JP5866820B2 - Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance - Google Patents

Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance Download PDF

Info

Publication number
JP5866820B2
JP5866820B2 JP2011142506A JP2011142506A JP5866820B2 JP 5866820 B2 JP5866820 B2 JP 5866820B2 JP 2011142506 A JP2011142506 A JP 2011142506A JP 2011142506 A JP2011142506 A JP 2011142506A JP 5866820 B2 JP5866820 B2 JP 5866820B2
Authority
JP
Japan
Prior art keywords
toughness
wear
less
steel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011142506A
Other languages
Japanese (ja)
Other versions
JP2012031510A (en
Inventor
植田 圭治
圭治 植田
鈴木 伸一
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011142506A priority Critical patent/JP5866820B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to KR1020137001872A priority patent/KR20130045900A/en
Priority to CA2801703A priority patent/CA2801703C/en
Priority to MX2013000031A priority patent/MX354630B/en
Priority to US13/806,954 priority patent/US20130216422A1/en
Priority to RU2013103814/02A priority patent/RU2550985C2/en
Priority to AU2011272188A priority patent/AU2011272188C1/en
Priority to EP11801027.1A priority patent/EP2589676B1/en
Priority to PCT/JP2011/065416 priority patent/WO2012002567A1/en
Priority to CN2011800319242A priority patent/CN102959113A/en
Priority to ARP110104972 priority patent/AR084622A1/en
Publication of JP2012031510A publication Critical patent/JP2012031510A/en
Application granted granted Critical
Publication of JP5866820B2 publication Critical patent/JP5866820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Description

本発明は、建築用機械、産業用機械、造船、鋼管、土木、建築等に供して好適な板厚4mm以上の耐磨耗鋼板に係り、特に、溶接部靭性と耐遅れ破壊特性に優れるものに関する。   The present invention relates to a wear-resistant steel plate having a thickness of 4 mm or more suitable for use in construction machinery, industrial machinery, shipbuilding, steel pipes, civil engineering, construction, etc., and in particular, excellent in welded portion toughness and delayed fracture resistance. About.

建築用機械、産業用機械、造船、鋼管、土木、建築等の鉄鋼構造物や機械、装置等に熱間圧延鋼板が用いられる際には、鋼板の磨耗特性が要求されることがある。従来、鋼材として優れた耐磨耗性を保有するためには、硬度を高めることが一般的であり、マルテンサイト単相組織とすることにより飛躍的に高めることが可能である。また、マルテンサイト組織自体の硬さを上昇させるために、固溶C量を増加することが有効である。   When hot-rolled steel sheets are used in steel structures, machines, devices, etc., such as construction machines, industrial machines, shipbuilding, steel pipes, civil engineering, and construction, the wear characteristics of the steel sheets may be required. Conventionally, in order to retain excellent wear resistance as a steel material, it is common to increase the hardness, and it is possible to dramatically increase the martensite single phase structure. In order to increase the hardness of the martensite structure itself, it is effective to increase the amount of solid solution C.

そのため、耐磨耗鋼板は一般的に低温割れ感受性が高く、溶接部靭性に劣り、溶接鋼構造物に使われる場合、岩石や土砂などと接触する鋼部材の表面にライナーとして貼り合わせて使用される場合が一般的であった。例えば、ダンプのベッセルでは、軟鋼を用いて溶接施工により組み立てた後、土砂と接するベッセル表面にのみ耐磨耗鋼板を張り合わせて利用される場合がある。   For this reason, wear-resistant steel plates are generally highly susceptible to cold cracking and have poor weld toughness, and when used in welded steel structures, they are used as a liner on the surface of steel members that come into contact with rocks or earth and sand. It was common. For example, a dump vessel may be used by attaching a wear-resistant steel plate only to the surface of the vessel in contact with earth and sand after being assembled by welding using mild steel.

しかしながら、溶接構造物を組み立てた後、耐磨耗鋼板を張り合わせる製造方法では、製作の手間や製造コストが増大するため、溶接構造物の強度部材として適用することが可能な耐磨耗鋼板が望まれていた。   However, in the manufacturing method in which the welded steel sheets are bonded together after assembling the welded structure, the labor and cost of manufacturing increase. Therefore, there is no wear-resistant steel sheet that can be applied as a strength member of the welded structure. It was desired.

特許文献1は、耐遅れ破壊性に優れた耐磨耗性鋼板とその製造方法に関し、耐遅れ破壊特性を改善するため、低Si−低P−低S−Cr、Mo、Nb系組成に、Cu、V、Ti、B及びCaの一種又は二種以上を含有する鋼を直接焼入れし、必要に応じて焼戻しすることが記載されている。   Patent Document 1 relates to a wear-resistant steel sheet excellent in delayed fracture resistance and a method for producing the same, and in order to improve delayed fracture resistance, a low Si-low P-low S-Cr, Mo, Nb composition is used. It describes that steel containing one or more of Cu, V, Ti, B and Ca is directly quenched and tempered as necessary.

特許文献2は、耐磨耗性が高い鋼と鋼製品の製造方法に関し、0.24〜0.3C−Ni、Cr、Mo、B系において、これら元素の含有量からなるパラメータ式を満足する組成で、5〜15体積%の残留オーステナイトを含むマルテンサイトまたはマルテンサイトベイナイト組織を有し、耐磨耗性を向上させた鋼が記載され、当該成分の鋼をオーステナイト化温度〜450℃の間を冷却速度1℃/秒以上で冷却することが記載されている。   Patent Document 2 relates to a method for manufacturing steel and steel products with high wear resistance, and satisfies the parameter formulas of the contents of these elements in the 0.24 to 0.3 C-Ni, Cr, Mo, and B systems. A steel having a martensite or martensite bainite structure containing 5 to 15% by volume residual austenite and improved wear resistance is described, and the steel of the component is between austenitizing temperature and 450 ° C. Is cooled at a cooling rate of 1 ° C./second or more.

特許文献3は、靭性および耐遅れ破壊性に優れた耐磨耗鋼材ならびにその製造方法に関し、Cr、Ti、Bを必須とする成分組成と表層が焼戻しマルテンサイトで内質部が焼戻しマルテンサイトおよび焼戻し下部ベイナイト組織で、肉厚方向と圧延方向の旧オーステナイト粒径比を規定した鋼材と、当該成分組成の鋼を900℃以下で累積圧下率50%以上で熱間圧延後、直接焼入れ焼戻しすることが記載されている。   Patent Document 3 relates to a wear-resistant steel material excellent in toughness and delayed fracture resistance, and a method for producing the same, and a component composition in which Cr, Ti, and B are essential, a surface layer is tempered martensite, and an inner part is tempered martensite. In the tempered lower bainite structure, a steel material in which the ratio of the prior austenite grain size in the thickness direction and the rolling direction is specified, and the steel of the component composition are directly quenched and tempered after hot rolling at 900 ° C. or less and a cumulative reduction of 50% or more It is described.

特許文献4は、靭性および耐遅れ破壊性に優れた耐磨耗鋼材ならびにその製造方法に関し、Cr、Ti、Bを必須とする成分組成と表層がマルテンサイトで内質部がマルテンサイトと下部ベイナイト組織の混合組織または、下部ベイナイト単相組織で、板厚中央部における旧オーステナイト粒径に対する圧延方向の旧オーステナイト粒径の比で表される旧オーステナイト粒展伸度を規定した鋼材と、当該成分組成の鋼を900℃以下で累積圧下率50%以上で熱間圧延後、直接焼入れすることが記載されている。   Patent Document 4 relates to a wear-resistant steel material excellent in toughness and delayed fracture resistance, and a method for producing the same, and a component composition in which Cr, Ti, and B are essential, a surface layer is martensite, and an internal part is martensite and lower bainite. A steel material that defines the prior austenite grain elongation expressed by the ratio of the prior austenite grain size in the rolling direction to the former austenite grain size in the central part of the sheet thickness in the mixed structure of the structure or the lower bainite single phase structure, and the components It describes that a steel having a composition is directly quenched after hot rolling at 900 ° C. or less and a cumulative reduction of 50% or more.

特許文献5は溶接性、溶接部の耐磨耗性および耐食性に優れた耐磨耗鋼およびその製造方法に関し、4〜9mass%のCrを必須元素とし、Cu、Niの1種または2種を含有し、特定成分の含有量からなるパラメータ式を満足する鋼と、当該成分組成の鋼を950℃以下で累積圧下率30%以上で熱間圧延後、再加熱焼入れ処理を施すことが記載されている。   Patent Document 5 relates to a wear-resistant steel excellent in weldability, wear resistance and corrosion resistance of a welded portion, and a method for producing the same, and uses 4 to 9 mass% of Cr as an essential element, and includes one or two of Cu and Ni. And steel satisfying the parameter formula consisting of the content of the specific component, and steel having the component composition after hot rolling at a cumulative reduction ratio of 30% or higher at 950 ° C. or lower and reheating and quenching. ing.

特開平5−51691号公報JP-A-5-51691 特開平8−295990号公報JP-A-8-295990 特開2002−115024号公報Japanese Patent Application Laid-Open No. 2002-115024 特開2002−80930号公報JP 2002-80930 A 特開2004−162120号公報Japanese Patent Laid-Open No. 2004-162120

ところで、鋼材を溶接接合した際に、最も靭性の低下が問題となるのは、溶接熱影響部のボンド部における靭性劣化であるが、焼入れままのマルテンサイト組織を有する耐磨耗鋼では、溶融境界線から離れた300℃前後に再加熱される溶接熱影響部においても、低温焼戻し脆化と言われる靭性劣化が問題となる。低温焼戻し脆化は、マルテンサイト中の炭化物の形態変化と、不純物元素等の粒界偏析の相乗した作用によるものと考えられている。   By the way, when steel materials are welded, it is the toughness deterioration at the bond part of the weld heat-affected zone that causes the most toughness degradation, but in the wear-resistant steel having an as-quenched martensite structure, Even in a welding heat-affected zone that is reheated to around 300 ° C. away from the boundary line, toughness deterioration called low temperature temper embrittlement becomes a problem. Low temperature temper embrittlement is thought to be due to a synergistic effect of the change in the morphology of carbides in martensite and the segregation of grain boundaries such as impurity elements.

