JPH11229077A - Steel plate excellent in ctod characteristic in multi layer weld zone and its production - Google Patents

Steel plate excellent in ctod characteristic in multi layer weld zone and its production

Info

Publication number
JPH11229077A
JPH11229077A JP10029993A JP2999398A JPH11229077A JP H11229077 A JPH11229077 A JP H11229077A JP 10029993 A JP10029993 A JP 10029993A JP 2999398 A JP2999398 A JP 2999398A JP H11229077 A JPH11229077 A JP H11229077A
Authority
JP
Japan
Prior art keywords
ctod
steel plate
steel
welding
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10029993A
Other languages
Japanese (ja)
Inventor
Katsumi Kurebayashi
勝己 榑林
Shuji Aihara
周二 粟飯原
Takeshi Tsuzuki
岳史 都築
Toshimichi Nagao
年通 長尾
Naoki Saito
直樹 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10029993A priority Critical patent/JPH11229077A/en
Publication of JPH11229077A publication Critical patent/JPH11229077A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel plate excellent in CTOD characteristic in a multi- layer weld zone and suitable, e.g. for a marine structure in an extremely cold frozen sea area and its production. SOLUTION: The steel plate has a composition essentially containing, by weight, 0.02-0.15% C, 0.01-0.11% Si, 0.5-2.0% Mn, <=0.020% P, 0.002-0.010% S, 0.003-0.013% Nb, 0.005-0.025% Ti, 0.01-0.08% Al, and 0.002-0.008% N and having the balance iron with inevitable impurity elements and satisfying Si +10Nb=0.04 to 0.20, 81Nb<1/2> +42V<1/2> =4.4 to 11.0, and Ceq=0.35 to 0.45. This steel plate can be produced by heating a steel slab of the above chemical composition to 950 to 1300 deg.C, subjecting this steel slab to roughing at 10 to 90% draft in the recrystallization temperature region and successively to finish rolling at 10 to 90% draft in the unrecrystallization temperature region not lower than the Ar3 point, and subjecting the resultant steel plate, without delay, to controlled cooling at (1 to 50) deg.C/s cooling rate and then to air cooling down to room temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、−40〜−50℃
程度の極寒冷氷海域での海洋構造物などに用いられる溶
接構造用圧延鋼材に関するものであり、特に、溶接入熱
が100kJ/cm程度までの多層盛溶接部のCTOD
特性に優れた鋼板にかかわるものである。
BACKGROUND OF THE INVENTION
The present invention relates to a rolled steel material for a welded structure used for an offshore structure in an extremely cold and icy sea area, and particularly relates to a CTOD of a multi-layer welded portion having a welding heat input of up to about 100 kJ / cm.
It is related to steel sheets with excellent properties.

【0002】[0002]

【従来の技術】近年、海底の石油・天然ガス資源の開発
が活発に進められており、その開発海域もより豊富な海
底資源を求めて−40〜−50℃もの極寒冷氷海域へと
発展しつつある。このような環境で使用される海洋構造
物用の鋼板には、降伏応力が360MPa以上を確保し
た上で、鋼板母材はもちろん溶接熱影響部(以下、HA
Z:HeatAffectedZone)に対して厳し
い破壊靭性が求められる。
2. Description of the Related Art In recent years, the development of oil and natural gas resources on the seabed has been actively promoted, and the developed sea area has evolved into an extremely cold ice area of -40 to -50 ° C. in search of abundant seabed resources. I am doing it. In a steel plate for an offshore structure used in such an environment, a yield stress is ensured to be 360 MPa or more, and not only a base material of the steel plate but also a welding heat affected zone (hereinafter, referred to as HA).
Z: Heat Affected Zone) requires severe fracture toughness.

【0003】海洋構造物では鋼板板厚が厚いため、溶接
入熱が最大100kJ/cm程度の多層盛溶接が用いら
れるが、最初の溶接熱サイクルで生じた粗粒域が次の溶
接熱サイクルによって二相域に再加熱された粗粒二相域
と、粗粒域が次の溶接熱サイクルによって焼き戻された
粗粒テンパーでは、破壊靭性が著しく低下することが知
られている。
In an offshore structure, since the thickness of a steel plate is large, multi-pass welding with a welding heat input of up to about 100 kJ / cm is used, but the coarse-grained area generated in the first welding heat cycle is subjected to the next welding heat cycle. It is known that the fracture toughness is significantly reduced in the coarse-grained two-phase region reheated to the two-phase region and in the coarse-grained temper in which the coarse-grained region is tempered by the next welding heat cycle.

【0004】そのため、多層盛溶接部のHAZの破壊靭
性の評価には、一般に用いられるシャルピー衝撃試験で
なく、粗粒二相域や粗粒テンパー域のような局部的な脆
化領域に対して敏感なCTOD(Crack Tip
Opening Displacement)試験によ
って評価する必要がある。
[0004] Therefore, the evaluation of the fracture toughness of the HAZ in a multi-pass weld is not based on the commonly used Charpy impact test, but on local embrittlement regions such as coarse-grained two-phase regions and coarse-grained temper regions. Sensitive CTOD (Crack Tip
It needs to be evaluated by an Opening Displacement test.

【0005】CTOD試験によって破壊靭性を評価する
場合には、試験片の切欠位置と開先形状が重要となる。
アメリカ石油協会の海洋構造物用鋼板に関する規格AP
I−RP2Z(1992年)によると、粗粒域率が15
%以上必要であることが示されており、図1(Fair
lchild、ASTMSTP1058、p117−1
41、1990年)からもわかるように、粗粒域率が1
5%未満では本来の破壊靭性よりも緩い評価となる。こ
こで、粗粒域率は、図2で示す方法により定義される。
また、溶接継手の開先形状についても、レ開先あるいは
K開先とすることが指定されており、X開先ではK開先
に比べて粗粒域の割合が少ないため、CTOD値が高め
になることが知られている(日本溶接協会鉄鋼部会技術
委員会FTW委員会報告書p.28、平成2年)。
When evaluating the fracture toughness by the CTOD test, the notch position and the groove shape of the test piece are important.
American Petroleum Institute Standard AP for Steel Plates for Offshore Structures
According to I-RP2Z (1992), the coarse area ratio was 15%.
% Is required, and FIG. 1 (Fair
lchild, ASTM STP1058, p117-1
41, 1990).
If it is less than 5%, the evaluation is looser than the original fracture toughness. Here, the coarse grain area ratio is defined by the method shown in FIG.
Also, the groove shape of the welded joint is specified to be a groove or a K groove, and the CTOD value is higher because the ratio of the coarse grain area is smaller in the X groove than in the K groove. (The Japan Welding Association Iron and Steel Subcommittee Technical Committee FTW Committee Report, p. 28, 1990).

【0006】これまで、溶接部の靭性およびCTOD特
性を向上させる方法については多くの技術が開示されて
おり、これらのうち主なものを以下に示す。大入熱溶接
での低温靭性を向上させる手法については、特開平2−
250917号公報に記載されている。ここに開示され
ている技術は、凝固後の冷却速度を制御することによ
り、溶接の冷却過程で旧オーステナイト粒内に生成する
フェライトの変態核となるTiNとMnSの複合析出物
の数を増加させることにより、溶接入熱が200kJ/
cmの場合に、−60℃での溶接熱影響部のシャルピー
衝撃値が3.5kgf・m以上であることを特徴とす
る、低温靭性の優れた大入熱溶接用鋼の製造方法に関す
るものである。
Hitherto, many techniques have been disclosed for improving the toughness and CTOD characteristics of a welded portion, and the main ones among them are described below. A technique for improving low-temperature toughness in large heat input welding is disclosed in
No. 250917. The technology disclosed herein is to control the cooling rate after solidification, thereby increasing the number of composite precipitates of TiN and MnS, which are transformation nuclei of ferrite generated in old austenite grains during the cooling process of welding. , Welding heat input is 200kJ /
The present invention relates to a method for producing a large heat input welding steel having excellent low-temperature toughness, characterized in that the Charpy impact value of a heat affected zone at -60 ° C is 3.5 kgf · m or more at -60 ° C. is there.

【0007】溶接部のCTOD特性を向上させる手法に
ついては、特開昭57−143470号公報に記載され
ている。ここに開示されている技術は、低P化、微量N
bの添加、低S化、低O化、介在物の球状化を複合させ
て行い、材質不均一部を減らすことにより、溶接入熱が
50kJ/cm以下の場合に、−10℃でのCODの平
均値を向上させることを特徴とする、高COD値を有す
る高張力鋼に関するものである。
A method for improving the CTOD characteristic of a weld is described in Japanese Patent Application Laid-Open No. 57-143470. The technology disclosed here is low P, trace N
The addition of b, the reduction of S, the reduction of O, and the spheroidization of inclusions are combined to reduce the non-uniformity of the material, so that the COD at -10 ° C when the heat input of welding is 50 kJ / cm or less. A high tensile steel having a high COD value, characterized by improving the average value of

【0008】大入熱溶接でのCTOD特性を向上させる
手法については、特開昭62−214126号公報に記
載されている。ここに開示されている技術は、酸化物系
粒子を微細分散させることにより微細フェライトを生成
させて、HAZに生成する島状マルテンサイト組織の体
積率を3%以下にすることにより、X開先で溶接入熱が
25〜130kJ/cmの場合に、−45℃における限
界CTOD値が0.25mm以上であることを特徴とす
る、溶接部COD特性に優る高張力鋼の製造方法に関す
るものである。
A technique for improving CTOD characteristics in large heat input welding is described in JP-A-62-214126. The technique disclosed herein is to generate fine ferrite by finely dispersing oxide-based particles and to reduce the volume fraction of the island-like martensite structure generated in the HAZ to 3% or less. The present invention relates to a method for producing a high-strength steel excellent in the COD characteristic of a weld portion, characterized in that the limit CTOD value at −45 ° C. is 0.25 mm or more when the welding heat input is 25 to 130 kJ / cm. .

