP 3698082B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- ceql
- weldability
- toughness
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、産業機械や運搬機器等に用いられる耐摩耗鋼に関するものである。
【0002】
【従来の技術】
建設、土木、鉱山等の分野で使用される産業機械、部品、運搬機器等(例えば、パワーショベル、ブルドーザー、ホッパー、バケット等)には、それらの寿命を確保するため、耐摩耗性に優れた鋼が用いられる。耐摩耗性を向上させるには、硬さを高くする必要があるが、その場合は一般にC量を増加させることになるため、材質が脆くなり、低温靭性が劣化し、低温溶接割れ性も低下する。−40℃前後の低温域での作業を考えると、耐摩耗性は良くても低温靭性が低いと、脆性破壊を生じ作業に重大な支障をきたす。このため、耐摩耗性を有するとともに低温靭性にも優れた耐摩耗鋼が望まれていた。
【0003】
このような要求に対して、いくつかの方法が検討されている。例えば、特開昭63−169359号公報には、寒冷地での使用に耐える溶接性に優れた耐摩耗鋼が提案されている。この技術では、溶接性確保のためにC量を0.2%以下としている。
【0004】
また、特開昭60−243250号公報には、溶接性に優れた耐摩耗鋼が提案されている。この技術では、P量を0.010%以下と規定し、溶接性を改善している。また、特開昭63−307249号公報には、溶接用耐摩耗鋼板が提案されている。この技術では、炭素当量を0.35〜0.65%と規定し、溶接性を改善している。
【0005】
【発明が解決しようとする課題】
特開昭63−169359号公報記載の技術では、実施例を見ると、鋼Cを除きHB400未満で硬度不足であり、また、鋼Cは、硬度は400以上であり十分に高いが、炭素当量が高く溶接性が不良である。
【0006】
特開昭60−243250号公報記載の技術では、C量が0.3〜0.5%と高く、靭性に関する考慮がされていない。また、そのため炭素当量もかなり高くなる(>0.5)ので、この鋼は溶接性全般についてあまり期待できないと言える。
【0007】
特開昭63−307249号公報記載の技術では、基本的な特性として具備すべき引張特性に関する考慮がされていない。また、硬さを確保するためC量が0.2〜0.4%とかなり高目に規定されており、良好な靭性が得られないと予想される。更に、炭素当量(Ceq)の規定から合金元素の添加量が制限されることも、靭性の向上にとっては不利である。
【0008】
上述のように、これらの従来技術は、−40℃前後の低温域での作業を考えると、耐摩耗性はともかく、低温靭性あるいは低温溶接割れ性に問題がある。また、基本的な特性として強度も安定して確保できることが望ましい。特に、板厚が厚くなった場合にも安定して所定の強度を確保する必要がある。従来技術では、強度および耐摩耗性を安定して確保しつつ、低温靭性および低温溶接割れ性を改善することは困難である。
【0009】
本発明の目的は、これらの問題を解決し、強度および耐摩耗性を安定に確保した上で、低温靭性および低温溶接割れ性に優れた耐摩耗鋼を提供することである。
【0010】
【課題を解決するための手段】
上記の課題は、次の発明により解決される。その発明は、mass%で、C:0.10〜0.30%、Si:0.1〜0.45%、Mn:0.1〜2.0%、Nb:0.005〜0.03%を含有するとともに、Cu:0.05〜2.0%、Ni:0.05〜2.0%、Cr:0.05〜3.0%、Mo:0.05〜3.0%、B:0.0003〜0.01%の内1種以上を含有し、残部が実質的に鉄からなる鋼であり、式(1)で示される特性値Mrが1.3以上、式(2)で示される炭素等量CeqLが0.42%以下、かつ、焼入れされていることを特徴とする耐摩耗鋼である。
【0011】
但し、元素記号は各元素の含有量(mass%)を表す。また、式(1)の(C/10)0.5は (C/10)の1/2乗に同じである。
【0012】
また、上記のmass%で、C:0.10〜0.30%、Si:0.1〜0.45%、Mn:0.1〜2.0%、Nb:0.005〜0.03%を含有するとともに、Cu:0.05〜2.0%、Ni:0.05〜2.0%、Cr:0.05〜3.0%、Mo:0.05〜3.0%、B:0.0003〜0.01%の内1種以上を含有し、残部が実質的に鉄からなる鋼に更に、あるいはCu、Ni、Cr、Mo、Bの代わりに、V:0.005〜0.5%、Ti:0.005〜0.1%の内1種以上を含有するものを用いてもよい。その際も、式(1)で示される特性値Mrが1.3以上、式(2)で示される炭素等量CeqLが0.42%以下、かつ、焼入れされていることが必要である。
【0013】
この発明は、溶接性、靭性を備えた耐摩耗鋼を提供すべく鋭意検討を重ねて得られた知見に基づきなされたものである。それは、炭素等量CeqLを低目に抑える代わりに、特性値Mrを所定の値に調整することが、強度と耐磨耗性を確保しつつ、溶接性と靭性を両立させる上で有効というものである。
【0014】
以下、本発明の化学成分の限定理由について述べる。
【0015】
C:0.10〜0.30%とする。Cは鋼の硬度を高めるのに重要な元素であり、また、焼入れ性を確保するために0.10%以上必要であり、好ましくは0.14%以上が適当である。しかし、Cを0.30%を超えて大量に添加すると、溶接性および加工性を劣化させる。従って、Cを0.10〜0.30%と規定した。
