JP5145805B2 - Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance - Google Patents

Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance Download PDF

Info

Publication number
JP5145805B2
JP5145805B2 JP2007194286A JP2007194286A JP5145805B2 JP 5145805 B2 JP5145805 B2 JP 5145805B2 JP 2007194286 A JP2007194286 A JP 2007194286A JP 2007194286 A JP2007194286 A JP 2007194286A JP 5145805 B2 JP5145805 B2 JP 5145805B2
Authority
JP
Japan
Prior art keywords
less
wear
cut surface
resistant steel
surface properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007194286A
Other languages
Japanese (ja)
Other versions
JP2009030094A (en
Inventor
康宏 室田
操 石川
好紀 渡邉
眞司 三田尾
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007194286A priority Critical patent/JP5145805B2/en
Publication of JP2009030094A publication Critical patent/JP2009030094A/en
Application granted granted Critical
Publication of JP5145805B2 publication Critical patent/JP5145805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶接後の熱影響部や、ガス切断、プラズマ切断など熱溶断後の熱影響部で、低温焼戻し脆化温度域に再加熱された領域において発生する割れの防止に優れる耐摩耗鋼板に関し、特に産業機械や運搬機器等のうち、溶接や溶断などの加工を受けて製造される部材用として好適なものに関する。   The present invention is a wear-resistant steel sheet that is excellent in preventing cracks generated in a region reheated to a low temperature temper embrittlement temperature range in a heat affected zone after welding or a heat affected zone after thermal fusing such as gas cutting or plasma cutting. In particular, the present invention relates to an industrial machine, a transport device, or the like that is suitable for a member manufactured by being subjected to processing such as welding or fusing.

鋼材の耐摩耗性は、高硬度化することにより向上し、耐摩耗性が要求される部材には、C量を高くし、焼入れ熱処理や焼入れ−低温焼戻し熱処理を実施した耐磨耗鋼板が使用されている。   The wear resistance of steel materials is improved by increasing the hardness, and wear resistant steel plates that have been subjected to quenching heat treatment or quenching-low temperature tempering heat treatment are used for members that require wear resistance. Has been.

しかし、焼入れ熱処理や焼入れ−低温焼戻し熱処理により製造する耐磨耗鋼など高硬度な鋼材は300〜400℃程度の低温焼戻し脆化温度域に再加熱されると、常温に冷却後、遅れ破壊が発生する場合がある。溶接や、ガス切断、プラズマ切断など熱溶断で低温焼戻し脆化温度域に再加熱された部位が存在すると、常温に冷却後、遅れ破壊が発生しやすい。   However, when hardened steel materials such as wear-resistant steel produced by quenching heat treatment or quenching-low temperature tempering heat treatment are reheated to a low temperature temper embrittlement temperature range of about 300 to 400 ° C, delayed fracture occurs after cooling to room temperature. May occur. If there is a portion reheated in the low temperature temper embrittlement temperature region by thermal fusing such as welding, gas cutting or plasma cutting, delayed fracture is likely to occur after cooling to room temperature.

耐磨耗鋼を使用する際には、溶接やガス切断などの加工が行われることが多く、ガス切断面近傍や、溶接熱影響部などでは、低温焼戻し脆化温度域に再加熱されることを回避することは不可能であり、上述した遅れ割れの発生防止に優れる耐摩耗鋼が要望されている。   When using wear-resistant steel, processing such as welding and gas cutting is often performed, and it is reheated to the low temperature temper embrittlement temperature range in the vicinity of the gas cutting surface and in the heat affected zone. It is impossible to avoid this, and there is a demand for wear-resistant steel that is excellent in preventing the occurrence of the above-described delayed cracking.

特許文献1〜6等で提案されている耐遅れ破壊特性に優れる耐摩耗鋼は、製造ままの鋼板で、耐遅れ破壊特性を改善するもので、低温焼戻し脆化温度域に再加熱された後の遅れ破壊特性を改善しているわけではない。
特開2002−115024号公報 特開2002−80930号公報 特開平05−51691号公報 特開平01−255622号公報 特開昭63−317623号公報 特開2003−171730号公報
The wear-resistant steel excellent in delayed fracture resistance proposed in Patent Documents 1 to 6 is an as-manufactured steel sheet that improves delayed fracture resistance and is reheated to a low temperature temper embrittlement temperature range. It does not improve the delayed fracture characteristics.
Japanese Patent Application Laid-Open No. 2002-115024 JP 2002-80930 A Japanese Patent Laid-Open No. 05-51691 Japanese Patent Laid-Open No. 01-255622 Japanese Unexamined Patent Publication No. Sho 63-317623 JP 2003-171730 A

そこで、本発明は、溶接や溶断の熱影響により低温焼戻し脆化温度域に加熱された領域における、常温に冷却後の遅れ破壊が抑制された耐低温焼戻し脆化割れ特性に優れる耐磨耗鋼板を提供することを目的とする。   Therefore, the present invention provides a wear-resistant steel sheet having excellent low-temperature tempering embrittlement cracking resistance in which delayed fracture after cooling to room temperature is suppressed in a region heated to a low-temperature tempering embrittlement temperature region due to the thermal effect of welding or fusing. The purpose is to provide.

