JP2012031511A - Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties - Google Patents

Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties Download PDF

Info

Publication number
JP2012031511A
JP2012031511A JP2011142507A JP2011142507A JP2012031511A JP 2012031511 A JP2012031511 A JP 2012031511A JP 2011142507 A JP2011142507 A JP 2011142507A JP 2011142507 A JP2011142507 A JP 2011142507A JP 2012031511 A JP2012031511 A JP 2012031511A
Authority
JP
Japan
Prior art keywords
toughness
wear
less
steel
delayed fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011142507A
Other languages
Japanese (ja)
Inventor
Keiji Ueda
圭治 植田
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45402260&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012031511(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011142507A priority Critical patent/JP2012031511A/en
Priority to RU2013103813/02A priority patent/RU2550987C2/en
Priority to CA2801708A priority patent/CA2801708C/en
Priority to EP11801023.0A priority patent/EP2589675A4/en
Priority to US13/807,798 priority patent/US20130206286A1/en
Priority to CN2011800319079A priority patent/CN102959112A/en
Priority to PCT/JP2011/065410 priority patent/WO2012002563A1/en
Priority to KR1020137001873A priority patent/KR101502845B1/en
Priority to AU2011272249A priority patent/AU2011272249C1/en
Priority to MX2013000014A priority patent/MX353802B/en
Priority to ARP110104973 priority patent/AR084623A1/en
Publication of JP2012031511A publication Critical patent/JP2012031511A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an wear-resistant steel sheet excellent in multilayer weld zone toughness and delayed fracture resistance.SOLUTION: The steel sheet contains in terms of mass%, 0.20-0.30% C, 0.05-1.0% Si, 0.40-1.2% Mn, P, S, 0.40-1.5% Cr, 0.005-0.025% Nb, 0.05-1.0% Mo, 0.005-0.03% Ti, ≤0.1% Al, ≤0.01% N and 0.0003-0.0020% B, and contains as the need arises one or two or more kinds of W, Cu, Ni, V, REM, Ca and Mg, wherein, in a microstructure, martensite is used as a base phase, under the condition of DI*(=33.85×(0.1×C)×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)):45-180, with a relation, C+Mn/4-Cr/3+10P≤0.47.

Description

本発明は、建築用機械、産業用機械、造船、鋼管、土木、建築等に供して好適な板厚4mm以上の耐磨耗鋼板に係り、特に、多層盛溶接部靭性と耐遅れ破壊特性に優れるものに関する。   The present invention relates to a wear-resistant steel plate having a thickness of 4 mm or more suitable for use in construction machinery, industrial machinery, shipbuilding, steel pipes, civil engineering, construction, etc., and in particular, in multi-layer weld weld toughness and delayed fracture resistance. Concerning excellent ones.

建築用機械、産業用機械、造船、鋼管、土木、建築等の鉄鋼構造物や機械、装置等に熱間圧延鋼板が用いられる際には、鋼板の磨耗特性が要求されることがある。従来、鋼材として優れた耐磨耗性を保有するためには、硬度を高めることが一般的であり、マルテンサイト単相組織とすることにより飛躍的に高めることが可能である。また、マルテンサイト組織自体の硬さを上昇させるために、固溶C量を増加することが有効である。   When hot-rolled steel sheets are used in steel structures, machines, devices, etc., such as construction machines, industrial machines, shipbuilding, steel pipes, civil engineering, and construction, the wear characteristics of the steel sheets may be required. Conventionally, in order to retain excellent wear resistance as a steel material, it is common to increase the hardness, and it is possible to dramatically increase the martensite single phase structure. In order to increase the hardness of the martensite structure itself, it is effective to increase the amount of solid solution C.

そのため、耐磨耗鋼板は一般的に低温割れ感受性が高く、溶接部靭性に劣るため、溶接鋼構造物に使われる場合、岩石や土砂などと接触する鋼部材の表面にライナーとして貼り合わせて使用される場合が一般的であった。例えば、ダンプのベッセルでは、軟鋼を用いて溶接施工により組み立てた後、土砂と接するベッセル表面にのみ耐磨耗鋼板を張り合わせて利用される場合がある。   For this reason, wear-resistant steel sheets are generally sensitive to cold cracking and have poor weld toughness, so when used in welded steel structures, they are used as a liner on the surface of steel members that come into contact with rocks or earth and sand. It was common to be. For example, a dump vessel may be used by attaching a wear-resistant steel plate only to the surface of the vessel in contact with earth and sand after being assembled by welding using mild steel.

しかしながら、溶接構造物を組み立てた後、耐磨耗鋼板を張り合わせる製造方法では、製作の手間や製造コストが増大するため、溶接構造物の強度部材として適用可能な溶接性、溶接部靭性に優れることが望まれ、例えば特許文献1〜5の耐磨耗鋼板が提案されている。   However, after assembling the welded structure, the manufacturing method in which the wear-resistant steel plates are bonded together increases manufacturing effort and manufacturing cost, so that it is excellent in weldability and weld part toughness applicable as a strength member of the welded structure. For example, the wear-resistant steel sheets of Patent Documents 1 to 5 have been proposed.

特許文献1は、耐遅れ破壊性に優れた耐磨耗性鋼板とその製造方法に関し、耐遅れ破壊特性を改善するため、低Si−低P−低S−Cr、Mo、Nb系組成に、Cu、V、Ti、B及びCaの一種又は二種以上を含有する鋼を直接焼入れし、必要に応じて焼戻しすることが記載されている。   Patent Document 1 relates to a wear-resistant steel sheet excellent in delayed fracture resistance and a method for producing the same, and in order to improve delayed fracture resistance, a low Si-low P-low S-Cr, Mo, Nb composition is used. It describes that steel containing one or more of Cu, V, Ti, B and Ca is directly quenched and tempered as necessary.

特許文献2は、耐磨耗性が高い鋼と鋼製品の製造方法に関し、0.24〜0.3C−Ni、Cr、Mo、B系において、これら元素の含有量からなるパラメータ式を満足する組成で、5〜15体積%の残留オーステナイトを含むマルテンサイトまたはマルテンサイトベイナイト組織を有し、耐磨耗性を向上させた鋼が記載され、当該成分の鋼をオーステナイト化温度〜450℃の間を冷却速度1℃/秒以上で冷却することが記載されている。   Patent Document 2 relates to a method for manufacturing steel and steel products with high wear resistance, and satisfies the parameter formulas of the contents of these elements in the 0.24 to 0.3 C-Ni, Cr, Mo, and B systems. A steel having a martensite or martensite bainite structure containing 5 to 15% by volume residual austenite and improved wear resistance is described, and the steel of the component is between austenitizing temperature and 450 ° C. Is cooled at a cooling rate of 1 ° C./second or more.

特許文献3は、靭性および耐遅れ破壊性に優れた耐磨耗鋼材ならびにその製造方法に関し、Cr、Ti、Bを必須とする成分組成と表層が焼戻しマルテンサイトで内質部が焼戻しマルテンサイトおよび焼戻し下部ベイナイト組織で、肉厚方向と圧延方向の旧オーステナイト粒径比を規定した鋼材と、当該成分組成の鋼を900℃以下で累積圧下率50%以上で熱間圧延後、直接焼入れ焼戻しすることが記載されている。 特許文献4は、靭性および耐遅れ破壊性に優れた耐磨耗鋼材ならびにその製造方法に関し、Cr、Ti、Bを必須とする成分組成と、表層がマルテンサイトで、内質部がマルテンサイトと下部ベイナイトの混合組織または下部ベイナイト単相組織で、板厚中央部における旧オーステナイト粒径に対する圧延方向の旧オーステナイト粒径の比で表される旧オーステナイト粒の展伸度を規定した鋼材と、当該成分組成の鋼を900℃以下で累積圧下率50%以上で熱間圧延後、直接焼入れすることが記載されている。   Patent Document 3 relates to a wear-resistant steel material excellent in toughness and delayed fracture resistance, and a method for producing the same, and a component composition in which Cr, Ti, and B are essential, a surface layer is tempered martensite, and an inner part is tempered martensite. In the tempered lower bainite structure, a steel material in which the ratio of the prior austenite grain size in the thickness direction and the rolling direction is specified, and the steel of the component composition are directly quenched and tempered after hot rolling at 900 ° C. or less and a cumulative reduction of 50% or more It is described. Patent Document 4 relates to a wear-resistant steel material excellent in toughness and delayed fracture resistance, and a method for producing the same, and a component composition in which Cr, Ti, and B are essential, a surface layer is martensite, and an inner part is martensite. A steel material that defines the elongation of prior austenite grains expressed by the ratio of the prior austenite grain size in the rolling direction to the prior austenite grain size in the central part of the sheet thickness in a mixed structure of lower bainite or lower bainite single phase structure, and It is described that a steel having a component composition is directly quenched after hot rolling at 900 ° C. or less and a cumulative reduction ratio of 50% or more.

特許文献5は、溶接性、溶接部の耐磨耗性および耐食性に優れた耐磨耗鋼およびその製造方法に関し、4〜9mass%のCrを必須元素とし、Cu、Niの1種または2種を含有し、特定成分からなるパラメータ式を満足する鋼と、当該成分組成の鋼を950℃以下で累積圧下率30%以上で熱間圧延後、再加熱焼入れ処理を施すことが記載されている。   Patent Document 5 relates to a wear-resistant steel excellent in weldability, wear resistance and corrosion resistance of a welded portion, and a method for producing the same, and has 4 to 9 mass% of Cr as an essential element, and one or two of Cu and Ni. And a steel satisfying a parameter formula composed of a specific component, and a steel of the component composition is subjected to a reheating quenching treatment after hot rolling at a cumulative reduction of 30% or more at 950 ° C. or less. .