低温焼戻し脆化温度に再加熱された領域は、溶接時のシールドガスなどから溶接部に侵入する水素と、溶接熱により発生する残留応力が重畳して、遅れ破壊(溶接部で発生するこのような割れは、一般的に低温割れといわれる)が発生しやすく、特に、高強度の耐磨耗鋼では遅れ破壊が発生しやすい。   In the region reheated to the low temperature temper embrittlement temperature, hydrogen that penetrates into the weld from shield gas during welding and the residual stress generated by the welding heat overlap, resulting in delayed fracture (this occurs at the weld). Such cracks are generally referred to as cold cracks), and delayed fracture is likely to occur particularly in high-strength wear-resistant steel.

従って、耐磨耗鋼板を、溶接構造物の強度部材に適用する場合、溶接熱影響部のボンド部および溶融境界線から離れた300℃前後に再加熱される溶接熱影響部の靭性を向上させることが必要であるが、従来の耐磨耗鋼板は、溶接部の低温割れ感受性が高く、低温割れを防止するためには、予熱や後熱といった処理を溶接の前後で行い、鋼板中の水素の放出と、残留応力を低下させる必要があった。   Therefore, when the wear-resistant steel plate is applied to a strength member of a welded structure, the toughness of the weld heat affected zone reheated to around 300 ° C. away from the bond zone and the melting boundary line of the weld heat affected zone is improved. However, conventional wear-resistant steel sheets are highly susceptible to cold cracking at the welds, and in order to prevent cold cracking, treatments such as preheating and afterheating are performed before and after welding, And the residual stress had to be reduced.

特許文献1、2には耐磨耗鋼において溶接熱影響部の靭性を向上させることは記載されておらず、特許文献3、4も母材の靭性向上を目的にミクロ組織を規定するものである。特許文献5は溶接性、溶接部の耐磨耗性については検討されているが、溶接部靭性の向上を目的とするものではなく、特許文献1〜5等で提案されている耐磨耗鋼では、溶接熱影響部の靭性と耐遅れ破壊特性の双方を改善するには至っていない。   Patent Documents 1 and 2 do not describe improving the toughness of the weld heat-affected zone in wear-resistant steel, and Patent Documents 3 and 4 also define the microstructure for the purpose of improving the toughness of the base material. is there. Patent Document 5 has examined weldability and wear resistance of welds, but is not intended to improve weld toughness. However, it has not reached to improve both the toughness and delayed fracture resistance of the weld heat affected zone.

そこで、本発明は、生産性の低下および製造コストの増大を引き起こすことなく、溶接部靭性と耐遅れ破壊特性に優れる耐磨耗鋼板を提供することを目的とする。本発明で溶接部靭性とは溶接熱影響部の靭性を意味し、溶接部靭性に優れるとは、特に溶接熱影響部のボンド部と低温焼戻し脆化温度域での靭性に優れることを意味する。   Accordingly, an object of the present invention is to provide a wear-resistant steel sheet that is excellent in weld toughness and delayed fracture resistance without causing a decrease in productivity and an increase in manufacturing cost. In the present invention, the weld zone toughness means the toughness of the weld heat-affected zone, and the excellent weld zone toughness means that the weld zone has particularly excellent toughness in the bond heat zone and low temperature temper embrittlement temperature range. .

本発明者らは、上記課題を達成するため、耐磨耗鋼板を対象に、溶接部靭性と耐遅れ破壊特性を確保するため、鋼板の化学成分、製造方法およびミクロ組織を決定する各種要因に関して鋭意研究を行い、以下の知見を得た。   In order to achieve the above-mentioned problems, the inventors of the present invention are concerned with various factors that determine the chemical composition, manufacturing method, and microstructure of a steel sheet in order to ensure weld toughness and delayed fracture resistance for wear-resistant steel sheets. We conducted intensive research and obtained the following knowledge.

1.優れた耐磨耗特性を確保するためには、鋼板の基地組織をマルテンサイトとすることが必須である。このためには、鋼板の化学組成を厳格に管理し、焼入れ性を確保することが重要である。   1. In order to ensure excellent wear resistance, it is essential that the base structure of the steel sheet is martensite. For this purpose, it is important to strictly control the chemical composition of the steel sheet and ensure hardenability.

2.優れた溶接部靱性を達成するためには、溶接熱影響部のボンド部における結晶粒の粗大化を抑制することが必要であり、このためには鋼板中に微細な析出物を分散し、ピンニング効果を活用することが有効である。   2. In order to achieve excellent weld zone toughness, it is necessary to suppress the coarsening of crystal grains in the bond zone of the weld heat affected zone. For this purpose, fine precipitates are dispersed in the steel sheet and pinning is performed. It is effective to utilize the effect.

3.溶接熱影響部の低温焼戻し脆化温度域で優れた靱性を確保し、遅れ破壊を抑制するためには、C、Mn、Cr、Pなどの合金元素量を適正に管理することが重要である。   3. In order to ensure excellent toughness in the low temperature temper embrittlement temperature range of the weld heat affected zone and suppress delayed fracture, it is important to properly manage the amount of alloying elements such as C, Mn, Cr, P, etc. .

本発明は、得られた知見に、さらに検討を加えてなされたもので、すなわち、本発明は、
1. mass%で、C:0.20〜0.30%、Si:0.05〜1.0%、Mn:0.40〜1.2%、P:0.010%以下、S:0.005%以下、Cr:0.40〜1.5%、Nb:0.005〜0.025%、Ti:0.005〜0.03%、Al:0.1%以下、N:0.01%以下を含有し、(1)式で示されるDI*が45以上で、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織がマルテンサイトを基地相とする溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)
×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(1)
(1)式において、各元素記号は含有量(mass%)。
2.鋼組成に、mass%でさらに、Mo:0.05〜1.0%、W:0.05〜1.0%、B:0.0003〜0.0030%の1種または2種以上を含有することを特徴とする1記載の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
3.鋼組成に、mass%でさらに、Cu:1.5%以下、Ni:2.0%以下、V:0.1%以下の1種または2種以上を含有することを特徴とする1または2記載の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
4.鋼組成に、mass%でさらに、REM:0.008%以下、Ca:0.005%以下、Mg:0.005%以下の1種または2種以上を含有することを特徴とする1乃至3のいずれか一つに記載の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
5.表面硬度がブリネル硬さで400HBW10/3000以上である1乃至4のいずれか一つに記載の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
6.1乃至5のいずれか一つに記載の鋼板で、焼入れ性指数DI*が180以下の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
7.1乃至6のいずれか一つに記載の鋼板で、(2)式を満足する溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
C+Mn/4−Cr/3+10P≦0.47・・・・・(2)
(2)式において、各元素記号は含有量(mass%)。
The present invention has been made by further studying the obtained knowledge, that is, the present invention
1. In mass%, C: 0.20 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.40 to 1.2%, P: 0.010% or less, S: 0.005 %: Cr: 0.40-1.5%, Nb: 0.005-0.025%, Ti: 0.005-0.03%, Al: 0.1% or less, N: 0.01% It contains the following, DI * represented by the formula (1) is 45 or more, has a composition consisting of the balance Fe and inevitable impurities, and has a microstructure with martensite as a base phase, weld toughness and delayed fracture resistance Excellent wear-resistant steel plate.
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1)
× (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (1)
In the formula (1), each element symbol is a content (mass%).
2. The steel composition further contains one or more of Mo: 0.05 to 1.0%, W: 0.05 to 1.0%, B: 0.0003 to 0.0030% in mass%. 2. A wear-resistant steel sheet excellent in weld toughness and delayed fracture resistance according to 1.
3. 1 or 2 characterized in that the steel composition further contains one or more of Cu: 1.5% or less, Ni: 2.0% or less, and V: 0.1% or less in mass%. Abrasion resistant steel plate with excellent weld toughness and delayed fracture resistance.
4). 1 to 3 characterized in that the steel composition further contains one or more of REM: 0.008% or less, Ca: 0.005% or less, Mg: 0.005% or less in mass%. The wear-resistant steel sheet having excellent weld toughness and delayed fracture resistance according to any one of the above.
5. The wear-resistant steel sheet having excellent weld toughness and delayed fracture resistance according to any one of 1 to 4, wherein the surface hardness is Brinell hardness of 400 HBW 10/3000 or more.
A wear-resistant steel plate having excellent weldability toughness and delayed fracture resistance with a hardenability index DI * of 180 or less, according to any one of 6.1 to 5.
A steel plate according to any one of 7.1 to 6, a wear-resistant steel plate excellent in weld toughness and delayed fracture resistance satisfying the formula (2).
C + Mn / 4-Cr / 3 + 10P ≦ 0.47 (2)
In the formula (2), each element symbol is a content (mass%).

本発明によれば、優れた溶接熱影響部の靭性および耐遅れ破壊特性を有する耐磨耗鋼板が得られ、鋼構造物作製時の製造効率や安全性の向上に大きく寄与し、産業上格段の効果を奏する。   According to the present invention, a wear-resistant steel sheet having excellent weld heat-affected zone toughness and delayed fracture resistance can be obtained, which greatly contributes to the improvement of manufacturing efficiency and safety during the production of steel structures. The effect of.

T形すみ肉溶接割れ試験を説明する図Diagram explaining the T-shaped fillet weld cracking test 溶接部のシャルピー衝撃試験片の採取位置Sampling position of Charpy impact test piece in weld zone

本発明では成分組成とミクロ組織を規定する。
[成分組成]以下の説明において%はmass%とする。
In the present invention, the component composition and the microstructure are defined.
[Component Composition] In the following description, “%” is “mass%”.