発明者らは、上記目的を達成するために、耐磨耗鋼における耐低温焼戻し脆化割れ特性に影響する各種要因について、鋭意検討し、Cを0.20〜0.30%添加し、Mnを1.2%以下、Pを0.010%以下、旧オーステナイト粒径を30μm以下とすることによって、優れた耐磨耗性を確保しつつ、耐低温焼戻し脆化割れ特性を著しく改善することが可能であることを見出した。   In order to achieve the above-mentioned object, the inventors diligently studied various factors affecting the low-temperature tempering embrittlement cracking property in wear-resistant steel, adding 0.20 to 0.30% of C, Mn 1.2% or less, P is 0.010% or less, and the prior austenite grain size is 30 μm or less, thereby significantly improving the low temperature temper embrittlement cracking resistance property while ensuring excellent wear resistance. Found that is possible.

また、MoとWを0.05%未満とすることにより、ガス切断面性状が改善することを見出した。   Moreover, it discovered that gas cut surface property improved by making Mo and W less than 0.05%.

耐低温焼戻し脆化割れ特性は、Mass%で、0.23%C−0.25%Si−0.2〜1.5%Mn−0.003〜0.030%P−0.02%Nb−0.01%Ti−0.001%Bを含み、Cu、Ni、Crを適宜添加し、Ceq*を0.50%と一定とした鋼片を供試鋼とし、32mmtに圧延後、空冷し、その後900℃に再加熱したのちに焼入れし、得られた鋼板について、図1に示すT形肉溶接割れ試験を実施した。溶接方法は、被覆アーク溶接、入熱17kJ/cmとし、3層6パスの溶接を実施した。 Low temperature tempering embrittlement cracking resistance is Mass%, 0.23% C-0.25% Si-0.2-1.5% Mn-0.003-0.030% P-0.02% Nb A steel slab containing −0.01% Ti−0.001% B, Cu, Ni, Cr added as appropriate and Ceq * constant at 0.50% was used as a test steel, rolled to 32 mmt, and then air-cooled Then, after reheating to 900 ° C., quenching was performed, and the obtained steel sheet was subjected to a T-shaped fillet weld cracking test shown in FIG. The welding method was covered arc welding and heat input was 17 kJ / cm, and three-layer six-pass welding was performed.

図2にT形隅肉溶接割れ試験結果を、Mn量、P量で整理した結果を示す。Mn量が1.2%を超えるか、または、P量が0.010%を超えると、割れが発生する。これらの鋼板の旧オーステナイト粒径は、全て30μm未満であり、割れの形態は、粒界破面であった。 FIG. 2 shows the results of arranging the T-shaped fillet weld cracking test results by Mn amount and P amount. If the Mn content exceeds 1.2% or the P content exceeds 0.010%, cracking occurs. The prior austenite grain sizes of these steel sheets were all less than 30 μm, and the form of cracking was a grain boundary fracture surface.