【0009】[0009]

【発明が解決しようとする課題】しかしながら、多層盛
溶接部のCTOD特性に対する厳しい要求を満足するた
めには、以下の問題点が挙げられる。大入熱溶接での低
温靭性を向上させる手法について、特開平2−2509
17号公報に開示されている技術は、溶接入熱は200
kJ/cm、試験温度は−60℃で、小型のシャルピー
衝撃特性により評価したものであるが、CTOD特性に
ついては不明であった。さらに鋳片の冷却速度を制御し
なければならない点でも本発明とは異なる。
However, in order to satisfy the strict requirements for the CTOD characteristics of the multi-pass weld, there are the following problems. A method for improving low temperature toughness in large heat input welding is disclosed in
No. 17 discloses that the welding heat input is 200
The test temperature was kJ / cm and the test temperature was −60 ° C. The evaluation was based on small Charpy impact characteristics, but the CTOD characteristics were unknown. Further, the present invention differs from the present invention in that the cooling rate of the slab must be controlled.

【0010】溶接部のCTOD特性を向上させる手法に
ついて、特開昭57−143470号公報に開示されて
いる技術は、溶接入熱が50kJ/cmを超える場合
や、−10℃より低温でのCTOD特性については不明
である点が問題であった。
Regarding a technique for improving the CTOD characteristic of a welded part, the technique disclosed in Japanese Patent Application Laid-Open No. 57-143470 is applied to the case where the welding heat input exceeds 50 kJ / cm or the CTOD at a temperature lower than -10 ° C. The problem was that the properties were unknown.

【0011】大入熱溶接でのCTOD特性を向上させる
手法について、特開昭62−214126号公報に開示
されている技術は、Tiの含有量は0.003〜0.0
40%で本発明と一部一致するが、Alの含有量が0.
005%未満であり、0.01〜0.08%とする本発
明とは化学成分の範囲が異なる。また、γ粒の粗大化防
止と粒内フェライトの生成に酸化物系の粒子を用いる点
で、技術思想が本発明とは異なる。さらに、上述したよ
うに、CTOD値は粗粒域率によって大きく変動し粗粒
域率が低い場合には高い値となるが、ここで用いた開先
はX開先であるために粗粒域率が低く、API−RP2
Zに準拠した粗粒域率が15%以上となる場合に十分な
CTOD値が得られるかどうかは不明であった。
Regarding the technique for improving the CTOD characteristic in large heat input welding, the technique disclosed in Japanese Patent Application Laid-Open No. 62-214126 discloses that the Ti content is 0.003 to 0.0.
At 40%, this is partially consistent with the present invention, but the content of Al is 0.1%.
It is less than 005%, and the range of the chemical component is different from the present invention which is 0.01 to 0.08%. The technical idea is different from that of the present invention in that oxide-based particles are used for preventing coarsening of γ-particles and forming intragranular ferrite. Further, as described above, the CTOD value greatly varies depending on the coarse grain area ratio and becomes high when the coarse grain area rate is low. However, since the groove used here is the X groove, the coarse grain area is large. Low rate, API-RP2
It was unclear whether a sufficient CTOD value could be obtained when the area ratio of coarse particles based on Z was 15% or more.

【0012】これら技術の問題点に鑑み、本発明は、
(1)溶接入熱:最大100kJ/cm、(2)粗粒域
率:15%以上、(3)試験温度:−40〜−50℃、
における限界CTOD値が0.1mm以上を満足するこ
とを可能とした、多層盛溶接部のCTOD特性に優れた
鋼板およびその製造方法を提供するものである。
In view of the problems of these techniques, the present invention provides
(1) welding heat input: 100 kJ / cm at maximum, (2) coarse grain area ratio: 15% or more, (3) test temperature: -40 to -50 ° C,
The present invention provides a steel sheet excellent in CTOD characteristics of a multi-layer welded portion and a method for producing the same, which enables a critical CTOD value of 0.1 mm or more to be satisfied.

【0013】[0013]

【課題を解決するための手段】本発明は、(a)有効結
晶粒径の細粒化、(b)島状マルテンサイトの低減と微
量Nbによる粒界焼入れ性の向上、(c)析出硬化の抑
制、(d)HAZ硬さの低減、の4つを同時に組み合わ
せて実施することにより、多層盛溶接部のCTOD特性
を著しく向上させることを可能としたものである。
SUMMARY OF THE INVENTION The present invention provides (a) refinement of the effective crystal grain size, (b) reduction of island martensite and improvement of grain boundary hardenability by a small amount of Nb, and (c) precipitation hardening. And (d) reducing the HAZ hardness at the same time, it is possible to significantly improve the CTOD characteristics of the multilayer welded portion.

【0014】すなわち、本発明の要旨は下記の通りであ
る。 (1)重量%でC : 0.02〜0.15%、Si:
0.01〜0.11%、Mn: 0.5〜2.0%、
P : 0.020%以下、S : 0.002〜0.
010%、Nb: 0.003〜0.013%、Ti:
0.005〜0.025%、Al: 0.01〜0.
08%、N : 0.002〜0.008%を含有し、
残部が鉄および不可避的不純物元素よりなり、Si+1
0Nb: 0.04〜0.20、81Nb1/2+42V
1/2:4.4〜11.0、Ceq: 0.35〜0.45
を満足することを特徴とする、大入熱多層盛溶接部のC
TOD特性に優れた鋼板。ただし、
That is, the gist of the present invention is as follows. (1) C: 0.02 to 0.15% by weight%, Si:
0.01-0.11%, Mn: 0.5-2.0%,
P: 0.020% or less, S: 0.002-0.
010%, Nb: 0.003 to 0.013%, Ti:
0.005-0.025%, Al: 0.01-0.
08%, N: 0.002 to 0.008%,
The balance consists of iron and unavoidable impurity elements, and Si + 1
0Nb: 0.04 to 0.20, 81Nb 1/2 + 42V
1/2 : 4.4 to 11.0, Ceq: 0.35 to 0.45
Of high heat input multi-pass weld, characterized by satisfying
Steel plate with excellent TOD characteristics. However,

【数3】Ceq=C+Mn/6+(Cr+V)/5+(C
u+Ni)/15とする。
## EQU3 ## Ceq = C + Mn / 6 + (Cr + V) / 5 + (C
u + Ni) / 15.

【0015】(2)重量%でC : 0.02〜0.1
5%、Si: 0.01〜0.11%、Mn: 0.5
〜2.0%、P : 0.020%以下、S : 0.
002〜0.010%、Nb: 0.003〜0.01
3%、Ti: 0.005〜0.025%、Al:
0.01〜0.08%、N : 0.002〜0.00
8%を含有し、さらにCu: 0.10〜1.0%、N
i: 0.10〜2.0%、Cr: 0.05〜0.5
0%、V : 0.005〜0.020%のうち、1種
または2種以上を含有し、残部が鉄および不可避的不純
物元素よりなり、Si+10Nb: 0.04〜0.2
0、81Nb1/2+42V1/2:4.4〜11.0、Ce
q: 0.35〜0.45を満足することを特徴とす
る、大入熱多層盛溶接部のCTOD特性に優れた鋼板。
ただし、
(2) C: 0.02 to 0.1% by weight
5%, Si: 0.01 to 0.11%, Mn: 0.5
~ 2.0%, P: 0.020% or less, S: 0.
002-0.010%, Nb: 0.003-0.01
3%, Ti: 0.005 to 0.025%, Al:
0.01-0.08%, N: 0.002-0.00
8%, Cu: 0.10-1.0%, N
i: 0.10 to 2.0%, Cr: 0.05 to 0.5
0%, V: 0.005 to 0.020%, containing one or more kinds, the balance being iron and unavoidable impurity elements, Si + 10Nb: 0.04 to 0.2
0, 81 Nb 1/2 +42 V 1/2 : 4.4 to 11.0, Ce
q: A steel sheet which satisfies 0.35 to 0.45 and has excellent CTOD characteristics in a large heat input multi-pass weld.
However,

【数4】Ceq=C+Mn/6+(Cr+V)/5+(C
u+Ni)/15 とする。
## EQU4 ## Ceq = C + Mn / 6 + (Cr + V) / 5 + (C
u + Ni) / 15.

【0016】(3)(1)または(2)いずれか1項に
記載の化学成分を有する鋼スラブを、950〜1300
℃に加熱し、再結晶温度域で圧下率が10〜90%の粗
圧延を行い、続いてAr3点以上の未再結晶温度域で圧
下率が10〜90%の仕上圧延を行い、直ちに冷却速度
が1〜50℃/sで650〜500℃まで制御冷却し、
室温まで空冷することを特徴とする、多層盛溶接部のC
TOD特性に優れた鋼板の製造方法。
(3) A steel slab having the chemical composition as described in any one of (1) and (2) above,
C., and rough rolling at a reduction rate of 10 to 90% is performed in a recrystallization temperature range, followed by finish rolling at a reduction rate of 10 to 90% in a non-recrystallization temperature range of 3 points or more of Ar, and immediately cooled. Controlled cooling at a rate of 1 to 50 ° C / s to 650 to 500 ° C,
Air-cooled to room temperature, C for multi-pass welds
A method for producing a steel sheet having excellent TOD characteristics.

【0017】(4)(1)または(2)いずれか1項に
記載の化学成分を有する鋼スラブを、950〜1300
℃に加熱し、再結晶温度域で圧下率が10〜90%の粗
圧延を行い、続いてAr3点以上の未再結晶温度域で圧
下率が10〜90%の仕上圧延を行い、直ちに冷却速度
が1〜50℃/sで200℃以下に制御冷却し、その
後、500℃〜650℃で焼き戻しを行うことを特徴と
する、多層盛溶接部のCTOD特性に優れた鋼板の製造
方法。
(4) A steel slab having the chemical composition as described in any one of (1) and (2) above,
C., and rough rolling at a reduction rate of 10 to 90% is performed in a recrystallization temperature range, followed by finish rolling at a reduction rate of 10 to 90% in a non-recrystallization temperature range of 3 points or more of Ar, and immediately cooled. A method for producing a steel sheet having excellent CTOD characteristics of a multi-pass weld, wherein controlled cooling is performed at a rate of 1 to 50 ° C / s to 200 ° C or less, and thereafter tempering is performed at 500 ° C to 650 ° C.