C:0.20〜0.30%
Cは、マルテンサイトの硬度を高め、優れた耐磨耗性を確保するために重要な元素でその効果を得るため、0.20%以上の含有を必要とする。一方、0.30%を超えて含有すると溶接性が劣化するだけでなく、溶接熱影響部のボンド部および低温焼戻し領域での靱性が劣化する。このため、0.20〜0.30%の範囲に限定する。好ましくは、0.20〜0.28%である。
C: 0.20 to 0.30%
C is an important element for increasing the hardness of martensite and ensuring excellent wear resistance, so that its effect is required. On the other hand, if the content exceeds 0.30%, not only the weldability deteriorates, but also the toughness in the bond heat affected zone and the low temperature tempering region deteriorates. For this reason, it limits to 0.20 to 0.30% of range. Preferably, it is 0.20 to 0.28%.

Si:0.05〜1.0%
Siは、脱酸材として作用し、製鋼上、必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高硬度化する効果を有する。さらに、溶接熱影響部の焼戻し脆化領域における靱性劣化を抑制する効果を有する。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.0%を超えて含有すると、溶接熱影響部の靱性が顕著に劣化するため、0.05〜1.0%の範囲に限定する。好ましくは、0.07〜0.5%である。
Si: 0.05-1.0%
Si acts as a deoxidizer and is not only necessary for steelmaking, but also has the effect of increasing the hardness of the steel sheet by solid solution and solid solution strengthening. Furthermore, it has the effect of suppressing toughness deterioration in the temper embrittlement region of the weld heat affected zone. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 1.0%, the toughness of the weld heat affected zone is remarkably deteriorated, so the content is limited to 0.05 to 1.0%. Preferably, it is 0.07 to 0.5%.

Mn:0.40〜1.2%
Mnは、鋼の焼入れ性を増加させる効果を有し、母材の硬度を確保するために0.40%以上は必要である。一方、1.2%を超えて含有すると、母材の靭性、延性および溶接性が劣化するだけでなく、Pの粒界偏析を助長し、遅れ破壊の発生を助長する。このため、0.40〜1.2%の範囲に限定する。好ましくは、0.40〜1.1%である。
Mn: 0.40 to 1.2%
Mn has the effect of increasing the hardenability of steel, and 0.40% or more is necessary to ensure the hardness of the base material. On the other hand, if the content exceeds 1.2%, not only the toughness, ductility and weldability of the base material deteriorate, but also the grain boundary segregation of P is promoted and the occurrence of delayed fracture is promoted. For this reason, it limits to 0.40 to 1.2% of range. Preferably, it is 0.40 to 1.1%.

P:0.010%以下
Pが0.010%を超えて含有すると、粒界に偏析し、遅れ破壊の発生起点になるとともに、溶接熱影響部の靱性を劣化させる。このため、0.010%を上限とし、可能なかぎり低減することが望ましい。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.002%以上とすることが望ましい。
P: 0.010% or less When P exceeds 0.010%, it segregates at the grain boundary, becomes the starting point of delayed fracture, and deteriorates the toughness of the heat affected zone. For this reason, it is desirable to make 0.010% an upper limit and to reduce as much as possible. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is desirable to set it as 0.002% or more.

S:0.005%以下
Sは母材の低温靭性や延性を劣化させるため、0.005%を上限として低減することが望ましい。
S: 0.005% or less Since S deteriorates the low temperature toughness and ductility of the base material, it is desirable to reduce the upper limit to 0.005%.

Cr:0.40〜1.5%
Crは本発明において重要な合金元素であり、鋼の焼入れ性を増加させる効果を有するとともに、溶接熱影響部の焼戻し脆化領域における靱性劣化を抑制する効果を有する。これは、Crの含有により、鋼板中でのCの拡散が遅延され、低温焼戻し脆化の発生する温度域に再加熱された時に、マルテンサイト中の炭化物の形態変化が抑制されるためである。このような効果を有するためには、0.40%以上の含有が必要である。一方、1.5%を超えて含有すると、効果が飽和し、経済的に不利になるとともに、溶接性が低下する。このため、0.40〜1.5%の範囲に限定する。好ましくは、0.40〜1.2%である。
Cr: 0.40 to 1.5%
Cr is an important alloying element in the present invention, and has the effect of increasing the hardenability of steel and the effect of suppressing toughness deterioration in the temper embrittlement region of the weld heat affected zone. This is because the diffusion of C in the steel sheet is delayed due to the Cr content, and when reheated to a temperature range where low temperature temper embrittlement occurs, the change in the morphology of carbides in the martensite is suppressed. . In order to have such an effect, the content of 0.40% or more is necessary. On the other hand, when it contains exceeding 1.5%, an effect will be saturated and it will become economically disadvantageous, and weldability will fall. For this reason, it limits to 0.40 to 1.5% of range. Preferably, it is 0.40 to 1.2%.

Nb:0.005〜0.025%
Nbは、炭窒化物として析出し、母材および溶接熱影響部のミクロ組織を微細化するとともに、固溶Nを固定して、溶接熱影響部の靱性改善と、遅れ破壊の発生抑制の効果を兼備する重要な元素である。このような効果を得るためには、0.005%以上の含有が必要である。一方、0.025%を超えて含有すると、粗大な炭窒化物が析出し、破壊の起点となることがある。このため、0.005〜0.025%の範囲に限定する。好ましくは、0.007〜0.023%である。
Nb: 0.005 to 0.025%
Nb precipitates as carbonitride, refines the microstructure of the base metal and the weld heat affected zone, fixes solid solution N, improves the toughness of the weld heat affected zone, and suppresses the occurrence of delayed fracture Is an important element. In order to acquire such an effect, 0.005% or more needs to be contained. On the other hand, if the content exceeds 0.025%, coarse carbonitrides may precipitate, which may be the starting point of fracture. For this reason, it limits to 0.005 to 0.025% of range. Preferably, it is 0.007 to 0.023%.

Ti:0.005〜0.03%
Tiは、固溶Nを固定してTiNを形成することにより、溶接熱影響部のボンド部における結晶粒の粗大化を抑制する効果を有するとともに、固溶N低減による低温焼戻し温度域における靱性劣化と遅れ破壊の発生を抑制する効果を有する。これらの効果を得るためには、0.005%以上の含有が必要である。一方、0.03%を超えて含有すると、TiCを析出し母材靱性を劣化する。このため、0.005〜0.03%の範囲に限定する。好ましくは、0.007〜0.025%である。
Ti: 0.005 to 0.03%
Ti has the effect of suppressing the coarsening of crystal grains in the bond part of the weld heat affected zone by fixing solid solution N to form TiN, and toughness deterioration in the low temperature tempering temperature region due to reduction of solid solution N And has the effect of suppressing the occurrence of delayed fracture. In order to acquire these effects, 0.005% or more needs to be contained. On the other hand, if the content exceeds 0.03%, TiC is precipitated and the base material toughness is deteriorated. For this reason, it limits to 0.005 to 0.03% of range. Preferably, it is 0.007 to 0.025%.

Al:0.1%以下
Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中の固溶Nを固定してAlNを形成することにより、溶接熱影響部のボンド部における結晶粒の粗大化を抑制する効果を有するとともに、固溶N低減による低温焼戻し温度域における靱性劣化と遅れ破壊の発生を抑制する効果を有する。一方、0.1%を超えて含有すると、溶接時に溶接金属部に混入して、溶接金属の靭性を劣化させるため、0.1%以下に限定する。好ましくは、0.01〜0.07%である。
Al: 0.1% or less Al acts as a deoxidizer, and is most commonly used in the molten steel deoxidation process of steel sheets. Moreover, by fixing solid solution N in steel and forming AlN, it has the effect of suppressing the coarsening of crystal grains in the bond part of the weld heat affected zone, and in the low temperature tempering temperature range by reducing solid solution N It has the effect of suppressing toughness degradation and delayed fracture. On the other hand, when it contains exceeding 0.1%, it mixes with a weld metal part at the time of welding and deteriorates the toughness of the weld metal, so it is limited to 0.1% or less. Preferably, it is 0.01 to 0.07%.

N:0.01%以下
NはNbおよびTiと窒化物を形成し、溶接熱影響部の結晶粒粗大化を抑制する効果を有する。しかしながら、0.01%を超えて含有すると、母材および溶接部靭性が著しく低下するため、0.01%以下に限定する。好ましくは、0.0010〜0.0070%である。残部はFe及び不可避的不純物である。
本発明では、更に特性を向上させるため、上記基本成分系に加えて、Mo、W、B、Cu、Ni、V、REM、Ca、Mgの1種または2種以上を含有することができる。
N: 0.01% or less N forms nitrides with Nb and Ti, and has the effect of suppressing crystal grain coarsening in the weld heat affected zone. However, if the content exceeds 0.01%, the base metal and weld toughness are remarkably lowered, so the content is limited to 0.01% or less. Preferably, it is 0.0010 to 0.0070%. The balance is Fe and inevitable impurities.
In the present invention, in order to further improve the characteristics, one or more of Mo, W, B, Cu, Ni, V, REM, Ca, and Mg can be contained in addition to the basic component system.

Mo:0.05〜1.0%
Moは、焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.05%以上とすることが好ましいが、1.0%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.0%以下とする。
Mo: 0.05-1.0%
Mo is an element that significantly increases the hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.05% or more. However, if it exceeds 1.0%, the base material toughness, ductility and weld crack resistance are adversely affected. The following.

W:0.05〜1.0%
Wは、焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.05%以上とすることが好ましいが、1.0%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.0%以下とする。
W: 0.05-1.0%
W is an element that significantly increases the hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.05% or more. However, if it exceeds 1.0%, the base material toughness, ductility and weld crack resistance are adversely affected. The following.