【0016】
Si:0.1〜0.45%とする。Siは脱酸元素として有効な元素であり、0.1%以上の添加が必要である。また、固溶強化に対しても有効な元素であるが、1.0%を超える添加量では、延性や靭性が低下し、介在物が増加する等の問題が生じる。本発明では、Siを0.1〜0.45%と規定した。
【0017】
Mn:0.1〜2.0%とする。Mnは焼入れ性確保の観点から有効な元素であり、0.1%以上の添加が必要である。一方、2.0%を超えて添加すると、溶接性が劣化する。このため、Mnを0.1〜2.0%と規定した。
【0018】
Nb:0.005〜0.03%とする。Nbは析出強化に有効な元素であり、鋼の硬度を上昇させる効果を有し、また、組織の微細化により靭性を向上させる効果も有する。これらの効果は0.005%未満では発揮されず、0.1%を超える添加では、溶接性が劣化する。本発明では、Nbを0.005〜0.03%と規定した。
【0019】
Cu:0.05〜2.0%とする。Cuは焼入れ性を高める元素であるが、0.05%未満ではこの効果を発揮することができず、好ましくは0.1%以上が適当である。一方、2.0%を超える添加では、熱間加工性が低下するとともに、合金コストも上昇する。従って、Cuを添加する場合は0.05〜2.0%の範囲とする。
【0020】
Ni:0.05〜2.0%とする。Niは焼入れ性を高めるとともに、低温靱性を向上させる元素であるが、0.05%未満ではこの効果を発揮することができず、好ましくは0.1%以上が適当である。一方、2.0%を超える添加では、合金コストが上昇する。従って、Niを添加する場合は0.05〜2.0%の範囲とする。
【0021】
Cr:0.05〜3.0%とする。Crは焼入れ性を高める元素であるが、0.05%未満ではこの効果を発揮することができず、好ましくは0.1%以上が適当である。一方、3.0%を超える添加では、溶接性が劣化するとともに合金コストが上昇する。従って、Crを添加する場合は0.05〜3.0%の範囲とする。
【0022】
Mo:0.05〜3.0%とする。Moは焼入れ性を高める元素であるが、0.05%未満ではこの効果を発揮することができず、好ましくは0.1%以上が適当である。一方、3.0%を超える添加では、溶接性が劣化するとともに合金コストが上昇する。従って、Moを添加する場合は0.05〜3.0%の範囲とする。
【0023】
B:0.0003〜0.01%とする。Bは微量添加で焼入れ性を高める元素であるが、0.0003%未満ではこの効果を発揮することができない。一方、0.01%を超える添加では、溶接性が劣化するとともに、むしろ焼入れ性が低下する。従って、Bを添加する場合は0.0003〜0.01%の範囲とする。
【0024】
V:0.005〜0.5%とする。Vは析出硬化に有効な元素であり、鋼の硬度を上昇させる効果を有している。この効果は0.005%未満では発揮されず、好ましくは0.01%以上が適当であるが、0.5%を超える添加では、溶接性が劣化する。従って、Vを添加する場合は0.005〜0.5%と規定した。
【0025】
Ti:0.005〜0.1%とする。Tiは析出硬化に有効な元素であり、鋼の硬度を上昇させる効果を有している。この効果は0.005%未満では発揮されず、好ましくは0.05%以上が適当であるが、0.1%を超える添加では、溶接性が劣化する。従って、Tiを添加する場合は0.005〜0.5%と規定した。
【0026】
特性値Mr:1.3以上とする。特性値Mrは、焼入後の組織と関係があり、その結果、鋼の硬度および強度に大きな影響を与える。特性値Mrが1.3未満であると、組織が完全な焼入れ組織とならず、硬度が低下する。従って、特性値Mrを1.3以上に規定する。
【0027】
炭素等量CeqL:0.42%以下とする。炭素等量CeqLは、靭性および溶接性に大きな影響を与える。炭素等量CeqLが0.42%を超えると、所定の低温靭性が得られず溶接性も劣化する。従って、炭素等量CeqLを0.42%以下に規定する。
【0028】
上記の成分以外の残部は実質的に鉄である。残部が実質的に鉄であるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0029】
【発明の実施の形態】
発明の実施に当たっては、前述のように化学成分を調整すればよいが、一部の化学成分については、さらに次のようにすることにより、特性を向上させることができる。
【0030】
Cについては、添加量が多めになるとCeqLの上限に近づき、他の合金元素、例えばMn等が十分に添加できなくなる。そこで、Cを0.20%以下とすることが好ましい。
【0031】
Nbについては、添加量が多めになると組織微細化効果が小さくなり、靭性の向上が見込めなくなる場合がある。従って、Nbの添加量を0.05%以下とすることが好ましい。
【0032】
Cu、Ni、Cr、Moについては、添加する場合には、焼入れ性を確保しつつ、合金コストの上昇を避けるために、それぞれ、0.5%、0.5%、1.0%、1.0%以下とすることが好ましい。
【0033】
次に、炭素等量CeqLと特性値Mrについて詳しく説明する。
【0034】