【0018】[0018]

【発明の実施の形態】以下、本発明の技術思想と限定理
由について、詳細に説明する。本発明者らは、多層盛溶
接部のCTOD特性を向上に向けて種々検討を行った結
果、溶接入熱が50〜100kJ/cm程度の大入熱溶
接では(a)有効結晶粒径の細粒化、溶接入熱が20k
J/cm程度までの小入熱や、20〜50kJ/cm程
度の中入熱での溶接では、(b)島状マルテンサイトの
低減と微量Nbによる粒界焼入れ性の向上、(c)析出
硬化の抑制、(d)HAZ硬さの低減、が必要であるこ
とを知見した。これら4つを同時に組み合わせて実施す
ることにより、初めて最大100kJ/cmまでの溶接
入熱範囲において、多層盛溶接部のCTOD特性を著し
く向上できることを見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical concept of the present invention and the reasons for limitation will be described in detail below. The present inventors conducted various studies to improve the CTOD characteristics of the multi-pass weld, and as a result, it was found that (a) the effective crystal grain size is small in large heat input welding with a welding heat input of about 50 to 100 kJ / cm. Granulation, welding heat input is 20k
In welding with a small heat input of about J / cm or a medium heat input of about 20 to 50 kJ / cm, (b) reduction of island martensite, improvement of grain boundary hardenability by a trace amount of Nb, and (c) precipitation It has been found that suppression of curing and (d) reduction of HAZ hardness are necessary. It has been found that the CTOD characteristic of the multi-pass weld can be remarkably improved in the welding heat input range up to 100 kJ / cm for the first time by carrying out the combination of these four at the same time.

【0019】(a)有効結晶粒径の細粒化 大入熱溶接では、高温で長時間保持されるために、γ粒
が粗大化し、破壊の単位が大きくなり、1パスの溶接熱
影響を受けた粗粒域のCTOD特性が低下する。そこ
で、特に大入熱溶接でCTOD特性を向上させるには、
破壊の単位となる有効結晶粒を細粒化する必要がある。
(A) Refinement of effective crystal grain size In large heat input welding, since γ grains are coarsened and retained for a long time at high temperature, the unit of fracture increases, and the influence of welding heat in one pass is reduced. The CTOD characteristics of the received coarse grain area decrease. Therefore, in order to improve CTOD characteristics especially in large heat input welding,
It is necessary to make effective crystal grains, which are units of fracture, finer.

【0020】γ粒の成長抑制とγ粒内の細粒化により有
効結晶粒径を細粒化する技術としては、前述の特開平2
−250917号公報に開示されている。これは、14
00℃以下に加熱された溶接熱影響部のγ粒の成長をT
iNのピンニング効果によって抑制し、1400℃超の
温度にさらされる溶融線近傍のごく狭い溶接熱影響部の
γ粒内にTiNとMnSの複合析出物を変態核とした微
細なフェライトを生成させることにより、溶接熱影響部
全体の有効結晶粒径を細粒化して、シャルピーの衝撃特
性を向上させる技術である。しかし、シャルピー衝撃特
性とCTOD特性は必ずしも対応しないため、CTOD
特性に及ぼす効果については不明であった。
As a technique for reducing the effective crystal grain size by suppressing the growth of γ grains and reducing the grains within γ grains, the technique disclosed in Japanese Patent Laid-Open No.
-250917. This is 14
The growth of γ grains in the weld heat affected zone heated to below
Suppressed by the pinning effect of iN, to produce fine ferrite with transformation nuclei of composite precipitates of TiN and MnS in the γ grains in the very narrow welding heat affected zone near the melting line exposed to temperatures above 1400 ° C. In this technique, the effective crystal grain size of the entire heat affected zone is reduced to improve the Charpy impact characteristics. However, since the Charpy impact characteristics and CTOD characteristics do not always correspond, CTOD
The effect on properties was unknown.

【0021】そこで、本発明者らは、TiNとMnSの
複合析出物が大入熱溶接時のCTOD特性に及ぼす影響
について、特にTi添加量に着目して検討した。試験に
は、C:0.07%、Si:0.05%、Mnを1.5
%、P:0.005%、S:0.003%、Cu:0.
4%、Ni:0.7%、Nb:0.005%、Al:
0.03%、N:0.004%を基本成分とし、Tiを
0〜0.04%まで変化させた鋼板を用いた。1400
℃で2秒保持後、800〜500℃までの冷却時間が1
30秒(溶接入熱100kJ/cm相当)の1パスの溶
接再現熱サイクルを付与した後、板厚10mmのCTO
D試験を実施した。また、透過型電子顕微鏡で析出物を
観察した。CTOD試験温度は、板厚効果を考慮して−
50℃からさらに20℃低い−70℃とした。
Therefore, the present inventors have studied the effect of the composite precipitate of TiN and MnS on the CTOD characteristics at the time of high heat input welding, paying particular attention to the amount of Ti added. In the test, C: 0.07%, Si: 0.05%, Mn was 1.5%.
%, P: 0.005%, S: 0.003%, Cu: 0.
4%, Ni: 0.7%, Nb: 0.005%, Al:
A steel sheet was used in which 0.03% and N: 0.004% were basic components and Ti was changed from 0 to 0.04%. 1400
After 2 seconds at 800C, the cooling time to 800-500C is 1
After applying a 1-pass welding reproduction heat cycle of 30 seconds (equivalent to welding heat input of 100 kJ / cm), a 10 mm thick CTO
The D test was performed. The precipitate was observed with a transmission electron microscope. The CTOD test temperature is calculated in consideration of the thickness effect.
The temperature was lowered to −70 ° C., which is 20 ° C. lower than 50 ° C.

【0022】図3に、Ti量と−70℃でのCTOD値
の関係を示す。Tiを0.005%〜0.025%含有
する場合は−70℃でのCTOD値が高いが、0.00
5%未満では、TiNのピンニング効果と粒内でのフェ
ライト変態が十分ではなく、また0.025%超添加す
ると、粗大なTiNが生成するために、CTOD特性が
低下した。
FIG. 3 shows the relationship between the amount of Ti and the CTOD value at -70 ° C. When the content of Ti is 0.005% to 0.025%, the CTOD value at -70 ° C is high,
If it is less than 5%, the pinning effect of TiN and ferrite transformation in the grains are not sufficient, and if it is added more than 0.025%, coarse TiN is generated, so that the CTOD characteristics are deteriorated.

【0023】図4に、透過型電子顕微鏡で観察された析
出物の例を模式的に示す。TiNの形状は長方形で、そ
の一部にMnSが析出し、TiNの端部からMnSの端
部までの大きさはほとんどが0.05〜0.3μmの範
囲であった。以上の検討結果から、TiNとMnSの複
合析出物による技術は、有効結晶粒径の細粒化により、
大入熱HAZ粗粒域のCTOD特性を向上させることを
新たに知見した。
FIG. 4 schematically shows an example of a precipitate observed with a transmission electron microscope. The shape of TiN was rectangular, and MnS was precipitated on a part thereof, and the size from the end of TiN to the end of MnS was almost in the range of 0.05 to 0.3 μm. From the above examination results, the technology using the composite precipitate of TiN and MnS is effective in reducing the effective crystal grain size.
It has been newly found that the CTOD characteristics in the large heat input HAZ coarse grain region are improved.

【0024】(b)島状マルテンサイトの低減と微量N
bによる粒界焼入れ性の向上 小入熱や中入熱での多層盛溶接のCTOD特性に対する
厳しい要求を満足するためには、複数の溶接パスによる
影響を考慮する必要がある。多層盛溶接では、1パスの
溶接とは異なり、最初の溶接熱サイクルで生じた粗粒域
に、次の溶接熱サイクルによってAc1とAc3の二相
域に再加熱された粗粒二相域で島状マルテンサイトが生
成し、多層盛溶接部のCTOD特性を著しく低下させる
が、Siを低減すると島状マルテンサイトの生成が抑制
でき、CTOD特性を改善できることが、従来から知ら
れている。
(B) Reduction of island martensite and trace N
(b) Improvement of Grain Boundary Hardenability In order to satisfy the strict requirements on the CTOD characteristics of multi-pass welding with small heat input and medium heat input, it is necessary to consider the effects of multiple welding passes. In multi-pass welding, unlike one-pass welding, in the coarse-grained region generated in the first welding heat cycle, in the coarse-grained two-phase region reheated to the two-phase region of Ac1 and Ac3 by the next welding heat cycle. It has been conventionally known that island martensite is generated and significantly reduces the CTOD characteristics of a multi-pass weld, but when Si is reduced, generation of island martensite can be suppressed and CTOD characteristics can be improved.

【0025】本発明者らは、厳しいCTOD特性の要求
を満足するため、粗粒二相域のCTOD特性に及ぼす合
金元素の影響について、Siだけでなく、Nbにも着目
して検討した。試験には、C:0.07%、Mn:1.
5%、P:0.005%、S:0.003%、Cu:
0.4%、Ni:0.7%、Ti:0.01%、Al:
0.03%、N:0.004%を基本成分とし、Si:
0.03〜0.135%、Nb:0.001〜0.01
55%の範囲で変化させた鋼板を用いた。溶接再現熱サ
イクルは、実際の多層盛溶接で粗粒二相域がさらに次の
溶接熱サイクルによって焼き戻されることを考慮して、
3重サイクルを用いた。具体的には、1400℃で1秒
保持後、800〜500℃までを23秒で冷却し、次に
780℃で1秒保持後、500℃までを22秒で冷却
し、さらに450℃で1秒保持後に冷却する中入熱相当
とした。
The present inventors have studied the effects of alloying elements on the CTOD characteristics in the coarse-grained two-phase region, not only Si but also Nb, in order to satisfy the strict requirements for CTOD characteristics. In the test, C: 0.07%, Mn: 1.
5%, P: 0.005%, S: 0.003%, Cu:
0.4%, Ni: 0.7%, Ti: 0.01%, Al:
0.03%, N: 0.004% as basic components, Si:
0.03 to 0.135%, Nb: 0.001 to 0.01
A steel sheet varied in the range of 55% was used. In consideration of the fact that the coarse-grained two-phase region is tempered by the next welding heat cycle in actual multi-pass welding,
A triple cycle was used. Specifically, after holding at 1400 ° C. for 1 second, cooling from 800 to 500 ° C. is performed in 23 seconds, then holding at 780 ° C. for 1 second, cooling to 500 ° C. in 22 seconds, and further cooling at 450 ° C. for 1 second. The heat input was equivalent to medium heat input after cooling for 2 seconds.