特開平5−51691号公報JP-A-5-51691 特開平8−295990号公報JP-A-8-295990 特開2002−115024号公報Japanese Patent Application Laid-Open No. 2002-115024 特開2002−80930号公報JP 2002-80930 A 特開2004−162120号公報Japanese Patent Laid-Open No. 2004-162120

ところで、板厚が4mm以上の鋼板による溶接継手の場合、多層盛溶接されることが多いが、溶接部において、先行する溶接パスによるボンド部が、後続の溶接により再加熱されて、靱性が顕著に劣化する領域が出現し、特に、耐磨耗鋼板では、1層目の溶接によるボンド部が、後続の溶接により300℃前後に再加熱された場合、低温焼戻し脆化により顕著に靭性が劣化する。   By the way, in the case of a welded joint made of a steel plate having a plate thickness of 4 mm or more, multi-layer welding is often performed, but in the welded portion, the bond portion due to the preceding welding pass is reheated by subsequent welding, and the toughness is remarkable. In particular, in a wear-resistant steel sheet, when the bond part of the first layer is reheated to around 300 ° C. by subsequent welding, the toughness is significantly deteriorated by low temperature temper embrittlement. To do.

低温焼戻し脆化は、マルテンサイト中の炭化物の形態変化と、不純物元素等の粒界偏析の相乗作用によるものと考えられ、結晶粒が粗大で、かつ固溶Nを多量に含有するボンド部においては顕著となる。このような低温焼戻し脆化温度に再加熱された領域においては、遅れ破壊が発生しやすいことも指摘されている。   Low temperature temper embrittlement is thought to be due to the synergistic effect of carbide morphology change in martensite and grain boundary segregation of impurity elements, etc., in the bond part where the crystal grains are coarse and contain a large amount of solute N Becomes prominent. It has also been pointed out that delayed fracture tends to occur in the region reheated to such a low temperature temper embrittlement temperature.

特許文献1、2には耐磨耗鋼において溶接部の靭性を向上させることは記載されておらず、特許文献3、4も母材の靭性向上を目的にミクロ組織を規定するものである。特許文献5は溶接性、溶接部の耐磨耗性については検討されているが、溶接部靭性の向上を目的とするものではなく、特許文献1〜5等で提案されている耐磨耗鋼では、多層盛溶接部の靱性と耐遅れ破壊特性の双方を改善するには至っていない。   Patent Documents 1 and 2 do not describe improving the toughness of the welded portion in wear-resistant steel, and Patent Documents 3 and 4 also define the microstructure for the purpose of improving the toughness of the base material. Patent Document 5 has examined weldability and wear resistance of welds, but is not intended to improve weld toughness. However, it has not reached to improve both the toughness and delayed fracture resistance of multi-layer welds.

そこで、本発明は、生産性の低下および製造コストの増大を引き起こすことなく、多層盛溶接部の靱性と耐遅れ破壊特性に優れる耐磨耗鋼板を提供することを目的とする。   Therefore, an object of the present invention is to provide a wear-resistant steel plate that is excellent in toughness and delayed fracture resistance of a multi-layer weld without causing a decrease in productivity and an increase in manufacturing cost.

本発明者らは、上記課題を達成するため、耐磨耗鋼板を対象に、多層盛溶接部の靱性と耐遅れ破壊特性を確保するため、鋼板の化学成分、製造方法およびミクロ組織を決定する各種要因に関して鋭意研究を行い、以下の知見を得た。   In order to achieve the above-mentioned problems, the inventors of the present invention determine the chemical composition, manufacturing method and microstructure of a steel sheet in order to ensure the toughness and delayed fracture resistance of a multi-layer welded part for wear-resistant steel sheets. We conducted earnest research on various factors and obtained the following findings.

1.優れた耐磨耗特性を確保するためには、鋼板の基地組織をマルテンサイトとすることが必須である。このためには、鋼板の化学組成を厳格に管理し、焼入れ性を確保することが重要である。   1. In order to ensure excellent wear resistance, it is essential that the base structure of the steel sheet is martensite. For this purpose, it is important to strictly control the chemical composition of the steel sheet and ensure hardenability.

2.優れた多層盛溶接部靱性を達成するためには、溶接熱影響部における結晶粒の粗大化を抑制することが必要であり、このためには鋼板中に微細な析出物を分散し、ピンニング効果を活用することが有効である。このためにはTi、Nの管理が重要である。   2. In order to achieve excellent multilayer weld weld toughness, it is necessary to suppress the coarsening of crystal grains in the weld heat affected zone. For this purpose, fine precipitates are dispersed in the steel sheet, and the pinning effect It is effective to utilize For this purpose, management of Ti and N is important.

3.初層のボンド部における、固溶Nを低減することは、後続の溶接による低温焼戻し脆化の抑制に有効である。このためには、固溶NをBNとして固定するためにBを厳格に管理することが重要である。   3. Reducing the solid solution N in the bond portion of the first layer is effective in suppressing low temperature temper embrittlement due to subsequent welding. For this purpose, it is important to strictly manage B in order to fix solute N as BN.

4.溶接熱影響部の低温焼戻し脆化温度域で優れた靱性を確保し、遅れ破壊を抑制するためには、C、Mn、Cr、Mo、Pなどの合金元素量を適正に管理することが重要である。   4). In order to secure excellent toughness in the low temperature temper embrittlement temperature range of the weld heat affected zone and suppress delayed fracture, it is important to properly manage the amount of alloy elements such as C, Mn, Cr, Mo, P It is.

本発明は、得られた知見に、さらに検討を加えてなされたもので、すなわち、本発明は、
1.mass%で、C:0.20〜0.30%、Si:0.05〜1.0%、Mn:0.40〜1.2%、P:0.010%以下、S:0.005%以下、Cr:0.40〜1.5%、Mo:0.05〜1.0%、Nb:0.005〜0.025%、Ti:0.005〜0.03%、Al:0.1%以下、N:0.0015〜0.0060%、B:0.0003〜0.0020%を含有し、(1)式で示されるDI*が45以上で、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織がマルテンサイトを基地相とする多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)
×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(1)
(1)式において、各元素記号は含有量(mass%)。
2.鋼組成に、mass%でさらに、W:0.05〜1.0%を含有することを特徴とする1記載の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
3.鋼組成に、mass%でさらに、Cu:1.5%以下、Ni:2.0%以下、V:0.1%以下の1種または2種以上を含有することを特徴とする1または2記載の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
4.鋼組成に、mass%でさらに、REM:0.008%以下、Ca:0.005%以下、Mg:0.005%以下の1種または2種以上を含有することを特徴とする1乃至3のいずれか一つに記載の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
5.表面硬度がブリネル硬さで400HBW10/3000以上を有する1乃至4のいずれか一つに記載の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
6.1乃至5のいずれか一つに記載の鋼板で、焼入れ性指数DI*が180以下の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
7.1乃至6のいずれか一つに記載の鋼板で、(2)式を満足する多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
C+Mn/4−Cr/3+10P≦0.47・・・・・(2)
(2)式において、各元素記号は含有量(mass%)。
The present invention has been made by further studying the obtained knowledge, that is, the present invention
1. In mass%, C: 0.20 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.40 to 1.2%, P: 0.010% or less, S: 0.005 %: Cr: 0.40 to 1.5%, Mo: 0.05 to 1.0%, Nb: 0.005 to 0.025%, Ti: 0.005 to 0.03%, Al: 0 0.1% or less, N: 0.0015 to 0.0060%, B: 0.0003 to 0.0020%, DI * represented by the formula (1) is 45 or more, the remainder Fe and inevitable impurities A wear-resistant steel sheet having a composition comprising: a multi-layer welded toughness with a microstructure of martensite as a base phase, and excellent delayed fracture resistance.
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1)
× (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (1)
In the formula (1), each element symbol is a content (mass%).
2. 2. The wear-resistant steel sheet having excellent multilayer toughness and delayed fracture resistance according to 1, wherein the steel composition further contains W: 0.05 to 1.0% in mass%.
3. 1 or 2 characterized in that the steel composition further contains one or more of Cu: 1.5% or less, Ni: 2.0% or less, and V: 0.1% or less in mass%. Abrasion-resistant steel sheet with excellent multilayer weld weld toughness and delayed fracture resistance.
4). 1 to 3 characterized in that the steel composition further contains one or more of REM: 0.008% or less, Ca: 0.005% or less, Mg: 0.005% or less in mass%. A wear-resistant steel sheet having excellent multilayer weld weld toughness and delayed fracture resistance according to any one of the above.
5. The wear-resistant steel sheet having excellent multi-layer welded portion toughness and delayed fracture resistance as described in any one of 1 to 4 having a surface hardness of 400 HBW 10/3000 or more in terms of Brinell hardness.
6. A steel sheet according to any one of items 6.1 to 5, wherein the hardenability index DI * is 180 or less, and the multi-layer weld weld toughness and delayed fracture resistance are excellent.
A steel plate according to any one of 7.1 to 6, a wear-resistant steel plate excellent in multi-layer welded portion toughness and delayed fracture resistance satisfying formula (2).
C + Mn / 4-Cr / 3 + 10P ≦ 0.47 (2)
In the formula (2), each element symbol is a content (mass%).

本発明によれば、多層盛溶接部で優れた靱性および耐遅れ破壊特性を有する耐磨耗鋼板が得られ、鋼構造物作製時の製造効率や安全性の向上に大きく寄与し、産業上格段の効果を奏する。   According to the present invention, a wear-resistant steel sheet having excellent toughness and delayed fracture resistance in multi-layer welds can be obtained, which greatly contributes to the improvement of manufacturing efficiency and safety at the time of manufacturing a steel structure. The effect of.

T形すみ肉溶接割れ試験を説明する図Diagram explaining the T-shaped fillet weld cracking test 溶接部のシャルピー衝撃試験片の採取位置Sampling position of Charpy impact test piece in weld zone

本発明では成分組成とミクロ組織を規定する。
[成分組成]以下の説明において%はmass%とする。
In the present invention, the component composition and the microstructure are defined.
[Component Composition] In the following description, “%” is “mass%”.

C:0.20〜0.30%
Cは、マルテンサイトの硬度を高め、優れた耐磨耗性を確保するために重要な元素でその効果を得るため、0.20%以上の含有を必要とする。一方、0.30%を超えて含有すると溶接性が劣化するだけでなく、多層盛溶接部におけるボンド部の低温焼戻しにより靱性が劣化する。このため、0.20〜0.30%の範囲に限定する。好ましくは、0.20〜0.28%である。
C: 0.20 to 0.30%
C is an important element for increasing the hardness of martensite and ensuring excellent wear resistance, so that its effect is required. On the other hand, when the content exceeds 0.30%, not only the weldability deteriorates, but also the toughness deteriorates due to the low temperature tempering of the bond portion in the multi-layer welded portion. For this reason, it limits to 0.20 to 0.30% of range. Preferably, it is 0.20 to 0.28%.