炭素等量CeqLについて、靭性に及ぼす影響を図1に示す。図1において用いた供試鋼は、0.10%〜0.30%のCを含有する鋼であり、これらを1150℃に加熱後、板厚25mmまで仕上圧延を実施し、圧延後室温まで冷却した後に、900℃で再加熱焼入れを行ったもので、横軸にこれらの供試鋼の成分の炭素等量CeqLを示す。縦軸は靭性であり、−40℃におけるシャルピー衝撃吸収エネルギー(vE-40)で示す。また、これらの供試鋼の溶接性を、JIS規格 Z 3153に準拠し、被覆アーク溶接でのT型溶接割れ試験により判断し、溶接割れの有無を同時に図1に示す。図1より、炭素等量CeqLが0.45%を超えると、溶接割れが生じやすくなる。また、炭素等量CeqLが0.42%を超えると、―40℃における吸収エネルギーが低下して靭性が悪化している。これより、靭性と溶接性を共に優れたものとするためには、炭素等量CeqLを0.42%以下とする必要があるという知見が得られる。
【0035】
特性値Mrについて、焼入後の硬度および強度に及ぼす影響を図2に示す。図2において用いた供試鋼は、0.14〜0.15%のC量を含有する鋼を1150℃に加熱後、板厚25mmまで仕上げ圧延を実施し、圧延後室温まで冷却した後に、900℃で再加熱焼入れを行ったもので、横軸にこれらの供試鋼の成分の特性値Mrを示す。縦軸はこれらの供試鋼の硬度(ブリネル硬さ:HB)および強度(引張り強さ:TS)である。図2に示すように、特性値Mrが1.3以上のとき、硬度(ブリネル硬さ)400以上が得られ、板厚中心部まで完全な焼入れ組織となり、引張り強さも1100MPa以上となる。Mrが1.3未満であると、組織が完全な焼入れ組織とならず、硬度、引張り強さが大きく低下する。従って特性値Mrを1.3以上に規定する。
【0036】
このような知見をまとめると図3に示すようになり、焼入れにより十分な硬度、強度を持ち、溶接性、靭性が共に優れた耐摩耗鋼を提供するには、炭素等量CeqLを0.42%以下、特性値Mrを1.3以上にすることが有効であることが分かる。
【0037】
次に、本発明の耐摩耗鋼の製造方法について説明する。本発明の化学成分に調整した鋼は、通常の耐摩耗鋼と同様の方法で圧延して製造できる。本発明の耐摩耗鋼は圧延後に焼入れをして用いるが、圧延直後に冷却して焼入れを行っても、室温まで冷却した鋼を再加熱後に冷却して焼入れを行っても良い。冷却速度は焼入れ組織が得られるように適宜設定する。また、前記冷却の停止温度は完全な焼入れ組織とするために400℃以下とすることが必要である。また、冷却停止後に焼戻し処理を施しても本発明の耐摩耗鋼の特性を妨げることはない。焼戻し温度は特に限定しないが、600℃以下であることが好ましい。
【0038】
【実施例】
表1に示す成分組成(mass%)を有する鋼A、C〜Mのスラブを、1150℃に加熱し、板厚19mmまたは35mmに熱間圧延を行い、室温に冷却した後、900℃まで再加熱し焼入れた。また、表1に示す成分組成(mass%)を有する鋼N〜Sのスラブを1100℃に加熱し、板厚19mmまたは35mmに熱間圧延を行い、圧延終了後、直ちに焼入れを行った。冷却の停止温度は250℃とした。鋼Nおよび鋼Qについては、焼入れ後に500℃で焼戻し処理を施した。鋼A、C〜EおよびL〜Pは本発明鋼であり、鋼F〜KおよびQ〜Sは比較鋼である。得られた鋼板について、特性値として、硬度、引張強度、低温靭性、溶接性を調べた。
【0039】
硬度は、JIS規格Z2243に準拠し、鋼板表面でランダムに選んだ5点の平均値を用いた。引張強度は、JIS規格Z2241に準拠し、板厚19mmの鋼板はJIS規格Z2201の5号試験片、板厚35mmの鋼板は同1A号試験片を用いた。低温靭性は、JIS規格Z2242に準拠し、−40℃におけるシャルピー衝撃吸収エネルギーを測定した。溶接性は、JIS規格Z3153に準拠し、被覆アーク溶接でのT型溶接割れ試験により判断した。得られた硬度(HB)、引張強度(TS:[MPa])、低温靭性(vE−40:[J])、溶接性(溶接割れ:○溶接割れ無し、×溶接割れ有り)を表1に併せて示す。
【0040】
【表1】
【0041】
表1に示すように、本発明鋼は、耐摩耗鋼として有効な高い硬度とともに、十分な強度と低温域における良好な靭性を有している。これに対して、比較鋼F、Gは、Mrが1.3未満であり、十分な硬度と強度が得られていない。また、比較鋼H〜KおよびQ〜Sは、従来技術による耐摩耗鋼に類する物で、十分な表面硬度と強度が得られているが、CeqLが0.42%を超えており、溶接割れ試験で割れが発生し、更に、比較鋼H〜K、Q、Rは低温靭性も劣っている。
【0042】
【発明の効果】
本発明は、耐摩耗鋼の炭素等量CeqLを低目に抑え、焼入後の組織と関係がある特性値Mrを所定の値に調整することにより、強度および耐摩耗性を確保するとともに、低温靭性および低温溶接割れ性を向上させることができる。これにより、耐低温溶接割れ性、靭性、耐摩耗性に優れ、特に低温域での使用に耐える厚鋼板等の鋼材が得られ、機械部品等の低温域での使用を可能とする効果がある。
【図面の簡単な説明】
【図1】 靭性および溶接性に及ぼす炭素等量CeqLの影響を示す図。
【図2】 焼入後の硬度および引張強さに及ぼす特性値Mrの影響を示す図。
【図3】 優れた硬度、強度、溶接性、靭性を示す炭素等量CeqLおよび特性値Mrの範囲を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to wear-resistant steel used for industrial machines, transportation equipment, and the like.