B:0.0003〜0.0030%
Bは、微量の添加で焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.0003%以上とすることが好ましいが、0.0030%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、0.0030%以下とする。
B: 0.0003 to 0.0030%
B is an element that significantly increases the hardenability by adding a small amount and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.0003% or more. However, if it exceeds 0.0030%, the base material toughness, ductility and weld crack resistance are adversely affected. The following.

Cu、Ni、Vは、いずれも鋼の強度向上に寄与する元素であり、所望する強度に応じて適宜含有できる。   Cu, Ni, and V are all elements that contribute to improving the strength of steel and can be appropriately contained depending on the desired strength.

Cu:1.5%以下
Cuは、焼入れ性を増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.1%以上とすることが好ましいが、1.5%を超えると効果が飽和し、熱間脆性を生じて鋼板の表面性状を劣化させるため、1.5%以下とする。
Cu: 1.5% or less Cu is an element that increases hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably set to 0.1% or more. However, when the content exceeds 1.5%, the effect is saturated, and hot brittleness is caused to deteriorate the surface properties of the steel sheet. .5% or less.

Ni:2.0%以下
Niは、焼入れ性を増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.1%以上とすることが好ましいが、2.0%を超えると効果が飽和し、経済的に不利になるため、2.0%以下とする。
Ni: 2.0% or less Ni is an element that increases hardenability and is effective in increasing the hardness of the base material. In order to acquire such an effect, it is preferable to set it as 0.1% or more, However, if it exceeds 2.0%, since an effect will be saturated and it becomes economically disadvantageous, it shall be 2.0% or less.

V:0.1%以下
Vは、焼入れ性を増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.01%以上とすることが好ましいが、0.1%を超えると、母材靭性および延性を劣化させるため、0.1%以下とする。
V: 0.1% or less V is an element that increases the hardenability and is effective in increasing the hardness of the base material. In order to acquire such an effect, it is preferable to set it as 0.01% or more, However, If it exceeds 0.1%, in order to deteriorate a base material toughness and ductility, it is set as 0.1% or less.

REM、CaおよびMgは、いずれも靭性向上に寄与し、所望する特性に応じて選択して添加する。REMを添加する場合は、0.002%以上とすることが好ましいが、0.008%を超えても効果が飽和するため、0.008%を上限とする。   REM, Ca, and Mg all contribute to the improvement of toughness, and are selected and added according to desired characteristics. When adding REM, it is preferable to set it as 0.002% or more, but even if it exceeds 0.008%, the effect is saturated, so 0.008% is made the upper limit.

Caを添加する場合は、0.0005%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。   When adding Ca, it is preferable to make it 0.0005% or more, but since the effect is saturated even if it exceeds 0.005%, the upper limit is made 0.005%.

Mgを添加する場合は、0.001%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。   When adding Mg, it is preferable to set it as 0.001% or more, but since an effect will be saturated even if it exceeds 0.005%, 0.005% is made an upper limit.

DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・(1)
各元素記号は含有量(質量%)とする。
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (1)
Each element symbol is a content (mass%).

本パラメータ:DI*(焼入れ性指数)は上述した成分組成の範囲内で、母材の基地組織をマルテンサイトとし、優れた耐磨耗性を有するために規定するもので、本パラメータの値を45以上とする。45未満の場合、板厚表層からの焼入れ深さが10mmを下回り、耐磨耗鋼としての寿命が短くなる。   This parameter: DI * (hardenability index) is specified in order to have excellent wear resistance with the matrix structure of the base material being martensite within the range of the component composition described above. 45 or more. When it is less than 45, the quenching depth from the plate thickness surface layer is less than 10 mm, and the life as a wear-resistant steel is shortened.

本パラメータの値が180を超えるようになると母材の基地組織はマルテンサイトで耐磨耗性は良好であるが、溶接部の低温靭性が劣化するようになるので、180以下とすることが好ましい。より好ましくは、50〜160の範囲とする。   When the value of this parameter exceeds 180, the matrix structure of the base material is martensite and wear resistance is good, but the low temperature toughness of the welded portion deteriorates, so it is preferable to set it to 180 or less. . More preferably, it is in the range of 50 to 160.

C+Mn/4−Cr/3+10P≦0.47・・・(2)
各元素記号は含有量(質量%)とする。
C + Mn / 4-Cr / 3 + 10P ≦ 0.47 (2)
Each element symbol is a content (mass%).

母材の基地組織をマルテンサイトとし、溶接施工を行ったときに溶接熱影響部のボンド部および低温焼戻し脆化域のいずれのおいても優れた靭性を有する成分組成とする場合、上述した成分組成の範囲内で、本パラメータ:C+Mn/4−Cr/3+10Pの値を0.47以下とする。0.47を超えても、母材の基地組織はマルテンサイトで耐磨耗性は良好であるが、溶接熱影響部の靭性が、顕著に劣化するようになる。好ましくは、0.45以下である。   When the base structure of the base material is martensite, and the component composition has excellent toughness in both the weld heat-affected zone bond and the low-temperature temper embrittlement zone when welding is performed, the components described above Within the range of the composition, the value of this parameter: C + Mn / 4-Cr / 3 + 10P is set to 0.47 or less. Even if it exceeds 0.47, the matrix structure of the base material is martensite and the wear resistance is good, but the toughness of the weld heat affected zone is significantly deteriorated. Preferably, it is 0.45 or less.

[ミクロ組織]
本発明では、耐磨耗特性を向上させるため、鋼板のミクロ組織の基地相をマルテンサイトに規定する。マルテンサイト以外のベイナイト、フェライトなどの組織は、耐磨耗性が低下するため出来るだけ混合しないほうが好ましいが、面積分率が10%未満であれば、その影響が無視できる。また、鋼板の表面硬度がブリネル硬さで400HBW10/3000未満の場合には、耐磨耗鋼としての寿命が短くなる。そのため、表面硬度をブリネル硬さで400HBW10/3000以上とすることが望ましい。
[Microstructure]
In the present invention, in order to improve the wear resistance, the matrix phase of the microstructure of the steel sheet is defined as martensite. It is preferable not to mix as much as possible the structure such as bainite and ferrite other than martensite because the wear resistance decreases. However, if the area fraction is less than 10%, the influence can be ignored. Further, when the surface hardness of the steel plate is less than 400 HBW 10/3000 in terms of Brinell hardness, the life as a wear-resistant steel is shortened. Therefore, it is desirable that the surface hardness is 400HBW10 / 3000 or more in terms of Brinell hardness.

なお、溶接熱影響部のボンド部のミクロ組織は、マルテンサイトおよびベイナイトの混合組織である。マルテンサイトおよびベイナイト以外のフェライトなどの組織は、耐磨耗性が低下するため出来るだけ混合しないほうが好ましいが、面積分率が20%未満であれば、その影響が無視できる。   The microstructure of the bond part of the weld heat affected zone is a mixed structure of martensite and bainite. It is preferable not to mix as much as possible the structure of ferrite other than martensite and bainite because the wear resistance decreases. However, if the area fraction is less than 20%, the influence can be ignored.

さらに、溶接熱影響部のボンド部の靭性を確保するためには、NbおよびTiの炭窒化物は1μm以下の平均粒径のものが1000個/mm以上存在し、旧オーステナイトの平均結晶粒径が200μm未満であり、かつ傾角が15°以上の大角粒界で囲まれた下部組織の平均結晶粒径が70μm未満であることが好ましい。 Furthermore, in order to secure the toughness of the bond part of the weld heat affected zone, Nb and Ti carbonitrides with an average grain size of 1 μm or less are present at 1000 pieces / mm 2 or more, and the average grain size of the prior austenite It is preferable that the average crystal grain size of the substructure surrounded by the large-angle grain boundaries having a diameter of less than 200 μm and an inclination angle of 15 ° or more is less than 70 μm.

本発明に係る耐磨耗鋼は以下の製造条件で製造することが可能である。説明において、温度に関する「℃」表示は、板厚の1/2位置における温度を意味するものとする。上記した組成の溶鋼を、公知の溶製方法で溶製し、連続鋳造法あるいは造塊−分塊圧延法により、所定寸法のスラブ等の鋼素材とすることが好ましい。   The wear resistant steel according to the present invention can be manufactured under the following manufacturing conditions. In the description, the “° C.” display relating to the temperature means a temperature at a half position of the plate thickness. It is preferable that the molten steel having the above composition is melted by a known melting method and used as a steel material such as a slab having a predetermined size by a continuous casting method or an ingot-bundling rolling method.

次いで、得られた鋼素材を、冷却することなく直後に、または冷却した後に950〜1250℃に加熱した後、熱間圧延し、所望の板厚の鋼板とする。熱間圧延直後に水冷し、あるいは、再加熱して焼入れを行う。その後、必要に応じて、300℃以下での焼戻しを実施する。   Next, the obtained steel material is heated to 950 to 1250 ° C. immediately after cooling or after cooling, and then hot-rolled to obtain a steel plate having a desired thickness. Immediately after hot rolling, it is cooled with water or reheated for quenching. Then, tempering at 300 degrees C or less is implemented as needed.

転炉−取鍋精錬−連続鋳造法で、表1に示す種々の成分組成に調製した鋼スラブを、1000〜1250℃に加熱した後、熱間圧延を施し、一部の鋼板には圧延直後に焼入れ(DQ)をし、その他の鋼板については、圧延後空冷し、再加熱後焼入れ(RQ)を行った。   Steel slabs prepared in various compositions shown in Table 1 by the converter-ladder refining-continuous casting method were heated to 1000 to 1250 ° C. and then hot-rolled. The other steel plates were quenched (DQ), air cooled after rolling, and quenched after reheating (RQ).