Si:0.05〜1.0%
Siは、脱酸材として作用し、製鋼上、必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高硬度化する効果を有する。さらに、多層盛溶接部におけるボンド部の低温焼戻しによる靱性劣化を抑制する効果を有する。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.0%を超えて含有すると、多層盛溶接部の靱性が顕著に劣化するため、0.05〜1.0%の範囲に限定する。好ましくは、0.07〜0.5%である。
Si: 0.05-1.0%
Si acts as a deoxidizer and is not only necessary for steelmaking, but also has the effect of increasing the hardness of the steel sheet by solid solution and solid solution strengthening. Furthermore, it has the effect of suppressing toughness deterioration due to low-temperature tempering of the bond part in the multilayer welded part. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 1.0%, the toughness of the multi-layer welded portion is remarkably deteriorated, so the content is limited to the range of 0.05 to 1.0%. Preferably, it is 0.07 to 0.5%.

Mn:0.40〜1.2%
Mnは、鋼の焼入れ性を増加させる効果を有し、母材の硬度を確保するために0.40%以上は必要である。一方、1.2%を超えて含有すると、母材の靭性、延性および溶接性が劣化するだけでなく、Pの粒界偏析を助長し、遅れ破壊の発生を助長する。このため、0.40〜1.2%の範囲に限定する。好ましくは、0.40〜1.1%である。
Mn: 0.40 to 1.2%
Mn has the effect of increasing the hardenability of steel, and 0.40% or more is necessary to ensure the hardness of the base material. On the other hand, if the content exceeds 1.2%, not only the toughness, ductility and weldability of the base material deteriorate, but also the grain boundary segregation of P is promoted and the occurrence of delayed fracture is promoted. For this reason, it limits to 0.40 to 1.2% of range. Preferably, it is 0.40 to 1.1%.

P:0.010%以下
Pが0.010%を超えて含有すると、粒界に偏析し、遅れ破壊の発生起点になるとともに、多層盛溶接部の靱性を劣化させる。このため、0.010%を上限とし、可能なかぎり低減することが望ましい。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.002%以上とすることが望ましい。
P: 0.010% or less When P exceeds 0.010%, it segregates at the grain boundary, becomes the starting point of delayed fracture, and deteriorates the toughness of the multilayer weld. For this reason, it is desirable to make 0.010% an upper limit and to reduce as much as possible. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is desirable to set it as 0.002% or more.

S:0.005%以下
Sは母材の低温靭性や延性を劣化させるため、0.005%を上限として低減することが望ましい。
S: 0.005% or less Since S deteriorates the low temperature toughness and ductility of the base material, it is desirable to reduce the upper limit to 0.005%.

Cr:0.40〜1.5%
Crは本発明において重要な合金元素であり、鋼の焼入れ性を増加させる効果を有するとともに、多層盛溶接部におけるボンド部の低温焼戻しによる靱性劣化を抑制する効果を有する。これは、Crの含有により、鋼板中でのCの拡散が遅延され、低温焼戻し脆化の発生する温度域に再加熱された時に、マルテンサイト中の炭化物の形態変化が抑制されるためである。このような効果を有するためには、0.40%以上の含有が必要である。一方、1.5%を超えて含有すると、効果が飽和し、経済的に不利になるとともに、溶接性が低下する。このため、0.40〜1.5%の範囲に限定する。好ましくは、0.40〜1.2%である。
Cr: 0.40 to 1.5%
Cr is an important alloying element in the present invention, and has the effect of increasing the hardenability of the steel, and also has the effect of suppressing toughness deterioration due to low-temperature tempering of the bond portion in the multilayer weld zone. This is because the diffusion of C in the steel sheet is delayed due to the Cr content, and when reheated to a temperature range where low temperature temper embrittlement occurs, the change in the morphology of carbides in the martensite is suppressed. . In order to have such an effect, the content of 0.40% or more is necessary. On the other hand, when it contains exceeding 1.5%, an effect will be saturated and it will become economically disadvantageous, and weldability will fall. For this reason, it limits to 0.40 to 1.5% of range. Preferably, it is 0.40 to 1.2%.

Mo:0.05〜1.0%
Moは、焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。さらに、多層盛溶接部におけるボンド部の低温焼戻しによる靱性劣化を抑制する効果を有する。このような効果を得るためには、0.05%以上とする。しかし、1.0%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.0%以下とする。このため、0.05〜1.0%の範囲に限定する。好ましくは、0.1〜0.8%である。
Mo: 0.05-1.0%
Mo is an element that significantly increases the hardenability and is effective in increasing the hardness of the base material. Furthermore, it has the effect of suppressing toughness deterioration due to low-temperature tempering of the bond part in the multilayer welded part. In order to obtain such an effect, the content is made 0.05% or more. However, if it exceeds 1.0%, the base material toughness, ductility and weld crack resistance are adversely affected, so 1.0% or less. For this reason, it limits to 0.05 to 1.0% of range. Preferably, it is 0.1 to 0.8%.

Nb:0.005〜0.025%
Nbは、炭窒化物として析出し、母材および多層盛溶接部のミクロ組織を微細化するとともに、固溶Nを固定して、多層盛溶接部の靱性改善と、遅れ破壊の発生抑制の効果を兼備する重要な元素である。このような効果を得るためには、0.005%以上の含有が必要である。一方、0.025%を超えて含有すると、粗大な炭窒化物が析出し、破壊の起点となることがある。このため、0.005〜0.025%の範囲に限定する。好ましくは、0.007〜0.023%である。
Nb: 0.005 to 0.025%
Nb precipitates as carbonitride, refines the microstructure of the base metal and the multi-layer weld, fixes solid solution N, and improves the toughness of the multi-layer weld and suppresses the occurrence of delayed fracture Is an important element. In order to acquire such an effect, 0.005% or more needs to be contained. On the other hand, if the content exceeds 0.025%, coarse carbonitrides may precipitate, which may be the starting point of fracture. For this reason, it limits to 0.005 to 0.025% of range. Preferably, it is 0.007 to 0.023%.

Ti:0.005〜0.03%
Tiは、固溶Nを固定してTiNを形成することにより、多層盛溶接部のボンド部における結晶粒の粗大化を抑制する効果を有するとともに、固溶N低減による低温焼戻し温度域における靱性劣化と遅れ破壊の発生を抑制する効果を有する。これらの効果を得るためには、0.005%以上の含有が必要である。一方、0.03%を超えて含有すると、TiCを析出し母材靱性を劣化する。このため、0.005〜0.03%の範囲に限定する。好ましくは、0.007〜0.025%である。
Ti: 0.005 to 0.03%
Ti has the effect of suppressing the coarsening of crystal grains in the bond portion of the multi-layer weld by fixing the solid solution N to form TiN, and toughness deterioration in the low temperature tempering temperature region due to the reduction of the solid solution N And has the effect of suppressing the occurrence of delayed fracture. In order to acquire these effects, 0.005% or more needs to be contained. On the other hand, if the content exceeds 0.03%, TiC is precipitated and the base material toughness is deteriorated. For this reason, it limits to 0.005 to 0.03% of range. Preferably, it is 0.007 to 0.025%.

Al:0.1%以下
Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中の固溶Nを固定してAlNを形成することにより、多層盛溶接部のボンド部における結晶粒の粗大化を抑制する効果を有するとともに、固溶N低減による低温焼戻し温度域における靱性劣化と遅れ破壊の発生を抑制する効果を有する。一方、0.1%を超えて含有すると、溶接時に溶接金属部に混入して、溶接金属の靭性を劣化させるため、0.1%以下に限定する。好ましくは、0.01〜0.07%である。
Al: 0.1% or less Al acts as a deoxidizer, and is most commonly used in the molten steel deoxidation process of steel sheets. Moreover, by fixing solid solution N in steel and forming AlN, it has the effect of suppressing the coarsening of crystal grains in the bond portion of the multi-layer welded portion, and in the low temperature tempering temperature range by reducing solid solution N It has the effect of suppressing toughness degradation and delayed fracture. On the other hand, when it contains exceeding 0.1%, it mixes with a weld metal part at the time of welding and deteriorates the toughness of the weld metal, so it is limited to 0.1% or less. Preferably, it is 0.01 to 0.07%.

N:0.0015〜0.0060%
NはTiと結合してTiNとして析出して、HAZでのオーステナイト粒の粗大化を抑制し高靭化に寄与する。このような効果を有するTiNの必要量を確保するために、0.0015%以上のNを含有する必要がある。一方、0.0060%を超えて含有すると、溶接時にTiNが溶解する温度まで加熱される領域では、固溶N量が増加し、低温焼戻し温度域における靱性劣化が顕著になる。このため、Nは0.0015〜0.0060%に限定する。好ましくは、0.0020〜0.0055%である。
N: 0.0015 to 0.0060%
N combines with Ti and precipitates as TiN, which suppresses the coarsening of austenite grains in the HAZ and contributes to high toughness. In order to secure the necessary amount of TiN having such an effect, it is necessary to contain 0.0015% or more of N. On the other hand, if the content exceeds 0.0060%, in the region heated to a temperature at which TiN dissolves during welding, the amount of solute N increases, and the toughness deterioration in the low temperature tempering temperature range becomes significant. For this reason, N is limited to 0.0015 to 0.0060%. Preferably, it is 0.0020 to 0.0055%.