[0002]
[Prior art]
Industrial machinery, parts, transport equipment, etc. used in the fields of construction, civil engineering, mining, etc. (for example, excavators, bulldozers, hoppers, buckets, etc.) have excellent wear resistance to ensure their life. Steel is used. In order to improve the wear resistance, it is necessary to increase the hardness, but in this case, since the amount of C is generally increased, the material becomes brittle, the low temperature toughness deteriorates, and the low temperature weld cracking property also decreases. To do. Considering work in a low temperature range of around −40 ° C., if the wear resistance is good but the low temperature toughness is low, brittle fracture occurs and the work is seriously hindered. For this reason, there has been a demand for wear-resistant steel having wear resistance and excellent low-temperature toughness.
[0003]
Several methods have been examined for such a requirement. For example, Japanese Patent Application Laid-Open No. 63-169359 proposes a wear-resistant steel excellent in weldability that can withstand use in cold regions. In this technique, the C content is 0.2% or less in order to ensure weldability.
[0004]
JP-A-60-243250 proposes a wear-resistant steel having excellent weldability. In this technique, the P content is specified to be 0.010% or less to improve weldability. Japanese Patent Laid-Open No. 63-307249 proposes a wear-resistant steel plate for welding. In this technique, the carbon equivalent is defined as 0.35 to 0.65% to improve weldability.
[0005]
[Problems to be solved by the invention]
In the technique described in Japanese Patent Application Laid-Open No. 63-169359, in the examples, the hardness is less than HB400 except for Steel C, and the hardness of Steel C is 400 or higher, which is sufficiently high. Is high and weldability is poor.
[0006]
In the technique described in JP-A-60-243250, the C content is as high as 0.3 to 0.5%, and no consideration is given to toughness. Also, the carbon equivalent is therefore considerably higher (> 0.5), so it can be said that this steel cannot be expected for weldability in general.
[0007]
In the technique described in Japanese Patent Application Laid-Open No. 63-307249, consideration is not given to tensile properties that should be provided as basic properties. Moreover, in order to ensure hardness, the C content is defined to be as high as 0.2 to 0.4%, and it is expected that good toughness cannot be obtained. Furthermore, the addition amount of the alloy element is restricted from the definition of carbon equivalent (Ceq), which is disadvantageous for improving toughness.
[0008]
As described above, these conventional techniques have a problem in low-temperature toughness or low-temperature weld cracking, as well as wear resistance, considering work in a low temperature range of around −40 ° C. Moreover, it is desirable that the strength can be secured stably as a basic characteristic. In particular, it is necessary to ensure a predetermined strength stably even when the plate thickness is increased. In the prior art, it is difficult to improve the low temperature toughness and the low temperature weld cracking property while ensuring the strength and wear resistance stably.
[0009]
An object of the present invention is to solve these problems and provide a wear-resistant steel having excellent low-temperature toughness and low-temperature weld cracking properties while ensuring stable strength and wear resistance.
[0010]
[Means for Solving the Problems]
The above problems are solved by the following invention. The invention is mass%, C: 0.10 to 0.30%, Si: 0.1 to 0.45% , Mn: 0.1 to 2.0%, Nb: 0.005 to 0 . In addition to containing 03% , Cu: 0.05-2.0%, Ni: 0.05-2.0%, Cr: 0.05-3.0%, Mo: 0.05-3.0% , B: steel containing one or more of 0.0003 to 0.01%, the balance being substantially made of iron, the characteristic value Mr shown by the formula (1) is 1.3 or more, The wear resistant steel is characterized in that the carbon equivalent CeqL shown in 2) is 0.42% or less and is quenched.
[0011]
However, the element symbol represents the content (mass%) of each element. In addition, (C / 10) 0.5 in equation (1) is the same as (C / 10) to the 1/2 power.