本発明は、得られた知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
1.質量%で、C:0.20〜0.30%、Si:0.05〜0.40%、Mn:0.45〜1.2%、Cr:0.1〜1.0%、Nb:0.005〜0.024%、Ti:0.005〜0.05%、B:0.0003〜0.0030%、Al:0.1%以下、P:0.010%以下、S:0.005%以下、Mo:0.05%未満、W:0.05%未満を含有し、Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、V:0.005〜0.10%、の1種または2種以上を含有し、(1)式で示されるCeq*が0.55%以下、(2)式で示されるDI*が50以上で、残部Feおよび不可避的不純物からなる組成を有し、かつ、ミクロ組織が旧オーステナイト粒径が30μm以下のマルテンサイトを基地相とするガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板。
Ceq*=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10
・・・・・(1)
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(2)
2.1記載の組成に、さらに、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%の1種または2種を含有し、(1)式で示されるCeq*が0.55%以下、(2)式で示されるDI*が50以上であり、残部Feおよび不可避的不純物からなる組成を有し、かつ、ミクロ組織が旧オーステナイト粒径が30μm以下のマルテンサイトを基地相とするガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板。
Ceq*=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10
・・・・・(1)
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(2)
3.表面硬度がブリネル硬さで400HBW10/3000以上を有する1または2記載のガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板。
The present invention has been completed by further investigation based on the obtained knowledge. That is, the gist of the present invention is as follows.
1. In mass%, C: 0.20 to 0.30%, Si: 0.05 to 0.40 %, Mn: 0.45 to 1.2%, Cr: 0.1 to 1.0% , Nb: 0.005 to 0.024%, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0030%, Al: 0.1% or less, P: 0.010% or less, S: 0 0.005% or less, Mo: less than 0.05%, W: less than 0.05%, Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Cr: 0.00. 1 to 1.0%, V: 0.005 to 0.10%, or one or more of Ceq * represented by the formula (1) is 0.55% or less, and the formula (2) in shown by DI * is 50 or more, having a composition the balance being Fe and unavoidable impurities, and, to a base phase microstructure, the austenite grain size less martensite 30μm Excellent abrasion steel plate gas cutting surface properties and low-temperature tempering embrittlement cracking properties.
Ceq * = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + W / 10
(1)
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (2)
The composition described in 2.1 further contains one or two of Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050%, and Ceq * represented by the formula (1) Is 0.55% or less, DI * represented by the formula (2) is 50 or more, has a composition composed of the balance Fe and inevitable impurities, and has a microstructure with a prior austenite grain size of 30 μm or less. A wear-resistant steel sheet with excellent gas-cut surface properties and low-temperature tempering embrittlement cracking resistance.
Ceq * = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + W / 10
(1)
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (2)
3. 3. A wear-resistant steel sheet excellent in gas cut surface properties and low-temperature temper embrittlement cracking resistance according to 1 or 2, wherein the surface hardness is Brinell hardness of 400 HBW 10/3000 or more.

本発明によれば、ガス切断面性状に優れ、溶接やガス切断による熱影響で低温焼き戻しされた領域における遅れ破壊の抑制に優れた耐磨耗鋼板を製造することができ、産業上格段の効果を奏する。   According to the present invention, it is possible to produce a wear-resistant steel sheet that is excellent in gas cut surface properties and excellent in suppressing delayed fracture in a region that has been tempered at a low temperature due to the thermal effect of welding or gas cutting. There is an effect.

まず、本発明の鋼板の組成を規定した理由について説明する。なお、以下の%表示は、いずれも質量%で表す。   First, the reason for defining the composition of the steel sheet of the present invention will be described. In addition, all the following% display is represented by the mass%.

C:0.20〜0.30%
Cは、マトリクス硬度を高硬度化させ耐磨耗性を向上させる元素である。耐磨耗性を著しく改善するためには、0.20%以上の添加が必要である。一方、0.30%を超えて添加すると、溶接性が劣化する。したがって、0.20〜0.30%とした。なお、好ましくは、0.20〜0.28%である。
C: 0.20 to 0.30%
C is an element that increases the matrix hardness and improves the wear resistance. In order to remarkably improve the wear resistance, addition of 0.20% or more is necessary. On the other hand, if added over 0.30%, weldability deteriorates. Therefore, it was set to 0.20 to 0.30%. In addition, Preferably, it is 0.20 to 0.28%.

Si:0.05〜1.0%
Siは、脱酸元素として有効な元素であり、このような効果を得るためには0.05%以上の含有を必要とする。また、Siは、鋼に固溶して固溶強化により高硬度化に寄与する有効な元素であるが、1.0%を超える含有は、延性、靭性を低下させ、さらに介在物量が増加する。このため、Siは0.05〜1.0%の範囲に限定する。なお、より好ましくは0.05〜0.40%である。
Si: 0.05-1.0%
Si is an effective element as a deoxidizing element, and in order to obtain such an effect, the content of 0.05% or more is required. Si is an effective element that contributes to high hardness by solid solution strengthening by solid solution in steel. However, if the content exceeds 1.0%, ductility and toughness are reduced, and the amount of inclusions is further increased. . For this reason, Si is limited to the range of 0.05 to 1.0%. In addition, More preferably, it is 0.05 to 0.40%.

Mn:0.45〜1.2%
Mnは、Pの粒界偏析を助長し、遅れ破壊を発生しやすくする。ミクロ組織の旧オーステナイト粒径が30μm以下の場合、1.2%以下とすることにより粒界破壊発生を抑制できる。
Mn: 0.45 to 1.2%
Mn promotes the grain boundary segregation of P and makes delayed fracture easier to occur. When the prior austenite grain size of the microstructure is 30 μm or less, the occurrence of intergranular fracture can be suppressed by setting it to 1.2% or less.