B:0.0003〜0.0020%
Bは、微量の添加で焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。さらに、溶接時にTiNが溶解する温度まで加熱される領域では、固溶NをBNとして固定し、後続の溶接による低温焼戻し温度域における靱性劣化を抑制する効果を有する。このような効果を得るためには、0.0003%以上とすることが好ましいが、0.0020%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、0.0020%以下とする。好ましくは、0.0005〜0.0018%である。残部はFe及び不可避的不純物である。
B: 0.0003 to 0.0020%
B is an element that significantly increases the hardenability by adding a small amount and is effective in increasing the hardness of the base material. Furthermore, in the region heated to a temperature at which TiN dissolves at the time of welding, solid solution N is fixed as BN and has an effect of suppressing toughness deterioration in a low temperature tempering temperature region due to subsequent welding. In order to obtain such an effect, the content is preferably 0.0003% or more. However, if it exceeds 0.0020%, the base material toughness, ductility, and weld crack resistance are adversely affected. The following. Preferably, it is 0.0005 to 0.0018%. The balance is Fe and inevitable impurities.

本発明では、更に特性を向上させるため、上記基本成分系に加えて、W、Cu、Ni、V、REM、Ca、Mgの1種または2種以上を含有することができる。   In the present invention, in order to further improve the characteristics, one or more of W, Cu, Ni, V, REM, Ca and Mg can be contained in addition to the basic component system.

W:0.05〜1.0%
Wは、焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.05%以上とすることが好ましいが、1.0%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.0%以下とする。
W: 0.05-1.0%
W is an element that significantly increases the hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.05% or more. However, if it exceeds 1.0%, the base material toughness, ductility and weld crack resistance are adversely affected. The following.

Cu、Ni、Vは、いずれも鋼の強度向上に寄与する元素であり、所望する強度に応じて適宜含有できる。   Cu, Ni, and V are all elements that contribute to improving the strength of steel and can be appropriately contained depending on the desired strength.

Cu:1.5%以下
Cuは、焼入れ性を増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.1%以上とすることが好ましいが、1.5%を超えると効果が飽和し、熱間脆性を生じて鋼板の表面性状を劣化させるため、1.5%以下とする。
Cu: 1.5% or less Cu is an element that increases hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably set to 0.1% or more. However, when the content exceeds 1.5%, the effect is saturated, and hot brittleness is caused to deteriorate the surface properties of the steel sheet. .5% or less.

Ni:2.0%以下
Niは、焼入れ性を増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.1%以上とすることが好ましいが、2.0%を超えると効果が飽和し、経済的に不利になるため、2.0%以下とする。
Ni: 2.0% or less Ni is an element that increases hardenability and is effective in increasing the hardness of the base material. In order to acquire such an effect, it is preferable to set it as 0.1% or more, However, if it exceeds 2.0%, since an effect will be saturated and it becomes economically disadvantageous, it shall be 2.0% or less.

V:0.1%以下
Vは、焼入れ性を増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.01%以上とすることが好ましいが、0.1%を超えると、母材靭性および延性を劣化させるため、0.1%以下とする。
V: 0.1% or less V is an element that increases the hardenability and is effective in increasing the hardness of the base material. In order to acquire such an effect, it is preferable to set it as 0.01% or more, However, If it exceeds 0.1%, in order to deteriorate a base material toughness and ductility, it is set as 0.1% or less.

REM、CaおよびMgは、いずれも靭性向上に寄与し、所望する特性に応じて選択して添加する。REMを添加する場合は、0.002%以上とすることが好ましいが、0.008%を超えても効果が飽和するため、0.008%を上限とする。   REM, Ca, and Mg all contribute to the improvement of toughness, and are selected and added according to desired characteristics. When adding REM, it is preferable to set it as 0.002% or more, but even if it exceeds 0.008%, the effect is saturated, so 0.008% is made the upper limit.

Caを添加する場合は、0.0005%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。   When adding Ca, it is preferable to make it 0.0005% or more, but since the effect is saturated even if it exceeds 0.005%, the upper limit is made 0.005%.

Mgを添加する場合は、0.001%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。   When adding Mg, it is preferable to set it as 0.001% or more, but since an effect will be saturated even if it exceeds 0.005%, 0.005% is made an upper limit.

DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・(1)
各元素記号は含有量(質量%)とする。
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (1)
Each element symbol is a content (mass%).

本パラメータ:DI*(焼入れ性指数)は上述した成分組成の範囲内で、母材の基地組織をマルテンサイトとし、優れた耐磨耗性を有するために規定するもので、本パラメータの値を45以上とする。45未満の場合、板厚表層からの焼入れ深さが10mmを下回り、耐磨耗鋼としての寿命が短くなる。   This parameter: DI * (hardenability index) is specified in order to have excellent wear resistance with the matrix structure of the base material being martensite within the range of the component composition described above. 45 or more. When it is less than 45, the quenching depth from the plate thickness surface layer is less than 10 mm, and the life as a wear-resistant steel is shortened.

本パラメータの値が180を超えるようになると母材の基地組織はマルテンサイトで耐磨耗性は良好であるが、溶接部の低温靭性が劣化するようになるので、180以下とすることが好ましい。より好ましくは、50〜160の範囲とする。   When the value of this parameter exceeds 180, the matrix structure of the base material is martensite and wear resistance is good, but the low temperature toughness of the welded portion deteriorates, so it is preferable to set it to 180 or less. . More preferably, it is in the range of 50 to 160.

C+Mn/4−Cr/3+10P≦0.47・・・(2)
各元素記号は含有量(質量%)とする。
C + Mn / 4-Cr / 3 + 10P ≦ 0.47 (2)
Each element symbol is a content (mass%).

母材の基地組織をマルテンサイトとし、溶接施工を行ったときにボンド部および低温焼戻し脆化域のいずれのおいても優れた靭性を有する成分組成とする場合、上述した成分組成の範囲内で、本パラメータ:C+Mn/4−Cr/3+10Pの値を0.47以下とする。0.47を超えても、母材の基地組織はマルテンサイトで耐磨耗性は良好であるが、溶接部の靭性が、顕著に劣化するようになる。好ましくは、0.45以下である。   When the base structure of the base material is martensite, and the component composition has excellent toughness in both the bond part and the low temperature temper embrittlement region when welding is performed, within the range of the component composition described above. The value of this parameter: C + Mn / 4-Cr / 3 + 10P is set to 0.47 or less. Even if it exceeds 0.47, the matrix structure of the base material is martensite and has good wear resistance, but the toughness of the welded portion is significantly deteriorated. Preferably, it is 0.45 or less.

[ミクロ組織]
本発明では、耐磨耗特性を向上させるため、鋼板のミクロ組織の基地相をマルテンサイトに規定する。マルテンサイト以外のベイナイト、フェライトなどの組織は、耐磨耗性が低下するため出来るだけ混合しないほうが好ましいが、面積分率が10%未満であれば、その影響が無視できる。また、鋼板の表面硬度がブリネル硬さで400HBW10/3000未満の場合には、耐磨耗鋼としての寿命が短くなる。そのため、表面硬度をブリネル硬さで400HBW10/3000以上とすることが望ましい。
[Microstructure]
In the present invention, in order to improve the wear resistance, the matrix phase of the microstructure of the steel sheet is defined as martensite. It is preferable not to mix as much as possible the structure such as bainite and ferrite other than martensite because the wear resistance decreases. However, if the area fraction is less than 10%, the influence can be ignored. Further, when the surface hardness of the steel plate is less than 400 HBW 10/3000 in terms of Brinell hardness, the life as a wear-resistant steel is shortened. Therefore, it is desirable that the surface hardness is 400HBW10 / 3000 or more in terms of Brinell hardness.

なお、本発明に係る開発鋼では、溶接熱影響部のボンド部のミクロ組織は、マルテンサイトおよびベイナイトの混合組織である。マルテンサイトおよびベイナイト以外のフェライトなどの組織は、耐磨耗性が低下するため出来るだけ混合しないほうが好ましいが、面積分率が20%未満であれば、その影響が無視できる。   In the developed steel according to the present invention, the microstructure of the bond portion of the weld heat affected zone is a mixed structure of martensite and bainite. It is preferable not to mix as much as possible the structure of ferrite other than martensite and bainite because the wear resistance decreases. However, if the area fraction is less than 20%, the influence can be ignored.

さらに、本発明に係る開発鋼では、ボンド部の靭性を確保するためには、NbおよびTiの炭窒化物は1μm以下の平均粒径のものが1000個/mm以上存在し、旧オーステナイトの平均結晶粒径が200μm未満であり、かつ傾角が15°以上の大角粒界で囲まれた下部組織の平均結晶粒径が70μm未満であることが好ましい。 Furthermore, in the developed steel according to the present invention, in order to ensure the toughness of the bond portion, Nb and Ti carbonitrides having an average particle size of 1 μm or less are 1000 pieces / mm 2 or more, and the former austenite It is preferable that the average crystal grain size is less than 200 μm, and the average crystal grain size of the substructure surrounded by the large-angle grain boundaries having an inclination angle of 15 ° or more is less than 70 μm.

本発明に係る耐磨耗鋼は以下の製造条件で製造することが可能である。説明において、温度に関する「℃」表示は、板厚の1/2位置における温度を意味するものとする。上記した組成の溶鋼を、公知の溶製方法で溶製し、連続鋳造法あるいは造塊−分塊圧延法により、所定寸法のスラブ等の鋼素材とすることが好ましい。   The wear resistant steel according to the present invention can be manufactured under the following manufacturing conditions. In the description, the “° C.” display relating to the temperature means a temperature at a half position of the plate thickness. It is preferable that the molten steel having the above composition is melted by a known melting method and used as a steel material such as a slab having a predetermined size by a continuous casting method or an ingot-bundling rolling method.

次いで、得られた鋼素材を、冷却することなく直後に、または冷却した後に950〜1250℃に加熱した後、熱間圧延し、所望の板厚の鋼板とする。熱間圧延直後に水冷し、あるいは、再加熱して焼入れを行う。その後、必要に応じて、300℃以下での焼戻しを実施する   Next, the obtained steel material is heated to 950 to 1250 ° C. immediately after cooling or after cooling, and then hot-rolled to obtain a steel plate having a desired thickness. Immediately after hot rolling, it is cooled with water or reheated for quenching. Then, if necessary, tempering at 300 ° C or lower is performed.