[0012]
Moreover, in said mass%, C: 0.10-0.30%, Si: 0.1-0.45% , Mn: 0.1-2.0%, Nb: 0.005-0 . In addition to containing 03% , Cu: 0.05-2.0%, Ni: 0.05-2.0%, Cr: 0.05-3.0%, Mo: 0.05-3.0% , B: 0.0003 to 0.01% of one or more of them, the balance being substantially iron, or in place of Cu, Ni, Cr, Mo, B, V: 0.0. You may use what contains 1 or more types among 005-0.5% and Ti: 0.005-0.1%. Also in this case, it is necessary that the characteristic value Mr shown by the formula (1) is 1.3 or more, the carbon equivalent CeqL shown by the formula (2) is 0.42% or less, and it is quenched.
[0013]
The present invention has been made on the basis of knowledge obtained through extensive studies to provide a wear-resistant steel having weldability and toughness. That is, instead of keeping the carbon equivalent CeqL low, adjusting the characteristic value Mr to a predetermined value is effective in achieving both weldability and toughness while ensuring strength and wear resistance. It is.
[0014]
The reasons for limiting the chemical components of the present invention will be described below.
[0015]
C: 0.10 to 0.30%. C is an important element for increasing the hardness of the steel, and is required to be 0.10% or more, preferably 0.14% or more in order to ensure hardenability. However, when C is added in a large amount exceeding 0.30%, weldability and workability are deteriorated. Therefore, C is defined as 0.10 to 0.30%.
[0016]
Si: 0.1 to 0.45% . Si is an effective element as a deoxidizing element and needs to be added in an amount of 0.1% or more. Moreover, although it is an element effective also for solid solution strengthening, when the addition amount exceeds 1.0%, problems such as reduction in ductility and toughness and increase in inclusions occur . In the present invention, Si is defined as 0.1 to 0.45% .
[0017]
Mn: 0.1 to 2.0%. Mn is an effective element from the viewpoint of ensuring hardenability, and it is necessary to add 0.1% or more. On the other hand, if it exceeds 2.0%, weldability deteriorates. For this reason, Mn was specified as 0.1 to 2.0%.
[0018]
Nb: 0.005-0 . 03% . Nb is an element effective for precipitation strengthening, has an effect of increasing the hardness of steel, and also has an effect of improving toughness by refinement of the structure. These effects are not exhibited when the content is less than 0.005%, and when the content exceeds 0.1%, the weldability deteriorates . In the present invention, Nb is 0.005-0 . It was defined as 03% .
[0019]
Cu: 0.05 to 2.0%. Cu is an element that enhances hardenability, but if it is less than 0.05%, this effect cannot be exhibited, and 0.1% or more is suitable. On the other hand, when the addition exceeds 2.0%, hot workability is lowered and the alloy cost is also increased. Therefore, when adding Cu, it is set as 0.05 to 2.0% of range.
[0020]
Ni: 0.05 to 2.0%. Ni is an element that enhances hardenability and improves low temperature toughness, but if it is less than 0.05%, this effect cannot be exhibited, and 0.1% or more is suitable. On the other hand, the addition of more than 2.0% increases the alloy cost. Therefore, when adding Ni, it is set as 0.05 to 2.0% of range.
[0021]
Cr: 0.05 to 3.0%. Cr is an element that enhances hardenability, but if it is less than 0.05%, this effect cannot be exhibited, and 0.1% or more is suitable. On the other hand, addition exceeding 3.0% deteriorates weldability and increases the alloy cost. Therefore, when adding Cr, it is made 0.05 to 3.0% of range.
[0022]
Mo: 0.05 to 3.0%. Mo is an element that enhances hardenability, but if it is less than 0.05%, this effect cannot be exhibited, and 0.1% or more is suitable. On the other hand, addition exceeding 3.0% deteriorates weldability and increases the alloy cost. Therefore, when adding Mo, it is made 0.05 to 3.0% of range.
[0023]
B: Set to 0.0003 to 0.01%. B is an element that enhances hardenability by adding a small amount, but if less than 0.0003%, this effect cannot be exhibited. On the other hand, if it exceeds 0.01%, weldability deteriorates and rather hardenability decreases. Therefore, when adding B, it is set as 0.0003 to 0.01% of range.
[0024]
V: Set to 0.005 to 0.5%. V is an element effective for precipitation hardening and has the effect of increasing the hardness of the steel. This effect is not exhibited if it is less than 0.005%, preferably 0.01% or more, but if it exceeds 0.5%, weldability deteriorates. Therefore, when adding V, it was specified as 0.005 to 0.5%.
[0025]
Ti: 0.005 to 0.1%. Ti is an element effective for precipitation hardening and has the effect of increasing the hardness of steel. This effect is not exhibited if it is less than 0.005%, preferably 0.05% or more, but if it exceeds 0.1%, the weldability deteriorates. Therefore, when adding Ti, it was specified as 0.005 to 0.5%.
[0026]
Characteristic value Mr: 1.3 or more. The characteristic value Mr is related to the structure after quenching, and as a result, has a great influence on the hardness and strength of the steel. When the characteristic value Mr is less than 1.3, the structure does not become a completely quenched structure, and the hardness decreases. Therefore, the characteristic value Mr is specified to be 1.3 or more.