得られた鋼板について、表面硬度測定、母材靭性測定、耐磨耗性評価、T形すみ肉溶接割れ試験(耐遅れ破壊特性評価)、溶接部再現熱サイクル試験、実継手の溶接部靭性試験を下記の要領で実施した。   About the obtained steel sheet, surface hardness measurement, base metal toughness measurement, wear resistance evaluation, T-shaped fillet weld cracking test (delayed fracture resistance evaluation), welded part reproduction thermal cycle test, welded part toughness test of actual joint Was carried out as follows.

[表面硬度1]
表面硬度測定はJIS Z2243(1998)に準拠し、表層下の表面硬度(表層のスケールを除去した後に測定した表面の硬度)を測定した。測定は直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。
[Surface hardness 1]
The surface hardness was measured according to JIS Z2243 (1998), and the surface hardness under the surface layer (the surface hardness measured after removing the scale of the surface layer) was measured. The measurement used a tungsten hard sphere having a diameter of 10 mm, and the load was 3000 kgf.

[母材靭性1]
各鋼板の板厚1/4位置の圧延方向と垂直な方向から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について各温度3本のシャルピー衝撃試験を実施し、試験温度0℃での吸収エネルギーを求め、母材靭性を評価した。試験温度0℃は温暖地域での使用を考慮して選定した。
[Base material toughness 1]
From the direction perpendicular to the rolling direction at a thickness of 1/4 of each steel plate, V-notch specimens were collected in accordance with JIS Z 2202 (1998), and conformed to JIS Z 2242 (1998). Then, each steel plate was subjected to a Charpy impact test at three temperatures, the absorbed energy at a test temperature of 0 ° C. was determined, and the base material toughness was evaluated. The test temperature of 0 ° C. was selected in consideration of use in a warm area.

試験温度0℃での吸収エネルギー(vEと言う場合がある。)の3本の平均値が30J以上を母材靭性に優れるもの(本発明範囲内)とした。 The average value of the three absorbed energy at the test temperature of 0 ° C. (sometimes referred to as vE 0 ) was 30 J or more, which was excellent in the base material toughness (within the scope of the present invention).

[耐磨耗性1]
耐磨耗性は、ASTM G65の規定に準拠し、ラバーホイール試験を実施した。試験片は10mmt(t:板厚)×75mmw(w:幅)×20mmL(L:長さ)(板厚が10mmt未満の場合は、t(板厚)×75mmw×20mmL)とし、磨耗材に100%SiO磨耗砂を使用して実施した。
[Abrasion resistance 1]
The abrasion resistance was in accordance with ASTM G65, and a rubber wheel test was performed. The test piece is 10 mmt (t: plate thickness) x 75 mmw (w: width) x 20 mmL (L: length) (if the plate thickness is less than 10 mmt, t (plate thickness) x 75 mmw x 20 mmL). Performed using 100% SiO 2 wear sand.

試験前後での試験片重量を測定し、磨耗量を測定した。試験結果は、軟鋼板(SS400)の磨耗量を基準(1.0)として、耐磨耗比:(軟鋼板の磨耗量)/(各鋼板の磨耗量)で評価した。耐磨耗比が大きいほど、耐磨耗性に優れていることを意味し、本発明範囲では、耐磨耗比4.0以上を耐磨耗性に優れるものとした。   The specimen weight before and after the test was measured, and the amount of wear was measured. The test results were evaluated based on the wear resistance ratio: (abrasion amount of mild steel plate) / (abrasion amount of each steel plate) with the wear amount of the mild steel plate (SS400) as a reference (1.0). The larger the wear resistance ratio, the better the wear resistance. In the scope of the present invention, the wear resistance ratio of 4.0 or more is excellent in wear resistance.

[遅れ破壊1]
T形溶接割れ試験は、図1の通りにT形に組み立てた試験体を被覆アーク溶接にて拘束溶接を実施した後、室温(25℃×湿度60%)もしくは、100℃に予熱した後、試験溶接を実施した。
[Delayed destruction 1]
The T-shaped weld cracking test was conducted after subjecting a test body assembled into a T-shape as shown in FIG. 1 to be subjected to restraint welding by covering arc welding, and then preheating to room temperature (25 ° C. × 60% humidity) or 100 ° C. Test welding was performed.

溶接方法は、被覆アーク溶接(溶接材料:LB52UL(4.0mmΦ))で、入熱17kJ/cmとし、3層6パスの溶接を実施した。溶接後、48時間室温で放置した後、試験板の溶接部断面観察サンプル(ビード長200mmを5等分)を5枚採取し、溶接熱影響部での割れの発生の有無を投影機および光学顕微鏡により、調査した。予熱なし、および、予熱100℃とも、採取した各5枚の断面サンプルにおいて、溶接熱影響部で割れの発生が全くないものを耐遅れ破壊特性に優れるとして評価した。   The welding method was covered arc welding (welding material: LB52UL (4.0 mmΦ)), heat input was 17 kJ / cm, and three-layer six-pass welding was performed. After welding, the sample was left at room temperature for 48 hours, and then a sample of the cross section of the welded portion of the test plate (bead length of 200 mm was divided into five equal parts) was sampled. Investigated with a microscope. With no preheating and 100 ° C. preheating, in each of the five cross-section samples taken, those having no cracking at the weld heat affected zone were evaluated as having excellent delayed fracture resistance.

[溶接部靭性1−1]
溶接部再現熱サイクル試験は、溶接入熱17kJ/cmの1層炭酸ガスアーク溶接を行った場合の溶接熱影響部のボンド部および低温焼戻し脆化領域のそれぞれを模擬した。ボンド部の模擬は、1400℃で1秒間保持し、800〜200℃の冷却速度を30℃/sとした。また、低温焼戻し脆化領域の模擬は、300℃で1秒間保持し、300〜100℃を5℃/sで冷却した。
[Weld toughness 1-1]
The welded part reproduction heat cycle test simulated each of the bond part and the low temperature temper embrittlement region of the welded heat affected zone when single layer carbon dioxide arc welding with a welding heat input of 17 kJ / cm was performed. The bond portion was simulated at 1400 ° C. for 1 second, and a cooling rate of 800 to 200 ° C. was set to 30 ° C./s. Moreover, simulation of the low temperature temper embrittlement area | region was hold | maintained at 300 degreeC for 1 second, and 300-100 degreeC was cooled at 5 degreeC / s.

圧延方向から採取した角棒状試験片に高周波誘導加熱装置で上述した熱サイクルを付与した後、JISZ2242(1998年)に準じてVノッチシャルピー衝撃試験を行った。Vノッチシャルピー衝撃試験は試験温度を0℃として各鋼板について3本の試験片で行った。   After giving the above-mentioned thermal cycle with a high frequency induction heating device to a square bar specimen taken from the rolling direction, a V-notch Charpy impact test was conducted according to JISZ2242 (1998). The V-notch Charpy impact test was performed with three test pieces for each steel plate at a test temperature of 0 ° C.

溶接熱影響部のボンド部および低温焼戻し脆化領域の吸収エネルギー(vE)の3本の平均値が30J以上を溶接部靭性に優れるもの(本発明範囲内)とした。 The average value of the three absorbed energy (vE 0 ) of the bond portion of the weld heat affected zone and the low temperature temper embrittlement region was determined to be 30 J or more (within the range of the present invention).

[溶接部靭性1−2]
さらに、実継手の靭性を確認するため、被覆アーク溶接(入熱17kJ/cm、予熱150℃、溶接材料:LB52UL(4.0mmΦ))で鋼板にビードオンプレート溶接を行った。シャルピー衝撃片を表面下1mmの位置より採取し、ノッチ位置をボンドとして、JISZ2242(1998年)に準じてVノッチシャルピー衝撃試験を行った。図2にシャルピー衝撃片の採取位置、ノッチ位置を示す。
[Weld toughness 1-2]
Furthermore, in order to confirm the toughness of the actual joint, bead-on-plate welding was performed on the steel plate by covered arc welding (heat input 17 kJ / cm, preheating 150 ° C., welding material: LB52UL (4.0 mmΦ)). A Charpy impact piece was taken from a position 1 mm below the surface, and a V-notch Charpy impact test was conducted according to JISZ2242 (1998) using the notch position as a bond. FIG. 2 shows the sampling position and notch position of the Charpy impact piece.

実継手のVノッチシャルピー衝撃試験は試験温度を0℃として各試験温度について3本の試験片で行った。吸収エネルギー(vE)の3本の平均値が30J以上を溶接熱影響部のボンド部靭性に優れるもの(本発明範囲内)とした。 The V-notch Charpy impact test of the actual joint was performed with three test pieces at each test temperature at a test temperature of 0 ° C. The average value of the three absorbed energy (vE 0 ) values of 30 J or more was determined to be excellent in the bond portion toughness of the weld heat affected zone (within the scope of the present invention).

表2に供試鋼板の製造条件を、表3に上記各試験の結果を示す。本発明例(鋼No.1〜5)は、表面硬度が400HBW10/3000以上を有し、耐磨耗性に優れ、0℃の母材靭性が30J以上を有し、さらに、T形すみ肉溶接割れ試験で割れが発生せず、また、溶接部再現熱サイクル試験および実溶接部においても優れた靭性を有し、溶接部靭性に優れていることが確認された。   Table 2 shows the production conditions of the test steel sheets, and Table 3 shows the results of the above tests. Examples of the present invention (steel Nos. 1 to 5) have a surface hardness of 400 HBW 10/3000 or more, excellent wear resistance, a base metal toughness of 0 ° C. of 30 J or more, and a T-shaped fillet It was confirmed that no cracks were generated in the weld cracking test, and that excellent toughness was exhibited in the welded part thermal cycle test and the actual welded part, and the welded part toughness was excellent.