転炉−取鍋精錬−連続鋳造法で、表1に示す種々の成分組成に調製した鋼スラブを、1000〜1250℃に加熱した後、熱間圧延を施し、一部の鋼板には圧延直後に焼入れ(DQ)をし、その他の鋼板については、圧延後空冷し、再加熱後焼入れ(RQ)を行った。   Steel slabs prepared in various compositions shown in Table 1 by the converter-ladder refining-continuous casting method were heated to 1000 to 1250 ° C. and then hot-rolled. The other steel plates were quenched (DQ), air cooled after rolling, and quenched after reheating (RQ).

得られた鋼板について、表面硬度測定、母材靭性測定、耐磨耗性評価、T形すみ肉溶接割れ試験(耐遅れ破壊特性評価)、溶接部再現熱サイクル試験、実継手の溶接部靭性試験を下記の要領で実施した。   About the obtained steel sheet, surface hardness measurement, base metal toughness measurement, wear resistance evaluation, T-shaped fillet weld cracking test (delayed fracture resistance evaluation), welded part reproduction thermal cycle test, welded part toughness test of actual joint Was carried out as follows.

[表面硬度1]
表面硬度測定はJIS Z2243(1998)に準拠し、表層下の表面硬度(表層のスケールを除去した後に測定した表面の硬度)を測定した。測定は直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。
[Surface hardness 1]
The surface hardness was measured according to JIS Z2243 (1998), and the surface hardness under the surface layer (the surface hardness measured after removing the scale of the surface layer) was measured. The measurement used a tungsten hard sphere having a diameter of 10 mm, and the load was 3000 kgf.

[母材靭性1]
各鋼板の板厚1/4位置の圧延方向と垂直な方向から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について各温度3本のシャルピー衝撃試験を実施し、試験温度0℃での吸収エネルギーを求め、母材靭性を評価した。試験温度0℃は温暖地域での使用を考慮して選定した。
[Base material toughness 1]
From the direction perpendicular to the rolling direction at a thickness of 1/4 of each steel plate, V-notch specimens were collected in accordance with JIS Z 2202 (1998), and conformed to JIS Z 2242 (1998). Then, each steel plate was subjected to a Charpy impact test at three temperatures, the absorbed energy at a test temperature of 0 ° C. was determined, and the base material toughness was evaluated. The test temperature of 0 ° C. was selected in consideration of use in a warm area.

試験温度0℃での吸収エネルギー(vEと言う場合がある。)の3本の平均値が30J以上を母材靭性に優れるもの(本発明範囲内)とした。 The average value of the three absorbed energy at the test temperature of 0 ° C. (sometimes referred to as vE 0 ) was 30 J or more, which was excellent in the base material toughness (within the scope of the present invention).

[耐磨耗性1]
耐磨耗性は、ASTM G65の規定に準拠し、ラバーホイール試験を実施した。試験片は10mmt(t:板厚)×75mmw(w:幅)×20mmL(L:長さ)(板厚が10mmt未満の場合は、t(板厚)×75mmw×20mmL)とし、磨耗材に100%SiO磨耗砂を使用して実施した。
[Abrasion resistance 1]
The abrasion resistance was in accordance with ASTM G65, and a rubber wheel test was performed. The test piece is 10 mmt (t: plate thickness) x 75 mmw (w: width) x 20 mmL (L: length) (if the plate thickness is less than 10 mmt, t (plate thickness) x 75 mmw x 20 mmL). Performed using 100% SiO 2 wear sand.

試験前後での試験片重量を測定し、磨耗量を測定した。試験結果は、軟鋼板(SS400)の磨耗量を基準(1.0)として、耐磨耗比:(軟鋼板の磨耗量)/(各鋼板の磨耗量)で評価した。耐磨耗比が大きいほど、耐磨耗性に優れていることを意味し、本発明範囲では、耐磨耗比4.0以上を耐磨耗性に優れるものとした。   The specimen weight before and after the test was measured, and the amount of wear was measured. The test results were evaluated based on the wear resistance ratio: (abrasion amount of mild steel plate) / (abrasion amount of each steel plate) with the wear amount of the mild steel plate (SS400) as a reference (1.0). The larger the wear resistance ratio, the better the wear resistance. In the scope of the present invention, the wear resistance ratio of 4.0 or more is excellent in wear resistance.

[遅れ破壊1]
T形溶接割れ試験は、図1の通りにT形に組み立てた試験体を被覆アーク溶接にて拘束溶接を実施した後、室温(25℃×湿度60%)もしくは、100℃に予熱した後、試験溶接を実施した。
[Delayed destruction 1]
The T-shaped weld cracking test was conducted after subjecting a test body assembled into a T-shape as shown in FIG. 1 to be subjected to restraint welding by covering arc welding, and then preheating to room temperature (25 ° C. × 60% humidity) or 100 ° C. Test welding was performed.

溶接方法は、被覆アーク溶接(溶接材料:LB52UL(4.0mmΦ)で、入熱17kJ/cmとし、3層6パスの溶接を実施した。試験後、48時間室温で放置した後、試験板の溶接部断面観察サンプル(ビード長200mmを5等分)を5枚採取し、溶接熱影響部での割れの発生の有無を投影機および光学顕微鏡により調査した。予熱なし、および、予熱100℃とも、採取した各5枚の断面サンプルにおいて、溶接熱影響部で割れの発生が全くないものを耐遅れ破壊特性に優れるとして評価した。   The welding method was covered arc welding (welding material: LB52UL (4.0 mmΦ), heat input was 17 kJ / cm, and three layers and six passes were welded. After the test, the test plate was left for 48 hours at room temperature. Weld section cross-sectional observation samples (bead length of 200 mm divided into 5 equal parts) were collected and examined for occurrence of cracks in the weld heat affected zone with a projector and an optical microscope. In each of the collected five cross-sectional samples, those having no cracks in the weld heat affected zone were evaluated as having excellent delayed fracture resistance.

[溶接部靭性1−1]
溶接再現熱サイクル試験は、溶接入熱17kJ/cmの2層炭酸ガスアーク溶接を行った場合の溶接熱影響部のボンド部の低温焼戻しを模擬した。1層溶接(初層)のボンド部を1400℃で1秒間保持し、800〜200℃の冷却速度を30℃/sとし、次に2層溶接(後続の溶接)による低温焼戻しとして、300℃で1秒間保持し、300〜100℃を5℃/sで冷却する熱サイクルを施した。
[Weld toughness 1-1]
The welding reproduction heat cycle test simulated low temperature tempering of the bond portion of the weld heat affected zone when two-layer carbon dioxide arc welding with a welding heat input of 17 kJ / cm was performed. The bond part of 1 layer welding (first layer) is held at 1400 ° C. for 1 second, the cooling rate of 800 to 200 ° C. is set to 30 ° C./s, and then low temperature tempering by 2 layer welding (subsequent welding) is performed at 300 ° C. Was held for 1 second, and a heat cycle was performed in which 300 to 100 ° C was cooled at 5 ° C / s.

圧延方向から採取した角棒状試験片に高周波誘導加熱装置で上述した熱サイクルを付与した後、JISZ2242(1998年)に準じてVノッチシャルピー衝撃試験を行った。シャルピー衝撃試験は試験温度を0℃として各鋼板について各温度3本の試験片で行った。   After giving the above-mentioned thermal cycle with a high frequency induction heating device to a square bar specimen taken from the rolling direction, a V-notch Charpy impact test was conducted according to JISZ2242 (1998). The Charpy impact test was performed with three test pieces at each temperature for each steel plate at a test temperature of 0 ° C.

吸収エネルギー(vE)の3本の平均値が30J以上を多層盛溶接部靭性に優れるもの(本発明範囲内)とした。 An average value of three absorbed energy (vE 0 ) of 30 J or more was determined to be excellent in multi-layer welded portion toughness (within the scope of the present invention).

[溶接部靭性1−2]
さらに、実継手の靭性を確認するため、被覆アーク溶接(入熱17kJ/cm、予熱150℃、パス間温度150℃、溶接材料:LB52UL(4.0mmΦ))で多層盛溶接継手(レ開先)を作製した。
[Weld toughness 1-2]
Furthermore, in order to confirm the toughness of the actual joint, a multi-layer welded joint (lamination groove) is used by covering arc welding (heat input 17 kJ / cm, preheating 150 ° C., interpass temperature 150 ° C., welding material: LB52UL (4.0 mmΦ)) ) Was produced.

溶接継手から、シャルピー衝撃試験片を表面下1mmの位置より採取した。ノッチ位置は、レ開先で鋼板表面に垂直な開先側のボンドとした。このようにして採取した試験片を用い、JISZ2242(1998年)に準じてVノッチシャルピー衝撃試験を行った。図2にシャルピー衝撃試験片の採取位置、ノッチ位置を示す。   From the welded joint, a Charpy impact test piece was taken from a position 1 mm below the surface. The notch position was a bond on the groove side perpendicular to the steel sheet surface at the groove. Using the test piece thus collected, a V-notch Charpy impact test was conducted according to JISZ2242 (1998). FIG. 2 shows the sampling position and notch position of the Charpy impact test piece.

実継手のVノッチシャルピー衝撃試験は試験温度を0℃として3本の試験片で行った。吸収エネルギー(vE)の3本の平均値が30J以上を多層盛溶接部靭性に優れるもの(本発明範囲内)とした。 The V-notch Charpy impact test of the actual joint was performed with three test pieces at a test temperature of 0 ° C. An average value of three absorbed energy (vE 0 ) of 30 J or more was determined to be excellent in multi-layer welded portion toughness (within the scope of the present invention).

表2に供試鋼板の製造条件を、表3に上記各試験の結果を示す。本発明例(鋼No.1〜5)は、表面硬度が400HBW10/3000以上を有し、耐磨耗性に優れ、0℃の母材靭性が30J以上を有し、さらに、T形すみ肉溶接割れ試験で割れが発生せず、また、溶接部再現熱サイクル試験および実溶接継手靭性においても優れた靭性を有し、多層盛溶接部靭性に優れていることが確認された。   Table 2 shows the production conditions of the test steel sheets, and Table 3 shows the results of the above tests. Examples of the present invention (steel Nos. 1 to 5) have a surface hardness of 400 HBW 10/3000 or more, excellent wear resistance, a base metal toughness of 0 ° C. of 30 J or more, and a T-shaped fillet It was confirmed that cracks did not occur in the weld cracking test, and that the toughness was excellent in the welded part thermal cycle test and the actual welded joint toughness, and was excellent in multi-layer welded part toughness.