【0026】図5に、Si、Nb添加量と−70℃での
CTOD値の関係を示す。SiとNb添加量によって、
CTOD特性が顕著に向上する条件があることが判明し
た。この理由は、以下のようなSiとNbの効果による
ものと考えられる。すなわち、Siを低減しかつ極めて
微量のNbを添加した場合は、Siによる島状マルテン
サイトの生成が抑制された状態で、固溶状態のNbがγ
粒界の焼入性を向上させて粒界初析フェライトの生成を
抑制し、その結果としてγ粒内からの微細なフェライト
の生成を促進して有効結晶粒径を細粒化するため、CT
OD特性を向上させる。一方、Si添加量が多い場合は
島状マルテンサイトがCTOD特性を支配するため、微
量Nbによる効果は小さい。また、Si添加量が少なく
てもNbを添加しない場合は、粒界初析フェライトが生
成するため、γ粒内からの微細なフェライトは生成せず
有効結晶粒の細粒効果を得ることはできないことによ
り、粗粒二相域の顕著なCTOD特性の向上効果は期待
出来ない。
FIG. 5 shows the relationship between the added amounts of Si and Nb and the CTOD value at -70 ° C. Depending on the amount of Si and Nb added,
It has been found that there are conditions under which the CTOD characteristics are significantly improved. The reason is considered to be due to the following effects of Si and Nb. That is, when the amount of Si is reduced and a very small amount of Nb is added, Nb in the solid solution state becomes γ while the formation of island martensite by Si is suppressed.
In order to improve the hardenability of the grain boundaries and suppress the formation of grain boundary proeutectoid ferrite, and as a result, to promote the formation of fine ferrite from within γ grains and to reduce the effective crystal grain size, CT
Improve OD characteristics. On the other hand, when the added amount of Si is large, the effect of the trace Nb is small because the island martensite dominate the CTOD characteristics. Further, when Nb is not added even if the amount of Si added is small, grain boundary pro-eutectoid ferrite is generated, so that fine ferrite from within γ grains is not generated, and the effect of fine grains of effective crystal grains cannot be obtained. As a result, a remarkable CTOD characteristic improvement effect in the coarse-grained two-phase region cannot be expected.

【0027】なお、粒界の焼入性はBによっても向上す
るが、BはHAZ硬さを顕著に上昇させるためCTOD
特性が低下する。従って、CTOD特性を向上させるた
めには、島状マルテンサイトの生成を抑制した上で、極
めて微量の固溶状態のNbにより、硬さをあまり上昇さ
せずに粒界の焼入性を上げることが重要となる。
The hardenability of the grain boundary is also improved by B. However, B significantly increases the HAZ hardness, so CTOD
The characteristics deteriorate. Therefore, in order to improve the CTOD characteristics, it is necessary to increase the hardenability of the grain boundaries without significantly increasing the hardness by using an extremely small amount of Nb in a solid solution state while suppressing the formation of island martensite. Is important.

【0028】ここで、SiとNbについては、それぞれ
の添加量を限定することに加えて、Si+10Nbの関
係を0.04〜0.20に限定する必要があることが実
験結果からわかる。Si+10Nbが、0.04未満で
Nb添加量が少ない場合にはγ粒内からの微細なフェラ
イトの生成効果が十分得られず、Si添加量が少ない場
合には脱酸が十分ではない。0.20超となりSiとN
b量が共に多いと、それぞれの添加量が上記の範囲内で
あっても、島状マルテンサイトの割合が増加し、Nb炭
化物が析出する傾向があることから、CTOD値が低下
する。従って、Si+10Nbの範囲を0.04〜0.
20とした。さらに、島状マルテンサイトの割合および
Nb炭化物の析出を十分に抑制するためには、0.04
〜0.14未満とすることが好ましい。
Here, experimental results show that it is necessary to limit the relationship of Si + 10Nb to 0.04 to 0.20 in addition to limiting the amounts of addition of Si and Nb. If Si + 10Nb is less than 0.04 and the amount of Nb added is small, the effect of forming fine ferrite from within the γ grains cannot be sufficiently obtained, and if the amount of Si added is small, deoxidation is not sufficient. Si and N exceeding 0.20
When both the amounts of b are large, even if the respective addition amounts are within the above ranges, the ratio of the island-like martensite increases and Nb carbide tends to precipitate, so that the CTOD value decreases. Accordingly, the range of Si + 10Nb is set to 0.04 to 0.
20. Furthermore, in order to sufficiently suppress the proportion of island martensite and the precipitation of Nb carbide, 0.04
It is preferable to set it to less than 0.14.

【0029】以上述べたように、本発明は、Siを低減
し、同時に極めて微量のNbを添加することによって、
島状マルテンサイトを低減し、微量Nbによる粒界焼入
れ性を向上させ、粗粒二相域のCTOD特性を向上させ
る方法を新たに発見したものである。
As described above, the present invention reduces the amount of Si while simultaneously adding a very small amount of Nb,
The present invention has newly discovered a method of reducing island martensite, improving grain boundary hardenability by a trace amount of Nb, and improving CTOD characteristics in a coarse-grained two-phase region.

【0030】(c)析出硬化の抑制 小入熱や中入熱の多層盛溶接のCTOD特性に対する厳
しい要求を満足するためには、上記(b)の技術に加え
て、最初の溶接熱サイクルで生じた粗粒域に、次の溶接
熱サイクルによってAc3以下に焼き戻された粗粒テン
パーでの析出硬化を抑制する必要がある。析出硬化は、
焼き戻し熱サイクル時にNb、Vの炭化物が析出するこ
とにより、粗粒テンパー域を脆化させて、CTOD特性
を低下を招くものであり、これに対しては、NbとVの
添加量を限定する必要があることが知られている。
(C) Inhibition of precipitation hardening In order to satisfy the strict requirements on the CTOD characteristics of multi-pass welding with small heat input and medium heat input, in addition to the above-mentioned technique (b), the first welding heat cycle It is necessary to suppress the precipitation hardening in the coarse-grained temper tempered to Ac3 or less in the generated coarse-grained region by the next welding heat cycle. Precipitation hardening is
The precipitation of carbides of Nb and V during the tempering heat cycle embrittles the coarse-grained temper region and lowers the CTOD characteristics. To this end, the amounts of Nb and V added are limited. It is known that you need to.

【0031】そこで、本発明者らは、Nb、Vの添加量
と硬さの上昇に及ぼす影響について調査した。試験に
は、C:0.07%、Si:0.05%、Mn:1.5
%、P:0.005%、S:0.003%、Cu:0.
4%、Ni:0.7%、Ti:0.01%、Al:0.
03%、N:0.004%を基本成分とし、Nb:0〜
0.013%、V:0〜0.02%の範囲で変化させた
鋼板を用いた。溶接再現熱サイクル条件は、実際の中入
熱相当の多層盛溶接において粗粒域がさらに次の溶接に
よって焼き戻されることを考慮して決定した。1400
℃で1秒保持後、800〜500℃までを23秒で冷却
した粗粒域材と、さらに、650℃で1秒保持後、50
0℃までを15秒で冷却した粗粒テンパー材について、
ビッカース硬さ測定とCTOD試験(板厚10mm、−
70℃)を実施した。
Therefore, the present inventors investigated the amounts of Nb and V added and the effects on the increase in hardness. In the test, C: 0.07%, Si: 0.05%, Mn: 1.5
%, P: 0.005%, S: 0.003%, Cu: 0.
4%, Ni: 0.7%, Ti: 0.01%, Al: 0.
03%, N: 0.004% as basic components, Nb: 0 to
A steel sheet changed in the range of 0.013% and V: 0 to 0.02% was used. The welding heat cycle conditions were determined in consideration of the fact that the coarse-grained region was tempered by the next welding in the multi-pass welding corresponding to the actual middle heat input. 1400
C. for 1 second, and then cooled to 800-500 ° C. for 23 seconds, and a coarse-grained region material further maintained at 650 ° C. for 1 second,
About coarse grain temper material cooled to 0 ° C in 15 seconds,
Vickers hardness measurement and CTOD test (plate thickness 10 mm,-
70 ° C.).

【0032】実験の結果、粗粒テンパー材のビッカース
硬さは、粗粒域材に比べて微量のNb、Vを添加するこ
とにより上昇し、添加量を増やしていくとこの効果は飽
和していくことが明らかとなった。各元素による硬さの
上昇率は、Nb:81(%1/ 2)、V:42(%1/2)とな
ることから、これらの元素による硬さの当量式は、
As a result of the experiment, the Vickers hardness of the coarse-grained temper material was increased by adding a small amount of Nb and V compared with the coarse-grained region material, and this effect was saturated when the added amount was increased. It became clear to go. Rate of increase in hardness due to each element, Nb: 81 (% 1/ 2), V: 42 from becoming (% 1/2) equivalent expression of hardness due to these elements,

【数5】Phv=81Nb1/2+42V1/2 で表すことができる。## EQU5 ## It can be expressed by Phv = 81Nb 1/2 + 42V 1/2 .

【0033】そこで、Phvの値と限界CTOD値の関
係について検討し、これを図6に示す。Phvの値が4.
4〜11.0の範囲で、CTOD特性が向上した。この
理由は次のようなNb,Vの効果と考えられる。すなわ
ち、Phvが4.4未満では、Nbによってγ粒界の焼
入性を向上させて粒界初析フェライトの生成を抑制し、
その結果としてγ粒内からの微細なフェライトの生成を
促進して有効結晶粒径を細粒化する十分な効果を期待す
ることができず、11.0超では析出硬化により、粗粒
テンパー域の硬さが上昇するため、CTOD特性が低下
したといえる。従って、NbとVの添加量を限定するこ
とにより析出硬化を抑制して、粗粒テンパー域のCTO
D特性を向上することが可能となった。
Therefore, the relationship between the value of Phv and the limit CTOD value was examined, and this is shown in FIG. The value of Phv is 4.
In the range of 4 to 11.0, CTOD characteristics were improved. The reason is considered to be the following effect of Nb and V. That is, when Phv is less than 4.4, the hardenability of the γ grain boundary is improved by Nb to suppress the generation of the grain boundary proeutectoid ferrite,
As a result, it is not possible to expect a sufficient effect of promoting the formation of fine ferrite from within the γ grains to reduce the effective crystal grain size. It can be said that the CTOD characteristic was lowered because the hardness of the CTOD increased. Therefore, the precipitation hardening is suppressed by limiting the addition amounts of Nb and V, and the CTO in the coarse-grained temper region is suppressed.
D characteristics can be improved.