一方、成分組成が本発明範囲外の比較例(鋼No.6〜14)は、表面硬度、耐磨耗性、T形溶接割れ試験、母材靭性、再現熱サイクルシャルピー衝撃試験、実継手シャルピー衝撃試験のいずれか、あるいはその複数が目標性能を満足できないことが確認された。   On the other hand, comparative examples (steel Nos. 6 to 14) whose component composition is outside the scope of the present invention are surface hardness, wear resistance, T-shaped weld crack test, base metal toughness, reproducible thermal cycle Charpy impact test, actual joint Charpy. It was confirmed that one or more of the impact tests could not satisfy the target performance.

転炉−取鍋精錬−連続鋳造法で、表4に示す種々の成分組成に調製した鋼スラブを、1000〜1250℃に加熱した後、表5に示す製造条件で熱間圧延を施し、一部の鋼板には圧延直後に焼入れ(DQ)をし、その他の鋼板については、圧延後空冷し、再加熱後焼入れ(RQ)を行った。   A steel slab prepared in various compositions shown in Table 4 by a converter-ladder refining-continuous casting method was heated to 1000 to 1250 ° C. and then hot-rolled under the production conditions shown in Table 5. The steel sheets in the part were quenched (DQ) immediately after rolling, and the other steel sheets were air-cooled after rolling and quenched after reheating (RQ).

得られた鋼板について、表面硬度測定、母材靭性測定、耐磨耗性評価、T形すみ肉溶接割れ試験(耐遅れ破壊特性評価)、溶接部再現熱サイクル試験、実継手の溶接部靭性試験を下記の要領で実施した。   About the obtained steel sheet, surface hardness measurement, base metal toughness measurement, wear resistance evaluation, T-shaped fillet weld cracking test (delayed fracture resistance evaluation), welded part reproduction thermal cycle test, welded part toughness test of actual joint Was carried out as follows.

[表面硬度2]
表面硬度測定はJIS Z2243(1998)に準拠し、表層下の表面硬度(表層のスケールを除去した後に測定した表面の硬度)を測定した。測定は直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。
[Surface hardness 2]
The surface hardness was measured according to JIS Z2243 (1998), and the surface hardness under the surface layer (the surface hardness measured after removing the scale of the surface layer) was measured. The measurement used a tungsten hard sphere having a diameter of 10 mm, and the load was 3000 kgf.

[母材靭性2]
各鋼板の板厚1/4位置の圧延方向と垂直な方向から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について各温度3本のシャルピー衝撃試験を実施し、試験温度0℃および−40℃での吸収エネルギーを求め、母材靭性を評価した。試験温度0℃は温暖地域での使用を、試験温度−40℃は寒冷地域での使用を考慮して選定した。
[Base material toughness 2]
From the direction perpendicular to the rolling direction at a thickness of 1/4 of each steel plate, V-notch specimens were collected in accordance with JIS Z 2202 (1998), and conformed to JIS Z 2242 (1998). Each steel plate was subjected to a Charpy impact test at three temperatures, the absorbed energy at test temperatures of 0 ° C. and −40 ° C. was determined, and the base material toughness was evaluated. A test temperature of 0 ° C. was selected in consideration of use in a warm region, and a test temperature of −40 ° C. was selected in consideration of use in a cold region.

試験温度0℃での吸収エネルギー(vEと言う場合がある。)の3本の平均値が30J以上でかつ、試験温度−40℃での吸収エネルギー(vE−40と言う場合がある。)の3本の平均値が27J以上を母材靭性に優れるもの(本発明範囲内)とした。なお、板厚が10mm未満の鋼板に関しては、サブサイズ(5mm×10mm)のVノッチシャルピー試験片を採取し、シャルピー衝撃試験を実施し、3本の吸収エネルギー(vE)の平均値が15J以上でかつ、3本の吸収エネルギー(vE−40)の平均値が13J以上を母材靭性に優れるもの(本発明範囲内)とした。 The average value of the three absorbed energy at the test temperature of 0 ° C. (sometimes referred to as vE 0 ) is 30 J or more, and the absorbed energy at the test temperature of −40 ° C. (sometimes referred to as vE- 40 ). The average value of these three was determined to be 27 J or more with excellent base material toughness (within the scope of the present invention). For steel plates with a thickness of less than 10 mm, sub-size (5 mm × 10 mm) V-notch Charpy test pieces were collected, Charpy impact tests were performed, and the average value of three absorbed energy (vE 0 ) was 15 J The average value of the three absorbed energy (vE- 40 ) is 13J or more as described above, and the base material toughness is excellent (within the scope of the present invention).

[耐磨耗性2]
耐磨耗性は、ASTM G65の規定に準拠し、ラバーホイール試験を実施した。試験片は10mmt(t:板厚)×75mmw(w:幅)×20mmL(L:長さ)(板厚が10mmt未満の場合は、t(板厚)×75mmw×20mmL)とし、磨耗材に100%SiO磨耗砂を使用して実施した。
[Abrasion resistance 2]
The abrasion resistance was in accordance with ASTM G65, and a rubber wheel test was performed. The test piece is 10 mmt (t: plate thickness) x 75 mmw (w: width) x 20 mmL (L: length) (if the plate thickness is less than 10 mmt, t (plate thickness) x 75 mmw x 20 mmL). Performed using 100% SiO 2 wear sand.

試験前後での試験片重量を測定し、磨耗量を測定した。試験結果は、軟鋼板(SS400)の磨耗量を基準(1.0)として、耐磨耗比:(軟鋼板の磨耗量)/(各鋼板の磨耗量)で評価した。耐磨耗比が大きいほど、耐磨耗性に優れていることを意味し、本発明範囲では、耐磨耗比4.0以上を耐磨耗性に優れるものとした。   The specimen weight before and after the test was measured, and the amount of wear was measured. The test results were evaluated based on the wear resistance ratio: (abrasion amount of mild steel plate) / (abrasion amount of each steel plate) with the wear amount of the mild steel plate (SS400) as a reference (1.0). The larger the wear resistance ratio, the better the wear resistance. In the scope of the present invention, the wear resistance ratio of 4.0 or more is excellent in wear resistance.

[遅れ破壊2]
T形溶接割れ試験は、図1の通りにT形に組み立てた試験体を被覆アーク溶接にて拘束溶接を実施した後、室温(25℃×湿度60%)もしくは、100℃に予熱した後、試験溶接を実施した。
[Delayed destruction 2]
The T-shaped weld cracking test was conducted after subjecting a test body assembled into a T-shape as shown in FIG. 1 to be subjected to restraint welding by covering arc welding, and then preheating to room temperature (25 ° C. × 60% humidity) or 100 ° C. Test welding was performed.

溶接方法は、被覆アーク溶接(溶接材料:LB52UL(4.0mmΦ))で、入熱17kJ/cmとし、3層6パスの溶接を実施した。試験後、48時間室温で放置した後、試験板の溶接部断面観察サンプル(ビード長200を5等分)を5枚採取し、溶接熱影響部での割れの発生の有無を投影機および光学顕微鏡により、調査した。予熱なし、および、予熱100℃とも、採取した各5枚の断面サンプルにおいて、溶接熱影響部で割れの発生が全くないものを耐遅れ破壊特性に優れるとして評価した。   The welding method was covered arc welding (welding material: LB52UL (4.0 mmΦ)), heat input was 17 kJ / cm, and three-layer six-pass welding was performed. After the test, the sample was left at room temperature for 48 hours, and then five samples of the welded plate cross-section observation sample (bead length 200 was divided into five equal parts) were collected. Investigated with a microscope. With no preheating and 100 ° C. preheating, in each of the five cross-section samples taken, those having no cracking at the weld heat affected zone were evaluated as having excellent delayed fracture resistance.

[溶接部靭性2−1]
溶接部再現熱サイクル試験は、溶接入熱17kJ/cmの1層炭酸ガスアーク溶接を行った場合の溶接熱影響部のボンド部および低温焼戻し脆化領域のそれぞれを模擬した。ボンド部の模擬は、1400℃で1秒間保持し、800〜200℃の冷却速度を30℃/sとした。また、低温焼戻し脆化領域の模擬は、300℃で1秒間保持し、300〜100℃を5℃/sで冷却した。
[Weld toughness 2-1]
The welded part reproduction heat cycle test simulated each of the bond part and the low temperature temper embrittlement region of the welded heat affected zone when single layer carbon dioxide arc welding with a welding heat input of 17 kJ / cm was performed. The bond portion was simulated at 1400 ° C. for 1 second, and a cooling rate of 800 to 200 ° C. was set to 30 ° C./s. Moreover, simulation of the low temperature temper embrittlement area | region was hold | maintained at 300 degreeC for 1 second, and 300-100 degreeC was cooled at 5 degreeC / s.

圧延方向から採取した角棒状試験片に高周波誘導加熱装置で上述した熱サイクルを付与した後、JISZ2242(1998年)に準じてVノッチシャルピー衝撃試験を行った。Vノッチシャルピー衝撃試験は試験温度を0℃および−40℃として各鋼板について各温度3本の試験片で行った。   After giving the above-mentioned thermal cycle with a high frequency induction heating device to a square bar specimen taken from the rolling direction, a V-notch Charpy impact test was conducted according to JISZ2242 (1998). The V-notch Charpy impact test was conducted with test pieces at three temperatures for each steel sheet at test temperatures of 0 ° C. and −40 ° C.

溶接熱影響部のボンド部および低温焼戻し脆化領域の吸収エネルギー(vE)の3本の平均値が30J以上、かつ、吸収エネルギー(vE−40)の3本の平均値が27J以上を溶接部靭性に優れるもの(本発明範囲内)とした。 Welding the average value of the three absorbed energy (vE 0 ) of the bond portion of the weld heat affected zone and the low temperature temper embrittlement region is 30 J or more and the average value of the three absorbed energy (vE −40 ) is 27 J or more. The material was excellent in toughness (within the scope of the present invention).