一方、焼入れ性確保のためには、一定量を添加することが望ましく、また、合金コスト低減の観点からも、Mn添加は望ましく、Mn量は0.45〜1.2%の範囲に限定する。   On the other hand, in order to ensure hardenability, it is desirable to add a certain amount, and also from the viewpoint of alloy cost reduction, addition of Mn is desirable, and the amount of Mn is limited to a range of 0.45 to 1.2%. .

Al:0.1%以下
Alは、脱酸材として添加し、その効果は、0.0020%以上の含有で認められるが、0.1%を超える多量の含有は、鋼の清浄度を低下させる。このため、Alは0.1%以下とする。
Al: 0.1% or less Al is added as a deoxidizer, and the effect is recognized with a content of 0.0020% or more, but a large content exceeding 0.1% lowers the cleanliness of steel. Let For this reason, Al is made 0.1% or less.

Nb:0.005〜0.024%
Nbは、炭窒化物あるいは炭化物として析出し、組織を微細化し、遅れ破壊発生を抑制する効果を有する。その効果を得るためには0.005%以上必要である。0.024%を超えて添加すると粗大な炭窒化物が析出し、破壊の起点となることがあるため、0.024%以下とする。
Nb: 0.005 to 0.024%
Nb precipitates as carbonitrides or carbides, refines the structure, and has the effect of suppressing the occurrence of delayed fracture. In order to obtain the effect, 0.005% or more is necessary. If added over 0.024%, coarse carbonitride precipitates and may become the starting point of fracture, so the content is made 0.024% or less.

Ti:0.005%〜0.05%
Tiは、Nを固定することにより、BN析出を抑制しBの焼入れ性向上効果を助長する効果を有する。その効果を得るためには、0.005%以上の添加が必要である。一方、0.05%を超えて添加すると、TiCを析出し母材靭性を劣化させるため、0.005〜0.05%とする。
Ti: 0.005% to 0.05%
Ti has the effect of suppressing BN precipitation and promoting the effect of improving the hardenability of B by fixing N. In order to obtain the effect, addition of 0.005% or more is necessary. On the other hand, if added over 0.05%, TiC is precipitated and the base metal toughness is deteriorated, so the content is made 0.005 to 0.05%.

B:0.0003%〜0.0030%
Bは、微量添加により、焼入れ性を著しく改善する。その効果を得るためには、0.0003%以上必要である。一方、0.0030%を超えて添加すると溶接性が劣化するため、0.0003%〜0.0030%とする。
B: 0.0003% to 0.0030%
B significantly improves the hardenability by adding a small amount. In order to obtain the effect, 0.0003% or more is necessary. On the other hand, if adding over 0.0030%, weldability deteriorates, so 0.0003% to 0.0030%.

P:0.010%以下
Pは、粒界に偏析し、遅れ破壊発生の起点となるため、0.010%以下とする。
P: 0.010% or less P is segregated at the grain boundary and becomes the starting point of delayed fracture occurrence, so is 0.010% or less.

S:0.005%以下
Sは、MnSを形成し、破壊の発生起点となるため、0.005%以下とする。
S: 0.005% or less Since S forms MnS and serves as a starting point of fracture, it is made 0.005% or less.

Mo:0.05%未満、W:0.05%未満
MoやWは、ガス切断時に高融点酸化物を形成し、溶融鉄の流動性を劣化させるため、ガス切断面性状が劣化する。そのため、添加しないことが望ましく、各々、0.05%未満に限定する。Mo,Wともに含有しないことが好ましい。
Mo: less than 0.05%, W: less than 0.05% Mo and W form a high melting point oxide during gas cutting and deteriorate the fluidity of the molten iron, so the gas cutting surface properties deteriorate. Therefore, it is desirable not to add, and each is limited to less than 0.05%. It is preferable that neither Mo nor W is contained.

Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、V:0.005〜0.10%のうち、1種または2種以上
Cu:0.1〜1.0%
Cuは、固溶することにより焼入れ性を向上させる元素であり、この効果を得るために0.1%以上の含有を必要とする。一方、1.0%を超える含有は、熱間加工性を低下させる。このため、Cuを添加する場合は、0.1〜1.0%範囲に限定することが好ましい。なお、より好ましくは0.1〜0.5%である。
Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.0%, V: 0.005 to 0.10%, 1 type or 2 More than seed Cu: 0.1-1.0%
Cu is an element that improves hardenability by solid solution, and needs to contain 0.1% or more in order to obtain this effect. On the other hand, the content exceeding 1.0% decreases the hot workability. For this reason, when adding Cu, it is preferable to limit to 0.1 to 1.0% of range. In addition, More preferably, it is 0.1 to 0.5%.