一方、成分組成が本発明範囲外の比較例(No.6〜19)は、表面硬度、耐磨耗性、T形溶接割れ試験、母材靭性、再現熱サイクルシャルピー衝撃試験、実継手シャルピー衝撃試験のいずれか、あるいはその複数が目標性能を満足できないことが確認された。   On the other hand, comparative examples (Nos. 6 to 19) whose component composition is outside the scope of the present invention are surface hardness, wear resistance, T-shaped weld crack test, base material toughness, reproducible thermal cycle Charpy impact test, actual joint Charpy impact. It was confirmed that one or more of the tests could not meet the target performance.

転炉−取鍋精錬−連続鋳造法で、表4に示す種々の成分組成に調製した鋼スラブを、1000〜1250℃に加熱した後、熱間圧延を施し、一部の鋼板には圧延直後に焼入れ(DQ)をし、その他の鋼板については、圧延後空冷し、再加熱後焼入れ(RQ)を行った。   Steel slabs prepared in various compositions shown in Table 4 by the converter-ladder refining-continuous casting method were heated to 1000 to 1250 ° C. and then hot-rolled, and some steel plates were immediately after rolling. The other steel plates were quenched (DQ), air cooled after rolling, and quenched after reheating (RQ).

得られた鋼板について、表面硬度測定、母材靭性測定、耐磨耗性評価、T形すみ肉溶接割れ試験(耐遅れ破壊特性評価)、溶接部再現熱サイクル試験、実継手の溶接部靭性試験を下記の要領で実施した。   About the obtained steel sheet, surface hardness measurement, base metal toughness measurement, wear resistance evaluation, T-shaped fillet weld cracking test (delayed fracture resistance evaluation), welded part reproduction thermal cycle test, welded part toughness test of actual joint Was carried out as follows.

[表面硬度2]
表面硬度測定はJIS Z2243(1998)に準拠し、表層下の表面硬度(表層のスケールを除去した後に測定した表面の硬度)を測定した。測定は直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。
[Surface hardness 2]
The surface hardness was measured according to JIS Z2243 (1998), and the surface hardness under the surface layer (the surface hardness measured after removing the scale of the surface layer) was measured. The measurement used a tungsten hard sphere having a diameter of 10 mm, and the load was 3000 kgf.

[母材靭性2]
各鋼板の板厚1/4位置の圧延方向と垂直な方向から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について各温度3本のシャルピー衝撃試験を実施し、試験温度0℃および−40℃での吸収エネルギーを求め、母材靭性を評価した。試験温度0℃は温暖地域での使用を、試験温度−40℃は寒冷地域での使用を考慮して選定した。
[Base material toughness 2]
From the direction perpendicular to the rolling direction at a thickness of 1/4 of each steel plate, V-notch specimens were collected in accordance with JIS Z 2202 (1998), and conformed to JIS Z 2242 (1998). Each steel plate was subjected to a Charpy impact test at three temperatures, the absorbed energy at test temperatures of 0 ° C. and −40 ° C. was determined, and the base material toughness was evaluated. A test temperature of 0 ° C. was selected in consideration of use in a warm region, and a test temperature of −40 ° C. was selected in consideration of use in a cold region.

試験温度0℃での吸収エネルギー(vEと言う場合がある。)の3本の平均値が30J以上でかつ、試験温度−40℃での吸収エネルギー(vE−40と言う場合がある。)の3本の平均値が27J以上を母材靭性に優れるもの(本発明範囲内)とした。なお、板厚が10mm未満の鋼板に関しては、サブサイズ(5mm×10mm)のVノッチシャルピー試験片を採取し、シャルピー衝撃試験を実施し、3本の吸収エネルギー(vE)の平均値が15J以上でかつ、3本の吸収エネルギー(vE−40)の平均値が13J以上を母材靭性に優れるもの(本発明範囲内)とした。 The average value of the three absorbed energy at the test temperature of 0 ° C. (sometimes referred to as vE 0 ) is 30 J or more, and the absorbed energy at the test temperature of −40 ° C. (sometimes referred to as vE- 40 ). The average value of these three was determined to be 27 J or more with excellent base material toughness (within the scope of the present invention). For steel plates with a thickness of less than 10 mm, sub-size (5 mm × 10 mm) V-notch Charpy test pieces were collected, Charpy impact tests were performed, and the average value of three absorbed energy (vE 0 ) was 15 J The average value of the three absorbed energy (vE- 40 ) is 13J or more as described above, and the base material toughness is excellent (within the scope of the present invention).

[耐磨耗性2]
耐磨耗性は、ASTM G65の規定に準拠し、ラバーホイール試験を実施した。試験片は10mmt(t:板厚)×75mmw(w:幅)×20mmL(L:長さ)(板厚が10mmt未満の場合は、t(板厚)×75mmw×20mmL)とし、磨耗材に100%SiO磨耗砂を使用して実施した。
[Abrasion resistance 2]
The abrasion resistance was in accordance with ASTM G65, and a rubber wheel test was performed. The test piece is 10 mmt (t: plate thickness) x 75 mmw (w: width) x 20 mmL (L: length) (if the plate thickness is less than 10 mmt, t (plate thickness) x 75 mmw x 20 mmL). Performed using 100% SiO 2 wear sand.

試験前後での試験片重量を測定し、磨耗量を測定した。試験結果は、軟鋼板(SS400)の磨耗量を基準(1.0)として、耐磨耗比:(軟鋼板の磨耗量)/(各鋼板の磨耗量)で評価した。耐磨耗比が大きいほど、耐磨耗性に優れていることを意味し、本発明範囲では、耐磨耗比4.0以上を耐磨耗性に優れるものとした。   The specimen weight before and after the test was measured, and the amount of wear was measured. The test results were evaluated based on the wear resistance ratio: (abrasion amount of mild steel plate) / (abrasion amount of each steel plate) with the wear amount of the mild steel plate (SS400) as a reference (1.0). The larger the wear resistance ratio, the better the wear resistance. In the scope of the present invention, the wear resistance ratio of 4.0 or more is excellent in wear resistance.

[遅れ破壊2]
T形溶接割れ試験は、図1の通りにT形に組み立てた試験体を被覆アーク溶接にて拘束溶接を実施した後、室温(25℃×湿度60%)もしくは、100℃に予熱した後、試験溶接を実施した。
[Delayed destruction 2]
The T-shaped weld cracking test was conducted after subjecting a test body assembled into a T-shape as shown in FIG. 1 to be subjected to restraint welding by covering arc welding, and then preheating to room temperature (25 ° C. × 60% humidity) or 100 ° C. Test welding was performed.

溶接方法は、被覆アーク溶接(溶接材料:LB52UL(4.0mmΦ)で、入熱17kJ/cmとし、3層6パスの溶接を実施した。試験後、48時間室温で放置した後、試験板の溶接部断面観察サンプル(ビード長200mmを5等分)を5枚採取し、溶接熱影響部での割れの発生の有無を投影機および光学顕微鏡により調査した。予熱なし、および、予熱100℃とも、採取した各5枚の断面サンプルにおいて、溶接熱影響部で割れの発生が全くないものを耐遅れ破壊特性に優れるとして評価した。   The welding method was covered arc welding (welding material: LB52UL (4.0 mmΦ), heat input was 17 kJ / cm, and three layers and six passes were welded. After the test, the test plate was left for 48 hours at room temperature. Weld section cross-sectional observation samples (bead length of 200 mm divided into 5 equal parts) were collected and examined for occurrence of cracks in the weld heat affected zone with a projector and an optical microscope. In each of the collected five cross-sectional samples, those having no cracks in the weld heat affected zone were evaluated as having excellent delayed fracture resistance.

[溶接部靭性2−1]
溶接再現熱サイクル試験は、溶接入熱17kJ/cmの2層炭酸ガスアーク溶接を行った場合の溶接熱影響部のボンド部の低温焼戻しを模擬した。1層溶接(初層)のボンド部を1400℃で1秒間保持し、800〜200℃の冷却速度を30℃/sとし、次に2層溶接(後続の溶接)による低温焼戻しとして、300℃で1秒間保持し、300〜100℃を5℃/sで冷却する熱サイクルを施した。
[Weld toughness 2-1]
The welding reproduction heat cycle test simulated low temperature tempering of the bond portion of the weld heat affected zone when two-layer carbon dioxide arc welding with a welding heat input of 17 kJ / cm was performed. The bond part of 1 layer welding (first layer) is held at 1400 ° C. for 1 second, the cooling rate of 800 to 200 ° C. is set to 30 ° C./s, and then low temperature tempering by 2 layer welding (subsequent welding) is performed at 300 ° C. Was held for 1 second, and a heat cycle was performed in which 300 to 100 ° C was cooled at 5 ° C / s.

圧延方向から採取した角棒状試験片に高周波誘導加熱装置で上述した熱サイクルを付与した後、JISZ2242(1998年)に準じてVノッチシャルピー衝撃試験を行った。シャルピー衝撃試験は試験温度を0℃および−40℃として各鋼板について各温度3本の試験片で行った。   After giving the above-mentioned thermal cycle with a high frequency induction heating device to a square bar specimen taken from the rolling direction, a V-notch Charpy impact test was conducted according to JISZ2242 (1998). The Charpy impact test was performed with three test pieces at each temperature for each steel plate at test temperatures of 0 ° C and -40 ° C.

吸収エネルギー(vE)の3本の平均値が30J以上でかつ、吸収エネルギー(vE−40)の3本の平均値が27J以上を多層盛溶接部靭性に優れるもの(本発明範囲内)とした。 An average value of three absorbed energy (vE 0 ) of 30 J or more and an average value of three absorbed energy (vE −40 ) of 27 J or more are excellent in multi-layer welded portion toughness (within the scope of the present invention) did.