なお、板厚が10mm未満の鋼板に関しては、サブサイズ(5mm×10mm)のVノッチシャルピー試験片を採取し、シャルピー衝撃試験を実施し、溶接熱影響部のボンド部および低温焼戻し脆化領域の吸収エネルギー(vE)の3本の平均値が15J以上でかつ、吸収エネルギー(vE−40)の3本の平均値が13J以上を溶接部靭性に優れるもの(本発明範囲内)とした。 For steel plates with a thickness of less than 10 mm, sub-size (5 mm × 10 mm) V-notch Charpy test pieces were collected, Charpy impact tests were conducted, and the weld heat affected zone bond and low temperature temper embrittlement regions The average value of the three absorbed energy (vE 0 ) was 15 J or more and the average value of the three absorbed energy (vE −40 ) was 13 J or more was determined to be excellent in weld zone toughness (within the scope of the present invention).

[溶接部靭性2−2]
さらに、実継手の靭性を確認するため、被覆アーク溶接(入熱17kJ/cm、予熱150℃、溶接材料:LB52UL(4.0mmΦ))で鋼板にビードオンプレート溶接を行った。シャルピー衝撃片を表面下1mmの位置より採取し、ノッチ位置をボンドとして、JISZ2242(1998年)に準じてVノッチシャルピー衝撃試験を行った。図2にシャルピー衝撃片の採取位置、ノッチ位置を示す。
[Weld zone toughness 2-2]
Furthermore, in order to confirm the toughness of the actual joint, bead-on-plate welding was performed on the steel plate by covered arc welding (heat input 17 kJ / cm, preheating 150 ° C., welding material: LB52UL (4.0 mmΦ)). A Charpy impact piece was taken from a position 1 mm below the surface, and a V-notch Charpy impact test was conducted according to JISZ2242 (1998) using the notch position as a bond. FIG. 2 shows the sampling position and notch position of the Charpy impact piece.

実継手のVノッチシャルピー衝撃試験は試験温度を0℃および−40℃として各試験温度について3本の試験片で行った。吸収エネルギー(vE)の3本の平均値が30J以上でかつ、吸収エネルギー(vE−40)の3本の平均値が27J以上を溶接熱影響部のボンド部靭性に優れるもの(本発明範囲内)とした。 The V-notch Charpy impact test of the actual joint was performed with three test pieces at each test temperature with the test temperature being 0 ° C. and −40 ° C. The average value of the three absorbed energy (vE 0 ) is 30 J or more and the average value of the three absorbed energy (vE −40 ) is 27 J or more, which is excellent in the bond part toughness of the weld heat affected zone (range of the present invention) Inside).

なお、板厚が10mm未満の鋼板に関しては、サブサイズ(5mm×10mm)のVノッチシャルピー試験片を採取し、シャルピー衝撃試験を実施し、吸収エネルギー(vE)の3本の平均値が15J以上でかつ、吸収エネルギー(vE−40)の3本の平均値が13J以上を溶接熱影響部のボンド部靭性に優れるもの(本発明範囲内)とした。 For steel sheets with a thickness of less than 10 mm, sub-size (5 mm × 10 mm) V-notch Charpy test pieces were collected, Charpy impact tests were performed, and the average value of three absorbed energy (vE 0 ) was 15 J The average value of the three absorbed energy (vE -40 ) values of 13 J or more was determined to be excellent in the bond portion toughness of the weld heat affected zone (within the scope of the present invention).

表5に供試鋼板の製造条件を、表6に上記各試験の結果を示す。本発明例(鋼No.15〜17(但しNo.17は板厚8mm))は、表面硬度が400HBW10/3000以上を有し、耐磨耗性に優れ、0℃の母材靭性が30J以上を有し、かつ−40℃の母材靭性が27J以上を有し、さらに、T形すみ肉溶接割れ試験で割れが発生せず、また、溶接部再現熱サイクル試験および実溶接部においても優れた靭性を有し、溶接部靭性に優れていることが確認された。   Table 5 shows the production conditions of the test steel sheets, and Table 6 shows the results of the above tests. Examples of the present invention (steel Nos. 15 to 17 (No. 17 is a plate thickness of 8 mm)) have a surface hardness of 400 HBW 10/3000 or more, excellent wear resistance, and a base metal toughness of 0 ° C. of 30 J or more. In addition, the toughness of the base metal at −40 ° C. is 27 J or more, and further, no crack is generated in the T-shaped fillet weld cracking test, and it is excellent in the welded part thermal cycle test and the actual welded part. It was confirmed that the toughness was excellent and the weld zone toughness was excellent.

一方、成分組成は本発明範囲内であるが、DIが180を超える鋼No.18の場合、表面硬度、耐磨耗性、母材靭性、T形溶接割れ試験は良好であるが、低温焼き戻し脆化領域相当の再現熱サイクルシャルピー衝撃試験および実継手シャルピー衝撃試験が目標性能の下限に近く、溶接部の低温靭性が他の発明例と比べ劣っていることが確認された。   On the other hand, the component composition is within the scope of the present invention, but the steel No. In the case of No. 18, the surface hardness, wear resistance, base metal toughness, and T-shaped weld cracking test are good, but the target performance is the reproducible thermal cycle Charpy impact test and actual joint Charpy impact test corresponding to the low temperature temper embrittlement region. It was confirmed that the low temperature toughness of the welded part was inferior to that of the other invention examples.

鋼No.19は、成分組成のうち、Siが本発明範囲外のため、表面硬度、耐磨耗性、母材靭性は良好であるが、溶接熱影響部の焼戻し脆化領域における靱性が劣化し、T形溶接割れ試験、低温焼き戻し脆化領域相当の再現熱サイクルシャルピー衝撃試験および実継手シャルピー衝撃試験が目標性能を満足できなかった。   Steel No. No. 19, among the component compositions, since Si is outside the scope of the present invention, the surface hardness, wear resistance, and base metal toughness are good, but the toughness in the temper embrittlement region of the weld heat affected zone deteriorates, and T The shape weld crack test, the reproducible thermal cycle Charpy impact test corresponding to the low temperature temper embrittlement region, and the actual joint Charpy impact test did not satisfy the target performance.

鋼No.20は成分組成は本発明範囲内であるが、(2)式が0.47を超えるため、再現熱サイクルシャルピー衝撃試験、実継手シャルピー衝撃試験ともvE−40が本発明の目標性能の下限に近く、他の発明例と比べ劣っていることが確認された。なお、表4、5、6の記載において鋼No.18,20は成分組成は請求項3の本発明範囲内だが、DI、(2)式の値が請求項6、7の本発明範囲外のため比較例とした。 Steel No. Although the composition of the component 20 is within the range of the present invention, the equation (2) exceeds 0.47. Therefore, vE- 40 is the lower limit of the target performance of the present invention in both the reproducible thermal cycle Charpy impact test and the actual joint Charpy impact test. It was confirmed that it was inferior to other invention examples. In Tables 4, 5, and 6, steel No. 18 and 20 are comparative examples because the component composition is within the scope of the present invention of claim 3, but the value of DI and the formula (2) is outside the scope of the present invention of claims 6 and 7.

Claims (5)

mass%で、C:0.20〜0.30%、Si:0.05〜0.5%、Mn:0.40〜1.2%、P:0.010%以下、S:0.005%以下、Cr:0.40〜1.5%、Nb:0.005〜0.025%、Ti:0.005〜0.03%、Al:0.1%以下、N:0.01%以下を含有し、(1)式で示されるDI*が45以上180以下で、(2)式を満足し、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織がマルテンサイトを基地相とする溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(1)
(1)式において、各元素記号は含有量(mass%)。
C+Mn/4−Cr/3+10P≦0.47・・・・・(2)
(2)式において、各元素記号は含有量(mass%)
In mass%, C: 0.20 to 0.30%, Si: 0.05 to 0.5%, Mn: 0.40 to 1.2%, P: 0.010% or less, S: 0.005 %: Cr: 0.40-1.5%, Nb: 0.005-0.025%, Ti: 0.005-0.03%, Al: 0.1% or less, N: 0.01% The DI * in the formula (1) is 45 or more and 180 or less , the formula (2) is satisfied, the composition is composed of the remaining Fe and inevitable impurities, and the microstructure is based on martensite. A wear-resistant steel sheet with excellent weld toughness and delayed fracture resistance.
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (1)
In the formula (1), each element symbol is a content (mass%).
C + Mn / 4-Cr / 3 + 10P ≦ 0.47 (2)
In the formula (2), each element symbol is a content (mass%).
鋼組成に、mass%で、C:0.20〜0.283%、S:0.0025%以下、Cr:0.49〜1.5%を含有し、さらに、Mo:0.05〜1.0%、W:0.05〜1.0%、B:0.0003〜0.0030%の1種または2種以上を含有することを特徴とする請求項1記載の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。 The steel composition contains, in mass%, C: 0.20 to 0.283%, S: 0.0025% or less , Cr: 0.49 to 1.5% , and Mo: 0.05 to 1 The weld toughness and resistance according to claim 1, characterized by containing one or more of 0.0%, W: 0.05 to 1.0%, and B: 0.0003 to 0.0030%. Wear-resistant steel plate with excellent delayed fracture characteristics. 鋼組成に、mass%で、C:0.20〜0.283%、S:0.0025%以下を含有し、さらに、Cu:1.5%以下、Ni:2.0%以下、V:0.1%以下の1種または2種以上を含有することを特徴とする請求項1または2記載の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。   The steel composition contains, in mass%, C: 0.20 to 0.283%, S: 0.0025% or less, Cu: 1.5% or less, Ni: 2.0% or less, V: The wear-resistant steel sheet having excellent weld toughness and delayed fracture resistance according to claim 1 or 2, characterized by containing one or more of 0.1% or less. 鋼組成に、mass%で、C:0.20〜0.283%、S:0.0025%以下を含有し、さらに、REM:0.008%以下、Ca:0.005%以下、Mg:0.005%以下の1種または2種以上を含有することを特徴とする請求項1乃至3のいずれか一つに記載の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。   The steel composition contains, in mass%, C: 0.20 to 0.283%, S: 0.0025% or less, REM: 0.008% or less, Ca: 0.005% or less, Mg: The wear-resistant steel sheet having excellent weld toughness and delayed fracture resistance according to any one of claims 1 to 3, characterized by containing one or more of 0.005% or less. 表面硬度がブリネル硬さで400HBW10/3000以上である請求項1乃至4のいずれか一つに記載の溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。   The wear-resistant steel plate having excellent weld toughness and delayed fracture resistance according to any one of claims 1 to 4, wherein the surface hardness is Brinell hardness of 400HBW10 / 3000 or more.
JP2011142506A 2010-06-30 2011-06-28 Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance Active JP5866820B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2011142506A JP5866820B2 (en) 2010-06-30 2011-06-28 Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
PCT/JP2011/065416 WO2012002567A1 (en) 2010-06-30 2011-06-29 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
MX2013000031A MX354630B (en) 2010-06-30 2011-06-29 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance.
US13/806,954 US20130216422A1 (en) 2010-06-30 2011-06-29 Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
RU2013103814/02A RU2550985C2 (en) 2010-06-30 2011-06-29 Galling resistant steel plates demonstrating excellent impact toughness of weld and excellent resistance to delayed fracture
AU2011272188A AU2011272188C1 (en) 2010-06-30 2011-06-29 Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
KR1020137001872A KR20130045900A (en) 2010-06-30 2011-06-29 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
CA2801703A CA2801703C (en) 2010-06-30 2011-06-29 Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
CN2011800319242A CN102959113A (en) 2010-06-30 2011-06-29 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
EP11801027.1A EP2589676B1 (en) 2010-06-30 2011-06-29 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
ARP110104972 AR084622A1 (en) 2011-06-28 2011-12-28 ABRASION RESISTANT STEEL PLATE EXHIBITING EXCELLENT WELDING HARDNESS AND EXCELLENT RETARDED FRACTURE RESISTANCE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010149649 2010-06-30
JP2010149649 2010-06-30
JP2011142506A JP5866820B2 (en) 2010-06-30 2011-06-28 Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2012031510A JP2012031510A (en) 2012-02-16
JP5866820B2 true JP5866820B2 (en) 2016-02-24