Ni:0.1〜2.0%
Niは、固溶することにより焼入れ性を向上させる元素であり、このような効果は0.1%以上の含有で顕著となる。一方、2.0%を超える含有は、材料コストを著しく上昇させる。このため、Niを添加する場合は0.1〜2.0%の範囲に限定することが好ましい。なお、より好ましくは0.1〜1.0%である。
Ni: 0.1 to 2.0%
Ni is an element that improves hardenability by solid solution, and such an effect becomes remarkable when the content is 0.1% or more. On the other hand, the content exceeding 2.0% significantly increases the material cost. For this reason, when adding Ni, it is preferable to limit to 0.1 to 2.0% of range. In addition, More preferably, it is 0.1 to 1.0%.

Cr:0.1〜1.0%
Crは、焼入れ性を向上させる効果を有し、このような効果を得るためには、0.1%以上の含有を必要とするが、1.0%を超える含有は、溶接性を低下させる。そのため、Crを添加する場合は0.1〜1.0%の範囲に限定することが好ましい。なお、より好ましくは0.1〜0.80%である。
Cr: 0.1 to 1.0%
Cr has an effect of improving hardenability, and in order to obtain such an effect, the content of 0.1% or more is required. However, the content exceeding 1.0 % lowers the weldability. . Therefore, when adding Cr, it is preferable to limit to 0.1 to 1.0% of range. In addition, More preferably, it is 0.1 to 0.80%.

V:0.005〜0.10%
Vは、焼入れ性を向上させる元素である。このような効果を得るためには、0.005%以上必要とするが、0.10%を超えて含有すると溶接性を低下させる。そのため、Vは、0.005〜0.10%の範囲に限定することが好ましい。
V: 0.005-0.10%
V is an element that improves hardenability. In order to obtain such an effect, 0.005% or more is necessary, but if it exceeds 0.10%, the weldability is lowered. Therefore, V is preferably limited to a range of 0.005 to 0.10%.

Ca、REM:0.0005〜0.0050%
CaやREMは、Sと結合し、MnS生成を抑制する。この効果を得るためには、0.0005%以上必要であるが、0.0050%を超えると、鋼の清状度を劣化させる。そのため、CaやREMは、0.0005〜0.0050%とする。
Ca, REM: 0.0005 to 0.0050%
Ca and REM bind to S and suppress MnS generation. In order to obtain this effect, 0.0005% or more is necessary. However, if it exceeds 0.0050%, the cleanliness of the steel is deteriorated. Therefore, Ca and REM are 0.0005 to 0.0050%.

Ceq*(=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10):0.55%以下
Ceq*が0.55%を超えると、溶接性が劣化する。そのため、0.55%以下とした。
Ceq * (= C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + W / 10): 0.55% or less When Ceq * exceeds 0.55%, weldability deteriorates. Therefore, it was made into 0.55% or less.

DI*(=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)):45以上
DI*が45未満の場合、板厚表層からの焼入れ深さが10mmを下回り、耐磨耗鋼としての寿命が短くなる。そのため、DI*は45以上とする。
DI * (= 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1)): 45 or more When DI * is less than 45, the quenching depth from the plate thickness surface layer Is less than 10 mm, and the life as a wear-resistant steel is shortened. Therefore, DI * is 45 or more.

表面硬度がブリネル硬さで400HBW10/3000以上
表面硬度がブリネル硬さで400HBW10/3000未満の場合には、耐摩耗鋼としての寿命が短くなる。そのため、表面硬度をブリネル硬さで400HBW10/3000以上とすることが望ましい。次に、製造方法について説明する。
[製造方法]
本発明に係る耐摩耗鋼板は、上記した組成の溶鋼を、公知の溶製方法で溶製し、連続鋳造法あるいは造塊−分塊圧延法により、所定寸法のスラブ等の鋼素材とすることが好ましい。
When the surface hardness is Brinell hardness of 400 HBW 10/3000 or more, when the surface hardness is Brinell hardness of less than 400 HBW 10/3000, the life of the wear resistant steel is shortened. Therefore, it is desirable that the surface hardness is 400HBW10 / 3000 or more in terms of Brinell hardness. Next, a manufacturing method will be described.
[Production method]
The wear-resistant steel sheet according to the present invention is made by melting the molten steel having the above composition by a known melting method, and using a continuous casting method or an ingot-bundling rolling method as a steel material such as a slab having a predetermined size. Is preferred.