[0027]
Carbon equivalent CeqL: 0.42% or less. Carbon equivalent CeqL has a great influence on toughness and weldability. When the carbon equivalent CeqL exceeds 0.42%, the predetermined low temperature toughness cannot be obtained and the weldability is also deteriorated. Therefore, the carbon equivalent CeqL is specified to be 0.42% or less.
[0028]
The balance other than the above components is substantially iron. That the balance is substantially iron means that an element containing other trace elements including inevitable impurities can be included in the scope of the present invention unless the effects of the present invention are lost.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the invention, the chemical components may be adjusted as described above. However, the characteristics of some chemical components can be improved by the following.
[0030]
As for C, when the addition amount is too large, the upper limit of CeqL is approached, and other alloy elements such as Mn cannot be sufficiently added. Therefore, C is preferably 0.20% or less.
[0031]
As for Nb, when the addition amount is large, the effect of refining the structure becomes small, and the improvement of toughness may not be expected. Therefore, it is preferable that the amount of Nb added be 0.05% or less.
[0032]
When Cu, Ni, Cr, and Mo are added, they may be 0.5%, 0.5%, 1.0%, and 1.0% or less, respectively, in order to avoid the increase in alloy costs while ensuring hardenability. preferable.
[0033]
Next, the carbon equivalent CeqL and the characteristic value Mr will be described in detail.
[0034]
FIG. 1 shows the influence of carbon equivalent CeqL on toughness. The test steel used in FIG. 1 is steel containing 0.10% to 0.30% C. After heating these to 1150 ° C., finish rolling to a sheet thickness of 25 mm, cooling to room temperature after rolling, Reheated and quenched at 900 ° C. The carbon equivalent CeqL of the components of these test steels is shown on the horizontal axis. The vertical axis represents toughness, and is indicated by Charpy impact absorption energy (vE- 40 ) at -40 ° C. Further, the weldability of these test steels was judged by a T-type weld crack test in covering arc welding in accordance with JIS standard Z 3153, and the presence or absence of weld cracks is simultaneously shown in FIG. As shown in FIG. 1, when the carbon equivalent CeqL exceeds 0.45%, weld cracking tends to occur. On the other hand, when the carbon equivalent CeqL exceeds 0.42%, the absorbed energy at −40 ° C. is lowered and the toughness is deteriorated. From this, in order to make both toughness and weldability excellent, it is found that the carbon equivalent CeqL needs to be 0.42% or less.
[0035]
FIG. 2 shows the influence of the characteristic value Mr on the hardness and strength after quenching. The test steel used in FIG. 2 is a steel containing 0.14 to 0.15% C content, heated to 1150 ° C, finished to a thickness of 25 mm, cooled to room temperature after rolling, and then re-started at 900 ° C. Heat-quenched, and the horizontal axis indicates the characteristic values Mr of the components of these test steels. The vertical axis represents the hardness (Brinell hardness: HB) and strength (tensile strength: TS) of these test steels. As shown in FIG. 2, when the characteristic value Mr is 1.3 or more, a hardness (Brinell hardness) of 400 or more is obtained, a completely quenched structure is obtained up to the center of the plate thickness, and the tensile strength is 1100 MPa or more. When Mr is less than 1.3, the structure is not a completely quenched structure, and the hardness and tensile strength are greatly reduced. Therefore, the characteristic value Mr is specified to be 1.3 or more.
[0036]
These findings are summarized as shown in FIG. 3, and in order to provide a wear resistant steel having sufficient hardness and strength by quenching and excellent weldability and toughness, the carbon equivalent CeqL is set to 0.42 % And the characteristic value Mr is 1.3 or more is effective.
[0037]
Next, the manufacturing method of the wear resistant steel of this invention is demonstrated. Steel adjusted to the chemical composition of the present invention can be produced by rolling in the same manner as ordinary wear-resistant steel. The wear-resistant steel of the present invention is used after quenching after rolling, but may be cooled and quenched immediately after rolling, or may be cooled and quenched after reheating the steel cooled to room temperature. The cooling rate is appropriately set so that a quenched structure can be obtained. The cooling stop temperature needs to be 400 ° C. or lower in order to obtain a completely quenched structure. Moreover, even if the tempering treatment is performed after the cooling is stopped, the characteristics of the wear resistant steel of the present invention are not disturbed. The tempering temperature is not particularly limited, but is preferably 600 ° C. or lower.
[0038]
【Example】
The slabs of steels A and C to M having the component compositions (mass%) shown in Table 1 were heated to 1150 ° C., hot-rolled to a plate thickness of 19 mm or 35 mm, cooled to room temperature, and then reheated to 900 ° C. Heated and quenched. Moreover, the slab of steel NS which has a component composition (mass%) shown in Table 1 was heated to 1100 degreeC, hot-rolled to plate | board thickness 19mm or 35mm, and it hardened immediately after completion | finish of rolling. The cooling stop temperature was 250 ° C. Steel N and steel Q were tempered at 500 ° C. after quenching. Steels A, C to E and L to P are invention steels, and steels F to K and Q to S are comparative steels. About the obtained steel plate, hardness, tensile strength, low temperature toughness, and weldability were investigated as characteristic values.