Family

ID=45402264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142506A Active JP5866820B2 (en) 2010-06-30 2011-06-28 Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance

Country Status (10)

Country Link
US (1) US20130216422A1 (en)
EP (1) EP2589676B1 (en)
JP (1) JP5866820B2 (en)
KR (1) KR20130045900A (en)
CN (1) CN102959113A (en)
AU (1) AU2011272188C1 (en)
CA (1) CA2801703C (en)
MX (1) MX354630B (en)
RU (1) RU2550985C2 (en)
WO (1) WO2012002567A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692890B1 (en) * 2011-03-29 2018-07-25 JFE Steel Corporation Abrasion-resistant steel plate or steel sheet and method for producing the same
KR101699582B1 (en) * 2011-03-29 2017-01-24 제이에프이 스틸 가부시키가이샤 Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
JP5966730B2 (en) * 2012-07-30 2016-08-10 Jfeスチール株式会社 Abrasion resistant steel plate with excellent impact wear resistance and method for producing the same
CN102747280B (en) * 2012-07-31 2014-10-01 宝山钢铁股份有限公司 Wear resistant steel plate with high intensity and high toughness and production method thereof
CN102747282B (en) 2012-07-31 2015-04-22 宝山钢铁股份有限公司 High-hardness high-tenacity wear-resistant steel plate and production method thereof
CN102876969B (en) * 2012-07-31 2015-03-04 宝山钢铁股份有限公司 Super-strength high-toughness wear resistant steel plate and production method thereof
EP2873747B1 (en) 2012-09-19 2018-06-27 JFE Steel Corporation Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
JPWO2014045552A1 (en) * 2012-09-19 2016-08-18 Jfeスチール株式会社 Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
CN103966524B (en) * 2013-01-24 2016-11-02 中国石油天然气集团公司 A kind of tubing and casing of resistance against sulfide stress cracking
JP6235221B2 (en) * 2013-03-28 2017-11-22 Jfeスチール株式会社 Wear-resistant thick steel plate having low temperature toughness and hydrogen embrittlement resistance and method for producing the same
CN103205634B (en) 2013-03-28 2016-06-01 宝山钢铁股份有限公司 A kind of low-alloy high hardness wear-resisting steel plate and manufacture method thereof
CN103225046A (en) * 2013-04-09 2013-07-31 康力电梯股份有限公司 Alloy member with high comprehensive performance
SI2789699T1 (en) * 2013-08-30 2017-06-30 Rautaruukki Oyj A high-hardness hot-rolled steel product, and a method of manufacturing the same
CN105940133B (en) 2014-01-28 2017-11-07 杰富意钢铁株式会社 Wear-resistant steel plate and its manufacture method
CN103952645B (en) * 2014-04-10 2016-10-05 铜陵南江鑫钢实业有限公司 A kind of high temperature resistant wear-resistance high-manganese steel and preparation method thereof
JP6217585B2 (en) * 2014-10-20 2017-10-25 Jfeスチール株式会社 Abrasion resistant steel plate excellent in bending workability and impact wear resistance and method for producing the same
CN104711480B (en) * 2015-03-20 2017-01-18 苏州劲元油压机械有限公司 Dedicated wear-resisting anticorrosion steel plate for storage rack platform and preparation method of steel plate
CN108251761A (en) * 2018-02-26 2018-07-06 朱威威 Rare-earth and high chromium tungsten high temperature resistant and wear-resistant steel
EP4015659A4 (en) * 2019-09-17 2023-09-20 JFE Steel Corporation Wear-resistant steel sheet and method for producing same
CN111304546A (en) * 2020-04-07 2020-06-19 四川泰铸耐磨材料有限公司 Super-strength wear-resistant alloy and preparation method thereof
KR102498142B1 (en) * 2020-12-18 2023-02-08 주식회사 포스코 Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
CN113512688B (en) * 2021-07-15 2022-04-26 重庆增隆新材料科技有限公司 Spherical powder material for aviation ultrahigh-strength steel and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551691A (en) 1991-03-11 1993-03-02 Sumitomo Metal Ind Ltd Wear resistant steel sheet excellent in delayed fracture resistance and its production
FR2733516B1 (en) 1995-04-27 1997-05-30 Creusot Loire STEEL AND PROCESS FOR THE MANUFACTURE OF PARTS WITH HIGH ABRASION RESISTANCE
JP3543619B2 (en) * 1997-06-26 2004-07-14 住友金属工業株式会社 High toughness wear-resistant steel and method of manufacturing the same
JPH11201168A (en) * 1998-01-12 1999-07-27 Nippon Seiko Kk Rolling bearing
JP3736320B2 (en) 2000-09-11 2006-01-18 Jfeスチール株式会社 Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same
JP2002115024A (en) 2000-10-06 2002-04-19 Nkk Corp Wear resistant steel having excellent toughness and delayed-fracture resistance and its production method
JP4116867B2 (en) 2002-11-13 2008-07-09 新日本製鐵株式会社 Abrasion resistant steel with excellent weldability and wear resistance and corrosion resistance of welded parts, and method for producing the same
FR2847272B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
RU2243288C1 (en) * 2003-12-03 2004-12-27 Открытое акционерное общество "Северсталь" Steel
JP4846308B2 (en) * 2005-09-09 2011-12-28 新日本製鐵株式会社 High tough wear-resistant steel with little change in hardness during use and method for producing the same
JP2008214651A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Wear resistant steel sheet having excellent weldability
JP5145805B2 (en) * 2007-07-26 2013-02-20 Jfeスチール株式会社 Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance
JP5145803B2 (en) * 2007-07-26 2013-02-20 Jfeスチール株式会社 Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties
JP5145804B2 (en) * 2007-07-26 2013-02-20 Jfeスチール株式会社 Abrasion-resistant steel plate with excellent low-temperature tempering embrittlement cracking properties
JP2012031511A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
EP2692890B1 (en) * 2011-03-29 2018-07-25 JFE Steel Corporation Abrasion-resistant steel plate or steel sheet and method for producing the same
KR101699582B1 (en) * 2011-03-29 2017-01-24 제이에프이 스틸 가부시키가이샤 Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same

Also Published As

Publication number Publication date
CA2801703C (en) 2016-05-24
EP2589676B1 (en) 2020-04-22
AU2011272188B2 (en) 2014-05-01
US20130216422A1 (en) 2013-08-22
EP2589676A4 (en) 2017-04-19
WO2012002567A1 (en) 2012-01-05
CN102959113A (en) 2013-03-06
CA2801703A1 (en) 2012-01-05
RU2550985C2 (en) 2015-05-20
EP2589676A1 (en) 2013-05-08
AU2011272188C1 (en) 2014-12-04
MX354630B (en) 2018-03-14
KR20130045900A (en) 2013-05-06
RU2013103814A (en) 2014-08-10
MX2013000031A (en) 2013-02-01
JP2012031510A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5866820B2 (en) Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
KR101502845B1 (en) Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
JP5380892B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4735167B2 (en) Method for producing wear-resistant steel sheet with excellent low-temperature toughness
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5145803B2 (en) Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
WO2012133910A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
WO2012133911A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
JP5683327B2 (en) Wear-resistant steel plate with excellent low-temperature toughness
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JPWO2015151519A1 (en) High-tensile steel plate and manufacturing method thereof
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JPH11229077A (en) Steel plate excellent in ctod characteristic in multi layer weld zone and its production
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP3698082B2 (en) Wear resistant steel
JP2019173054A (en) High strength high ductility steel sheet
JP4434029B2 (en) High-tensile steel with excellent weldability and joint toughness
JP3877028B2 (en) Manufacturing method of thick steel plate with excellent strength, toughness and weldability

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5866820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250