なお、板厚が10mm未満の鋼板に関しては、サブサイズ(5mm×10mm)のVノッチシャルピー試験片を採取し、シャルピー衝撃試験を実施し、吸収エネルギー(vE)の3本の平均値が15J以上でかつ、吸収エネルギー(vE−40)の3本の平均値が13J以上を多層盛溶接部靭性に優れるもの(本発明範囲内)とした。 For steel sheets with a thickness of less than 10 mm, sub-size (5 mm × 10 mm) V-notch Charpy test pieces were collected, Charpy impact tests were performed, and the average value of three absorbed energy (vE 0 ) was 15 J The average value of the three absorbed energy (vE- 40 ) values of 13 J or more was determined to be excellent in multi-layer welded portion toughness (within the scope of the present invention).

[溶接部靭性2−2]
さらに、実継手の靭性を確認するため、被覆アーク溶接(入熱17kJ/cm、予熱150℃、パス間温度150℃、溶接材料:LB52UL(4.0mmΦ))で多層盛溶接継手(レ開先)を作製した。
[Weld zone toughness 2-2]
Furthermore, in order to confirm the toughness of the actual joint, a multi-layer welded joint (lamination groove) is used by covering arc welding (heat input 17 kJ / cm, preheating 150 ° C., interpass temperature 150 ° C., welding material: LB52UL (4.0 mmΦ)) ) Was produced.

溶接継手から、シャルピー衝撃試験片を表面下1mmの位置より採取した。ノッチ位置は、レ開先で鋼板表面に垂直な開先側のボンドとした。このようにして採取した試験片を用い、JISZ2242(1998年)に準じてVノッチシャルピー衝撃試験を行った。図2にシャルピー衝撃試験片の採取位置、ノッチ位置を示す。   From the welded joint, a Charpy impact test piece was taken from a position 1 mm below the surface. The notch position was a bond on the groove side perpendicular to the steel sheet surface at the groove. Using the test piece thus collected, a V-notch Charpy impact test was conducted according to JISZ2242 (1998). FIG. 2 shows the sampling position and notch position of the Charpy impact test piece.

実継手のVノッチシャルピー衝撃試験は試験温度を0℃および−40℃として各試験温度について3本の試験片で行った。吸収エネルギー(vE)の3本の平均値が30J以上でかつ、吸収エネルギー(vE−40)の3本の平均値が27J以上を多層盛溶接部靭性に優れるもの(本発明範囲内)とした。 The V-notch Charpy impact test of the actual joint was performed with three test pieces at each test temperature with the test temperature being 0 ° C. and −40 ° C. An average value of three absorbed energy (vE 0 ) of 30 J or more and an average value of three absorbed energy (vE −40 ) of 27 J or more are excellent in multi-layer welded portion toughness (within the scope of the present invention) did.

なお、板厚が10mm未満の鋼板に関しては、サブサイズ(5mm×10mm)のVノッチシャルピー試験片を採取し、シャルピー衝撃試験を実施し、吸収エネルギー(vE)の3本の平均値が15J以上でかつ、吸収エネルギー(vE−40)の3本の平均値が13J以上を多層盛溶接部靭性に優れるもの(本発明範囲内)とした。 For steel sheets with a thickness of less than 10 mm, sub-size (5 mm × 10 mm) V-notch Charpy test pieces were collected, Charpy impact tests were performed, and the average value of three absorbed energy (vE 0 ) was 15 J The average value of the three absorbed energy (vE- 40 ) values of 13 J or more was determined to be excellent in multi-layer welded portion toughness (within the scope of the present invention).

表5に供試鋼板の製造条件を、表6に上記各試験の結果を示す。本発明例(鋼No.20〜22(但し、No.22は板厚8mm))は、表面硬度が400HBW10/3000以上を有し、耐磨耗性に優れ、0℃の母材靭性が30J以上を有し、かつ−40℃の母材靭性が27J以上を有し、さらに、T形すみ肉溶接割れ試験で割れが発生せず、また、溶接部再現熱サイクル試験および実溶接継手靭性においても優れた靭性を有し、多層盛溶接部靭性に優れていることが確認された。   Table 5 shows the production conditions of the test steel sheets, and Table 6 shows the results of the above tests. Examples of the present invention (steel No. 20 to 22 (where No. 22 is a plate thickness of 8 mm)) has a surface hardness of 400 HBW 10/3000 or more, excellent wear resistance, and a base material toughness of 0 ° C. is 30 J. In addition, the base metal toughness at −40 ° C. is 27 J or more, and further, no cracks are generated in the T-shaped fillet weld cracking test. It has also been confirmed that it has excellent toughness and is excellent in toughness of multi-layer welds.

一方、成分組成は本発明範囲内であるが、DIが180を超える鋼No.23の場合、表面硬度、耐磨耗性、母材靭性、T形溶接割れ試験は良好であるが、溶接部再現熱サイクル試験および実溶接継手靭性が目標性能の下限に近く、他の発明例と比較して劣っていた。 鋼No.24は、成分組成のうち、Siが本発明範囲外のため、表面硬度、耐磨耗性、母材靭性は良好であるが、T形溶接割れ試験、溶接部再現熱サイクル試験結果および実溶接継手靭性が目標性能を満足できなかった。   On the other hand, the component composition is within the scope of the present invention, but the steel No. 23, the surface hardness, wear resistance, base metal toughness, and T-shaped weld cracking test are good, but the welded portion reproducible thermal cycle test and actual weld joint toughness are close to the lower limit of the target performance, and other invention examples It was inferior compared with. Steel No. No. 24, among the component compositions, Si is outside the scope of the present invention, so the surface hardness, wear resistance, and base metal toughness are good, but the T-type weld cracking test, welded part reproduction thermal cycle test results and actual welding Joint toughness could not meet the target performance.

鋼No.25は成分組成は本発明範囲内であるが、(2)式の左辺のパラメータ:C+Mn/4−Cr/3+10Pの値が0.47を超えるため、溶接部再現熱サイクル試験結果および実溶接継手靭性が目標性能の下限に近く、他の発明例と比較して劣っていた。なお、表4、5、6の記載において鋼No.23は成分組成は請求項3の本発明範囲内だが、DIの値が請求項6の本発明範囲外のため比較例とした。鋼No.25は成分組成は請求項1の本発明範囲内だが、(2)式を満足せず、請求項7の本発明範囲外のため比較例とした。   Steel No. 25, the component composition is within the range of the present invention, but the value of the parameter on the left side of the formula (2): C + Mn / 4-Cr / 3 + 10P exceeds 0.47. The toughness was close to the lower limit of the target performance and was inferior compared to other invention examples. In Tables 4, 5, and 6, steel No. No. 23 is a comparative example because the component composition is within the range of the present invention of claim 3, but the value of DI is outside the range of the present invention of claim 6. Steel No. The component composition of No. 25 is within the scope of the present invention of claim 1, but does not satisfy the formula (2), and is outside the scope of the present invention of claim 7.

Claims (7)

mass%で、C:0.20〜0.30%、Si:0.05〜1.0%、Mn:0.40〜1.2%、P:0.010%以下、S:0.005%以下、Cr:0.40〜1.5%、Mo:0.05〜1.0%、Nb:0.005〜0.025%、Ti:0.005〜0.03%、Al:0.1%以下、N:0.0015〜0.0060%、B:0.0003〜0.0020%を含有し、(1)式で示されるDI*が45以上で、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織がマルテンサイトを基地相とする多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)
×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(1)
(1)式において、各元素記号は含有量(mass%)。
In mass%, C: 0.20 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.40 to 1.2%, P: 0.010% or less, S: 0.005 %: Cr: 0.40 to 1.5%, Mo: 0.05 to 1.0%, Nb: 0.005 to 0.025%, Ti: 0.005 to 0.03%, Al: 0 0.1% or less, N: 0.0015 to 0.0060%, B: 0.0003 to 0.0020%, DI * represented by the formula (1) is 45 or more, the remainder Fe and inevitable impurities A wear-resistant steel sheet having a composition comprising: a multi-layer welded toughness with a microstructure of martensite as a base phase, and excellent delayed fracture resistance.
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1)
× (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (1)
In the formula (1), each element symbol is a content (mass%).
鋼組成に、mass%でさらに、W:0.05〜1.0%を含有することを特徴とする請求項1記載の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。   The wear-resistant steel sheet having excellent multilayer toughness and delayed fracture resistance according to claim 1, wherein the steel composition further contains W: 0.05 to 1.0% in mass%. 鋼組成に、mass%でさらに、Cu:1.5%以下、Ni:2.0%以下、V:0.1%以下の1種または2種以上を含有することを特徴とする請求項1または2記載の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。   The steel composition further includes one or more of Cu: 1.5% or less, Ni: 2.0% or less, and V: 0.1% or less in mass%. Or the wear-resistant steel plate excellent in the multilayer welded part toughness and delayed fracture resistance of 2 description. 鋼組成に、mass%でさらに、REM:0.008%以下、Ca:0.005%以下、Mg:0.005%以下の1種または2種以上を含有することを特徴とする請求項1乃至3のいずれか一つに記載の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。   The steel composition further includes one or more of REM: 0.008% or less, Ca: 0.005% or less, and Mg: 0.005% or less in mass%. 4. A wear-resistant steel sheet having excellent multi-layer welded toughness and delayed fracture resistance as described in any one of 1 to 3. 表面硬度がブリネル硬さで400HBW10/3000以上を有する請求項1乃至4のいずれか一つに記載の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。   5. A wear-resistant steel sheet having excellent multilayer toughness and delayed fracture resistance according to any one of claims 1 to 4, having a surface hardness of Brinell hardness of 400 HBW 10/3000 or more. 請求項1乃至5のいずれか一つに記載の鋼板で、焼入れ性指数DI*が180以下の多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。   A steel plate according to any one of claims 1 to 5, wherein the hardenability index DI * is 180 or less and the multi-layer welded portion toughness and delayed fracture resistance are excellent. 請求項1乃至6のいずれか一つに記載の鋼板で、(2)式を満足する多層盛溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板。
C+Mn/4−Cr/3+10P≦0.47・・・・・(2)
(2)式において、各元素記号は含有量(mass%)。
A steel plate according to any one of claims 1 to 6, which is a wear-resistant steel plate excellent in multilayer weld weld toughness and delayed fracture resistance satisfying the formula (2).
C + Mn / 4-Cr / 3 + 10P ≦ 0.47 (2)
In the formula (2), each element symbol is a content (mass%).
JP2011142507A 2010-06-30 2011-06-28 Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties Pending JP2012031511A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2011142507A JP2012031511A (en) 2010-06-30 2011-06-28 Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
MX2013000014A MX353802B (en) 2010-06-30 2011-06-29 Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties.
US13/807,798 US20130206286A1 (en) 2010-06-30 2011-06-29 Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
CA2801708A CA2801708C (en) 2010-06-30 2011-06-29 Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
EP11801023.0A EP2589675A4 (en) 2010-06-30 2011-06-29 Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
RU2013103813/02A RU2550987C2 (en) 2010-06-30 2011-06-29 Galling resistant steel plates demonstrating excellent impact toughness of weld and excellent resistance to delayed fracture
CN2011800319079A CN102959112A (en) 2010-06-30 2011-06-29 Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
PCT/JP2011/065410 WO2012002563A1 (en) 2010-06-30 2011-06-29 Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
KR1020137001873A KR101502845B1 (en) 2010-06-30 2011-06-29 Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
AU2011272249A AU2011272249C1 (en) 2010-06-30 2011-06-29 Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
ARP110104973 AR084623A1 (en) 2011-06-28 2011-12-28 AN ABRASION RESISTANT STEEL PLATE THAT DENOTES EXCELLENT HARDNESS AND EXCELLENT RESISTANCE TO THE LATE INVOICE OF A MULTIPLE STEP WELDING