[0039]
The hardness was based on JIS standard Z2243, and an average value of 5 points randomly selected on the steel sheet surface was used. The tensile strength was in accordance with JIS standard Z2241, and a steel plate with a thickness of 19 mm was a JIS standard Z2201 No. 5 test piece, and a steel plate with a thickness of 35 mm was a No. 1A test piece. The low temperature toughness was measured in accordance with JIS standard Z2242, and the Charpy impact absorption energy at −40 ° C. was measured. Weldability was determined by a T-type weld crack test in covered arc welding in accordance with JIS standard Z3153. Table 1 shows the obtained hardness (HB), tensile strength (TS: [MPa]), low temperature toughness (vE-40: [J]), and weldability (weld crack: no weld crack, x weld crack present). Also shown.
[0040]
[Table 1]
[0041]
As shown in Table 1, the steel according to the present invention has sufficient hardness and good toughness in a low temperature region as well as high hardness effective as an abrasion resistant steel. In contrast, the comparative steels F and G have an Mr of less than 1.3, and sufficient hardness and strength are not obtained. In addition, comparative steels H to K and Q to S are similar to conventional wear-resistant steels, and sufficient surface hardness and strength are obtained, but CeqL exceeds 0.42%, and weld cracking occurs. Cracks occurred in the test, and the comparative steels H to K, Q, and R are also inferior in low temperature toughness.
[0042]
【The invention's effect】
The present invention suppresses the carbon equivalent CeqL of wear-resistant steel to a low level, and adjusts the characteristic value Mr related to the structure after quenching to a predetermined value, thereby ensuring strength and wear resistance. Low temperature toughness and low temperature weld cracking can be improved. This makes it possible to obtain steel materials such as thick steel plates that are excellent in low-temperature weld crack resistance, toughness, and wear resistance, and that are particularly resistant to use in low temperatures, and have the effect of enabling use in low temperatures such as machine parts. .
[Brief description of the drawings]
FIG. 1 shows the effect of carbon equivalent CeqL on toughness and weldability.
FIG. 2 is a diagram showing the influence of a characteristic value Mr on hardness and tensile strength after quenching.
FIG. 3 is a graph showing a range of carbon equivalent CeqL and characteristic value Mr showing excellent hardness, strength, weldability, and toughness.
Claims (3)
Mr=(C/10)0.5×(1+Si)×(1+0.5Cu)×(1+0.5Ni)×(1+2Cr)
×(1+3Mo)×(1+2V)×(1+Ti)×(1+3Mn)×(1+200B) (1)
CeqL=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (2)
但し、元素記号は各元素の含有量(mass%)を表す。mass%, C: 0.10 to 0.30%, Si: 0.1 to 0.45% , Mn: 0.1 to 2.0%, Nb: 0.005 to 0 . In addition to containing 03% , Cu: 0.05-2.0%, Ni: 0.05-2.0%, Cr: 0.05-3.0%, Mo: 0.05-3.0% , B: steel containing at least one of 0.0003 to 0.01%, the balance being substantially made of iron, the characteristic value Mr shown by the formula (1) is 1.3 or more, 2. A wear-resistant steel characterized in that the carbon equivalent CeqL shown in 2) is 0.42% or less and is quenched.
Mr = (C / 10) 0.5 x (1 + Si) x (1 + 0.5Cu) x (1 + 0.5Ni) x (1 + 2Cr)
× (1 + 3Mo) × (1 + 2V) × (1 + Ti) × (1 + 3Mn) × (1 + 200B) (1)
CeqL = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (2)
However, the element symbol represents the content (mass%) of each element.
Mr=(C/10)0.5×(1+Si)×(1+0.5Cu)×(1+0.5Ni)×(1+2Cr)
×(1+3Mo)×(1+2V)×(1+Ti)×(1+3Mn)×(1+200B) (1)
CeqL=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (2)
但し、元素記号は各元素の含有量(mass%)を表す。mass%, C: 0.10 to 0.30%, Si: 0.1 to 0.45% , Mn: 0.1 to 2.0%, Nb: 0.005 to 0 . With containing 03%, V: 0.005~0.5%, Ti: contain one or more of 0.005% to 0.1%, a steel balance being substantially iron, wherein A wear-resistant steel characterized in that the characteristic value Mr shown in (1) is 1.3 or more, the carbon equivalent CeqL shown in Formula (2) is 0.42% or less, and is quenched.
Mr = (C / 10) 0.5 x (1 + Si) x (1 + 0.5Cu) x (1 + 0.5Ni) x (1 + 2Cr)
× (1 + 3Mo) × (1 + 2V) × (1 + Ti) × (1 + 3Mn) × (1 + 200B) (1)
CeqL = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (2)
However, the element symbol represents the content (mass%) of each element.