次いで得られた鋼素材を、冷却することなく直後に、または冷却した後に950〜1250℃に再加熱したのち、熱間圧延し、所望の板厚(肉厚)の鋼板とする。熱間圧延直後、あるいは、再加熱して焼入れを行う。必要に応じて300℃以下での焼戻しを実施する。   Subsequently, the obtained steel material is reheated to 950 to 1250 ° C. immediately after cooling or after cooling, and then hot-rolled to obtain a steel plate having a desired plate thickness (wall thickness). Quenching is performed immediately after hot rolling or by reheating. Tempering at 300 ° C. or lower is performed as necessary.

表1に示す組成の溶鋼を、真空溶解炉で溶製し、小型鋼塊(150kg)(鋼素材)とした。これら鋼素材を、1050〜1250℃に加熱したのち、熱間圧延を施して板厚6〜32mmとし、一部の鋼板については、圧延直後に焼入れ(DQ)し、その他の鋼板については、圧延後空冷し、900℃に再加熱後焼入れ(RQ)を行った。   Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace to obtain a small steel ingot (150 kg) (steel material). These steel materials are heated to 1050 to 1250 ° C. and then hot-rolled to a thickness of 6 to 32 mm. Some steel plates are quenched immediately after rolling (DQ), and other steel plates are rolled. After air cooling, quenching (RQ) was performed after reheating to 900 ° C.

得られた鋼板について、旧オーステナイト粒径測定、表面硬度測定、T形肉溶接割
れ試験を下記の要領で実施した。
[旧オーステナイト粒径測定]
得られた鋼板の1/4・t(板厚)部における粒径を測定した。光学顕微鏡で400倍
で観察し、100個の旧オーステナイト粒の各々の円相当粒径を測定し、それらの平均値
を旧オーステナイト粒径とした。
[表面硬度測定]
JIS規格Z2243(1998)に準拠し、表層下の表面硬度を測定した。測定は、
10MMのタングステン硬球を使用し、荷重は3000Kgfとした。
[T形隅肉溶接割れ試験]
図1のとおりに実施した。溶接方法は、被覆アーク溶接、入熱17kJ/cmとし、3
層6パスの溶接を実施し、試験溶接部長は200mmである。
[ガス切断面性状調査]
切断面の粗さをWES2801に準拠した等級で評価した。ガス切断条件は、以下のと
おりとした。
About the obtained steel plate, the old austenite particle size measurement, the surface hardness measurement, and the T-shaped fillet weld cracking test were implemented as follows.
[Old austenite particle size measurement]
The particle diameter in the 1/4 * t (plate thickness) part of the obtained steel plate was measured. Observation was performed with an optical microscope at a magnification of 400 times, the equivalent circular particle diameter of each of the 100 prior austenite grains was measured, and the average value thereof was defined as the prior austenite grain diameter.
[Surface hardness measurement]
In accordance with JIS standard Z2243 (1998), the surface hardness under the surface layer was measured. The measurement is
A 10MM tungsten hard ball was used, and the load was 3000 kgf.
[T-shaped fillet weld cracking test]
It implemented as FIG. The welding method is covering arc welding, heat input 17 kJ / cm, 3
Layer 6 passes are welded and the test weld length is 200 mm.
[Gas cutting surface property survey]
The roughness of the cut surface was evaluated with a grade based on WES2801. The gas cutting conditions were as follows.

切断酸素圧:5kgf/mm、プロパン圧:4kgf/mm,切断速度:350mm/min.得られた結果を表2に示す。 Cutting oxygen pressure: 5 kgf / mm 2 , propane pressure: 4 kgf / mm 2 , cutting speed: 350 mm / min. The obtained results are shown in Table 2.

本発明例(鋼板No.1,2,3,4)は、表面硬度が400HBW10/3000以上を有し、かつ、T形隅肉溶接割れ試験で割れが発生せず、また、ガス切断面等級が1等級の優れたガス切断面性状を有している。   The inventive examples (steel plates Nos. 1, 2, 3, and 4) have a surface hardness of 400 HBW 10/3000 or more, do not generate cracks in the T-shaped fillet weld crack test, and have a gas cut surface grade. Has excellent gas cutting surface properties of 1 grade.

一方、比較例(鋼板No.5,6、7,8、9)は、T形隅肉溶接割れ試験において、割れが発生し、またはガス切断面等級が2等級で本発明例と比較してガス切断面性状に劣る。   On the other hand, in the comparative examples (steel plates No. 5, 6, 7, 8, 9), cracks occurred in the T-shaped fillet weld cracking test, or the gas cut surface grade was 2 grade, compared with the present invention example. Inferior to gas cut surface properties.