【0034】(d)HAZ硬さの低減 小入熱や中入熱の多層盛溶接のCTOD特性に対する厳
しい要求を満足するためには、上記(b) 、(c) の技術に
加えて、HAZ硬さを低減する必要がある。HAZ硬さ
は冷却速度が一定の場合には鋼板の化学成分で決まり、
添加元素の影響を炭素に対する割合で評価した炭素当量
式により評価できることが知られている。炭素当量式と
してはこれまで多くの式が提案されており、特に外国で
はIIWから提案されている炭素当量式が多く用いられ
る。本発明ではMoを添加しないことを考慮して、以下
の式により炭素当量を定義した。
(D) Reduction of HAZ Hardness In order to satisfy the strict requirements for the CTOD characteristics of multi-pass welding with small heat input and medium heat input, in addition to the above-mentioned techniques (b) and (c), HAZ It is necessary to reduce hardness. The HAZ hardness is determined by the chemical composition of the steel sheet when the cooling rate is constant,
It is known that the effect of an additional element can be evaluated by a carbon equivalent formula evaluated by a ratio to carbon. Many formulas have been proposed so far as the carbon equivalent formula, and particularly in foreign countries, the carbon equivalent formula proposed by IIW is often used. In the present invention, in consideration of not adding Mo, the carbon equivalent is defined by the following formula.

【数6】Ceq=C+Mn/6+(Cr+V)/5+
(Cu+Ni)/15
Ceq = C + Mn / 6 + (Cr + V) / 5 +
(Cu + Ni) / 15

【0035】本発明者らは、炭素当量とCTOD特性に
ついて調査を行った。P:0.005%、S:0.00
3%、Cu:0.4%、Ni:0.7%、Ti:0.0
1、Al:0.03%、N:0.004%を基本成分と
し、C:0.04〜0.15%、Mn:1.0〜1.8
%を変化させることにより炭素当量を変化させた鋼板に
ついて、1400℃で1秒保持後、800〜500℃ま
でを23秒で冷却し、次に650℃で1秒保持後、50
0℃までを15秒で冷却する2パスの中入熱相当の溶接
再現熱サイクルを付与した後、CTOD試験を実施し
た。その結果、CTOD特性は炭素当量が0.45を超
えると低下した。炭素当量が0.35未満では母材の強
度を確保することが困難であることから、炭素当量の範
囲を0.35〜0.45とした。
The present inventors have investigated carbon equivalent and CTOD characteristics. P: 0.005%, S: 0.00
3%, Cu: 0.4%, Ni: 0.7%, Ti: 0.0
1. Al: 0.03%, N: 0.004% as basic components, C: 0.04 to 0.15%, Mn: 1.0 to 1.8.
%, The steel plate was changed in carbon equivalent by changing the carbon equivalent, then kept at 1400 ° C. for 1 second, cooled from 800 to 500 ° C. in 23 seconds, then kept at 650 ° C. for 1 second,
After applying a welding reproducible heat cycle equivalent to two-pass medium heat input for cooling to 0 ° C. in 15 seconds, a CTOD test was performed. As a result, the CTOD characteristics decreased when the carbon equivalent exceeded 0.45. If the carbon equivalent is less than 0.35, it is difficult to secure the strength of the base material. Therefore, the range of the carbon equivalent is set to 0.35 to 0.45.

【0036】本発明では、以上述べた(a)〜(d)の
4つを同時に組み合わせて実施することにより、多層盛
溶接部のCTOD特性を向上させるものであるが、これ
と同時に、母材強度や母材靭性も確保する必要があるた
め、化学成分についてもその範囲を限定する必要があ
る。
In the present invention, the CTOD characteristics of the multi-pass weld are improved by simultaneously combining the above four (a) to (d), and at the same time, the base material Since it is necessary to ensure strength and base metal toughness, it is necessary to limit the range of chemical components.

【0037】Cは、母材強度を確保する上で重要な元素
である。0.02%未満では母材強度の確保が困難であ
り、0.15%超ではHAZ硬さが上昇し、粗粒二相域
の島状マルテンサイトの生成量も多くなり、CTOD特
性が劣化するため、0.02〜0.15%の範囲とし
た。
C is an important element for securing the strength of the base material. If it is less than 0.02%, it is difficult to secure the strength of the base material, and if it exceeds 0.15%, the HAZ hardness increases, the amount of island martensite in the coarse-grained two-phase region increases, and the CTOD characteristics deteriorate. Therefore, the content is set in the range of 0.02 to 0.15%.

【0038】Siは、粗粒二相域の島状マルテンサイト
を抑制し、脱酸および母材強度の向上するために重要な
元素である。0.01%未満では脱酸が十分ではなく、
0.11%超では粗粒二相域の島状マルテンサイトが増
加するため、0.01〜0.11%の範囲とした。
Si is an important element for suppressing the island-like martensite in the coarse-grained two-phase region, deoxidizing and improving the strength of the base material. If it is less than 0.01%, deoxidation is not sufficient,
If it exceeds 0.11%, the amount of island-like martensite in the coarse-grained two-phase region increases.

【0039】Mnは、母材強度を確保するだけではな
く、TiNとMnSの複合析出物を生成し、大入熱溶接
時のCTOD特性を向上させる上で、本発明で必須の元
素である。0.5%未満では十分な母材強度が得られ
ず、また十分なMnSを生成させることが出来ず、2.
0%超ではHAZ硬さが上昇して、CTOD特性が低下
するため、0.5〜2.0%の範囲とした。
Mn is an essential element in the present invention not only to secure the base material strength but also to form a composite precipitate of TiN and MnS and to improve the CTOD characteristics during large heat input welding. If it is less than 0.5%, sufficient base material strength cannot be obtained, and sufficient MnS cannot be generated.
If it exceeds 0%, the HAZ hardness increases and the CTOD characteristics decrease, so the range is 0.5 to 2.0%.

【0040】Pは、鋼中にミクロ偏析し、粒界脆化を起
こしやすくさせる元素である。0.020%超では、そ
の影響が顕著となるため、0.020%以下とした。好
ましくは0.006%以下である。
P is an element that microsegregates in the steel and easily causes grain boundary embrittlement. If the content exceeds 0.020%, the effect becomes remarkable, so the content is set to 0.020% or less. Preferably it is 0.006% or less.

【0041】Sは、TiNとMnSの複合析出物を生成
し、大入熱溶接時のCTOD特性を向上させるため、本
発明で必須の元素である。0.002%未満ではその効
果が十分に得られず、0.010%超では、鋼中に粗大
で伸長したMnSを形成し、材質の異方性を生じ、靭性
を低下させるため、0.002〜0.010%の範囲と
した。
S is an essential element in the present invention because it forms a composite precipitate of TiN and MnS and improves CTOD characteristics during large heat input welding. If the content is less than 0.002%, the effect cannot be sufficiently obtained. If the content is more than 0.010%, coarse and elongated MnS is formed in the steel, which causes anisotropy of the material and lowers the toughness. 002-0.010%.

【0042】Nbは、固溶状態で存在すると、γ粒界の
焼入性を向上しγ粒内からの微細なフェライトの生成を
促進して、有効結晶粒径を細粒化させることにより、C
TOD特性を向上させる。また、圧延時に結晶粒界の移
動を妨げることにより再結晶を抑制し、未再結晶温度域
での圧延を可能にし、結晶粒径を細粒化して母材強度を
上昇させるため、本発明で必須の元素である。0.00
3%未満ではこれらの効果が十分に得られず、0.01
3%超では焼き戻しサイクル時にNb炭化物が析出して
CTOD特性を低下させるため、0.003〜0.01
3%の範囲とした。
Nb, when present in a solid solution state, improves the hardenability of γ grain boundaries, promotes the formation of fine ferrite from within γ grains, and reduces the effective crystal grain size. C
Improve TOD characteristics. Further, in order to suppress the recrystallization by hindering the movement of crystal grain boundaries during rolling, to enable rolling in the non-recrystallization temperature range, to reduce the crystal grain size and increase the base material strength, the present invention, It is an essential element. 0.00
If it is less than 3%, these effects cannot be obtained sufficiently, and
If it exceeds 3%, Nb carbide precipitates during the tempering cycle and lowers the CTOD characteristic.
The range was 3%.

【0043】Tiは、Nと結合してTiNを生成してγ
粒の粗大化抑制し、さらに大入熱溶接では、MnSとの
析出物を生成して粒内フェライトの生成核となって有効
結晶粒径を細粒化して、CTOD特性を向上させるた
め、本発明で必須の元素である。Tiが0.005%未
満では、これらの効果が十分に得られず、0.025%
超では粗大なTiNを生成して靭性を低下させるため、
0.005〜0.025%の範囲とした。なお、TiとNの
添加割合は2.0〜3.0の範囲が好ましい。
Ti combines with N to form TiN to form γ
In order to suppress the coarsening of the grains and, in the large heat input welding, to form precipitates with MnS and to form nuclei for intragranular ferrite to refine the effective crystal grain size and improve the CTOD characteristics, It is an essential element in the invention. If Ti is less than 0.005%, these effects cannot be sufficiently obtained, and 0.025%
If it is excessive, coarse TiN is generated and the toughness is reduced.
The range was 0.005 to 0.025%. Note that the addition ratio of Ti and N is preferably in the range of 2.0 to 3.0.

【0044】Alは、固溶Nの固定および脱酸をする上
で重要な元素である。0.01%未満では、これらの効
果が十分に得られず、0.08%超では、粗大な介在物
や島状マルテンサイトを生成しやすくして靭性を低下さ
せるため、0.01〜0.08%の範囲とした。
Al is an important element in fixing solid solution N and deoxidizing. If it is less than 0.01%, these effects cannot be sufficiently obtained, and if it exceeds 0.08%, coarse inclusions and island-like martensite are easily formed to lower toughness. 0.08%.

【0045】Nは、上述したようにTiNを生成するた
め、本発明で必須の元素である。0.002%未満では
TiNを十分に生成できず、0.008%超では固溶N
により靭性が低下し、島状マルテンサイトを生成しやす
くするため、0.002〜0.008%の範囲とした。
N is an essential element in the present invention because it produces TiN as described above. If it is less than 0.002%, TiN cannot be sufficiently generated, and if it exceeds 0.008%, solid solution N
In this case, the toughness is lowered, and island martensite is easily formed.

【0046】Cuは、母材強度の向上に有効な元素であ
る。0.10%未満ではその効果が十分に得られず、
1.0%超ではε−Cuを多量に析出し、CTOD特性
を低下させるため、0.10〜1.0%の範囲とした。
Cu is an element effective for improving the strength of the base material. If it is less than 0.10%, the effect cannot be obtained sufficiently,
If it exceeds 1.0%, a large amount of ε-Cu is precipitated, and the CTOD characteristic is lowered.

【0047】Niは、焼入性を上昇させることにより母
材強度を向上させ、かつ母材靭性とHAZ靭性を向上さ
せる上で有効な元素である。0.10%未満では十分な
母材強度と靭性の向上効果が得られず、2.0%超では
経済的でなくなるため、0.10〜2.0%の範囲とし
た。
Ni is an element effective for improving the strength of the base material by increasing the hardenability and for improving the base material toughness and the HAZ toughness. If it is less than 0.10%, a sufficient effect of improving base material strength and toughness cannot be obtained, and if it is more than 2.0%, it is not economical.

【0048】Crは、焼入性を上昇させることにより母
材強度を向上させる上で有効な元素である。0.05%
未満ではその効果が十分に得られず、0.50%超では
HAZが硬化してHAZ靭性が低下するため、0.05
〜0.50%の範囲とした。
Cr is an element effective in improving the strength of the base material by increasing the hardenability. 0.05%
If it is less than 0.50%, the effect cannot be sufficiently obtained. If it exceeds 0.50%, HAZ is hardened and HAZ toughness is reduced.
-0.50%.

【0049】Vは、母材強度を向上させるのに有効な元
素である。0.005%未満ではその効果が十分に得ら
れず、0.020%超では焼き戻しサイクル時に析出し
て、CTOD特性を低下させるため、HAZ靭性を低下
させるため、0.005〜0.020%の範囲とした。
V is an element effective for improving the strength of the base material. If it is less than 0.005%, the effect cannot be sufficiently obtained, and if it exceeds 0.020%, it precipitates during the tempering cycle, lowering the CTOD characteristics, and lowering the HAZ toughness. %.

【0050】本発明では、Ceqを0.35〜0.45
に低く限定しており、圧延後に空冷する製造方法では十
分な母材強度を確保ことが不可能であるため、鋼板を製
造するにあたり、以下に示す製造条件についても限定す
る必要がある。
In the present invention, Ceq is set to 0.35 to 0.45
Since it is impossible to secure a sufficient base metal strength by a manufacturing method in which air cooling is performed after rolling, it is necessary to limit the following manufacturing conditions when manufacturing a steel sheet.

【0051】鋼スラブは、転炉、電気炉で溶製した後、
必要に応じて取鍋精練や真空脱ガス処理を施し、連続鋳
造法により製造される。あるいは、鋳型あるいは一方向
凝固鋳型で造塊した後、分塊でスラブとしても良い。
After the steel slab is melted in a converter and an electric furnace,
Ladle scouring and vacuum degassing are performed as necessary, and the product is manufactured by a continuous casting method. Alternatively, the slab may be formed by lumping with a mold or a one-way solidification mold and then lumping.

【0052】加熱は、圧延時の変形抵抗を減らし、鋼に
含有されるNbやVの一部または全部を固溶させるため
に行う。950℃未満では、これらを固溶させることが
出来ず、1300℃超では、オーステナイト粒径が粗大
化し、圧延による結晶粒の細粒化が困難となり十分な母
材靭性を確保することは出来ないため、加熱温度を95
0〜1300℃の範囲とした。なお、加熱の保持時間
は、60〜180分が好ましい。
The heating is performed to reduce the deformation resistance during rolling and to form a solid solution of part or all of Nb and V contained in the steel. If the temperature is lower than 950 ° C., they cannot be dissolved. If the temperature exceeds 1300 ° C., the austenite grain size becomes coarse, and it becomes difficult to reduce the crystal grains by rolling, so that sufficient base material toughness cannot be secured. Therefore, the heating temperature is 95
The range was 0 to 1300 ° C. In addition, the holding time of heating is preferably 60 to 180 minutes.

【0053】粗圧延は、各圧延パスによる再結晶によっ
てオーステナイト粒径を漸進的に細粒化するために行
う。圧延時に再結晶させる必要があるため、その温度を
再結晶温度域とした。また、粗圧延の圧下率が10%未
満では、十分なオーステナイト粒の細粒化が得られず、
90%超では、仕上圧延の圧下率を確保できないため、
その圧下率を10〜90%の範囲とした。ここで、圧下
率は、((スラブ厚)−(移送厚))/(スラブ厚)で
ある。
The rough rolling is performed to gradually reduce the austenite grain size by recrystallization in each rolling pass. Since it is necessary to recrystallize at the time of rolling, the temperature is defined as a recrystallization temperature range. If the rolling reduction of the rough rolling is less than 10%, sufficient austenite grain refinement cannot be obtained,
If it exceeds 90%, the rolling reduction of finish rolling cannot be secured,
The rolling reduction was in the range of 10 to 90%. Here, the rolling reduction is ((slab thickness)-(transfer thickness)) / (slab thickness).

【0054】仕上圧延は、オーステナイトを未再結晶状
態で圧延し、オーステナイト粒内に変形帯を導入するた
めに行う。Ar3 点よりも低温では、フェライトが生成
するため、オーステナイト単相での圧延が出来ず、また
未再結晶状態で圧延する必要があることから、その温度
をAr3 点以上の未再結晶温度域とした。また、仕上圧
延の圧下率が10%未満では、フェライト粒を細粒化す
る十分な効果が得られず、90%超では、仕上圧延に長
時間を要するため、温度の確保が困難となるため、その
圧下率を10〜90%の範囲とした。ここで、圧下率
は、((移送厚)−(仕上厚))/(移送厚)である。
The finish rolling is performed in order to roll austenite in an unrecrystallized state and to introduce a deformation zone in austenite grains. At low temperatures than Ar 3 point, since the ferrite is formed, can not rolling in the austenite single phase, also non-it is necessary to roll by recrystallization state, non-recrystallized temperature the temperature above the Ar 3 point Area. On the other hand, if the rolling reduction of the finish rolling is less than 10%, a sufficient effect of refining the ferrite grains cannot be obtained. If the rolling reduction exceeds 90%, it takes a long time for the finish rolling, so that it is difficult to secure the temperature. And the rolling reduction was in the range of 10 to 90%. Here, the rolling reduction is ((transfer thickness)-(finish thickness)) / (transfer thickness).

【0055】制御冷却は、未再結晶状態のオーステナイ
ト粒内の変形帯からのフェライト変態の核発生を促進
し、フェライト粒を細粒化し、十分な母材強度を得るた
めに行う。冷却速度が1℃/s未満ではこれらの効果が
得られず、50℃/s以上の冷却速度を得ることは設備
制約上困難であることから、冷却速度を1〜50℃/s
の範囲とした。次に述べる焼き戻しを行わない場合に
は、冷却停止温度が650℃超では上記の効果を十分に
得ることが出来ず、500℃未満では空冷中の焼き戻し
効果が不足し母材靭性が低下するため、冷却停止温度を
650〜500℃とした。
The controlled cooling is carried out in order to promote the nucleation of ferrite transformation from the deformation zone in the unrecrystallized austenite grains, to make the ferrite grains finer, and to obtain a sufficient base material strength. If the cooling rate is less than 1 ° C./s, these effects cannot be obtained, and it is difficult to obtain a cooling rate of 50 ° C./s or more due to facility restrictions.
Range. When the tempering described below is not performed, the above effect cannot be sufficiently obtained when the cooling stop temperature is higher than 650 ° C, and when the cooling stop temperature is lower than 500 ° C, the tempering effect during air cooling is insufficient and the base material toughness is reduced. Therefore, the cooling stop temperature was set to 650 to 500 ° C.

【0056】また、焼き戻しを行う場合には、200℃
以下まで冷却しないと十分な母材強度を得ることは出来
ないため、冷却停止温度を200℃以下とした。焼き戻
しは、制御冷却により低下した母材靭性を向上するため
に行う。焼き戻し温度が500℃未満では、十分に母材
靭性が向上せず、650℃超では母材靭性は向上する
が、逆に母材強度が低下するため、500〜650℃の
範囲とした。なお、焼き戻しの保持時間は20〜120
分が好ましい。
When tempering is performed, a temperature of 200 ° C.
Since sufficient base material strength cannot be obtained unless cooled below, the cooling stop temperature was set to 200 ° C. or lower. Tempering is performed to improve the base material toughness that has been reduced by controlled cooling. If the tempering temperature is lower than 500 ° C, the base metal toughness is not sufficiently improved, and if the tempering temperature is higher than 650 ° C, the base material toughness is improved. The holding time of the tempering is 20 to 120.
Minutes are preferred.

【0057】以上述べた技術思想に基づき、本発明は、
多層盛溶接部のCTOD特性に優れた鋼板およびその製
造方法を提供するものである。なお、溶接したままで溶
接部に低温割れを生じさせないため、本発明の請求範囲
に加えて、次式により評価される低温割れ感受性につい
ても、0.22以下にすることが好ましい。
Based on the technical concept described above, the present invention provides
An object of the present invention is to provide a steel sheet excellent in CTOD characteristics of a multi-pass weld and a method for producing the same. In addition, in order to prevent low-temperature cracking from occurring in the welded portion as it is, it is preferable that the low-temperature cracking susceptibility evaluated by the following equation be 0.22 or less in addition to the claims of the present invention.