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010149650 2010-06-30
JP2010149650 2010-06-30
JP2011142507A JP2012031511A (en) 2010-06-30 2011-06-28 Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties

Publications (1)

Publication Number Publication Date
JP2012031511A true JP2012031511A (en) 2012-02-16

Family

ID=45402260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142507A Pending JP2012031511A (en) 2010-06-30 2011-06-28 Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties

Country Status (10)

Country Link
US (1) US20130206286A1 (en)
EP (1) EP2589675A4 (en)
JP (1) JP2012031511A (en)
KR (1) KR101502845B1 (en)
CN (1) CN102959112A (en)
AU (1) AU2011272249C1 (en)
CA (1) CA2801708C (en)
MX (1) MX353802B (en)
RU (1) RU2550987C2 (en)
WO (1) WO2012002563A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876969A (en) * 2012-07-31 2013-01-16 宝山钢铁股份有限公司 Super-strength high-toughness wear resistant steel plate and production method thereof
JP2014025130A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Wear resistant steel sheet having excellent impact wear resistance and method for producing the same
KR20190113872A (en) * 2017-03-13 2019-10-08 제이에프이 스틸 가부시키가이샤 Method of manufacturing wear resistant steel sheet and wear resistant steel sheet

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866820B2 (en) * 2010-06-30 2016-02-24 Jfeスチール株式会社 Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
WO2012133911A1 (en) 2011-03-29 2012-10-04 Jfeスチール株式会社 Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
PE20141712A1 (en) 2011-03-29 2014-11-28 Jfe Steel Corp ABRASION RESISTANT STEEL PLATE OR STEEL SHEET THAT HAS EXCELLENT STRESS RESISTANCE TO CORROSION CRACKING AND METHOD OF MANUFACTURING IT
EP2592168B1 (en) * 2011-11-11 2015-09-16 Tata Steel UK Limited Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
WO2014045553A1 (en) 2012-09-19 2014-03-27 Jfeスチール株式会社 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
JP6007847B2 (en) * 2013-03-28 2016-10-12 Jfeスチール株式会社 Wear-resistant thick steel plate having low temperature toughness and method for producing the same
JP6235221B2 (en) * 2013-03-28 2017-11-22 Jfeスチール株式会社 Wear-resistant thick steel plate having low temperature toughness and hydrogen embrittlement resistance and method for producing the same
SI2789699T1 (en) * 2013-08-30 2017-06-30 Rautaruukki Oyj A high-hardness hot-rolled steel product, and a method of manufacturing the same
MX2016009700A (en) * 2014-01-28 2016-09-22 Jfe Steel Corp Wear-resistant steel plate and process for producing same.
CN104711480B (en) * 2015-03-20 2017-01-18 苏州劲元油压机械有限公司 Dedicated wear-resisting anticorrosion steel plate for storage rack platform and preparation method of steel plate
CN108060362A (en) * 2017-12-21 2018-05-22 武汉钢铁有限公司 A kind of HB450 grades of anti-crack heterogeneous structure abrasion-resistant stee and its processing method
CN111727267B (en) * 2018-03-29 2022-05-24 日本制铁株式会社 Austenitic wear-resistant steel plate
CN111604624B (en) * 2020-05-29 2022-06-28 广船国际有限公司 Test device for obtaining weld heat cracks and evaluation method
CN114277231B (en) * 2021-11-19 2023-12-05 铃木加普腾钢丝(苏州)有限公司 Online dehydrogenation process for electric tail gate oil quenched steel wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070713A (en) * 2005-09-09 2007-03-22 Nippon Steel Corp High toughness wear resistant steel small in hardness change during using, and producing method therefor
JP2009030094A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Wear resistant steel sheet excellent in gas cut face property and low temperature tempering brittle crack resistance
JP2009030092A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Wear resistant steel sheet excellent in low temperature toughness and low temperature tempering brittle crack resistance

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551691A (en) 1991-03-11 1993-03-02 Sumitomo Metal Ind Ltd Wear resistant steel sheet excellent in delayed fracture resistance and its production
FR2733516B1 (en) 1995-04-27 1997-05-30 Creusot Loire STEEL AND PROCESS FOR THE MANUFACTURE OF PARTS WITH HIGH ABRASION RESISTANCE
JP3543619B2 (en) * 1997-06-26 2004-07-14 住友金属工業株式会社 High toughness wear-resistant steel and method of manufacturing the same
JPH11201168A (en) * 1998-01-12 1999-07-27 Nippon Seiko Kk Rolling bearing
JP3736320B2 (en) 2000-09-11 2006-01-18 Jfeスチール株式会社 Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same
JP2002115024A (en) 2000-10-06 2002-04-19 Nkk Corp Wear resistant steel having excellent toughness and delayed-fracture resistance and its production method
JP4116867B2 (en) 2002-11-13 2008-07-09 新日本製鐵株式会社 Abrasion resistant steel with excellent weldability and wear resistance and corrosion resistance of welded parts, and method for producing the same
FR2847272B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
RU2243288C1 (en) * 2003-12-03 2004-12-27 Открытое акционерное общество "Северсталь" Steel
PE20141712A1 (en) * 2011-03-29 2014-11-28 Jfe Steel Corp ABRASION RESISTANT STEEL PLATE OR STEEL SHEET THAT HAS EXCELLENT STRESS RESISTANCE TO CORROSION CRACKING AND METHOD OF MANUFACTURING IT
WO2012133911A1 (en) * 2011-03-29 2012-10-04 Jfeスチール株式会社 Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070713A (en) * 2005-09-09 2007-03-22 Nippon Steel Corp High toughness wear resistant steel small in hardness change during using, and producing method therefor
JP2009030094A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Wear resistant steel sheet excellent in gas cut face property and low temperature tempering brittle crack resistance
JP2009030092A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Wear resistant steel sheet excellent in low temperature toughness and low temperature tempering brittle crack resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025130A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Wear resistant steel sheet having excellent impact wear resistance and method for producing the same
WO2014020891A1 (en) * 2012-07-30 2014-02-06 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing process therefor
CN104508166A (en) * 2012-07-30 2015-04-08 杰富意钢铁株式会社 Abrasion-resistant steel plate and manufacturing process therefor
US9738957B2 (en) 2012-07-30 2017-08-22 Jfe Steel Corporation Wear resistant steel plate and manufacturing process therefor
CN102876969A (en) * 2012-07-31 2013-01-16 宝山钢铁股份有限公司 Super-strength high-toughness wear resistant steel plate and production method thereof
CN102876969B (en) * 2012-07-31 2015-03-04 宝山钢铁股份有限公司 Super-strength high-toughness wear resistant steel plate and production method thereof
KR20190113872A (en) * 2017-03-13 2019-10-08 제이에프이 스틸 가부시키가이샤 Method of manufacturing wear resistant steel sheet and wear resistant steel sheet
KR102250916B1 (en) * 2017-03-13 2021-05-11 제이에프이 스틸 가부시키가이샤 Abrasion-resistant steel plate and method of manufacturing same

Also Published As

Publication number Publication date
AU2011272249C1 (en) 2017-02-02
WO2012002563A1 (en) 2012-01-05
RU2550987C2 (en) 2015-05-20
CA2801708A1 (en) 2012-01-05
MX2013000014A (en) 2013-02-01
EP2589675A1 (en) 2013-05-08
RU2013103813A (en) 2014-08-10
KR20130025947A (en) 2013-03-12
CA2801708C (en) 2016-04-26
AU2011272249A1 (en) 2013-02-14
AU2011272249B2 (en) 2014-09-11
EP2589675A4 (en) 2018-01-03
CN102959112A (en) 2013-03-06
MX353802B (en) 2018-01-30
KR101502845B1 (en) 2015-03-17
US20130206286A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5866820B2 (en) Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
WO2012002563A1 (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
JP5380892B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
JP4735167B2 (en) Method for producing wear-resistant steel sheet with excellent low-temperature toughness
JP5145803B2 (en) Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
WO2014020891A1 (en) Abrasion-resistant steel plate and manufacturing process therefor
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP5683327B2 (en) Wear-resistant steel plate with excellent low-temperature toughness
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP2008214651A (en) Wear resistant steel sheet having excellent weldability
JP6729522B2 (en) Thick wear-resistant steel plate, method of manufacturing the same, and method of manufacturing wear-resistant member
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP2019173053A (en) High strength high ductility steel sheet
JP3698082B2 (en) Wear resistant steel
JP2011208213A (en) Low-yield ratio high-tensile strength thick steel plate having excellent weld crack resistance and weld heat-affected zone toughness
JP2019173054A (en) High strength high ductility steel sheet
JP4434029B2 (en) High-tensile steel with excellent weldability and joint toughness
JP7506306B2 (en) High-strength steel plate for large heat input welding

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804