尚、表2のT形肉溶接割れ試験の表示で「無」は割れの発生が認められなかったもの、「有」は割れの発生が認められたことを示す。 In the display of the T-shaped fillet weld cracking test in Table 2, “No” indicates that no crack was observed, and “Yes” indicates that crack was observed.

Figure 0005145805
Figure 0005145805

Figure 0005145805
Figure 0005145805

T形隅肉溶接割れ試験を説明する図。The figure explaining a T-shaped fillet weld cracking test. T形隅肉溶接割れ試験結果に及ぼすMn量、P量の影響を示す図。The figure which shows the influence of the amount of Mn and the amount of P which have on the T type fillet weld crack test result.

Claims (3)

質量%で、C:0.20〜0.30%、Si:0.05〜0.40%、Mn:0.45〜1.2%、Cr:0.1〜1.0%、Nb:0.005〜0.024%、Ti:0.005〜0.05%、B:0.0003〜0.0030%、Al:0.1%以下、P:0.010%以下、S:0.005%以下、Mo:0.05%未満、W:0.05%未満を含有し、Cu:0.1〜1.0%、Ni:0.1〜2.0%、V:0.005〜0.10%、の1種または2種以上を含有し、(1)式で示されるCeq*が0.55%以下、(2)式で示されるDI*が50以上で、残部Feおよび不可避的不純物からなる組成を有し、かつ、ミクロ組織が旧オーステナイト粒径が30μm以下のマルテンサイトを基地相とするガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板。
Ceq*=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10
・・・・・(1)
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(2)
In mass%, C: 0.20 to 0.30%, Si: 0.05 to 0.40 %, Mn: 0.45 to 1.2%, Cr: 0.1 to 1.0% , Nb: 0.005 to 0.024%, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0030%, Al: 0.1% or less, P: 0.010% or less, S: 0 0.005% or less, Mo: less than 0.05%, W: less than 0.05%, Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0%, V: 0.0. 005 to 0.10%, or one or more of Ceq * represented by formula (1) is 0.55% or less, DI * represented by formula (2) is 50 or more, and the balance Fe In addition, the gas-cut surface properties and resistance to martensite having a composition composed of inevitable impurities and having a microstructure of martensite having a prior austenite grain size of 30 μm or less as a base phase Excellent abrasion steel sheet temperature temper embrittlement cracking properties.
Ceq * = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + W / 10
(1)
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (2)
請求項1記載の組成に、さらに、Ca:0.0005〜0.0050%、REM:0.
0005〜0.0050%の1種または2種を含有し、(1)式で示されるCeq*が0
.55%以下、(2)式で示されるDI*が50以上であり、残部Feおよび不可避的不
純物からなる組成を有し、かつ、ミクロ組織が旧オーステナイト粒径が30μm以下のマ
ルテンサイトを基地相とするガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板。
Ceq*=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10
・・・・・(1)
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(2)
The composition according to claim 1, further comprising Ca: 0.0005 to 0.0050%, REM: 0.00.
0005 to 0.0050% of 1 type or 2 types, Ceq * represented by the formula (1) is 0
. 55% or less, DI * expressed by the formula (2) is 50 or more, the composition is composed of the balance Fe and inevitable impurities, and the microstructure is martensite whose prior austenite grain size is 30 μm or less. A wear-resistant steel sheet with excellent gas-cut surface properties and low-temperature tempering embrittlement cracking resistance.
Ceq * = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + W / 10
(1)
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (2)
表面硬度がブリネル硬さで400HBW10/3000以上を有する請求項1または2記載のガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板。   The wear-resistant steel sheet having excellent gas-cut surface properties and low-temperature tempering embrittlement cracking properties according to claim 1 or 2, wherein the surface hardness is 400HBW10 / 3000 or more in terms of Brinell hardness.
JP2007194286A 2007-07-26 2007-07-26 Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance Active JP5145805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194286A JP5145805B2 (en) 2007-07-26 2007-07-26 Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194286A JP5145805B2 (en) 2007-07-26 2007-07-26 Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance

Publications (2)

Publication Number Publication Date
JP2009030094A JP2009030094A (en) 2009-02-12
JP5145805B2 true JP5145805B2 (en) 2013-02-20

Family

ID=40400915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194286A Active JP5145805B2 (en) 2007-07-26 2007-07-26 Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance

Country Status (1)

Country Link
JP (1) JP5145805B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035018B2 (en) 2016-04-19 2021-06-15 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11035017B2 (en) 2016-04-19 2021-06-15 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11111556B2 (en) 2016-04-19 2021-09-07 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11118240B2 (en) 2016-04-19 2021-09-14 Jfe Steel Corporaton Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866820B2 (en) * 2010-06-30 2016-02-24 Jfeスチール株式会社 Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
JP2012031511A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
US9938599B2 (en) 2011-03-29 2018-04-10 Jfe Steel Corporation Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
EP2692890B1 (en) * 2011-03-29 2018-07-25 JFE Steel Corporation Abrasion-resistant steel plate or steel sheet and method for producing the same
CN102560272B (en) * 2011-11-25 2014-01-22 宝山钢铁股份有限公司 Ultrahigh-strength abrasion-resistant steel plate and manufacturing method thereof
CN102876969B (en) * 2012-07-31 2015-03-04 宝山钢铁股份有限公司 Super-strength high-toughness wear resistant steel plate and production method thereof
BR112015005951B1 (en) * 2012-09-19 2019-09-17 Jfe Steel Corporation ABRASION RESISTANT STEEL PLATE WITH EXCELLENT LOW TEMPERATURE AND EXCELLENT RESISTANCE TO CORROSIVE WEAR
JP5648769B2 (en) 2012-09-19 2015-01-07 Jfeスチール株式会社 Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
CN103205627B (en) * 2013-03-28 2015-08-26 宝山钢铁股份有限公司 A kind of Low-alloy high-performance wear-resistant steel plate and manufacture method thereof
JP6350340B2 (en) * 2015-03-04 2018-07-04 Jfeスチール株式会社 Abrasion-resistant steel plate and method for producing the same
KR101899686B1 (en) * 2016-12-22 2018-10-04 주식회사 포스코 Wear resistant steel havinh high hardness and method for manufacturing the same
US11091825B2 (en) * 2017-04-19 2021-08-17 Daido Steel Co., Ltd. Prehardened steel material, mold, and mold component
CN114231828A (en) * 2021-12-20 2022-03-25 常州东方特钢有限公司 Process manufacturing method of cold-resistant high-wear-resistance material for shovel blade of industrial loader

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543619B2 (en) * 1997-06-26 2004-07-14 住友金属工業株式会社 High toughness wear-resistant steel and method of manufacturing the same
JP4286581B2 (en) * 2002-07-10 2009-07-01 住友金属工業株式会社 Wear-resistant steel
JP4735167B2 (en) * 2005-09-30 2011-07-27 Jfeスチール株式会社 Method for producing wear-resistant steel sheet with excellent low-temperature toughness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035018B2 (en) 2016-04-19 2021-06-15 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11035017B2 (en) 2016-04-19 2021-06-15 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11111556B2 (en) 2016-04-19 2021-09-07 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11118240B2 (en) 2016-04-19 2021-09-14 Jfe Steel Corporaton Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate

Also Published As

Publication number Publication date
JP2009030094A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5145805B2 (en) Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance
JP5145804B2 (en) Abrasion-resistant steel plate with excellent low-temperature tempering embrittlement cracking properties
JP5145803B2 (en) Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties
JP6721077B2 (en) Abrasion resistant steel plate and method for producing abrasion resistant steel plate
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
WO2014020891A1 (en) Abrasion-resistant steel plate and manufacturing process therefor
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
KR101828199B1 (en) Abrasion-resistant steel plate and method for manufacturing the same
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP6711434B2 (en) Abrasion resistant steel plate and manufacturing method thereof
JP4899874B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP2012031510A (en) Abrasion-resistant steel sheet excellent in welded part toughness and delayed fracture resistance
JP2007092155A (en) Wear resistant steel sheet having excellent low temperature toughness and its production method
JP5683327B2 (en) Wear-resistant steel plate with excellent low-temperature toughness
JP2012031511A (en) Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
JP2007119850A (en) Wear resistant steel plate with excellent low-temperature toughness, and method for manufacturing the same
JPWO2009087990A1 (en) Abrasion-resistant steel plate excellent in high-temperature wear resistance and bending workability and manufacturing method thereof
JP7211530B2 (en) WEAR RESISTANT STEEL AND METHOD FOR MANUFACTURING WEAR RESISTANT STEEL
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP6729522B2 (en) Thick wear-resistant steel plate, method of manufacturing the same, and method of manufacturing wear-resistant member
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
JP4645306B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP7063420B1 (en) Manufacturing method of wear-resistant steel sheet and wear-resistant steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5145805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250