【数7】Pcm=C+Si/30+Mn/20+Cu/
20+Ni/60+Cr/20+Mo/15+V/10
+5B
Pcm = C + Si / 30 + Mn / 20 + Cu /
20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10
+ 5B

【0058】[0058]

【実施例】以下に、本発明の実施例について述べる。鋼
材の化学成分、製造方法、母材特性および溶接継手特性
との関係を明らかにすることを目的に、表1に示す種々
の化学成分を有する鋼を溶解し、連続鋳造により得られ
たスラブを表2に示す条件で、板厚25〜75mmの鋼
板に製造した。表3に、引張試験およびシャルピー試験
により得られた母材特性を示す。さらに、溶接継手特性
を評価するため溶接継手を作成した。API−RP2Z
に準拠した試験を行うため、開先形状はK開先とした。
溶接方法はサブマージアーク溶接(SAW)とし、溶接
入熱は、30、100kJ/cm の2水準とした。
Embodiments of the present invention will be described below. In order to clarify the relationship between the chemical composition of steel, the manufacturing method, the properties of the base metal and the properties of the welded joint, steel having various chemical compositions shown in Table 1 was melted, and a slab obtained by continuous casting was obtained. Under the conditions shown in Table 2, a steel plate having a thickness of 25 to 75 mm was manufactured. Table 3 shows the base material properties obtained by the tensile test and the Charpy test. Furthermore, a welded joint was created to evaluate the welded joint characteristics. API-RP2Z
In order to carry out a test conforming to JIS, the groove shape was K groove.
The welding method was submerged arc welding (SAW), and the welding heat input was at two levels of 30, 100 kJ / cm 2.

【0059】表4に、−70℃でのシャルピー吸収エネ
ルギー、−30℃と−50℃での限界CTOD値、粗粒
域率、島状マルテンサイト率(M* 率)、HAZ硬さ、
有効結晶粒径(deff)を示す。シャルピー試験は、
切欠き位置を垂直ボンド部に一致させ、−70℃で各3
本試験を行って、吸収エネルギーの平均値を求めた。C
TOD試験は、切欠き位置を垂直ボンド部に一致させた
試験片を用いて−30℃と−50℃で各5本づつ行い、
それぞれのCTOD値を算出し、その最低値から限界C
TOD値を求めた。粗粒域率は、試験終了した試験片の
疲労ノッチ部で測定した平均値であり、これが15%以
上となる試験片が3本以上であることを確認した。ま
た、島状マルテンサイト率は粗粒二相域に生成した島状
マルテンサイトの割合、HAZ硬さは粗粒テンパー域の
硬さ、有効結晶粒径はボンド境界部の粗粒域の粒径であ
る。
Table 4 shows the Charpy absorbed energy at -70 ° C, the critical CTOD values at -30 ° C and -50 ° C, the coarse grain area ratio, the island martensite ratio (M * ratio), the HAZ hardness,
Shows the effective crystal grain size (def). The Charpy test is
Make the notch position coincide with the vertical bond part, and
This test was performed to determine the average value of the absorbed energy. C
The TOD test was performed at -30 ° C and -50 ° C for each five test pieces using test pieces whose notch positions were aligned with the vertical bond parts.
Calculate each CTOD value and calculate the limit C from the lowest value.
The TOD value was determined. The coarse grain area ratio is an average value measured at the fatigue notch portion of the test specimen after the test, and it was confirmed that three or more test specimens had a value of 15% or more. The ratio of island martensite is the ratio of island martensite generated in the coarse-grained two-phase region, the HAZ hardness is the hardness of the coarse-grained temper region, and the effective crystal grain size is the particle size of the coarse-grained region at the bond boundary. It is.

【0060】発明鋼1〜10は、母材特性として360
MPa以上の降伏応力と−70℃での十分な吸収エネル
ギーが得られた。また、溶接継手特性としても、いずれ
の溶接入熱でも−70℃での吸収エネルギーおよび−3
0℃、−50℃での限界CTOD値に関して良好な値が
得られたことから、多層盛溶接部のCTOD特性に優れ
ていることが確認された。
Inventive steels 1 to 10 have a base metal property of 360
A yield stress of not less than MPa and a sufficient absorbed energy at -70 ° C were obtained. Further, as for the characteristics of the welded joint, the absorbed energy at -70 ° C and
Since a good value was obtained as to the limit CTOD value at 0 ° C. and −50 ° C., it was confirmed that the CTOD characteristic of the multilayer welded portion was excellent.

【0061】一方、比較鋼11は、鋼Bのスラブを用い
ており成分は本発明の範囲であるが、製造条件が本発明
の範囲と異なるため、溶接継手特性は良好であるものの
母材強度が不足する。比較鋼12は、Ti、S添加量が
本発明の範囲と異なるため有効結晶粒径が大きく、特に
大入熱溶接時の−50℃でのCTOD特性が顕著に低下
する。比較鋼13はSi添加量が本発明の範囲と異なる
ため島状マルテンサイトが多量に生成して、特に中入熱
溶接時の−50℃でのCTOD特性が顕著に低下する。
比較鋼14はNbとVの添加量が本発明の範囲と異なる
ため粗粒テンパー域の硬さが高く、特に中入熱溶接時の
−50℃でのCTOD特性が顕著に低下する。比較鋼1
5は、各成分は本発明の範囲であるが炭素当量が本発明
の範囲と異なるため粗粒テンパー域の硬さが高く、特に
中入熱溶接時の−50℃でのCTOD特性が低下する。
以上の実施例から、本発明の請求範囲を満足することに
より、多層盛溶接部のCTOD特性に優れた鋼板を得る
ことできることが明らかとなった。
On the other hand, the comparative steel 11 uses a slab of steel B, and its components are within the scope of the present invention. However, since the manufacturing conditions are different from those of the present invention, the base material strength is good although the welded joint characteristics are good. Run out. The comparative steel 12 has a large effective crystal grain size because the amounts of Ti and S added are different from the ranges of the present invention, and particularly, the CTOD characteristic at −50 ° C. during large heat input welding is significantly reduced. Since the amount of Si added to the comparative steel 13 is different from the range of the present invention, a large amount of island-like martensite is generated, and particularly, the CTOD characteristic at −50 ° C. during medium heat input welding is significantly reduced.
In Comparative Steel 14, since the addition amounts of Nb and V are different from the range of the present invention, the hardness of the coarse-grained temper region is high, and particularly, the CTOD characteristic at −50 ° C. during medium heat input welding is significantly reduced. Comparative steel 1
5, each component is within the range of the present invention, but the carbon equivalent is different from the range of the present invention, so that the hardness of the coarse-grained temper region is high, and particularly the CTOD characteristics at −50 ° C. during medium heat input welding are deteriorated. .
From the above examples, it has been clarified that by satisfying the claims of the present invention, it is possible to obtain a steel sheet excellent in CTOD characteristics of a multi-pass weld.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【表4】 [Table 4]

【0066】[0066]

【発明の効果】以上詳述したように、本発明によれば、
−40〜−50℃程度の極寒冷氷海域で使用される海洋
構造物などに用いられる溶接構造用の鋼板に関して、溶
接入熱が100kJ/cm程度までの多層盛溶接部のC
TOD特性に優れた鋼板を提供することが可能であり、
本発明の鋼板を用いることにより、上記の溶接構造物の
脆性破壊に対する信頼性を著しく向上させることが可能
となった。このような効果を有する本発明の鋼板の意義
は、極めて著しいものである。
As described in detail above, according to the present invention,
Regarding a steel plate for a welding structure used for an offshore structure used in an extremely cold ice sea area of about -40 to -50 ° C, the C of a multi-pass welded part having a welding heat input of up to about 100 kJ / cm.
It is possible to provide steel sheets with excellent TOD characteristics,
By using the steel sheet of the present invention, it has become possible to significantly improve the reliability of the above welded structure against brittle fracture. The significance of the steel sheet of the present invention having such an effect is extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】多層盛溶接部の粗粒域率とCTOD値との関係
を示す図である。
FIG. 1 is a view showing a relationship between a coarse grain area ratio and a CTOD value of a multi-pass weld.

【図2】多層盛溶接部の粗粒域率の測定方法を示す図で
ある。
FIG. 2 is a diagram showing a method of measuring a coarse grain area ratio of a multi-pass weld.

【図3】Ti添加量と−70℃での限界CTOD値の関
係を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of Ti added and the limit CTOD value at −70 ° C.

【図4】TiNとMnSの複合析出物を示す図である。FIG. 4 is a view showing a composite precipitate of TiN and MnS.

【図5】−70℃での限界CTOD値に及ぼすSi添加
量とNb添加量の影響を示す図である。
FIG. 5 is a graph showing the influence of the amounts of Si and Nb on the limit CTOD value at −70 ° C.

【図6】NbとVの関係式の値が−70℃での限界CT
OD値に及ぼす影響を示す図である。
FIG. 6 is a limit CT when the value of the relational expression between Nb and V is −70 ° C.
It is a figure which shows the influence which affects OD value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長尾 年通 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 斉藤 直樹 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshi Nagao 5-3 Tokai-cho, Tokai City, Aichi Prefecture Inside Nagoya Works, Nippon Steel Corporation (72) Inventor Naoki Saito 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C : 0.02〜0.15%、 Si: 0.01〜0.11%、 Mn: 0.5〜2.0%、 P : 0.020%以下、 S : 0.002〜0.010%、 Nb: 0.003〜0.013%、 Ti: 0.005〜0.025%、 Al: 0.01〜0.08%、 N : 0.002〜0.008% を含有し、残部が鉄および不可避的不純物元素よりな
り、 Si+10Nb: 0.04〜0.20、 81Nb1/2+42V1/2:4.4〜11.0、 Ceq: 0.35〜0.45 を満足することを特徴とする、多層盛溶接部のCTOD
特性に優れた鋼板。ただし、 【数1】Ceq=C+Mn/6+(Cr+V)/5+(Cu
+Ni)/15 とする。
1. C: 0.02 to 0.15% by weight, Si: 0.01 to 0.11%, Mn: 0.5 to 2.0%, P: 0.020% or less by weight, S : 0.002 to 0.010%, Nb: 0.003 to 0.013%, Ti: 0.005 to 0.025%, Al: 0.01 to 0.08%, N: 0.002 to 0 0.008%, with the balance being iron and unavoidable impurity elements, Si + 10Nb: 0.04 to 0.20, 81Nb1 / 2 + 42V1 / 2 : 4.4 to 11.0, Ceq: 0. CTOD of a multi-pass weld, characterized by satisfying 35-0.45
Steel plate with excellent properties. Here, Ceq = C + Mn / 6 + (Cr + V) / 5 + (Cu
+ Ni) / 15.
【請求項2】 重量%で C : 0.02〜0.15%、 Si: 0.01〜0.11%、 Mn: 0.5〜2.0%、 P : 0.020%以下、 S : 0.002〜0.010%、 Nb: 0.003〜0.013%、 Ti: 0.005〜0.025%、 Al: 0.01〜0.08%、 N : 0.002〜0.008% を含有し、さらにCu: 0.10〜1.0%、 Ni: 0.10〜2.0%、 Cr: 0.05〜0.50%、 V : 0.005〜0.020% のうち、1種または2種以上を含有し、残部が鉄および
不可避的不純物元素よりなり、 Si+10Nb: 0.04〜0.20、 81Nb1/2+42V1/2: 4.4〜11.0、 Ceq: 0.35〜0.45 を満足することを特徴とする、多層盛溶接部のCTOD
特性に優れた鋼板。ただし、 【数2】Ceq=C+Mn/6+(Cr+V)/5+(Cu
+Ni)/15 とする。
2. In% by weight, C: 0.02 to 0.15%, Si: 0.01 to 0.11%, Mn: 0.5 to 2.0%, P: 0.020% or less, S : 0.002 to 0.010%, Nb: 0.003 to 0.013%, Ti: 0.005 to 0.025%, Al: 0.01 to 0.08%, N: 0.002 to 0 0.008%, Cu: 0.10 to 1.0%, Ni: 0.10 to 2.0%, Cr: 0.05 to 0.50%, V: 0.005 to 0.020 %, One or more of them are contained, and the balance consists of iron and inevitable impurity elements. Si + 10Nb: 0.04 to 0.20, 81Nb 1/2 + 42V 1/2 : 4.4 to 11 0.0, Ceq: 0.35 to 0.45
Steel plate with excellent properties. Where Ceq = C + Mn / 6 + (Cr + V) / 5 + (Cu
+ Ni) / 15.
【請求項3】 請求項1または2いずれか1項に記載の
化学成分を有する鋼スラブを、950〜1300℃に加
熱し、再結晶温度域で圧下率が10〜90%の粗圧延を
行い、続いてAr3 点以上の未再結晶温度域で圧下率が
10〜90%の仕上圧延を行い、直ちに冷却速度が1〜
50℃/sで650〜500℃まで制御冷却し、室温ま
で空冷することを特徴とする、多層盛溶接部のCTOD
特性に優れた鋼板の製造方法。
3. A steel slab having the chemical composition according to claim 1 is heated to 950 to 1300 ° C. and subjected to rough rolling at a recrystallization temperature range with a rolling reduction of 10 to 90%. Subsequently, finish rolling is performed at a rolling reduction of 10 to 90% in a non-recrystallization temperature range of Ar 3 or more, and the cooling rate is immediately increased to 1 to 90%.
Controlled cooling to 650-500 ° C at 50 ° C / s and air cooling to room temperature, CTOD for multi-pass welds
Manufacturing method of steel sheet with excellent characteristics.
【請求項4】 請求項1または2いずれか1項に記載の
化学成分を有する鋼スラブを、950〜1300℃に加
熱し、再結晶温度域で圧下率が10〜90%の粗圧延を
行い、続いてAr3 点以上の未再結晶温度域で圧下率が
10〜90%の仕上圧延を行い、直ちに冷却速度が1〜
50℃/sで200℃以下に制御冷却し、その後、50
0℃〜650℃で焼き戻しを行うことを特徴とする、多
層盛溶接部のCTOD特性に優れた鋼板の製造方法。
4. A steel slab having the chemical composition according to claim 1 is heated to 950 to 1300 ° C., and is subjected to rough rolling in a recrystallization temperature range at a rolling reduction of 10 to 90%. Subsequently, finish rolling is performed at a rolling reduction of 10 to 90% in a non-recrystallization temperature range of Ar 3 or more, and the cooling rate is immediately increased to 1 to 90%.
Controlled cooling to 200 ° C or less at 50 ° C / s,
A method for producing a steel sheet having excellent CTOD characteristics of a multi-pass weld, wherein tempering is performed at 0 ° C to 650 ° C.
JP10029993A 1998-02-12 1998-02-12 Steel plate excellent in ctod characteristic in multi layer weld zone and its production Withdrawn JPH11229077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10029993A JPH11229077A (en) 1998-02-12 1998-02-12 Steel plate excellent in ctod characteristic in multi layer weld zone and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10029993A JPH11229077A (en) 1998-02-12 1998-02-12 Steel plate excellent in ctod characteristic in multi layer weld zone and its production

Publications (1)

Publication Number Publication Date
JPH11229077A true JPH11229077A (en) 1999-08-24

Family

ID=12291475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10029993A Withdrawn JPH11229077A (en) 1998-02-12 1998-02-12 Steel plate excellent in ctod characteristic in multi layer weld zone and its production

Country Status (1)

Country Link
JP (1) JPH11229077A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064412A (en) * 2001-08-21 2003-03-05 Daido Steel Co Ltd Refining method for steel with fined inclusion
WO2007040317A1 (en) * 2005-10-06 2007-04-12 Posco The precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
JP2009242826A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd High-strength steel sheet excellent in resistance to stress-relief annealing and in low-temperature joint toughness
KR100954041B1 (en) 2007-04-09 2010-04-20 가부시키가이샤 고베 세이코쇼 Thick steel plate having excellent toughness of weld heat-affected zone and excellent base material toughness
KR100954042B1 (en) 2007-04-09 2010-04-20 가부시키가이샤 고베 세이코쇼 Thick steel plate having excellent haz toughness
WO2011048274A1 (en) * 2009-10-23 2011-04-28 Rautaruukki Oyj Method for producing high-strength steel product and steel product
JP2011106014A (en) * 2009-11-20 2011-06-02 Nippon Steel Corp Steel having excellent ctod property in weld heat affected zone and method for producing the same
WO2013051231A1 (en) 2011-10-03 2013-04-11 Jfeスチール株式会社 High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and process for producing same
WO2014038200A1 (en) * 2012-09-06 2014-03-13 Jfeスチール株式会社 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
CN111655889A (en) * 2018-01-26 2020-09-11 日本制铁株式会社 Steel for anchor chain and anchor chain
KR20210102409A (en) * 2019-01-23 2021-08-19 제이에프이 스틸 가부시키가이샤 Thick steel plate and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064412A (en) * 2001-08-21 2003-03-05 Daido Steel Co Ltd Refining method for steel with fined inclusion
US8398786B2 (en) 2005-10-06 2013-03-19 Posco Precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
WO2007040317A1 (en) * 2005-10-06 2007-04-12 Posco The precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
US8864922B2 (en) 2005-10-06 2014-10-21 Posco Method for manufacturing a precipitation-hardening cold-rolled steel sheet having excellent yield ratios
KR100954041B1 (en) 2007-04-09 2010-04-20 가부시키가이샤 고베 세이코쇼 Thick steel plate having excellent toughness of weld heat-affected zone and excellent base material toughness
KR100954042B1 (en) 2007-04-09 2010-04-20 가부시키가이샤 고베 세이코쇼 Thick steel plate having excellent haz toughness
JP2009242826A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd High-strength steel sheet excellent in resistance to stress-relief annealing and in low-temperature joint toughness
WO2011048274A1 (en) * 2009-10-23 2011-04-28 Rautaruukki Oyj Method for producing high-strength steel product and steel product
JP2011106014A (en) * 2009-11-20 2011-06-02 Nippon Steel Corp Steel having excellent ctod property in weld heat affected zone and method for producing the same
WO2013051231A1 (en) 2011-10-03 2013-04-11 Jfeスチール株式会社 High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and process for producing same
US9945015B2 (en) 2011-10-03 2018-04-17 Jfe Steel Corporation High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and process for producing same
WO2014038200A1 (en) * 2012-09-06 2014-03-13 Jfeスチール株式会社 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
CN104603313A (en) * 2012-09-06 2015-05-06 杰富意钢铁株式会社 Thick-walled, high tensile strength steel with excellent CTOD characteristics of the weld heat-affected zone, and manufacturing method thereof
EP2894235A4 (en) * 2012-09-06 2016-01-20 Jfe Steel Corp Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
JP5846311B2 (en) * 2012-09-06 2016-01-20 Jfeスチール株式会社 Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JPWO2014038200A1 (en) * 2012-09-06 2016-08-08 Jfeスチール株式会社 Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
US9777358B2 (en) 2012-09-06 2017-10-03 Jfe Steel Corporation Thick-walled, high tensile strength steel with excellent CTOD characteristics of the weld heat-affected zone, and manufacturing method thereof
CN111655889A (en) * 2018-01-26 2020-09-11 日本制铁株式会社 Steel for anchor chain and anchor chain
EP3744872A4 (en) * 2018-01-26 2021-05-19 Nippon Steel Corporation Steel for mooring chain, and mooring chain
KR20210102409A (en) * 2019-01-23 2021-08-19 제이에프이 스틸 가부시키가이샤 Thick steel plate and its manufacturing method

Similar Documents

Publication Publication Date Title
CA2280923C (en) High-tensile-strength steel and method of manufacturing the same
EP2589676B1 (en) Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
KR20040075971A (en) High Strength Steel Plate and Method for Production Thereof
WO2012002563A1 (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
WO2010095755A1 (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2015183279A (en) Thick steel sheet for marine vessel, for marine structure and for hydraulic pressure steel pipe excellent in brittle crack arrest property
JP2022548144A (en) High-strength extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2015143398A (en) Thick steel plate for ship, marine structure and hydraulic steel pipe having excellent brittle crack arrest properties, and method for producing same
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JPH11229077A (en) Steel plate excellent in ctod characteristic in multi layer weld zone and its production
JP3817887B2 (en) High toughness high strength steel and method for producing the same
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP2014177687A (en) High tensile steel plate excellent in drop-weight characteristic and its manufacturing method
JP2004156095A (en) Steel sheet excellent in toughness of parent metal and weld-heat affected zone and its manufacturing method
US20170204492A1 (en) Cold-rolled steel sheet having excellent spot weldability, and manufacturing method therefor
KR20060106637A (en) High strength high toughness bainite non-heat-treated steel plate of low acoustic anisotropy
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
KR20160078714A (en) High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
JPH0413406B2 (en)
JP6536459B2 (en) Thick steel plate and method of manufacturing the same
JP3932892B2 (en) High-strength steel plate and high-strength electroplated steel plate excellent in ductility, stretch flangeability and shock absorption characteristics and methods for producing them

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510