Mr=(C/10)0.5×(1+Si)×(1+0.5Cu)×(1+0.5Ni)×(1+2Cr)
×(1+3Mo)×(1+2V)×(1+Ti)×(1+3Mn)×(1+200B) (1)
CeqL=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (2)
但し、元素記号は各元素の含有量(mass%)を表す。mass%, C: 0.10 to 0.30%, Si: 0.1 to 0.45% , Mn: 0.1 to 2.0%, Nb: 0.005 to 0 . In addition to containing 03% , Cu: 0.05-2.0%, Ni: 0.05-2.0%, Cr: 0.05-3.0%, Mo: 0.05-3.0% B: One or more of 0.0003 to 0.01%, V: 0.005 to 0.5%, Ti: One or more of 0.005 to 0.1%, the balance Is a steel substantially made of iron, the characteristic value Mr shown in the formula (1) is 1.3 or more, the carbon equivalent CeqL shown in the formula (2) is 0.42% or less, and is quenched. Wear-resistant steel, characterized by
Mr = (C / 10) 0.5 x (1 + Si) x (1 + 0.5Cu) x (1 + 0.5Ni) x (1 + 2Cr)
× (1 + 3Mo) × (1 + 2V) × (1 + Ti) × (1 + 3Mn) × (1 + 200B) (1)
CeqL = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (2)
However, the element symbol represents the content (mass%) of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001277362A JP3698082B2 (en) | 2000-09-13 | 2001-09-13 | Wear resistant steel |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-277395 | 2000-09-13 | ||
JP2000277395 | 2000-09-13 | ||
JP2001277362A JP3698082B2 (en) | 2000-09-13 | 2001-09-13 | Wear resistant steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002161330A JP2002161330A (en) | 2002-06-04 |
JP3698082B2 true JP3698082B2 (en) | 2005-09-21 |
Family
ID=26599814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001277362A Expired - Lifetime JP3698082B2 (en) | 2000-09-13 | 2001-09-13 | Wear resistant steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3698082B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156078A1 (en) | 2013-03-28 | 2014-10-02 | Jfeスチール株式会社 | Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor |
WO2014156079A1 (en) | 2013-03-28 | 2014-10-02 | Jfeスチール株式会社 | Abrasion resistant steel plate having low-temperature toughness, and manufacturing method therefor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293222C (en) * | 2003-12-11 | 2007-01-03 | 杨军 | Easy cut by flame abrasion-resistant steel in high rigidity, in toughness and preparation method |
JP4650013B2 (en) * | 2004-02-12 | 2011-03-16 | Jfeスチール株式会社 | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same |
JP4645306B2 (en) * | 2005-05-30 | 2011-03-09 | Jfeスチール株式会社 | Wear-resistant steel with excellent low-temperature toughness and method for producing the same |
CN103014518B (en) * | 2012-12-10 | 2015-09-16 | 马鞍山市恒达耐磨材料有限责任公司 | High-carbon high-alloy steel wear-resistant ball and manufacture method thereof |
CN109023119B (en) * | 2018-10-08 | 2020-06-23 | 鞍钢股份有限公司 | Wear-resistant steel with excellent ductility and toughness and manufacturing method thereof |
CN109763069B (en) * | 2019-02-15 | 2021-03-19 | 天津水泥工业设计研究院有限公司 | Wear-resistant alloy steel for large-amplitude alternate change of working condition temperature and preparation method thereof |
-
2001
- 2001-09-13 JP JP2001277362A patent/JP3698082B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156078A1 (en) | 2013-03-28 | 2014-10-02 | Jfeスチール株式会社 | Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor |
WO2014156079A1 (en) | 2013-03-28 | 2014-10-02 | Jfeスチール株式会社 | Abrasion resistant steel plate having low-temperature toughness, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2002161330A (en) | 2002-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5866820B2 (en) | Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance | |
JP4538094B2 (en) | High strength thick steel plate and manufacturing method thereof | |
JP5145803B2 (en) | Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties | |
WO2012002563A1 (en) | Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties | |
WO2014020891A1 (en) | Abrasion-resistant steel plate and manufacturing process therefor | |
JP4650013B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
JP4238832B2 (en) | Abrasion-resistant steel plate and method for producing the same | |
EP2154262A1 (en) | Abrasion-resistant steel sheet having excellent processability, and method for production thereof | |
JP2007092155A (en) | Wear resistant steel sheet having excellent low temperature toughness and its production method | |
JP5407478B2 (en) | High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same | |
JP3543619B2 (en) | High toughness wear-resistant steel and method of manufacturing the same | |
JP3045856B2 (en) | Method for producing high toughness Cu-containing high tensile steel | |
JP3698082B2 (en) | Wear resistant steel | |
JP4998708B2 (en) | Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same | |
JP5208178B2 (en) | High-strength steel sheet with a tensile strength of 980 MPa or more and excellent low-temperature toughness of multilayer prime joints | |
JP4770415B2 (en) | High tensile steel plate excellent in weldability and method for producing the same | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JP5170212B2 (en) | Method for producing high-tensile steel with high yield point | |
JP7506305B2 (en) | High-strength steel plate for large heat input welding | |
JP7410438B2 (en) | steel plate | |
JP4655372B2 (en) | Method for producing high-tensile steel with high yield point | |
JP4434029B2 (en) | High-tensile steel with excellent weldability and joint toughness | |
JP3739997B2 (en) | High-tensile steel plate with excellent weldability | |
JP7506306B2 (en) | High-strength steel plate for large heat input welding | |
JPH05163527A (en) | Manufacture of high tension steel superior in weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3698082 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090715 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120715 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120715 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130715 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |